* stack.c (print_frame_args): Fix typos in comments.
[deliverable/binutils-gdb.git] / gdb / vec.h
CommitLineData
350da6ee 1/* Vector API for GDB.
9b254dd1 2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
350da6ee
DJ
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
350da6ee
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
350da6ee
DJ
19
20#if !defined (GDB_VEC_H)
21#define GDB_VEC_H
22
23#include <stddef.h>
24#include "gdb_string.h"
25#include "gdb_assert.h"
26
27/* The macros here implement a set of templated vector types and
28 associated interfaces. These templates are implemented with
29 macros, as we're not in C++ land. The interface functions are
30 typesafe and use static inline functions, sometimes backed by
31 out-of-line generic functions.
32
33 Because of the different behavior of structure objects, scalar
34 objects and of pointers, there are three flavors, one for each of
35 these variants. Both the structure object and pointer variants
36 pass pointers to objects around -- in the former case the pointers
37 are stored into the vector and in the latter case the pointers are
38 dereferenced and the objects copied into the vector. The scalar
39 object variant is suitable for int-like objects, and the vector
40 elements are returned by value.
41
42 There are both 'index' and 'iterate' accessors. The iterator
43 returns a boolean iteration condition and updates the iteration
44 variable passed by reference. Because the iterator will be
45 inlined, the address-of can be optimized away.
46
47 The vectors are implemented using the trailing array idiom, thus
48 they are not resizeable without changing the address of the vector
49 object itself. This means you cannot have variables or fields of
50 vector type -- always use a pointer to a vector. The one exception
51 is the final field of a structure, which could be a vector type.
52 You will have to use the embedded_size & embedded_init calls to
53 create such objects, and they will probably not be resizeable (so
54 don't use the 'safe' allocation variants). The trailing array
55 idiom is used (rather than a pointer to an array of data), because,
56 if we allow NULL to also represent an empty vector, empty vectors
57 occupy minimal space in the structure containing them.
58
59 Each operation that increases the number of active elements is
60 available in 'quick' and 'safe' variants. The former presumes that
61 there is sufficient allocated space for the operation to succeed
62 (it dies if there is not). The latter will reallocate the
63 vector, if needed. Reallocation causes an exponential increase in
64 vector size. If you know you will be adding N elements, it would
65 be more efficient to use the reserve operation before adding the
66 elements with the 'quick' operation. This will ensure there are at
67 least as many elements as you ask for, it will exponentially
68 increase if there are too few spare slots. If you want reserve a
69 specific number of slots, but do not want the exponential increase
70 (for instance, you know this is the last allocation), use a
71 negative number for reservation. You can also create a vector of a
72 specific size from the get go.
73
74 You should prefer the push and pop operations, as they append and
75 remove from the end of the vector. If you need to remove several
76 items in one go, use the truncate operation. The insert and remove
77 operations allow you to change elements in the middle of the
78 vector. There are two remove operations, one which preserves the
79 element ordering 'ordered_remove', and one which does not
80 'unordered_remove'. The latter function copies the end element
81 into the removed slot, rather than invoke a memmove operation. The
82 'lower_bound' function will determine where to place an item in the
83 array using insert that will maintain sorted order.
84
85 If you need to directly manipulate a vector, then the 'address'
86 accessor will return the address of the start of the vector. Also
87 the 'space' predicate will tell you whether there is spare capacity
88 in the vector. You will not normally need to use these two functions.
89
90 Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro.
91 Variables of vector type are declared using a VEC(TYPEDEF) macro.
92 The characters O, P and I indicate whether TYPEDEF is a pointer
93 (P), object (O) or integral (I) type. Be careful to pick the
94 correct one, as you'll get an awkward and inefficient API if you
95 use the wrong one. There is a check, which results in a
96 compile-time warning, for the P and I versions, but there is no
97 check for the O versions, as that is not possible in plain C.
98
99 An example of their use would be,
100
101 DEF_VEC_P(tree); // non-managed tree vector.
102
103 struct my_struct {
104 VEC(tree) *v; // A (pointer to) a vector of tree pointers.
105 };
106
107 struct my_struct *s;
108
109 if (VEC_length(tree, s->v)) { we have some contents }
110 VEC_safe_push(tree, s->v, decl); // append some decl onto the end
111 for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++)
112 { do something with elt }
113
114*/
115
116/* Macros to invoke API calls. A single macro works for both pointer
117 and object vectors, but the argument and return types might well be
118 different. In each macro, T is the typedef of the vector elements.
119 Some of these macros pass the vector, V, by reference (by taking
120 its address), this is noted in the descriptions. */
121
122/* Length of vector
123 unsigned VEC_T_length(const VEC(T) *v);
124
125 Return the number of active elements in V. V can be NULL, in which
126 case zero is returned. */
127
128#define VEC_length(T,V) (VEC_OP(T,length)(V))
129
130
131/* Check if vector is empty
132 int VEC_T_empty(const VEC(T) *v);
133
134 Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
135
136#define VEC_empty(T,V) (VEC_length (T,V) == 0)
137
138
139/* Get the final element of the vector.
140 T VEC_T_last(VEC(T) *v); // Integer
141 T VEC_T_last(VEC(T) *v); // Pointer
142 T *VEC_T_last(VEC(T) *v); // Object
143
144 Return the final element. V must not be empty. */
145
146#define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO))
147
148/* Index into vector
149 T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
150 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
151 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
152
153 Return the IX'th element. If IX must be in the domain of V. */
154
155#define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO))
156
157/* Iterate over vector
158 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
159 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
160 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
161
162 Return iteration condition and update PTR to point to the IX'th
163 element. At the end of iteration, sets PTR to NULL. Use this to
164 iterate over the elements of a vector as follows,
165
166 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
167 continue; */
168
169#define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P)))
170
171/* Allocate new vector.
172 VEC(T,A) *VEC_T_alloc(int reserve);
173
174 Allocate a new vector with space for RESERVE objects. If RESERVE
175 is zero, NO vector is created. */
176
177#define VEC_alloc(T,N) (VEC_OP(T,alloc)(N))
178
179/* Free a vector.
180 void VEC_T_free(VEC(T,A) *&);
181
182 Free a vector and set it to NULL. */
183
184#define VEC_free(T,V) (VEC_OP(T,free)(&V))
185
186/* Use these to determine the required size and initialization of a
187 vector embedded within another structure (as the final member).
188
189 size_t VEC_T_embedded_size(int reserve);
190 void VEC_T_embedded_init(VEC(T) *v, int reserve);
191
192 These allow the caller to perform the memory allocation. */
193
194#define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N))
195#define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N))
196
197/* Copy a vector.
198 VEC(T,A) *VEC_T_copy(VEC(T) *);
199
200 Copy the live elements of a vector into a new vector. The new and
201 old vectors need not be allocated by the same mechanism. */
202
203#define VEC_copy(T,V) (VEC_OP(T,copy)(V))
204
205/* Determine if a vector has additional capacity.
206
207 int VEC_T_space (VEC(T) *v,int reserve)
208
209 If V has space for RESERVE additional entries, return nonzero. You
210 usually only need to use this if you are doing your own vector
211 reallocation, for instance on an embedded vector. This returns
212 nonzero in exactly the same circumstances that VEC_T_reserve
213 will. */
214
215#define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO))
216
217/* Reserve space.
218 int VEC_T_reserve(VEC(T,A) *&v, int reserve);
219
220 Ensure that V has at least abs(RESERVE) slots available. The
221 signedness of RESERVE determines the reallocation behavior. A
222 negative value will not create additional headroom beyond that
223 requested. A positive value will create additional headroom. Note
224 this can cause V to be reallocated. Returns nonzero iff
225 reallocation actually occurred. */
226
227#define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO))
228
229/* Push object with no reallocation
230 T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
231 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
232 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
233
234 Push a new element onto the end, returns a pointer to the slot
235 filled in. For object vectors, the new value can be NULL, in which
236 case NO initialization is performed. There must
237 be sufficient space in the vector. */
238
239#define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO))
240
241/* Push object with reallocation
242 T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer
243 T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer
244 T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object
245
246 Push a new element onto the end, returns a pointer to the slot
247 filled in. For object vectors, the new value can be NULL, in which
248 case NO initialization is performed. Reallocates V, if needed. */
249
250#define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO))
251
252/* Pop element off end
253 T VEC_T_pop (VEC(T) *v); // Integer
254 T VEC_T_pop (VEC(T) *v); // Pointer
255 void VEC_T_pop (VEC(T) *v); // Object
256
257 Pop the last element off the end. Returns the element popped, for
258 pointer vectors. */
259
260#define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO))
261
262/* Truncate to specific length
263 void VEC_T_truncate (VEC(T) *v, unsigned len);
264
265 Set the length as specified. The new length must be less than or
266 equal to the current length. This is an O(1) operation. */
267
268#define VEC_truncate(T,V,I) \
269 (VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO))
270
271/* Grow to a specific length.
272 void VEC_T_safe_grow (VEC(T,A) *&v, int len);
273
274 Grow the vector to a specific length. The LEN must be as
275 long or longer than the current length. The new elements are
276 uninitialized. */
277
278#define VEC_safe_grow(T,V,I) \
279 (VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO))
280
281/* Replace element
282 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
283 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
284 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
285
286 Replace the IXth element of V with a new value, VAL. For pointer
287 vectors returns the original value. For object vectors returns a
288 pointer to the new value. For object vectors the new value can be
289 NULL, in which case no overwriting of the slot is actually
290 performed. */
291
292#define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO))
293
294/* Insert object with no reallocation
295 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
296 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
297 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
298
299 Insert an element, VAL, at the IXth position of V. Return a pointer
300 to the slot created. For vectors of object, the new value can be
301 NULL, in which case no initialization of the inserted slot takes
302 place. There must be sufficient space. */
303
304#define VEC_quick_insert(T,V,I,O) \
305 (VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO))
306
307/* Insert object with reallocation
308 T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
309 T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
310 T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
311
312 Insert an element, VAL, at the IXth position of V. Return a pointer
313 to the slot created. For vectors of object, the new value can be
314 NULL, in which case no initialization of the inserted slot takes
315 place. Reallocate V, if necessary. */
316
317#define VEC_safe_insert(T,V,I,O) \
318 (VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO))
319
320/* Remove element retaining order
321 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
322 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
323 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
324
325 Remove an element from the IXth position of V. Ordering of
326 remaining elements is preserved. For pointer vectors returns the
327 removed object. This is an O(N) operation due to a memmove. */
328
329#define VEC_ordered_remove(T,V,I) \
330 (VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO))
331
332/* Remove element destroying order
333 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
334 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
335 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
336
337 Remove an element from the IXth position of V. Ordering of
338 remaining elements is destroyed. For pointer vectors returns the
339 removed object. This is an O(1) operation. */
340
341#define VEC_unordered_remove(T,V,I) \
342 (VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO))
343
344/* Remove a block of elements
345 void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
346
347 Remove LEN elements starting at the IXth. Ordering is retained.
348 This is an O(1) operation. */
349
350#define VEC_block_remove(T,V,I,L) \
351 (VEC_OP(T,block_remove)(V,I,L) VEC_ASSERT_INFO)
352
353/* Get the address of the array of elements
354 T *VEC_T_address (VEC(T) v)
355
356 If you need to directly manipulate the array (for instance, you
357 want to feed it to qsort), use this accessor. */
358
359#define VEC_address(T,V) (VEC_OP(T,address)(V))
360
361/* Find the first index in the vector not less than the object.
362 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
363 int (*lessthan) (const T, const T)); // Integer
364 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
365 int (*lessthan) (const T, const T)); // Pointer
366 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
367 int (*lessthan) (const T*, const T*)); // Object
368
369 Find the first position in which VAL could be inserted without
370 changing the ordering of V. LESSTHAN is a function that returns
371 true if the first argument is strictly less than the second. */
372
373#define VEC_lower_bound(T,V,O,LT) \
374 (VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO))
375
376/* Reallocate an array of elements with prefix. */
377extern void *vec_p_reserve (void *, int);
378extern void *vec_o_reserve (void *, int, size_t, size_t);
1e8877aa 379#define vec_free_(V) xfree (V)
350da6ee
DJ
380
381#define VEC_ASSERT_INFO ,__FILE__,__LINE__
382#define VEC_ASSERT_DECL ,const char *file_,unsigned line_
383#define VEC_ASSERT_PASS ,file_,line_
384#define vec_assert(expr, op) \
385 ((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, ASSERT_FUNCTION), 0)))
386
387#define VEC(T) VEC_##T
388#define VEC_OP(T,OP) VEC_##T##_##OP
389
390#define VEC_T(T) \
391typedef struct VEC(T) \
392{ \
393 unsigned num; \
394 unsigned alloc; \
395 T vec[1]; \
396} VEC(T)
397
398/* Vector of integer-like object. */
399#define DEF_VEC_I(T) \
400static inline void VEC_OP (T,must_be_integral_type) (void) \
401{ \
402 (void)~(T)0; \
403} \
404 \
405VEC_T(T); \
406DEF_VEC_FUNC_P(T) \
407DEF_VEC_ALLOC_FUNC_I(T) \
408struct vec_swallow_trailing_semi
409
410/* Vector of pointer to object. */
411#define DEF_VEC_P(T) \
412static inline void VEC_OP (T,must_be_pointer_type) (void) \
413{ \
414 (void)((T)1 == (void *)1); \
415} \
416 \
417VEC_T(T); \
418DEF_VEC_FUNC_P(T) \
419DEF_VEC_ALLOC_FUNC_P(T) \
420struct vec_swallow_trailing_semi
421
422/* Vector of object. */
423#define DEF_VEC_O(T) \
424VEC_T(T); \
425DEF_VEC_FUNC_O(T) \
426DEF_VEC_ALLOC_FUNC_O(T) \
427struct vec_swallow_trailing_semi
428
429#define DEF_VEC_ALLOC_FUNC_I(T) \
430static inline VEC(T) *VEC_OP (T,alloc) \
431 (int alloc_) \
432{ \
433 /* We must request exact size allocation, hence the negation. */ \
434 return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
435 offsetof (VEC(T),vec), sizeof (T)); \
436} \
437 \
438static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
439{ \
440 size_t len_ = vec_ ? vec_->num : 0; \
441 VEC (T) *new_vec_ = NULL; \
442 \
443 if (len_) \
444 { \
445 /* We must request exact size allocation, hence the negation. */ \
446 new_vec_ = (VEC (T) *) \
447 vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
448 \
449 new_vec_->num = len_; \
450 memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
451 } \
452 return new_vec_; \
453} \
454 \
455static inline void VEC_OP (T,free) \
456 (VEC(T) **vec_) \
457{ \
458 if (*vec_) \
1e8877aa 459 vec_free_ (*vec_); \
350da6ee
DJ
460 *vec_ = NULL; \
461} \
462 \
463static inline int VEC_OP (T,reserve) \
464 (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
465{ \
466 int extend = !VEC_OP (T,space) \
467 (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
468 \
469 if (extend) \
470 *vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \
471 offsetof (VEC(T),vec), sizeof (T)); \
472 \
473 return extend; \
474} \
475 \
476static inline void VEC_OP (T,safe_grow) \
477 (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
478{ \
479 vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
480 "safe_grow"); \
481 VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \
482 VEC_ASSERT_PASS); \
483 (*vec_)->num = size_; \
484} \
485 \
486static inline T *VEC_OP (T,safe_push) \
487 (VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \
488{ \
489 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
490 \
491 return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
492} \
493 \
494static inline T *VEC_OP (T,safe_insert) \
495 (VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \
496{ \
497 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
498 \
499 return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
500}
501
502#define DEF_VEC_FUNC_P(T) \
503static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
504{ \
505 return vec_ ? vec_->num : 0; \
506} \
507 \
508static inline T VEC_OP (T,last) \
509 (const VEC(T) *vec_ VEC_ASSERT_DECL) \
510{ \
511 vec_assert (vec_ && vec_->num, "last"); \
512 \
513 return vec_->vec[vec_->num - 1]; \
514} \
515 \
516static inline T VEC_OP (T,index) \
517 (const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
518{ \
519 vec_assert (vec_ && ix_ < vec_->num, "index"); \
520 \
521 return vec_->vec[ix_]; \
522} \
523 \
524static inline int VEC_OP (T,iterate) \
525 (const VEC(T) *vec_, unsigned ix_, T *ptr) \
526{ \
527 if (vec_ && ix_ < vec_->num) \
528 { \
529 *ptr = vec_->vec[ix_]; \
530 return 1; \
531 } \
532 else \
533 { \
534 *ptr = 0; \
535 return 0; \
536 } \
537} \
538 \
539static inline size_t VEC_OP (T,embedded_size) \
540 (int alloc_) \
541{ \
542 return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
543} \
544 \
545static inline void VEC_OP (T,embedded_init) \
546 (VEC(T) *vec_, int alloc_) \
547{ \
548 vec_->num = 0; \
549 vec_->alloc = alloc_; \
550} \
551 \
552static inline int VEC_OP (T,space) \
553 (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
554{ \
555 vec_assert (alloc_ >= 0, "space"); \
556 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
557} \
558 \
559static inline T *VEC_OP (T,quick_push) \
560 (VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \
561{ \
562 T *slot_; \
563 \
564 vec_assert (vec_->num < vec_->alloc, "quick_push"); \
565 slot_ = &vec_->vec[vec_->num++]; \
566 *slot_ = obj_; \
567 \
568 return slot_; \
569} \
570 \
571static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
572{ \
573 T obj_; \
574 \
575 vec_assert (vec_->num, "pop"); \
576 obj_ = vec_->vec[--vec_->num]; \
577 \
578 return obj_; \
579} \
580 \
581static inline void VEC_OP (T,truncate) \
582 (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
583{ \
584 vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
585 if (vec_) \
586 vec_->num = size_; \
587} \
588 \
589static inline T VEC_OP (T,replace) \
590 (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
591{ \
592 T old_obj_; \
593 \
594 vec_assert (ix_ < vec_->num, "replace"); \
595 old_obj_ = vec_->vec[ix_]; \
596 vec_->vec[ix_] = obj_; \
597 \
598 return old_obj_; \
599} \
600 \
601static inline T *VEC_OP (T,quick_insert) \
602 (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
603{ \
604 T *slot_; \
605 \
606 vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
607 slot_ = &vec_->vec[ix_]; \
608 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
609 *slot_ = obj_; \
610 \
611 return slot_; \
612} \
613 \
614static inline T VEC_OP (T,ordered_remove) \
615 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
616{ \
617 T *slot_; \
618 T obj_; \
619 \
620 vec_assert (ix_ < vec_->num, "ordered_remove"); \
621 slot_ = &vec_->vec[ix_]; \
622 obj_ = *slot_; \
623 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
624 \
625 return obj_; \
626} \
627 \
628static inline T VEC_OP (T,unordered_remove) \
629 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
630{ \
631 T *slot_; \
632 T obj_; \
633 \
634 vec_assert (ix_ < vec_->num, "unordered_remove"); \
635 slot_ = &vec_->vec[ix_]; \
636 obj_ = *slot_; \
637 *slot_ = vec_->vec[--vec_->num]; \
638 \
639 return obj_; \
640} \
641 \
642static inline void VEC_OP (T,block_remove) \
643 (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
644{ \
645 T *slot_; \
646 \
647 vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
648 slot_ = &vec_->vec[ix_]; \
649 vec_->num -= len_; \
650 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
651} \
652 \
653static inline T *VEC_OP (T,address) \
654 (VEC(T) *vec_) \
655{ \
656 return vec_ ? vec_->vec : 0; \
657} \
658 \
659static inline unsigned VEC_OP (T,lower_bound) \
660 (VEC(T) *vec_, const T obj_, \
661 int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \
662{ \
663 unsigned int len_ = VEC_OP (T, length) (vec_); \
664 unsigned int half_, middle_; \
665 unsigned int first_ = 0; \
666 while (len_ > 0) \
667 { \
668 T middle_elem_; \
669 half_ = len_ >> 1; \
670 middle_ = first_; \
671 middle_ += half_; \
672 middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
673 if (lessthan_ (middle_elem_, obj_)) \
674 { \
675 first_ = middle_; \
676 ++first_; \
677 len_ = len_ - half_ - 1; \
678 } \
679 else \
680 len_ = half_; \
681 } \
682 return first_; \
683}
684
685#define DEF_VEC_ALLOC_FUNC_P(T) \
686static inline VEC(T) *VEC_OP (T,alloc) \
687 (int alloc_) \
688{ \
689 /* We must request exact size allocation, hence the negation. */ \
690 return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \
691} \
692 \
693static inline void VEC_OP (T,free) \
694 (VEC(T) **vec_) \
695{ \
696 if (*vec_) \
1e8877aa 697 vec_free_ (*vec_); \
350da6ee
DJ
698 *vec_ = NULL; \
699} \
700 \
701static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
702{ \
703 size_t len_ = vec_ ? vec_->num : 0; \
704 VEC (T) *new_vec_ = NULL; \
705 \
706 if (len_) \
707 { \
708 /* We must request exact size allocation, hence the negation. */ \
709 new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \
710 \
711 new_vec_->num = len_; \
712 memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
713 } \
714 return new_vec_; \
715} \
716 \
717static inline int VEC_OP (T,reserve) \
718 (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
719{ \
720 int extend = !VEC_OP (T,space) \
721 (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
722 \
723 if (extend) \
724 *vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \
725 \
726 return extend; \
727} \
728 \
729static inline void VEC_OP (T,safe_grow) \
730 (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
731{ \
732 vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
733 "safe_grow"); \
734 VEC_OP (T,reserve) \
735 (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
736 (*vec_)->num = size_; \
737} \
738 \
739static inline T *VEC_OP (T,safe_push) \
740 (VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \
741{ \
742 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
743 \
744 return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
745} \
746 \
747static inline T *VEC_OP (T,safe_insert) \
748 (VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
749{ \
750 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
751 \
752 return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
753}
754
755#define DEF_VEC_FUNC_O(T) \
756static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
757{ \
758 return vec_ ? vec_->num : 0; \
759} \
760 \
761static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \
762{ \
763 vec_assert (vec_ && vec_->num, "last"); \
764 \
765 return &vec_->vec[vec_->num - 1]; \
766} \
767 \
768static inline T *VEC_OP (T,index) \
769 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
770{ \
771 vec_assert (vec_ && ix_ < vec_->num, "index"); \
772 \
773 return &vec_->vec[ix_]; \
774} \
775 \
776static inline int VEC_OP (T,iterate) \
777 (VEC(T) *vec_, unsigned ix_, T **ptr) \
778{ \
779 if (vec_ && ix_ < vec_->num) \
780 { \
781 *ptr = &vec_->vec[ix_]; \
782 return 1; \
783 } \
784 else \
785 { \
786 *ptr = 0; \
787 return 0; \
788 } \
789} \
790 \
791static inline size_t VEC_OP (T,embedded_size) \
792 (int alloc_) \
793{ \
794 return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
795} \
796 \
797static inline void VEC_OP (T,embedded_init) \
798 (VEC(T) *vec_, int alloc_) \
799{ \
800 vec_->num = 0; \
801 vec_->alloc = alloc_; \
802} \
803 \
804static inline int VEC_OP (T,space) \
805 (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
806{ \
807 vec_assert (alloc_ >= 0, "space"); \
808 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
809} \
810 \
811static inline T *VEC_OP (T,quick_push) \
812 (VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \
813{ \
814 T *slot_; \
815 \
816 vec_assert (vec_->num < vec_->alloc, "quick_push"); \
817 slot_ = &vec_->vec[vec_->num++]; \
818 if (obj_) \
819 *slot_ = *obj_; \
820 \
821 return slot_; \
822} \
823 \
824static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
825{ \
826 vec_assert (vec_->num, "pop"); \
827 --vec_->num; \
828} \
829 \
830static inline void VEC_OP (T,truncate) \
831 (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
832{ \
833 vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
834 if (vec_) \
835 vec_->num = size_; \
836} \
837 \
838static inline T *VEC_OP (T,replace) \
839 (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
840{ \
841 T *slot_; \
842 \
843 vec_assert (ix_ < vec_->num, "replace"); \
844 slot_ = &vec_->vec[ix_]; \
845 if (obj_) \
846 *slot_ = *obj_; \
847 \
848 return slot_; \
849} \
850 \
851static inline T *VEC_OP (T,quick_insert) \
852 (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
853{ \
854 T *slot_; \
855 \
856 vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
857 slot_ = &vec_->vec[ix_]; \
858 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
859 if (obj_) \
860 *slot_ = *obj_; \
861 \
862 return slot_; \
863} \
864 \
865static inline void VEC_OP (T,ordered_remove) \
866 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
867{ \
868 T *slot_; \
869 \
870 vec_assert (ix_ < vec_->num, "ordered_remove"); \
871 slot_ = &vec_->vec[ix_]; \
872 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
873} \
874 \
875static inline void VEC_OP (T,unordered_remove) \
876 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
877{ \
878 vec_assert (ix_ < vec_->num, "unordered_remove"); \
879 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
880} \
881 \
882static inline void VEC_OP (T,block_remove) \
883 (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
884{ \
885 T *slot_; \
886 \
887 vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
888 slot_ = &vec_->vec[ix_]; \
889 vec_->num -= len_; \
890 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
891} \
892 \
893static inline T *VEC_OP (T,address) \
894 (VEC(T) *vec_) \
895{ \
896 return vec_ ? vec_->vec : 0; \
897} \
898 \
899static inline unsigned VEC_OP (T,lower_bound) \
900 (VEC(T) *vec_, const T *obj_, \
901 int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \
902{ \
903 unsigned int len_ = VEC_OP (T, length) (vec_); \
904 unsigned int half_, middle_; \
905 unsigned int first_ = 0; \
906 while (len_ > 0) \
907 { \
908 T *middle_elem_; \
909 half_ = len_ >> 1; \
910 middle_ = first_; \
911 middle_ += half_; \
912 middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
913 if (lessthan_ (middle_elem_, obj_)) \
914 { \
915 first_ = middle_; \
916 ++first_; \
917 len_ = len_ - half_ - 1; \
918 } \
919 else \
920 len_ = half_; \
921 } \
922 return first_; \
923}
924
925#define DEF_VEC_ALLOC_FUNC_O(T) \
926static inline VEC(T) *VEC_OP (T,alloc) \
927 (int alloc_) \
928{ \
929 /* We must request exact size allocation, hence the negation. */ \
930 return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
931 offsetof (VEC(T),vec), sizeof (T)); \
932} \
933 \
934static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
935{ \
936 size_t len_ = vec_ ? vec_->num : 0; \
937 VEC (T) *new_vec_ = NULL; \
938 \
939 if (len_) \
940 { \
941 /* We must request exact size allocation, hence the negation. */ \
942 new_vec_ = (VEC (T) *) \
943 vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
944 \
945 new_vec_->num = len_; \
946 memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
947 } \
948 return new_vec_; \
949} \
950 \
951static inline void VEC_OP (T,free) \
952 (VEC(T) **vec_) \
953{ \
954 if (*vec_) \
1e8877aa 955 vec_free_ (*vec_); \
350da6ee
DJ
956 *vec_ = NULL; \
957} \
958 \
959static inline int VEC_OP (T,reserve) \
960 (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
961{ \
962 int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \
963 VEC_ASSERT_PASS); \
964 \
965 if (extend) \
966 *vec_ = (VEC(T) *) \
967 vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \
968 \
969 return extend; \
970} \
971 \
972static inline void VEC_OP (T,safe_grow) \
973 (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
974{ \
975 vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
976 "safe_grow"); \
977 VEC_OP (T,reserve) \
978 (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
979 (*vec_)->num = size_; \
980} \
981 \
982static inline T *VEC_OP (T,safe_push) \
983 (VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \
984{ \
985 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
986 \
987 return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
988} \
989 \
990static inline T *VEC_OP (T,safe_insert) \
991 (VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
992{ \
993 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
994 \
995 return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
996}
997
998#endif /* GDB_VEC_H */
This page took 0.240643 seconds and 4 git commands to generate.