Commit | Line | Data |
---|---|---|
350da6ee | 1 | /* Vector API for GDB. |
9b254dd1 | 2 | Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. |
350da6ee DJ |
3 | Contributed by Nathan Sidwell <nathan@codesourcery.com> |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
350da6ee DJ |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
350da6ee DJ |
19 | |
20 | #if !defined (GDB_VEC_H) | |
21 | #define GDB_VEC_H | |
22 | ||
23 | #include <stddef.h> | |
24 | #include "gdb_string.h" | |
25 | #include "gdb_assert.h" | |
26 | ||
27 | /* The macros here implement a set of templated vector types and | |
28 | associated interfaces. These templates are implemented with | |
29 | macros, as we're not in C++ land. The interface functions are | |
30 | typesafe and use static inline functions, sometimes backed by | |
31 | out-of-line generic functions. | |
32 | ||
33 | Because of the different behavior of structure objects, scalar | |
34 | objects and of pointers, there are three flavors, one for each of | |
35 | these variants. Both the structure object and pointer variants | |
36 | pass pointers to objects around -- in the former case the pointers | |
37 | are stored into the vector and in the latter case the pointers are | |
38 | dereferenced and the objects copied into the vector. The scalar | |
39 | object variant is suitable for int-like objects, and the vector | |
40 | elements are returned by value. | |
41 | ||
42 | There are both 'index' and 'iterate' accessors. The iterator | |
43 | returns a boolean iteration condition and updates the iteration | |
44 | variable passed by reference. Because the iterator will be | |
45 | inlined, the address-of can be optimized away. | |
46 | ||
47 | The vectors are implemented using the trailing array idiom, thus | |
48 | they are not resizeable without changing the address of the vector | |
49 | object itself. This means you cannot have variables or fields of | |
50 | vector type -- always use a pointer to a vector. The one exception | |
51 | is the final field of a structure, which could be a vector type. | |
52 | You will have to use the embedded_size & embedded_init calls to | |
53 | create such objects, and they will probably not be resizeable (so | |
54 | don't use the 'safe' allocation variants). The trailing array | |
55 | idiom is used (rather than a pointer to an array of data), because, | |
56 | if we allow NULL to also represent an empty vector, empty vectors | |
57 | occupy minimal space in the structure containing them. | |
58 | ||
59 | Each operation that increases the number of active elements is | |
60 | available in 'quick' and 'safe' variants. The former presumes that | |
61 | there is sufficient allocated space for the operation to succeed | |
62 | (it dies if there is not). The latter will reallocate the | |
63 | vector, if needed. Reallocation causes an exponential increase in | |
64 | vector size. If you know you will be adding N elements, it would | |
65 | be more efficient to use the reserve operation before adding the | |
66 | elements with the 'quick' operation. This will ensure there are at | |
67 | least as many elements as you ask for, it will exponentially | |
68 | increase if there are too few spare slots. If you want reserve a | |
69 | specific number of slots, but do not want the exponential increase | |
70 | (for instance, you know this is the last allocation), use a | |
71 | negative number for reservation. You can also create a vector of a | |
72 | specific size from the get go. | |
73 | ||
74 | You should prefer the push and pop operations, as they append and | |
75 | remove from the end of the vector. If you need to remove several | |
76 | items in one go, use the truncate operation. The insert and remove | |
77 | operations allow you to change elements in the middle of the | |
78 | vector. There are two remove operations, one which preserves the | |
79 | element ordering 'ordered_remove', and one which does not | |
80 | 'unordered_remove'. The latter function copies the end element | |
81 | into the removed slot, rather than invoke a memmove operation. The | |
82 | 'lower_bound' function will determine where to place an item in the | |
83 | array using insert that will maintain sorted order. | |
84 | ||
85 | If you need to directly manipulate a vector, then the 'address' | |
86 | accessor will return the address of the start of the vector. Also | |
87 | the 'space' predicate will tell you whether there is spare capacity | |
88 | in the vector. You will not normally need to use these two functions. | |
89 | ||
90 | Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro. | |
91 | Variables of vector type are declared using a VEC(TYPEDEF) macro. | |
92 | The characters O, P and I indicate whether TYPEDEF is a pointer | |
93 | (P), object (O) or integral (I) type. Be careful to pick the | |
94 | correct one, as you'll get an awkward and inefficient API if you | |
95 | use the wrong one. There is a check, which results in a | |
96 | compile-time warning, for the P and I versions, but there is no | |
97 | check for the O versions, as that is not possible in plain C. | |
98 | ||
99 | An example of their use would be, | |
100 | ||
101 | DEF_VEC_P(tree); // non-managed tree vector. | |
102 | ||
103 | struct my_struct { | |
104 | VEC(tree) *v; // A (pointer to) a vector of tree pointers. | |
105 | }; | |
106 | ||
107 | struct my_struct *s; | |
108 | ||
109 | if (VEC_length(tree, s->v)) { we have some contents } | |
110 | VEC_safe_push(tree, s->v, decl); // append some decl onto the end | |
111 | for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++) | |
112 | { do something with elt } | |
113 | ||
114 | */ | |
115 | ||
116 | /* Macros to invoke API calls. A single macro works for both pointer | |
117 | and object vectors, but the argument and return types might well be | |
118 | different. In each macro, T is the typedef of the vector elements. | |
119 | Some of these macros pass the vector, V, by reference (by taking | |
120 | its address), this is noted in the descriptions. */ | |
121 | ||
122 | /* Length of vector | |
123 | unsigned VEC_T_length(const VEC(T) *v); | |
124 | ||
125 | Return the number of active elements in V. V can be NULL, in which | |
126 | case zero is returned. */ | |
127 | ||
128 | #define VEC_length(T,V) (VEC_OP(T,length)(V)) | |
129 | ||
130 | ||
131 | /* Check if vector is empty | |
132 | int VEC_T_empty(const VEC(T) *v); | |
133 | ||
134 | Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */ | |
135 | ||
136 | #define VEC_empty(T,V) (VEC_length (T,V) == 0) | |
137 | ||
138 | ||
139 | /* Get the final element of the vector. | |
140 | T VEC_T_last(VEC(T) *v); // Integer | |
141 | T VEC_T_last(VEC(T) *v); // Pointer | |
142 | T *VEC_T_last(VEC(T) *v); // Object | |
143 | ||
144 | Return the final element. V must not be empty. */ | |
145 | ||
146 | #define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO)) | |
147 | ||
148 | /* Index into vector | |
149 | T VEC_T_index(VEC(T) *v, unsigned ix); // Integer | |
150 | T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer | |
151 | T *VEC_T_index(VEC(T) *v, unsigned ix); // Object | |
152 | ||
153 | Return the IX'th element. If IX must be in the domain of V. */ | |
154 | ||
155 | #define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO)) | |
156 | ||
157 | /* Iterate over vector | |
158 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer | |
159 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer | |
160 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object | |
161 | ||
162 | Return iteration condition and update PTR to point to the IX'th | |
163 | element. At the end of iteration, sets PTR to NULL. Use this to | |
164 | iterate over the elements of a vector as follows, | |
165 | ||
166 | for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++) | |
167 | continue; */ | |
168 | ||
169 | #define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P))) | |
170 | ||
171 | /* Allocate new vector. | |
172 | VEC(T,A) *VEC_T_alloc(int reserve); | |
173 | ||
174 | Allocate a new vector with space for RESERVE objects. If RESERVE | |
175 | is zero, NO vector is created. */ | |
176 | ||
177 | #define VEC_alloc(T,N) (VEC_OP(T,alloc)(N)) | |
178 | ||
179 | /* Free a vector. | |
180 | void VEC_T_free(VEC(T,A) *&); | |
181 | ||
182 | Free a vector and set it to NULL. */ | |
183 | ||
184 | #define VEC_free(T,V) (VEC_OP(T,free)(&V)) | |
185 | ||
186 | /* Use these to determine the required size and initialization of a | |
187 | vector embedded within another structure (as the final member). | |
188 | ||
189 | size_t VEC_T_embedded_size(int reserve); | |
190 | void VEC_T_embedded_init(VEC(T) *v, int reserve); | |
191 | ||
192 | These allow the caller to perform the memory allocation. */ | |
193 | ||
194 | #define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N)) | |
195 | #define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N)) | |
196 | ||
197 | /* Copy a vector. | |
198 | VEC(T,A) *VEC_T_copy(VEC(T) *); | |
199 | ||
200 | Copy the live elements of a vector into a new vector. The new and | |
201 | old vectors need not be allocated by the same mechanism. */ | |
202 | ||
203 | #define VEC_copy(T,V) (VEC_OP(T,copy)(V)) | |
204 | ||
205 | /* Determine if a vector has additional capacity. | |
206 | ||
207 | int VEC_T_space (VEC(T) *v,int reserve) | |
208 | ||
209 | If V has space for RESERVE additional entries, return nonzero. You | |
210 | usually only need to use this if you are doing your own vector | |
211 | reallocation, for instance on an embedded vector. This returns | |
212 | nonzero in exactly the same circumstances that VEC_T_reserve | |
213 | will. */ | |
214 | ||
215 | #define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO)) | |
216 | ||
217 | /* Reserve space. | |
218 | int VEC_T_reserve(VEC(T,A) *&v, int reserve); | |
219 | ||
220 | Ensure that V has at least abs(RESERVE) slots available. The | |
221 | signedness of RESERVE determines the reallocation behavior. A | |
222 | negative value will not create additional headroom beyond that | |
223 | requested. A positive value will create additional headroom. Note | |
224 | this can cause V to be reallocated. Returns nonzero iff | |
225 | reallocation actually occurred. */ | |
226 | ||
227 | #define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO)) | |
228 | ||
229 | /* Push object with no reallocation | |
230 | T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer | |
231 | T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer | |
232 | T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object | |
233 | ||
234 | Push a new element onto the end, returns a pointer to the slot | |
235 | filled in. For object vectors, the new value can be NULL, in which | |
236 | case NO initialization is performed. There must | |
237 | be sufficient space in the vector. */ | |
238 | ||
239 | #define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO)) | |
240 | ||
241 | /* Push object with reallocation | |
242 | T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer | |
243 | T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer | |
244 | T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object | |
245 | ||
246 | Push a new element onto the end, returns a pointer to the slot | |
247 | filled in. For object vectors, the new value can be NULL, in which | |
248 | case NO initialization is performed. Reallocates V, if needed. */ | |
249 | ||
250 | #define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO)) | |
251 | ||
252 | /* Pop element off end | |
253 | T VEC_T_pop (VEC(T) *v); // Integer | |
254 | T VEC_T_pop (VEC(T) *v); // Pointer | |
255 | void VEC_T_pop (VEC(T) *v); // Object | |
256 | ||
257 | Pop the last element off the end. Returns the element popped, for | |
258 | pointer vectors. */ | |
259 | ||
260 | #define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO)) | |
261 | ||
262 | /* Truncate to specific length | |
263 | void VEC_T_truncate (VEC(T) *v, unsigned len); | |
264 | ||
265 | Set the length as specified. The new length must be less than or | |
266 | equal to the current length. This is an O(1) operation. */ | |
267 | ||
268 | #define VEC_truncate(T,V,I) \ | |
269 | (VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO)) | |
270 | ||
271 | /* Grow to a specific length. | |
272 | void VEC_T_safe_grow (VEC(T,A) *&v, int len); | |
273 | ||
274 | Grow the vector to a specific length. The LEN must be as | |
275 | long or longer than the current length. The new elements are | |
276 | uninitialized. */ | |
277 | ||
278 | #define VEC_safe_grow(T,V,I) \ | |
279 | (VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO)) | |
280 | ||
281 | /* Replace element | |
282 | T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer | |
283 | T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer | |
284 | T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object | |
285 | ||
286 | Replace the IXth element of V with a new value, VAL. For pointer | |
287 | vectors returns the original value. For object vectors returns a | |
288 | pointer to the new value. For object vectors the new value can be | |
289 | NULL, in which case no overwriting of the slot is actually | |
290 | performed. */ | |
291 | ||
292 | #define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO)) | |
293 | ||
294 | /* Insert object with no reallocation | |
295 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer | |
296 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer | |
297 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object | |
298 | ||
299 | Insert an element, VAL, at the IXth position of V. Return a pointer | |
300 | to the slot created. For vectors of object, the new value can be | |
301 | NULL, in which case no initialization of the inserted slot takes | |
302 | place. There must be sufficient space. */ | |
303 | ||
304 | #define VEC_quick_insert(T,V,I,O) \ | |
305 | (VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO)) | |
306 | ||
307 | /* Insert object with reallocation | |
308 | T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer | |
309 | T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer | |
310 | T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object | |
311 | ||
312 | Insert an element, VAL, at the IXth position of V. Return a pointer | |
313 | to the slot created. For vectors of object, the new value can be | |
314 | NULL, in which case no initialization of the inserted slot takes | |
315 | place. Reallocate V, if necessary. */ | |
316 | ||
317 | #define VEC_safe_insert(T,V,I,O) \ | |
318 | (VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO)) | |
319 | ||
320 | /* Remove element retaining order | |
321 | T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer | |
322 | T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer | |
323 | void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object | |
324 | ||
325 | Remove an element from the IXth position of V. Ordering of | |
326 | remaining elements is preserved. For pointer vectors returns the | |
327 | removed object. This is an O(N) operation due to a memmove. */ | |
328 | ||
329 | #define VEC_ordered_remove(T,V,I) \ | |
330 | (VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO)) | |
331 | ||
332 | /* Remove element destroying order | |
333 | T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer | |
334 | T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer | |
335 | void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object | |
336 | ||
337 | Remove an element from the IXth position of V. Ordering of | |
338 | remaining elements is destroyed. For pointer vectors returns the | |
339 | removed object. This is an O(1) operation. */ | |
340 | ||
341 | #define VEC_unordered_remove(T,V,I) \ | |
342 | (VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO)) | |
343 | ||
344 | /* Remove a block of elements | |
345 | void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len); | |
346 | ||
347 | Remove LEN elements starting at the IXth. Ordering is retained. | |
348 | This is an O(1) operation. */ | |
349 | ||
350 | #define VEC_block_remove(T,V,I,L) \ | |
351 | (VEC_OP(T,block_remove)(V,I,L) VEC_ASSERT_INFO) | |
352 | ||
353 | /* Get the address of the array of elements | |
354 | T *VEC_T_address (VEC(T) v) | |
355 | ||
356 | If you need to directly manipulate the array (for instance, you | |
357 | want to feed it to qsort), use this accessor. */ | |
358 | ||
359 | #define VEC_address(T,V) (VEC_OP(T,address)(V)) | |
360 | ||
361 | /* Find the first index in the vector not less than the object. | |
362 | unsigned VEC_T_lower_bound (VEC(T) *v, const T val, | |
363 | int (*lessthan) (const T, const T)); // Integer | |
364 | unsigned VEC_T_lower_bound (VEC(T) *v, const T val, | |
365 | int (*lessthan) (const T, const T)); // Pointer | |
366 | unsigned VEC_T_lower_bound (VEC(T) *v, const T *val, | |
367 | int (*lessthan) (const T*, const T*)); // Object | |
368 | ||
369 | Find the first position in which VAL could be inserted without | |
370 | changing the ordering of V. LESSTHAN is a function that returns | |
371 | true if the first argument is strictly less than the second. */ | |
372 | ||
373 | #define VEC_lower_bound(T,V,O,LT) \ | |
374 | (VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO)) | |
375 | ||
376 | /* Reallocate an array of elements with prefix. */ | |
377 | extern void *vec_p_reserve (void *, int); | |
378 | extern void *vec_o_reserve (void *, int, size_t, size_t); | |
1e8877aa | 379 | #define vec_free_(V) xfree (V) |
350da6ee DJ |
380 | |
381 | #define VEC_ASSERT_INFO ,__FILE__,__LINE__ | |
382 | #define VEC_ASSERT_DECL ,const char *file_,unsigned line_ | |
383 | #define VEC_ASSERT_PASS ,file_,line_ | |
384 | #define vec_assert(expr, op) \ | |
385 | ((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, ASSERT_FUNCTION), 0))) | |
386 | ||
387 | #define VEC(T) VEC_##T | |
388 | #define VEC_OP(T,OP) VEC_##T##_##OP | |
389 | ||
390 | #define VEC_T(T) \ | |
391 | typedef struct VEC(T) \ | |
392 | { \ | |
393 | unsigned num; \ | |
394 | unsigned alloc; \ | |
395 | T vec[1]; \ | |
396 | } VEC(T) | |
397 | ||
398 | /* Vector of integer-like object. */ | |
399 | #define DEF_VEC_I(T) \ | |
400 | static inline void VEC_OP (T,must_be_integral_type) (void) \ | |
401 | { \ | |
402 | (void)~(T)0; \ | |
403 | } \ | |
404 | \ | |
405 | VEC_T(T); \ | |
406 | DEF_VEC_FUNC_P(T) \ | |
407 | DEF_VEC_ALLOC_FUNC_I(T) \ | |
408 | struct vec_swallow_trailing_semi | |
409 | ||
410 | /* Vector of pointer to object. */ | |
411 | #define DEF_VEC_P(T) \ | |
412 | static inline void VEC_OP (T,must_be_pointer_type) (void) \ | |
413 | { \ | |
414 | (void)((T)1 == (void *)1); \ | |
415 | } \ | |
416 | \ | |
417 | VEC_T(T); \ | |
418 | DEF_VEC_FUNC_P(T) \ | |
419 | DEF_VEC_ALLOC_FUNC_P(T) \ | |
420 | struct vec_swallow_trailing_semi | |
421 | ||
422 | /* Vector of object. */ | |
423 | #define DEF_VEC_O(T) \ | |
424 | VEC_T(T); \ | |
425 | DEF_VEC_FUNC_O(T) \ | |
426 | DEF_VEC_ALLOC_FUNC_O(T) \ | |
427 | struct vec_swallow_trailing_semi | |
428 | ||
429 | #define DEF_VEC_ALLOC_FUNC_I(T) \ | |
430 | static inline VEC(T) *VEC_OP (T,alloc) \ | |
431 | (int alloc_) \ | |
432 | { \ | |
433 | /* We must request exact size allocation, hence the negation. */ \ | |
434 | return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \ | |
435 | offsetof (VEC(T),vec), sizeof (T)); \ | |
436 | } \ | |
437 | \ | |
438 | static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ | |
439 | { \ | |
440 | size_t len_ = vec_ ? vec_->num : 0; \ | |
441 | VEC (T) *new_vec_ = NULL; \ | |
442 | \ | |
443 | if (len_) \ | |
444 | { \ | |
445 | /* We must request exact size allocation, hence the negation. */ \ | |
446 | new_vec_ = (VEC (T) *) \ | |
447 | vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \ | |
448 | \ | |
449 | new_vec_->num = len_; \ | |
450 | memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ | |
451 | } \ | |
452 | return new_vec_; \ | |
453 | } \ | |
454 | \ | |
455 | static inline void VEC_OP (T,free) \ | |
456 | (VEC(T) **vec_) \ | |
457 | { \ | |
458 | if (*vec_) \ | |
1e8877aa | 459 | vec_free_ (*vec_); \ |
350da6ee DJ |
460 | *vec_ = NULL; \ |
461 | } \ | |
462 | \ | |
463 | static inline int VEC_OP (T,reserve) \ | |
464 | (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ | |
465 | { \ | |
466 | int extend = !VEC_OP (T,space) \ | |
467 | (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \ | |
468 | \ | |
469 | if (extend) \ | |
470 | *vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \ | |
471 | offsetof (VEC(T),vec), sizeof (T)); \ | |
472 | \ | |
473 | return extend; \ | |
474 | } \ | |
475 | \ | |
476 | static inline void VEC_OP (T,safe_grow) \ | |
477 | (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ | |
478 | { \ | |
479 | vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ | |
480 | "safe_grow"); \ | |
481 | VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \ | |
482 | VEC_ASSERT_PASS); \ | |
483 | (*vec_)->num = size_; \ | |
484 | } \ | |
485 | \ | |
486 | static inline T *VEC_OP (T,safe_push) \ | |
487 | (VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \ | |
488 | { \ | |
489 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
490 | \ | |
491 | return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ | |
492 | } \ | |
493 | \ | |
494 | static inline T *VEC_OP (T,safe_insert) \ | |
495 | (VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \ | |
496 | { \ | |
497 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
498 | \ | |
499 | return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ | |
500 | } | |
501 | ||
502 | #define DEF_VEC_FUNC_P(T) \ | |
503 | static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \ | |
504 | { \ | |
505 | return vec_ ? vec_->num : 0; \ | |
506 | } \ | |
507 | \ | |
508 | static inline T VEC_OP (T,last) \ | |
509 | (const VEC(T) *vec_ VEC_ASSERT_DECL) \ | |
510 | { \ | |
511 | vec_assert (vec_ && vec_->num, "last"); \ | |
512 | \ | |
513 | return vec_->vec[vec_->num - 1]; \ | |
514 | } \ | |
515 | \ | |
516 | static inline T VEC_OP (T,index) \ | |
517 | (const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
518 | { \ | |
519 | vec_assert (vec_ && ix_ < vec_->num, "index"); \ | |
520 | \ | |
521 | return vec_->vec[ix_]; \ | |
522 | } \ | |
523 | \ | |
524 | static inline int VEC_OP (T,iterate) \ | |
525 | (const VEC(T) *vec_, unsigned ix_, T *ptr) \ | |
526 | { \ | |
527 | if (vec_ && ix_ < vec_->num) \ | |
528 | { \ | |
529 | *ptr = vec_->vec[ix_]; \ | |
530 | return 1; \ | |
531 | } \ | |
532 | else \ | |
533 | { \ | |
534 | *ptr = 0; \ | |
535 | return 0; \ | |
536 | } \ | |
537 | } \ | |
538 | \ | |
539 | static inline size_t VEC_OP (T,embedded_size) \ | |
540 | (int alloc_) \ | |
541 | { \ | |
542 | return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \ | |
543 | } \ | |
544 | \ | |
545 | static inline void VEC_OP (T,embedded_init) \ | |
546 | (VEC(T) *vec_, int alloc_) \ | |
547 | { \ | |
548 | vec_->num = 0; \ | |
549 | vec_->alloc = alloc_; \ | |
550 | } \ | |
551 | \ | |
552 | static inline int VEC_OP (T,space) \ | |
553 | (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \ | |
554 | { \ | |
555 | vec_assert (alloc_ >= 0, "space"); \ | |
556 | return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ | |
557 | } \ | |
558 | \ | |
559 | static inline T *VEC_OP (T,quick_push) \ | |
560 | (VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \ | |
561 | { \ | |
562 | T *slot_; \ | |
563 | \ | |
564 | vec_assert (vec_->num < vec_->alloc, "quick_push"); \ | |
565 | slot_ = &vec_->vec[vec_->num++]; \ | |
566 | *slot_ = obj_; \ | |
567 | \ | |
568 | return slot_; \ | |
569 | } \ | |
570 | \ | |
571 | static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \ | |
572 | { \ | |
573 | T obj_; \ | |
574 | \ | |
575 | vec_assert (vec_->num, "pop"); \ | |
576 | obj_ = vec_->vec[--vec_->num]; \ | |
577 | \ | |
578 | return obj_; \ | |
579 | } \ | |
580 | \ | |
581 | static inline void VEC_OP (T,truncate) \ | |
582 | (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \ | |
583 | { \ | |
584 | vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \ | |
585 | if (vec_) \ | |
586 | vec_->num = size_; \ | |
587 | } \ | |
588 | \ | |
589 | static inline T VEC_OP (T,replace) \ | |
590 | (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ | |
591 | { \ | |
592 | T old_obj_; \ | |
593 | \ | |
594 | vec_assert (ix_ < vec_->num, "replace"); \ | |
595 | old_obj_ = vec_->vec[ix_]; \ | |
596 | vec_->vec[ix_] = obj_; \ | |
597 | \ | |
598 | return old_obj_; \ | |
599 | } \ | |
600 | \ | |
601 | static inline T *VEC_OP (T,quick_insert) \ | |
602 | (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ | |
603 | { \ | |
604 | T *slot_; \ | |
605 | \ | |
606 | vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \ | |
607 | slot_ = &vec_->vec[ix_]; \ | |
608 | memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ | |
609 | *slot_ = obj_; \ | |
610 | \ | |
611 | return slot_; \ | |
612 | } \ | |
613 | \ | |
614 | static inline T VEC_OP (T,ordered_remove) \ | |
615 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
616 | { \ | |
617 | T *slot_; \ | |
618 | T obj_; \ | |
619 | \ | |
620 | vec_assert (ix_ < vec_->num, "ordered_remove"); \ | |
621 | slot_ = &vec_->vec[ix_]; \ | |
622 | obj_ = *slot_; \ | |
623 | memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ | |
624 | \ | |
625 | return obj_; \ | |
626 | } \ | |
627 | \ | |
628 | static inline T VEC_OP (T,unordered_remove) \ | |
629 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
630 | { \ | |
631 | T *slot_; \ | |
632 | T obj_; \ | |
633 | \ | |
634 | vec_assert (ix_ < vec_->num, "unordered_remove"); \ | |
635 | slot_ = &vec_->vec[ix_]; \ | |
636 | obj_ = *slot_; \ | |
637 | *slot_ = vec_->vec[--vec_->num]; \ | |
638 | \ | |
639 | return obj_; \ | |
640 | } \ | |
641 | \ | |
642 | static inline void VEC_OP (T,block_remove) \ | |
643 | (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \ | |
644 | { \ | |
645 | T *slot_; \ | |
646 | \ | |
647 | vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \ | |
648 | slot_ = &vec_->vec[ix_]; \ | |
649 | vec_->num -= len_; \ | |
650 | memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ | |
651 | } \ | |
652 | \ | |
653 | static inline T *VEC_OP (T,address) \ | |
654 | (VEC(T) *vec_) \ | |
655 | { \ | |
656 | return vec_ ? vec_->vec : 0; \ | |
657 | } \ | |
658 | \ | |
659 | static inline unsigned VEC_OP (T,lower_bound) \ | |
660 | (VEC(T) *vec_, const T obj_, \ | |
661 | int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \ | |
662 | { \ | |
663 | unsigned int len_ = VEC_OP (T, length) (vec_); \ | |
664 | unsigned int half_, middle_; \ | |
665 | unsigned int first_ = 0; \ | |
666 | while (len_ > 0) \ | |
667 | { \ | |
668 | T middle_elem_; \ | |
669 | half_ = len_ >> 1; \ | |
670 | middle_ = first_; \ | |
671 | middle_ += half_; \ | |
672 | middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \ | |
673 | if (lessthan_ (middle_elem_, obj_)) \ | |
674 | { \ | |
675 | first_ = middle_; \ | |
676 | ++first_; \ | |
677 | len_ = len_ - half_ - 1; \ | |
678 | } \ | |
679 | else \ | |
680 | len_ = half_; \ | |
681 | } \ | |
682 | return first_; \ | |
683 | } | |
684 | ||
685 | #define DEF_VEC_ALLOC_FUNC_P(T) \ | |
686 | static inline VEC(T) *VEC_OP (T,alloc) \ | |
687 | (int alloc_) \ | |
688 | { \ | |
689 | /* We must request exact size allocation, hence the negation. */ \ | |
690 | return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \ | |
691 | } \ | |
692 | \ | |
693 | static inline void VEC_OP (T,free) \ | |
694 | (VEC(T) **vec_) \ | |
695 | { \ | |
696 | if (*vec_) \ | |
1e8877aa | 697 | vec_free_ (*vec_); \ |
350da6ee DJ |
698 | *vec_ = NULL; \ |
699 | } \ | |
700 | \ | |
701 | static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ | |
702 | { \ | |
703 | size_t len_ = vec_ ? vec_->num : 0; \ | |
704 | VEC (T) *new_vec_ = NULL; \ | |
705 | \ | |
706 | if (len_) \ | |
707 | { \ | |
708 | /* We must request exact size allocation, hence the negation. */ \ | |
709 | new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \ | |
710 | \ | |
711 | new_vec_->num = len_; \ | |
712 | memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ | |
713 | } \ | |
714 | return new_vec_; \ | |
715 | } \ | |
716 | \ | |
717 | static inline int VEC_OP (T,reserve) \ | |
718 | (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ | |
719 | { \ | |
720 | int extend = !VEC_OP (T,space) \ | |
721 | (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \ | |
722 | \ | |
723 | if (extend) \ | |
724 | *vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \ | |
725 | \ | |
726 | return extend; \ | |
727 | } \ | |
728 | \ | |
729 | static inline void VEC_OP (T,safe_grow) \ | |
730 | (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ | |
731 | { \ | |
732 | vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ | |
733 | "safe_grow"); \ | |
734 | VEC_OP (T,reserve) \ | |
735 | (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \ | |
736 | (*vec_)->num = size_; \ | |
737 | } \ | |
738 | \ | |
739 | static inline T *VEC_OP (T,safe_push) \ | |
740 | (VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \ | |
741 | { \ | |
742 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
743 | \ | |
744 | return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ | |
745 | } \ | |
746 | \ | |
747 | static inline T *VEC_OP (T,safe_insert) \ | |
748 | (VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ | |
749 | { \ | |
750 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
751 | \ | |
752 | return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ | |
753 | } | |
754 | ||
755 | #define DEF_VEC_FUNC_O(T) \ | |
756 | static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \ | |
757 | { \ | |
758 | return vec_ ? vec_->num : 0; \ | |
759 | } \ | |
760 | \ | |
761 | static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \ | |
762 | { \ | |
763 | vec_assert (vec_ && vec_->num, "last"); \ | |
764 | \ | |
765 | return &vec_->vec[vec_->num - 1]; \ | |
766 | } \ | |
767 | \ | |
768 | static inline T *VEC_OP (T,index) \ | |
769 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
770 | { \ | |
771 | vec_assert (vec_ && ix_ < vec_->num, "index"); \ | |
772 | \ | |
773 | return &vec_->vec[ix_]; \ | |
774 | } \ | |
775 | \ | |
776 | static inline int VEC_OP (T,iterate) \ | |
777 | (VEC(T) *vec_, unsigned ix_, T **ptr) \ | |
778 | { \ | |
779 | if (vec_ && ix_ < vec_->num) \ | |
780 | { \ | |
781 | *ptr = &vec_->vec[ix_]; \ | |
782 | return 1; \ | |
783 | } \ | |
784 | else \ | |
785 | { \ | |
786 | *ptr = 0; \ | |
787 | return 0; \ | |
788 | } \ | |
789 | } \ | |
790 | \ | |
791 | static inline size_t VEC_OP (T,embedded_size) \ | |
792 | (int alloc_) \ | |
793 | { \ | |
794 | return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \ | |
795 | } \ | |
796 | \ | |
797 | static inline void VEC_OP (T,embedded_init) \ | |
798 | (VEC(T) *vec_, int alloc_) \ | |
799 | { \ | |
800 | vec_->num = 0; \ | |
801 | vec_->alloc = alloc_; \ | |
802 | } \ | |
803 | \ | |
804 | static inline int VEC_OP (T,space) \ | |
805 | (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \ | |
806 | { \ | |
807 | vec_assert (alloc_ >= 0, "space"); \ | |
808 | return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ | |
809 | } \ | |
810 | \ | |
811 | static inline T *VEC_OP (T,quick_push) \ | |
812 | (VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \ | |
813 | { \ | |
814 | T *slot_; \ | |
815 | \ | |
816 | vec_assert (vec_->num < vec_->alloc, "quick_push"); \ | |
817 | slot_ = &vec_->vec[vec_->num++]; \ | |
818 | if (obj_) \ | |
819 | *slot_ = *obj_; \ | |
820 | \ | |
821 | return slot_; \ | |
822 | } \ | |
823 | \ | |
824 | static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \ | |
825 | { \ | |
826 | vec_assert (vec_->num, "pop"); \ | |
827 | --vec_->num; \ | |
828 | } \ | |
829 | \ | |
830 | static inline void VEC_OP (T,truncate) \ | |
831 | (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \ | |
832 | { \ | |
833 | vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \ | |
834 | if (vec_) \ | |
835 | vec_->num = size_; \ | |
836 | } \ | |
837 | \ | |
838 | static inline T *VEC_OP (T,replace) \ | |
839 | (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ | |
840 | { \ | |
841 | T *slot_; \ | |
842 | \ | |
843 | vec_assert (ix_ < vec_->num, "replace"); \ | |
844 | slot_ = &vec_->vec[ix_]; \ | |
845 | if (obj_) \ | |
846 | *slot_ = *obj_; \ | |
847 | \ | |
848 | return slot_; \ | |
849 | } \ | |
850 | \ | |
851 | static inline T *VEC_OP (T,quick_insert) \ | |
852 | (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ | |
853 | { \ | |
854 | T *slot_; \ | |
855 | \ | |
856 | vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \ | |
857 | slot_ = &vec_->vec[ix_]; \ | |
858 | memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ | |
859 | if (obj_) \ | |
860 | *slot_ = *obj_; \ | |
861 | \ | |
862 | return slot_; \ | |
863 | } \ | |
864 | \ | |
865 | static inline void VEC_OP (T,ordered_remove) \ | |
866 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
867 | { \ | |
868 | T *slot_; \ | |
869 | \ | |
870 | vec_assert (ix_ < vec_->num, "ordered_remove"); \ | |
871 | slot_ = &vec_->vec[ix_]; \ | |
872 | memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ | |
873 | } \ | |
874 | \ | |
875 | static inline void VEC_OP (T,unordered_remove) \ | |
876 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
877 | { \ | |
878 | vec_assert (ix_ < vec_->num, "unordered_remove"); \ | |
879 | vec_->vec[ix_] = vec_->vec[--vec_->num]; \ | |
880 | } \ | |
881 | \ | |
882 | static inline void VEC_OP (T,block_remove) \ | |
883 | (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \ | |
884 | { \ | |
885 | T *slot_; \ | |
886 | \ | |
887 | vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \ | |
888 | slot_ = &vec_->vec[ix_]; \ | |
889 | vec_->num -= len_; \ | |
890 | memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ | |
891 | } \ | |
892 | \ | |
893 | static inline T *VEC_OP (T,address) \ | |
894 | (VEC(T) *vec_) \ | |
895 | { \ | |
896 | return vec_ ? vec_->vec : 0; \ | |
897 | } \ | |
898 | \ | |
899 | static inline unsigned VEC_OP (T,lower_bound) \ | |
900 | (VEC(T) *vec_, const T *obj_, \ | |
901 | int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \ | |
902 | { \ | |
903 | unsigned int len_ = VEC_OP (T, length) (vec_); \ | |
904 | unsigned int half_, middle_; \ | |
905 | unsigned int first_ = 0; \ | |
906 | while (len_ > 0) \ | |
907 | { \ | |
908 | T *middle_elem_; \ | |
909 | half_ = len_ >> 1; \ | |
910 | middle_ = first_; \ | |
911 | middle_ += half_; \ | |
912 | middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \ | |
913 | if (lessthan_ (middle_elem_, obj_)) \ | |
914 | { \ | |
915 | first_ = middle_; \ | |
916 | ++first_; \ | |
917 | len_ = len_ - half_ - 1; \ | |
918 | } \ | |
919 | else \ | |
920 | len_ = half_; \ | |
921 | } \ | |
922 | return first_; \ | |
923 | } | |
924 | ||
925 | #define DEF_VEC_ALLOC_FUNC_O(T) \ | |
926 | static inline VEC(T) *VEC_OP (T,alloc) \ | |
927 | (int alloc_) \ | |
928 | { \ | |
929 | /* We must request exact size allocation, hence the negation. */ \ | |
930 | return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \ | |
931 | offsetof (VEC(T),vec), sizeof (T)); \ | |
932 | } \ | |
933 | \ | |
934 | static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ | |
935 | { \ | |
936 | size_t len_ = vec_ ? vec_->num : 0; \ | |
937 | VEC (T) *new_vec_ = NULL; \ | |
938 | \ | |
939 | if (len_) \ | |
940 | { \ | |
941 | /* We must request exact size allocation, hence the negation. */ \ | |
942 | new_vec_ = (VEC (T) *) \ | |
943 | vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \ | |
944 | \ | |
945 | new_vec_->num = len_; \ | |
946 | memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ | |
947 | } \ | |
948 | return new_vec_; \ | |
949 | } \ | |
950 | \ | |
951 | static inline void VEC_OP (T,free) \ | |
952 | (VEC(T) **vec_) \ | |
953 | { \ | |
954 | if (*vec_) \ | |
1e8877aa | 955 | vec_free_ (*vec_); \ |
350da6ee DJ |
956 | *vec_ = NULL; \ |
957 | } \ | |
958 | \ | |
959 | static inline int VEC_OP (T,reserve) \ | |
960 | (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ | |
961 | { \ | |
962 | int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \ | |
963 | VEC_ASSERT_PASS); \ | |
964 | \ | |
965 | if (extend) \ | |
966 | *vec_ = (VEC(T) *) \ | |
967 | vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \ | |
968 | \ | |
969 | return extend; \ | |
970 | } \ | |
971 | \ | |
972 | static inline void VEC_OP (T,safe_grow) \ | |
973 | (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ | |
974 | { \ | |
975 | vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ | |
976 | "safe_grow"); \ | |
977 | VEC_OP (T,reserve) \ | |
978 | (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \ | |
979 | (*vec_)->num = size_; \ | |
980 | } \ | |
981 | \ | |
982 | static inline T *VEC_OP (T,safe_push) \ | |
983 | (VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \ | |
984 | { \ | |
985 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
986 | \ | |
987 | return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ | |
988 | } \ | |
989 | \ | |
990 | static inline T *VEC_OP (T,safe_insert) \ | |
991 | (VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ | |
992 | { \ | |
993 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
994 | \ | |
995 | return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ | |
996 | } | |
997 | ||
998 | #endif /* GDB_VEC_H */ |