Commit | Line | Data |
---|---|---|
350da6ee DJ |
1 | /* Vector API for GDB. |
2 | Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc. | |
3 | Contributed by Nathan Sidwell <nathan@codesourcery.com> | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 51 Franklin Street, Fifth Floor, | |
20 | Boston, MA 02110-1301, USA. */ | |
21 | ||
22 | #if !defined (GDB_VEC_H) | |
23 | #define GDB_VEC_H | |
24 | ||
25 | #include <stddef.h> | |
26 | #include "gdb_string.h" | |
27 | #include "gdb_assert.h" | |
28 | ||
29 | /* The macros here implement a set of templated vector types and | |
30 | associated interfaces. These templates are implemented with | |
31 | macros, as we're not in C++ land. The interface functions are | |
32 | typesafe and use static inline functions, sometimes backed by | |
33 | out-of-line generic functions. | |
34 | ||
35 | Because of the different behavior of structure objects, scalar | |
36 | objects and of pointers, there are three flavors, one for each of | |
37 | these variants. Both the structure object and pointer variants | |
38 | pass pointers to objects around -- in the former case the pointers | |
39 | are stored into the vector and in the latter case the pointers are | |
40 | dereferenced and the objects copied into the vector. The scalar | |
41 | object variant is suitable for int-like objects, and the vector | |
42 | elements are returned by value. | |
43 | ||
44 | There are both 'index' and 'iterate' accessors. The iterator | |
45 | returns a boolean iteration condition and updates the iteration | |
46 | variable passed by reference. Because the iterator will be | |
47 | inlined, the address-of can be optimized away. | |
48 | ||
49 | The vectors are implemented using the trailing array idiom, thus | |
50 | they are not resizeable without changing the address of the vector | |
51 | object itself. This means you cannot have variables or fields of | |
52 | vector type -- always use a pointer to a vector. The one exception | |
53 | is the final field of a structure, which could be a vector type. | |
54 | You will have to use the embedded_size & embedded_init calls to | |
55 | create such objects, and they will probably not be resizeable (so | |
56 | don't use the 'safe' allocation variants). The trailing array | |
57 | idiom is used (rather than a pointer to an array of data), because, | |
58 | if we allow NULL to also represent an empty vector, empty vectors | |
59 | occupy minimal space in the structure containing them. | |
60 | ||
61 | Each operation that increases the number of active elements is | |
62 | available in 'quick' and 'safe' variants. The former presumes that | |
63 | there is sufficient allocated space for the operation to succeed | |
64 | (it dies if there is not). The latter will reallocate the | |
65 | vector, if needed. Reallocation causes an exponential increase in | |
66 | vector size. If you know you will be adding N elements, it would | |
67 | be more efficient to use the reserve operation before adding the | |
68 | elements with the 'quick' operation. This will ensure there are at | |
69 | least as many elements as you ask for, it will exponentially | |
70 | increase if there are too few spare slots. If you want reserve a | |
71 | specific number of slots, but do not want the exponential increase | |
72 | (for instance, you know this is the last allocation), use a | |
73 | negative number for reservation. You can also create a vector of a | |
74 | specific size from the get go. | |
75 | ||
76 | You should prefer the push and pop operations, as they append and | |
77 | remove from the end of the vector. If you need to remove several | |
78 | items in one go, use the truncate operation. The insert and remove | |
79 | operations allow you to change elements in the middle of the | |
80 | vector. There are two remove operations, one which preserves the | |
81 | element ordering 'ordered_remove', and one which does not | |
82 | 'unordered_remove'. The latter function copies the end element | |
83 | into the removed slot, rather than invoke a memmove operation. The | |
84 | 'lower_bound' function will determine where to place an item in the | |
85 | array using insert that will maintain sorted order. | |
86 | ||
87 | If you need to directly manipulate a vector, then the 'address' | |
88 | accessor will return the address of the start of the vector. Also | |
89 | the 'space' predicate will tell you whether there is spare capacity | |
90 | in the vector. You will not normally need to use these two functions. | |
91 | ||
92 | Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro. | |
93 | Variables of vector type are declared using a VEC(TYPEDEF) macro. | |
94 | The characters O, P and I indicate whether TYPEDEF is a pointer | |
95 | (P), object (O) or integral (I) type. Be careful to pick the | |
96 | correct one, as you'll get an awkward and inefficient API if you | |
97 | use the wrong one. There is a check, which results in a | |
98 | compile-time warning, for the P and I versions, but there is no | |
99 | check for the O versions, as that is not possible in plain C. | |
100 | ||
101 | An example of their use would be, | |
102 | ||
103 | DEF_VEC_P(tree); // non-managed tree vector. | |
104 | ||
105 | struct my_struct { | |
106 | VEC(tree) *v; // A (pointer to) a vector of tree pointers. | |
107 | }; | |
108 | ||
109 | struct my_struct *s; | |
110 | ||
111 | if (VEC_length(tree, s->v)) { we have some contents } | |
112 | VEC_safe_push(tree, s->v, decl); // append some decl onto the end | |
113 | for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++) | |
114 | { do something with elt } | |
115 | ||
116 | */ | |
117 | ||
118 | /* Macros to invoke API calls. A single macro works for both pointer | |
119 | and object vectors, but the argument and return types might well be | |
120 | different. In each macro, T is the typedef of the vector elements. | |
121 | Some of these macros pass the vector, V, by reference (by taking | |
122 | its address), this is noted in the descriptions. */ | |
123 | ||
124 | /* Length of vector | |
125 | unsigned VEC_T_length(const VEC(T) *v); | |
126 | ||
127 | Return the number of active elements in V. V can be NULL, in which | |
128 | case zero is returned. */ | |
129 | ||
130 | #define VEC_length(T,V) (VEC_OP(T,length)(V)) | |
131 | ||
132 | ||
133 | /* Check if vector is empty | |
134 | int VEC_T_empty(const VEC(T) *v); | |
135 | ||
136 | Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */ | |
137 | ||
138 | #define VEC_empty(T,V) (VEC_length (T,V) == 0) | |
139 | ||
140 | ||
141 | /* Get the final element of the vector. | |
142 | T VEC_T_last(VEC(T) *v); // Integer | |
143 | T VEC_T_last(VEC(T) *v); // Pointer | |
144 | T *VEC_T_last(VEC(T) *v); // Object | |
145 | ||
146 | Return the final element. V must not be empty. */ | |
147 | ||
148 | #define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO)) | |
149 | ||
150 | /* Index into vector | |
151 | T VEC_T_index(VEC(T) *v, unsigned ix); // Integer | |
152 | T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer | |
153 | T *VEC_T_index(VEC(T) *v, unsigned ix); // Object | |
154 | ||
155 | Return the IX'th element. If IX must be in the domain of V. */ | |
156 | ||
157 | #define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO)) | |
158 | ||
159 | /* Iterate over vector | |
160 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer | |
161 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer | |
162 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object | |
163 | ||
164 | Return iteration condition and update PTR to point to the IX'th | |
165 | element. At the end of iteration, sets PTR to NULL. Use this to | |
166 | iterate over the elements of a vector as follows, | |
167 | ||
168 | for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++) | |
169 | continue; */ | |
170 | ||
171 | #define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P))) | |
172 | ||
173 | /* Allocate new vector. | |
174 | VEC(T,A) *VEC_T_alloc(int reserve); | |
175 | ||
176 | Allocate a new vector with space for RESERVE objects. If RESERVE | |
177 | is zero, NO vector is created. */ | |
178 | ||
179 | #define VEC_alloc(T,N) (VEC_OP(T,alloc)(N)) | |
180 | ||
181 | /* Free a vector. | |
182 | void VEC_T_free(VEC(T,A) *&); | |
183 | ||
184 | Free a vector and set it to NULL. */ | |
185 | ||
186 | #define VEC_free(T,V) (VEC_OP(T,free)(&V)) | |
187 | ||
188 | /* Use these to determine the required size and initialization of a | |
189 | vector embedded within another structure (as the final member). | |
190 | ||
191 | size_t VEC_T_embedded_size(int reserve); | |
192 | void VEC_T_embedded_init(VEC(T) *v, int reserve); | |
193 | ||
194 | These allow the caller to perform the memory allocation. */ | |
195 | ||
196 | #define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N)) | |
197 | #define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N)) | |
198 | ||
199 | /* Copy a vector. | |
200 | VEC(T,A) *VEC_T_copy(VEC(T) *); | |
201 | ||
202 | Copy the live elements of a vector into a new vector. The new and | |
203 | old vectors need not be allocated by the same mechanism. */ | |
204 | ||
205 | #define VEC_copy(T,V) (VEC_OP(T,copy)(V)) | |
206 | ||
207 | /* Determine if a vector has additional capacity. | |
208 | ||
209 | int VEC_T_space (VEC(T) *v,int reserve) | |
210 | ||
211 | If V has space for RESERVE additional entries, return nonzero. You | |
212 | usually only need to use this if you are doing your own vector | |
213 | reallocation, for instance on an embedded vector. This returns | |
214 | nonzero in exactly the same circumstances that VEC_T_reserve | |
215 | will. */ | |
216 | ||
217 | #define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO)) | |
218 | ||
219 | /* Reserve space. | |
220 | int VEC_T_reserve(VEC(T,A) *&v, int reserve); | |
221 | ||
222 | Ensure that V has at least abs(RESERVE) slots available. The | |
223 | signedness of RESERVE determines the reallocation behavior. A | |
224 | negative value will not create additional headroom beyond that | |
225 | requested. A positive value will create additional headroom. Note | |
226 | this can cause V to be reallocated. Returns nonzero iff | |
227 | reallocation actually occurred. */ | |
228 | ||
229 | #define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO)) | |
230 | ||
231 | /* Push object with no reallocation | |
232 | T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer | |
233 | T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer | |
234 | T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object | |
235 | ||
236 | Push a new element onto the end, returns a pointer to the slot | |
237 | filled in. For object vectors, the new value can be NULL, in which | |
238 | case NO initialization is performed. There must | |
239 | be sufficient space in the vector. */ | |
240 | ||
241 | #define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO)) | |
242 | ||
243 | /* Push object with reallocation | |
244 | T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer | |
245 | T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer | |
246 | T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object | |
247 | ||
248 | Push a new element onto the end, returns a pointer to the slot | |
249 | filled in. For object vectors, the new value can be NULL, in which | |
250 | case NO initialization is performed. Reallocates V, if needed. */ | |
251 | ||
252 | #define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO)) | |
253 | ||
254 | /* Pop element off end | |
255 | T VEC_T_pop (VEC(T) *v); // Integer | |
256 | T VEC_T_pop (VEC(T) *v); // Pointer | |
257 | void VEC_T_pop (VEC(T) *v); // Object | |
258 | ||
259 | Pop the last element off the end. Returns the element popped, for | |
260 | pointer vectors. */ | |
261 | ||
262 | #define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO)) | |
263 | ||
264 | /* Truncate to specific length | |
265 | void VEC_T_truncate (VEC(T) *v, unsigned len); | |
266 | ||
267 | Set the length as specified. The new length must be less than or | |
268 | equal to the current length. This is an O(1) operation. */ | |
269 | ||
270 | #define VEC_truncate(T,V,I) \ | |
271 | (VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO)) | |
272 | ||
273 | /* Grow to a specific length. | |
274 | void VEC_T_safe_grow (VEC(T,A) *&v, int len); | |
275 | ||
276 | Grow the vector to a specific length. The LEN must be as | |
277 | long or longer than the current length. The new elements are | |
278 | uninitialized. */ | |
279 | ||
280 | #define VEC_safe_grow(T,V,I) \ | |
281 | (VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO)) | |
282 | ||
283 | /* Replace element | |
284 | T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer | |
285 | T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer | |
286 | T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object | |
287 | ||
288 | Replace the IXth element of V with a new value, VAL. For pointer | |
289 | vectors returns the original value. For object vectors returns a | |
290 | pointer to the new value. For object vectors the new value can be | |
291 | NULL, in which case no overwriting of the slot is actually | |
292 | performed. */ | |
293 | ||
294 | #define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO)) | |
295 | ||
296 | /* Insert object with no reallocation | |
297 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer | |
298 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer | |
299 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object | |
300 | ||
301 | Insert an element, VAL, at the IXth position of V. Return a pointer | |
302 | to the slot created. For vectors of object, the new value can be | |
303 | NULL, in which case no initialization of the inserted slot takes | |
304 | place. There must be sufficient space. */ | |
305 | ||
306 | #define VEC_quick_insert(T,V,I,O) \ | |
307 | (VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO)) | |
308 | ||
309 | /* Insert object with reallocation | |
310 | T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer | |
311 | T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer | |
312 | T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object | |
313 | ||
314 | Insert an element, VAL, at the IXth position of V. Return a pointer | |
315 | to the slot created. For vectors of object, the new value can be | |
316 | NULL, in which case no initialization of the inserted slot takes | |
317 | place. Reallocate V, if necessary. */ | |
318 | ||
319 | #define VEC_safe_insert(T,V,I,O) \ | |
320 | (VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO)) | |
321 | ||
322 | /* Remove element retaining order | |
323 | T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer | |
324 | T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer | |
325 | void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object | |
326 | ||
327 | Remove an element from the IXth position of V. Ordering of | |
328 | remaining elements is preserved. For pointer vectors returns the | |
329 | removed object. This is an O(N) operation due to a memmove. */ | |
330 | ||
331 | #define VEC_ordered_remove(T,V,I) \ | |
332 | (VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO)) | |
333 | ||
334 | /* Remove element destroying order | |
335 | T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer | |
336 | T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer | |
337 | void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object | |
338 | ||
339 | Remove an element from the IXth position of V. Ordering of | |
340 | remaining elements is destroyed. For pointer vectors returns the | |
341 | removed object. This is an O(1) operation. */ | |
342 | ||
343 | #define VEC_unordered_remove(T,V,I) \ | |
344 | (VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO)) | |
345 | ||
346 | /* Remove a block of elements | |
347 | void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len); | |
348 | ||
349 | Remove LEN elements starting at the IXth. Ordering is retained. | |
350 | This is an O(1) operation. */ | |
351 | ||
352 | #define VEC_block_remove(T,V,I,L) \ | |
353 | (VEC_OP(T,block_remove)(V,I,L) VEC_ASSERT_INFO) | |
354 | ||
355 | /* Get the address of the array of elements | |
356 | T *VEC_T_address (VEC(T) v) | |
357 | ||
358 | If you need to directly manipulate the array (for instance, you | |
359 | want to feed it to qsort), use this accessor. */ | |
360 | ||
361 | #define VEC_address(T,V) (VEC_OP(T,address)(V)) | |
362 | ||
363 | /* Find the first index in the vector not less than the object. | |
364 | unsigned VEC_T_lower_bound (VEC(T) *v, const T val, | |
365 | int (*lessthan) (const T, const T)); // Integer | |
366 | unsigned VEC_T_lower_bound (VEC(T) *v, const T val, | |
367 | int (*lessthan) (const T, const T)); // Pointer | |
368 | unsigned VEC_T_lower_bound (VEC(T) *v, const T *val, | |
369 | int (*lessthan) (const T*, const T*)); // Object | |
370 | ||
371 | Find the first position in which VAL could be inserted without | |
372 | changing the ordering of V. LESSTHAN is a function that returns | |
373 | true if the first argument is strictly less than the second. */ | |
374 | ||
375 | #define VEC_lower_bound(T,V,O,LT) \ | |
376 | (VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO)) | |
377 | ||
378 | /* Reallocate an array of elements with prefix. */ | |
379 | extern void *vec_p_reserve (void *, int); | |
380 | extern void *vec_o_reserve (void *, int, size_t, size_t); | |
381 | #define vec_free(V) xfree (V) | |
382 | ||
383 | #define VEC_ASSERT_INFO ,__FILE__,__LINE__ | |
384 | #define VEC_ASSERT_DECL ,const char *file_,unsigned line_ | |
385 | #define VEC_ASSERT_PASS ,file_,line_ | |
386 | #define vec_assert(expr, op) \ | |
387 | ((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, ASSERT_FUNCTION), 0))) | |
388 | ||
389 | #define VEC(T) VEC_##T | |
390 | #define VEC_OP(T,OP) VEC_##T##_##OP | |
391 | ||
392 | #define VEC_T(T) \ | |
393 | typedef struct VEC(T) \ | |
394 | { \ | |
395 | unsigned num; \ | |
396 | unsigned alloc; \ | |
397 | T vec[1]; \ | |
398 | } VEC(T) | |
399 | ||
400 | /* Vector of integer-like object. */ | |
401 | #define DEF_VEC_I(T) \ | |
402 | static inline void VEC_OP (T,must_be_integral_type) (void) \ | |
403 | { \ | |
404 | (void)~(T)0; \ | |
405 | } \ | |
406 | \ | |
407 | VEC_T(T); \ | |
408 | DEF_VEC_FUNC_P(T) \ | |
409 | DEF_VEC_ALLOC_FUNC_I(T) \ | |
410 | struct vec_swallow_trailing_semi | |
411 | ||
412 | /* Vector of pointer to object. */ | |
413 | #define DEF_VEC_P(T) \ | |
414 | static inline void VEC_OP (T,must_be_pointer_type) (void) \ | |
415 | { \ | |
416 | (void)((T)1 == (void *)1); \ | |
417 | } \ | |
418 | \ | |
419 | VEC_T(T); \ | |
420 | DEF_VEC_FUNC_P(T) \ | |
421 | DEF_VEC_ALLOC_FUNC_P(T) \ | |
422 | struct vec_swallow_trailing_semi | |
423 | ||
424 | /* Vector of object. */ | |
425 | #define DEF_VEC_O(T) \ | |
426 | VEC_T(T); \ | |
427 | DEF_VEC_FUNC_O(T) \ | |
428 | DEF_VEC_ALLOC_FUNC_O(T) \ | |
429 | struct vec_swallow_trailing_semi | |
430 | ||
431 | #define DEF_VEC_ALLOC_FUNC_I(T) \ | |
432 | static inline VEC(T) *VEC_OP (T,alloc) \ | |
433 | (int alloc_) \ | |
434 | { \ | |
435 | /* We must request exact size allocation, hence the negation. */ \ | |
436 | return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \ | |
437 | offsetof (VEC(T),vec), sizeof (T)); \ | |
438 | } \ | |
439 | \ | |
440 | static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ | |
441 | { \ | |
442 | size_t len_ = vec_ ? vec_->num : 0; \ | |
443 | VEC (T) *new_vec_ = NULL; \ | |
444 | \ | |
445 | if (len_) \ | |
446 | { \ | |
447 | /* We must request exact size allocation, hence the negation. */ \ | |
448 | new_vec_ = (VEC (T) *) \ | |
449 | vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \ | |
450 | \ | |
451 | new_vec_->num = len_; \ | |
452 | memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ | |
453 | } \ | |
454 | return new_vec_; \ | |
455 | } \ | |
456 | \ | |
457 | static inline void VEC_OP (T,free) \ | |
458 | (VEC(T) **vec_) \ | |
459 | { \ | |
460 | if (*vec_) \ | |
461 | vec_free (*vec_); \ | |
462 | *vec_ = NULL; \ | |
463 | } \ | |
464 | \ | |
465 | static inline int VEC_OP (T,reserve) \ | |
466 | (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ | |
467 | { \ | |
468 | int extend = !VEC_OP (T,space) \ | |
469 | (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \ | |
470 | \ | |
471 | if (extend) \ | |
472 | *vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \ | |
473 | offsetof (VEC(T),vec), sizeof (T)); \ | |
474 | \ | |
475 | return extend; \ | |
476 | } \ | |
477 | \ | |
478 | static inline void VEC_OP (T,safe_grow) \ | |
479 | (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ | |
480 | { \ | |
481 | vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ | |
482 | "safe_grow"); \ | |
483 | VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \ | |
484 | VEC_ASSERT_PASS); \ | |
485 | (*vec_)->num = size_; \ | |
486 | } \ | |
487 | \ | |
488 | static inline T *VEC_OP (T,safe_push) \ | |
489 | (VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \ | |
490 | { \ | |
491 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
492 | \ | |
493 | return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ | |
494 | } \ | |
495 | \ | |
496 | static inline T *VEC_OP (T,safe_insert) \ | |
497 | (VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \ | |
498 | { \ | |
499 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
500 | \ | |
501 | return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ | |
502 | } | |
503 | ||
504 | #define DEF_VEC_FUNC_P(T) \ | |
505 | static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \ | |
506 | { \ | |
507 | return vec_ ? vec_->num : 0; \ | |
508 | } \ | |
509 | \ | |
510 | static inline T VEC_OP (T,last) \ | |
511 | (const VEC(T) *vec_ VEC_ASSERT_DECL) \ | |
512 | { \ | |
513 | vec_assert (vec_ && vec_->num, "last"); \ | |
514 | \ | |
515 | return vec_->vec[vec_->num - 1]; \ | |
516 | } \ | |
517 | \ | |
518 | static inline T VEC_OP (T,index) \ | |
519 | (const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
520 | { \ | |
521 | vec_assert (vec_ && ix_ < vec_->num, "index"); \ | |
522 | \ | |
523 | return vec_->vec[ix_]; \ | |
524 | } \ | |
525 | \ | |
526 | static inline int VEC_OP (T,iterate) \ | |
527 | (const VEC(T) *vec_, unsigned ix_, T *ptr) \ | |
528 | { \ | |
529 | if (vec_ && ix_ < vec_->num) \ | |
530 | { \ | |
531 | *ptr = vec_->vec[ix_]; \ | |
532 | return 1; \ | |
533 | } \ | |
534 | else \ | |
535 | { \ | |
536 | *ptr = 0; \ | |
537 | return 0; \ | |
538 | } \ | |
539 | } \ | |
540 | \ | |
541 | static inline size_t VEC_OP (T,embedded_size) \ | |
542 | (int alloc_) \ | |
543 | { \ | |
544 | return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \ | |
545 | } \ | |
546 | \ | |
547 | static inline void VEC_OP (T,embedded_init) \ | |
548 | (VEC(T) *vec_, int alloc_) \ | |
549 | { \ | |
550 | vec_->num = 0; \ | |
551 | vec_->alloc = alloc_; \ | |
552 | } \ | |
553 | \ | |
554 | static inline int VEC_OP (T,space) \ | |
555 | (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \ | |
556 | { \ | |
557 | vec_assert (alloc_ >= 0, "space"); \ | |
558 | return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ | |
559 | } \ | |
560 | \ | |
561 | static inline T *VEC_OP (T,quick_push) \ | |
562 | (VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \ | |
563 | { \ | |
564 | T *slot_; \ | |
565 | \ | |
566 | vec_assert (vec_->num < vec_->alloc, "quick_push"); \ | |
567 | slot_ = &vec_->vec[vec_->num++]; \ | |
568 | *slot_ = obj_; \ | |
569 | \ | |
570 | return slot_; \ | |
571 | } \ | |
572 | \ | |
573 | static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \ | |
574 | { \ | |
575 | T obj_; \ | |
576 | \ | |
577 | vec_assert (vec_->num, "pop"); \ | |
578 | obj_ = vec_->vec[--vec_->num]; \ | |
579 | \ | |
580 | return obj_; \ | |
581 | } \ | |
582 | \ | |
583 | static inline void VEC_OP (T,truncate) \ | |
584 | (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \ | |
585 | { \ | |
586 | vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \ | |
587 | if (vec_) \ | |
588 | vec_->num = size_; \ | |
589 | } \ | |
590 | \ | |
591 | static inline T VEC_OP (T,replace) \ | |
592 | (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ | |
593 | { \ | |
594 | T old_obj_; \ | |
595 | \ | |
596 | vec_assert (ix_ < vec_->num, "replace"); \ | |
597 | old_obj_ = vec_->vec[ix_]; \ | |
598 | vec_->vec[ix_] = obj_; \ | |
599 | \ | |
600 | return old_obj_; \ | |
601 | } \ | |
602 | \ | |
603 | static inline T *VEC_OP (T,quick_insert) \ | |
604 | (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ | |
605 | { \ | |
606 | T *slot_; \ | |
607 | \ | |
608 | vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \ | |
609 | slot_ = &vec_->vec[ix_]; \ | |
610 | memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ | |
611 | *slot_ = obj_; \ | |
612 | \ | |
613 | return slot_; \ | |
614 | } \ | |
615 | \ | |
616 | static inline T VEC_OP (T,ordered_remove) \ | |
617 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
618 | { \ | |
619 | T *slot_; \ | |
620 | T obj_; \ | |
621 | \ | |
622 | vec_assert (ix_ < vec_->num, "ordered_remove"); \ | |
623 | slot_ = &vec_->vec[ix_]; \ | |
624 | obj_ = *slot_; \ | |
625 | memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ | |
626 | \ | |
627 | return obj_; \ | |
628 | } \ | |
629 | \ | |
630 | static inline T VEC_OP (T,unordered_remove) \ | |
631 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
632 | { \ | |
633 | T *slot_; \ | |
634 | T obj_; \ | |
635 | \ | |
636 | vec_assert (ix_ < vec_->num, "unordered_remove"); \ | |
637 | slot_ = &vec_->vec[ix_]; \ | |
638 | obj_ = *slot_; \ | |
639 | *slot_ = vec_->vec[--vec_->num]; \ | |
640 | \ | |
641 | return obj_; \ | |
642 | } \ | |
643 | \ | |
644 | static inline void VEC_OP (T,block_remove) \ | |
645 | (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \ | |
646 | { \ | |
647 | T *slot_; \ | |
648 | \ | |
649 | vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \ | |
650 | slot_ = &vec_->vec[ix_]; \ | |
651 | vec_->num -= len_; \ | |
652 | memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ | |
653 | } \ | |
654 | \ | |
655 | static inline T *VEC_OP (T,address) \ | |
656 | (VEC(T) *vec_) \ | |
657 | { \ | |
658 | return vec_ ? vec_->vec : 0; \ | |
659 | } \ | |
660 | \ | |
661 | static inline unsigned VEC_OP (T,lower_bound) \ | |
662 | (VEC(T) *vec_, const T obj_, \ | |
663 | int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \ | |
664 | { \ | |
665 | unsigned int len_ = VEC_OP (T, length) (vec_); \ | |
666 | unsigned int half_, middle_; \ | |
667 | unsigned int first_ = 0; \ | |
668 | while (len_ > 0) \ | |
669 | { \ | |
670 | T middle_elem_; \ | |
671 | half_ = len_ >> 1; \ | |
672 | middle_ = first_; \ | |
673 | middle_ += half_; \ | |
674 | middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \ | |
675 | if (lessthan_ (middle_elem_, obj_)) \ | |
676 | { \ | |
677 | first_ = middle_; \ | |
678 | ++first_; \ | |
679 | len_ = len_ - half_ - 1; \ | |
680 | } \ | |
681 | else \ | |
682 | len_ = half_; \ | |
683 | } \ | |
684 | return first_; \ | |
685 | } | |
686 | ||
687 | #define DEF_VEC_ALLOC_FUNC_P(T) \ | |
688 | static inline VEC(T) *VEC_OP (T,alloc) \ | |
689 | (int alloc_) \ | |
690 | { \ | |
691 | /* We must request exact size allocation, hence the negation. */ \ | |
692 | return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \ | |
693 | } \ | |
694 | \ | |
695 | static inline void VEC_OP (T,free) \ | |
696 | (VEC(T) **vec_) \ | |
697 | { \ | |
698 | if (*vec_) \ | |
699 | vec_free (*vec_); \ | |
700 | *vec_ = NULL; \ | |
701 | } \ | |
702 | \ | |
703 | static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ | |
704 | { \ | |
705 | size_t len_ = vec_ ? vec_->num : 0; \ | |
706 | VEC (T) *new_vec_ = NULL; \ | |
707 | \ | |
708 | if (len_) \ | |
709 | { \ | |
710 | /* We must request exact size allocation, hence the negation. */ \ | |
711 | new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \ | |
712 | \ | |
713 | new_vec_->num = len_; \ | |
714 | memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ | |
715 | } \ | |
716 | return new_vec_; \ | |
717 | } \ | |
718 | \ | |
719 | static inline int VEC_OP (T,reserve) \ | |
720 | (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ | |
721 | { \ | |
722 | int extend = !VEC_OP (T,space) \ | |
723 | (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \ | |
724 | \ | |
725 | if (extend) \ | |
726 | *vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \ | |
727 | \ | |
728 | return extend; \ | |
729 | } \ | |
730 | \ | |
731 | static inline void VEC_OP (T,safe_grow) \ | |
732 | (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ | |
733 | { \ | |
734 | vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ | |
735 | "safe_grow"); \ | |
736 | VEC_OP (T,reserve) \ | |
737 | (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \ | |
738 | (*vec_)->num = size_; \ | |
739 | } \ | |
740 | \ | |
741 | static inline T *VEC_OP (T,safe_push) \ | |
742 | (VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \ | |
743 | { \ | |
744 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
745 | \ | |
746 | return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ | |
747 | } \ | |
748 | \ | |
749 | static inline T *VEC_OP (T,safe_insert) \ | |
750 | (VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ | |
751 | { \ | |
752 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
753 | \ | |
754 | return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ | |
755 | } | |
756 | ||
757 | #define DEF_VEC_FUNC_O(T) \ | |
758 | static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \ | |
759 | { \ | |
760 | return vec_ ? vec_->num : 0; \ | |
761 | } \ | |
762 | \ | |
763 | static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \ | |
764 | { \ | |
765 | vec_assert (vec_ && vec_->num, "last"); \ | |
766 | \ | |
767 | return &vec_->vec[vec_->num - 1]; \ | |
768 | } \ | |
769 | \ | |
770 | static inline T *VEC_OP (T,index) \ | |
771 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
772 | { \ | |
773 | vec_assert (vec_ && ix_ < vec_->num, "index"); \ | |
774 | \ | |
775 | return &vec_->vec[ix_]; \ | |
776 | } \ | |
777 | \ | |
778 | static inline int VEC_OP (T,iterate) \ | |
779 | (VEC(T) *vec_, unsigned ix_, T **ptr) \ | |
780 | { \ | |
781 | if (vec_ && ix_ < vec_->num) \ | |
782 | { \ | |
783 | *ptr = &vec_->vec[ix_]; \ | |
784 | return 1; \ | |
785 | } \ | |
786 | else \ | |
787 | { \ | |
788 | *ptr = 0; \ | |
789 | return 0; \ | |
790 | } \ | |
791 | } \ | |
792 | \ | |
793 | static inline size_t VEC_OP (T,embedded_size) \ | |
794 | (int alloc_) \ | |
795 | { \ | |
796 | return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \ | |
797 | } \ | |
798 | \ | |
799 | static inline void VEC_OP (T,embedded_init) \ | |
800 | (VEC(T) *vec_, int alloc_) \ | |
801 | { \ | |
802 | vec_->num = 0; \ | |
803 | vec_->alloc = alloc_; \ | |
804 | } \ | |
805 | \ | |
806 | static inline int VEC_OP (T,space) \ | |
807 | (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \ | |
808 | { \ | |
809 | vec_assert (alloc_ >= 0, "space"); \ | |
810 | return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ | |
811 | } \ | |
812 | \ | |
813 | static inline T *VEC_OP (T,quick_push) \ | |
814 | (VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \ | |
815 | { \ | |
816 | T *slot_; \ | |
817 | \ | |
818 | vec_assert (vec_->num < vec_->alloc, "quick_push"); \ | |
819 | slot_ = &vec_->vec[vec_->num++]; \ | |
820 | if (obj_) \ | |
821 | *slot_ = *obj_; \ | |
822 | \ | |
823 | return slot_; \ | |
824 | } \ | |
825 | \ | |
826 | static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \ | |
827 | { \ | |
828 | vec_assert (vec_->num, "pop"); \ | |
829 | --vec_->num; \ | |
830 | } \ | |
831 | \ | |
832 | static inline void VEC_OP (T,truncate) \ | |
833 | (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \ | |
834 | { \ | |
835 | vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \ | |
836 | if (vec_) \ | |
837 | vec_->num = size_; \ | |
838 | } \ | |
839 | \ | |
840 | static inline T *VEC_OP (T,replace) \ | |
841 | (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ | |
842 | { \ | |
843 | T *slot_; \ | |
844 | \ | |
845 | vec_assert (ix_ < vec_->num, "replace"); \ | |
846 | slot_ = &vec_->vec[ix_]; \ | |
847 | if (obj_) \ | |
848 | *slot_ = *obj_; \ | |
849 | \ | |
850 | return slot_; \ | |
851 | } \ | |
852 | \ | |
853 | static inline T *VEC_OP (T,quick_insert) \ | |
854 | (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ | |
855 | { \ | |
856 | T *slot_; \ | |
857 | \ | |
858 | vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \ | |
859 | slot_ = &vec_->vec[ix_]; \ | |
860 | memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ | |
861 | if (obj_) \ | |
862 | *slot_ = *obj_; \ | |
863 | \ | |
864 | return slot_; \ | |
865 | } \ | |
866 | \ | |
867 | static inline void VEC_OP (T,ordered_remove) \ | |
868 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
869 | { \ | |
870 | T *slot_; \ | |
871 | \ | |
872 | vec_assert (ix_ < vec_->num, "ordered_remove"); \ | |
873 | slot_ = &vec_->vec[ix_]; \ | |
874 | memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ | |
875 | } \ | |
876 | \ | |
877 | static inline void VEC_OP (T,unordered_remove) \ | |
878 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
879 | { \ | |
880 | vec_assert (ix_ < vec_->num, "unordered_remove"); \ | |
881 | vec_->vec[ix_] = vec_->vec[--vec_->num]; \ | |
882 | } \ | |
883 | \ | |
884 | static inline void VEC_OP (T,block_remove) \ | |
885 | (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \ | |
886 | { \ | |
887 | T *slot_; \ | |
888 | \ | |
889 | vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \ | |
890 | slot_ = &vec_->vec[ix_]; \ | |
891 | vec_->num -= len_; \ | |
892 | memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ | |
893 | } \ | |
894 | \ | |
895 | static inline T *VEC_OP (T,address) \ | |
896 | (VEC(T) *vec_) \ | |
897 | { \ | |
898 | return vec_ ? vec_->vec : 0; \ | |
899 | } \ | |
900 | \ | |
901 | static inline unsigned VEC_OP (T,lower_bound) \ | |
902 | (VEC(T) *vec_, const T *obj_, \ | |
903 | int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \ | |
904 | { \ | |
905 | unsigned int len_ = VEC_OP (T, length) (vec_); \ | |
906 | unsigned int half_, middle_; \ | |
907 | unsigned int first_ = 0; \ | |
908 | while (len_ > 0) \ | |
909 | { \ | |
910 | T *middle_elem_; \ | |
911 | half_ = len_ >> 1; \ | |
912 | middle_ = first_; \ | |
913 | middle_ += half_; \ | |
914 | middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \ | |
915 | if (lessthan_ (middle_elem_, obj_)) \ | |
916 | { \ | |
917 | first_ = middle_; \ | |
918 | ++first_; \ | |
919 | len_ = len_ - half_ - 1; \ | |
920 | } \ | |
921 | else \ | |
922 | len_ = half_; \ | |
923 | } \ | |
924 | return first_; \ | |
925 | } | |
926 | ||
927 | #define DEF_VEC_ALLOC_FUNC_O(T) \ | |
928 | static inline VEC(T) *VEC_OP (T,alloc) \ | |
929 | (int alloc_) \ | |
930 | { \ | |
931 | /* We must request exact size allocation, hence the negation. */ \ | |
932 | return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \ | |
933 | offsetof (VEC(T),vec), sizeof (T)); \ | |
934 | } \ | |
935 | \ | |
936 | static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ | |
937 | { \ | |
938 | size_t len_ = vec_ ? vec_->num : 0; \ | |
939 | VEC (T) *new_vec_ = NULL; \ | |
940 | \ | |
941 | if (len_) \ | |
942 | { \ | |
943 | /* We must request exact size allocation, hence the negation. */ \ | |
944 | new_vec_ = (VEC (T) *) \ | |
945 | vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \ | |
946 | \ | |
947 | new_vec_->num = len_; \ | |
948 | memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ | |
949 | } \ | |
950 | return new_vec_; \ | |
951 | } \ | |
952 | \ | |
953 | static inline void VEC_OP (T,free) \ | |
954 | (VEC(T) **vec_) \ | |
955 | { \ | |
956 | if (*vec_) \ | |
957 | vec_free (*vec_); \ | |
958 | *vec_ = NULL; \ | |
959 | } \ | |
960 | \ | |
961 | static inline int VEC_OP (T,reserve) \ | |
962 | (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ | |
963 | { \ | |
964 | int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \ | |
965 | VEC_ASSERT_PASS); \ | |
966 | \ | |
967 | if (extend) \ | |
968 | *vec_ = (VEC(T) *) \ | |
969 | vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \ | |
970 | \ | |
971 | return extend; \ | |
972 | } \ | |
973 | \ | |
974 | static inline void VEC_OP (T,safe_grow) \ | |
975 | (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ | |
976 | { \ | |
977 | vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ | |
978 | "safe_grow"); \ | |
979 | VEC_OP (T,reserve) \ | |
980 | (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \ | |
981 | (*vec_)->num = size_; \ | |
982 | } \ | |
983 | \ | |
984 | static inline T *VEC_OP (T,safe_push) \ | |
985 | (VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \ | |
986 | { \ | |
987 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
988 | \ | |
989 | return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ | |
990 | } \ | |
991 | \ | |
992 | static inline T *VEC_OP (T,safe_insert) \ | |
993 | (VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ | |
994 | { \ | |
995 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
996 | \ | |
997 | return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ | |
998 | } | |
999 | ||
1000 | #endif /* GDB_VEC_H */ |