2003-08-18 Andreas Schwab <schwab@suse.de>
[deliverable/binutils-gdb.git] / gdb / x86-64-tdep.c
CommitLineData
53e95fcf 1/* Target-dependent code for the x86-64 for GDB, the GNU debugger.
ce0eebec 2
51603483 3 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
53e95fcf
JS
4 Contributed by Jiri Smid, SuSE Labs.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23#include "defs.h"
c4f35dd8
MK
24#include "arch-utils.h"
25#include "block.h"
26#include "dummy-frame.h"
27#include "frame.h"
28#include "frame-base.h"
29#include "frame-unwind.h"
53e95fcf 30#include "inferior.h"
53e95fcf 31#include "gdbcmd.h"
c4f35dd8
MK
32#include "gdbcore.h"
33#include "objfiles.h"
53e95fcf
JS
34#include "regcache.h"
35#include "symfile.h"
c4f35dd8 36
82dbc5f7 37#include "gdb_assert.h"
c4f35dd8
MK
38
39#include "x86-64-tdep.h"
40#include "i387-tdep.h"
53e95fcf 41
402ecd56 42/* Register information. */
c4f35dd8
MK
43
44struct x86_64_register_info
de220d0f 45{
de220d0f
ML
46 char *name;
47 struct type **type;
48};
53e95fcf 49
c4f35dd8
MK
50static struct x86_64_register_info x86_64_register_info[] =
51{
52 { "rax", &builtin_type_int64 },
53 { "rbx", &builtin_type_int64 },
54 { "rcx", &builtin_type_int64 },
55 { "rdx", &builtin_type_int64 },
56 { "rsi", &builtin_type_int64 },
57 { "rdi", &builtin_type_int64 },
58 { "rbp", &builtin_type_void_data_ptr },
59 { "rsp", &builtin_type_void_data_ptr },
60
61 /* %r8 is indeed register number 8. */
62 { "r8", &builtin_type_int64 },
63 { "r9", &builtin_type_int64 },
64 { "r10", &builtin_type_int64 },
65 { "r11", &builtin_type_int64 },
66 { "r12", &builtin_type_int64 },
67 { "r13", &builtin_type_int64 },
68 { "r14", &builtin_type_int64 },
69 { "r15", &builtin_type_int64 },
70 { "rip", &builtin_type_void_func_ptr },
71 { "eflags", &builtin_type_int32 },
72 { "ds", &builtin_type_int32 },
73 { "es", &builtin_type_int32 },
74 { "fs", &builtin_type_int32 },
75 { "gs", &builtin_type_int32 },
76
77 /* %st0 is register number 22. */
78 { "st0", &builtin_type_i387_ext },
79 { "st1", &builtin_type_i387_ext },
80 { "st2", &builtin_type_i387_ext },
81 { "st3", &builtin_type_i387_ext },
82 { "st4", &builtin_type_i387_ext },
83 { "st5", &builtin_type_i387_ext },
84 { "st6", &builtin_type_i387_ext },
85 { "st7", &builtin_type_i387_ext },
86 { "fctrl", &builtin_type_int32 },
87 { "fstat", &builtin_type_int32 },
88 { "ftag", &builtin_type_int32 },
89 { "fiseg", &builtin_type_int32 },
90 { "fioff", &builtin_type_int32 },
91 { "foseg", &builtin_type_int32 },
92 { "fooff", &builtin_type_int32 },
93 { "fop", &builtin_type_int32 },
94
95 /* %xmm0 is register number 38. */
96 { "xmm0", &builtin_type_v4sf },
97 { "xmm1", &builtin_type_v4sf },
98 { "xmm2", &builtin_type_v4sf },
99 { "xmm3", &builtin_type_v4sf },
100 { "xmm4", &builtin_type_v4sf },
101 { "xmm5", &builtin_type_v4sf },
102 { "xmm6", &builtin_type_v4sf },
103 { "xmm7", &builtin_type_v4sf },
104 { "xmm8", &builtin_type_v4sf },
105 { "xmm9", &builtin_type_v4sf },
106 { "xmm10", &builtin_type_v4sf },
107 { "xmm11", &builtin_type_v4sf },
108 { "xmm12", &builtin_type_v4sf },
109 { "xmm13", &builtin_type_v4sf },
110 { "xmm14", &builtin_type_v4sf },
111 { "xmm15", &builtin_type_v4sf },
112 { "mxcsr", &builtin_type_int32 }
0e04a514
ML
113};
114
c4f35dd8
MK
115/* Total number of registers. */
116#define X86_64_NUM_REGS \
117 (sizeof (x86_64_register_info) / sizeof (x86_64_register_info[0]))
de220d0f 118
c4f35dd8 119/* Return the name of register REGNUM. */
b6779aa2 120
c4f35dd8
MK
121static const char *
122x86_64_register_name (int regnum)
53e95fcf 123{
c4f35dd8
MK
124 if (regnum >= 0 && regnum < X86_64_NUM_REGS)
125 return x86_64_register_info[regnum].name;
53e95fcf 126
c4f35dd8 127 return NULL;
53e95fcf
JS
128}
129
130/* Return the GDB type object for the "standard" data type of data in
c4f35dd8 131 register REGNUM. */
53e95fcf 132
c4f35dd8
MK
133static struct type *
134x86_64_register_type (struct gdbarch *gdbarch, int regnum)
53e95fcf 135{
c4f35dd8 136 gdb_assert (regnum >= 0 && regnum < X86_64_NUM_REGS);
4657573b 137
c4f35dd8 138 return *x86_64_register_info[regnum].type;
53e95fcf
JS
139}
140
c4f35dd8
MK
141/* DWARF Register Number Mapping as defined in the System V psABI,
142 section 3.6. */
53e95fcf 143
c4f35dd8 144static int x86_64_dwarf_regmap[] =
0e04a514 145{
c4f35dd8 146 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
f82b2acd 147 X86_64_RAX_REGNUM, X86_64_RDX_REGNUM, 2, 1,
c4f35dd8
MK
148 4, X86_64_RDI_REGNUM,
149
150 /* Frame Pointer Register RBP. */
151 X86_64_RBP_REGNUM,
152
153 /* Stack Pointer Register RSP. */
154 X86_64_RSP_REGNUM,
155
156 /* Extended Integer Registers 8 - 15. */
157 8, 9, 10, 11, 12, 13, 14, 15,
158
159 /* Return Address RA. Not mapped. */
160 -1,
161
162 /* SSE Registers 0 - 7. */
163 X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM,
164 X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3,
165 X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5,
166 X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7,
167
168 /* Extended SSE Registers 8 - 15. */
169 X86_64_XMM0_REGNUM + 8, X86_64_XMM0_REGNUM + 9,
170 X86_64_XMM0_REGNUM + 10, X86_64_XMM0_REGNUM + 11,
171 X86_64_XMM0_REGNUM + 12, X86_64_XMM0_REGNUM + 13,
172 X86_64_XMM0_REGNUM + 14, X86_64_XMM0_REGNUM + 15,
173
174 /* Floating Point Registers 0-7. */
f82b2acd 175 X86_64_ST0_REGNUM + 0, X86_64_ST0_REGNUM + 1,
c4f35dd8
MK
176 X86_64_ST0_REGNUM + 2, X86_64_ST0_REGNUM + 3,
177 X86_64_ST0_REGNUM + 4, X86_64_ST0_REGNUM + 5,
178 X86_64_ST0_REGNUM + 6, X86_64_ST0_REGNUM + 7
179};
0e04a514 180
c4f35dd8
MK
181static const int x86_64_dwarf_regmap_len =
182 (sizeof (x86_64_dwarf_regmap) / sizeof (x86_64_dwarf_regmap[0]));
0e04a514 183
c4f35dd8
MK
184/* Convert DWARF register number REG to the appropriate register
185 number used by GDB. */
26abbdc4 186
c4f35dd8
MK
187static int
188x86_64_dwarf_reg_to_regnum (int reg)
53e95fcf 189{
c4f35dd8 190 int regnum = -1;
53e95fcf 191
c4f35dd8
MK
192 if (reg >= 0 || reg < x86_64_dwarf_regmap_len)
193 regnum = x86_64_dwarf_regmap[reg];
53e95fcf 194
c4f35dd8
MK
195 if (regnum == -1)
196 warning ("Unmapped DWARF Register #%d encountered\n", reg);
197
198 return regnum;
53e95fcf 199}
d532c08f
MK
200
201/* Return nonzero if a value of type TYPE stored in register REGNUM
202 needs any special handling. */
203
204static int
205x86_64_convert_register_p (int regnum, struct type *type)
206{
207 return i386_fp_regnum_p (regnum);
208}
53e95fcf
JS
209\f
210
211/* The returning of values is done according to the special algorithm.
c4f35dd8
MK
212 Some types are returned in registers an some (big structures) in
213 memory. See the System V psABI for details. */
53e95fcf
JS
214
215#define MAX_CLASSES 4
216
217enum x86_64_reg_class
218{
219 X86_64_NO_CLASS,
220 X86_64_INTEGER_CLASS,
221 X86_64_INTEGERSI_CLASS,
222 X86_64_SSE_CLASS,
223 X86_64_SSESF_CLASS,
224 X86_64_SSEDF_CLASS,
225 X86_64_SSEUP_CLASS,
226 X86_64_X87_CLASS,
227 X86_64_X87UP_CLASS,
228 X86_64_MEMORY_CLASS
229};
230
231/* Return the union class of CLASS1 and CLASS2.
c4f35dd8 232 See the System V psABI for details. */
53e95fcf
JS
233
234static enum x86_64_reg_class
235merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
236{
c4f35dd8 237 /* Rule (a): If both classes are equal, this is the resulting class. */
53e95fcf
JS
238 if (class1 == class2)
239 return class1;
240
c4f35dd8 241 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
26abbdc4 242 is the other class. */
53e95fcf
JS
243 if (class1 == X86_64_NO_CLASS)
244 return class2;
245 if (class2 == X86_64_NO_CLASS)
246 return class1;
247
c4f35dd8 248 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
53e95fcf
JS
249 if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
250 return X86_64_MEMORY_CLASS;
251
c4f35dd8 252 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
53e95fcf
JS
253 if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
254 || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
255 return X86_64_INTEGERSI_CLASS;
256 if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
257 || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
258 return X86_64_INTEGER_CLASS;
259
c4f35dd8
MK
260 /* Rule (e): If one of the classes is X87 or X87UP class, MEMORY is
261 used as class. */
53e95fcf
JS
262 if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS
263 || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS)
264 return X86_64_MEMORY_CLASS;
265
c4f35dd8 266 /* Rule (f): Otherwise class SSE is used. */
53e95fcf
JS
267 return X86_64_SSE_CLASS;
268}
269
26abbdc4
MK
270/* Classify the argument type. CLASSES will be filled by the register
271 class used to pass each word of the operand. The number of words
272 is returned. In case the parameter should be passed in memory, 0
273 is returned. As a special case for zero sized containers,
274 classes[0] will be NO_CLASS and 1 is returned.
53e95fcf 275
c4f35dd8 276 See the System V psABI for details. */
53e95fcf
JS
277
278static int
279classify_argument (struct type *type,
280 enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset)
281{
282 int bytes = TYPE_LENGTH (type);
283 int words = (bytes + 8 - 1) / 8;
284
285 switch (TYPE_CODE (type))
286 {
287 case TYPE_CODE_ARRAY:
288 case TYPE_CODE_STRUCT:
289 case TYPE_CODE_UNION:
290 {
291 int i;
292 enum x86_64_reg_class subclasses[MAX_CLASSES];
293
294 /* On x86-64 we pass structures larger than 16 bytes on the stack. */
295 if (bytes > 16)
296 return 0;
297
298 for (i = 0; i < words; i++)
299 classes[i] = X86_64_NO_CLASS;
300
26abbdc4
MK
301 /* Zero sized arrays or structures are NO_CLASS. We return 0
302 to signalize memory class, so handle it as special case. */
53e95fcf
JS
303 if (!words)
304 {
305 classes[0] = X86_64_NO_CLASS;
306 return 1;
307 }
308 switch (TYPE_CODE (type))
309 {
310 case TYPE_CODE_STRUCT:
311 {
312 int j;
0004e5a2 313 for (j = 0; j < TYPE_NFIELDS (type); ++j)
53e95fcf 314 {
0004e5a2 315 int num = classify_argument (TYPE_FIELDS (type)[j].type,
53e95fcf 316 subclasses,
8dda9770
ML
317 (TYPE_FIELDS (type)[j].loc.
318 bitpos + bit_offset) % 256);
53e95fcf
JS
319 if (!num)
320 return 0;
321 for (i = 0; i < num; i++)
322 {
323 int pos =
8dda9770
ML
324 (TYPE_FIELDS (type)[j].loc.bitpos +
325 bit_offset) / 8 / 8;
53e95fcf
JS
326 classes[i + pos] =
327 merge_classes (subclasses[i], classes[i + pos]);
328 }
329 }
330 }
331 break;
332 case TYPE_CODE_ARRAY:
333 {
334 int num;
335
0004e5a2 336 num = classify_argument (TYPE_TARGET_TYPE (type),
53e95fcf
JS
337 subclasses, bit_offset);
338 if (!num)
339 return 0;
340
341 /* The partial classes are now full classes. */
342 if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
343 subclasses[0] = X86_64_SSE_CLASS;
344 if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4)
345 subclasses[0] = X86_64_INTEGER_CLASS;
346
347 for (i = 0; i < words; i++)
348 classes[i] = subclasses[i % num];
349 }
350 break;
351 case TYPE_CODE_UNION:
352 {
353 int j;
354 {
0004e5a2 355 for (j = 0; j < TYPE_NFIELDS (type); ++j)
53e95fcf
JS
356 {
357 int num;
0004e5a2 358 num = classify_argument (TYPE_FIELDS (type)[j].type,
53e95fcf
JS
359 subclasses, bit_offset);
360 if (!num)
361 return 0;
362 for (i = 0; i < num; i++)
363 classes[i] = merge_classes (subclasses[i], classes[i]);
364 }
365 }
366 }
367 break;
4657573b
ML
368 default:
369 break;
53e95fcf
JS
370 }
371 /* Final merger cleanup. */
372 for (i = 0; i < words; i++)
373 {
374 /* If one class is MEMORY, everything should be passed in
375 memory. */
376 if (classes[i] == X86_64_MEMORY_CLASS)
377 return 0;
378
379 /* The X86_64_SSEUP_CLASS should be always preceeded by
380 X86_64_SSE_CLASS. */
381 if (classes[i] == X86_64_SSEUP_CLASS
382 && (i == 0 || classes[i - 1] != X86_64_SSE_CLASS))
383 classes[i] = X86_64_SSE_CLASS;
384
26abbdc4 385 /* X86_64_X87UP_CLASS should be preceeded by X86_64_X87_CLASS. */
53e95fcf
JS
386 if (classes[i] == X86_64_X87UP_CLASS
387 && (i == 0 || classes[i - 1] != X86_64_X87_CLASS))
388 classes[i] = X86_64_SSE_CLASS;
389 }
390 return words;
391 }
392 break;
393 case TYPE_CODE_FLT:
394 switch (bytes)
395 {
396 case 4:
397 if (!(bit_offset % 64))
398 classes[0] = X86_64_SSESF_CLASS;
399 else
400 classes[0] = X86_64_SSE_CLASS;
401 return 1;
402 case 8:
403 classes[0] = X86_64_SSEDF_CLASS;
404 return 1;
405 case 16:
406 classes[0] = X86_64_X87_CLASS;
407 classes[1] = X86_64_X87UP_CLASS;
408 return 2;
409 }
410 break;
50c46a0d
EZ
411 case TYPE_CODE_ENUM:
412 case TYPE_CODE_REF:
53e95fcf
JS
413 case TYPE_CODE_INT:
414 case TYPE_CODE_PTR:
415 switch (bytes)
416 {
417 case 1:
418 case 2:
419 case 4:
420 case 8:
421 if (bytes * 8 + bit_offset <= 32)
422 classes[0] = X86_64_INTEGERSI_CLASS;
423 else
424 classes[0] = X86_64_INTEGER_CLASS;
425 return 1;
426 case 16:
427 classes[0] = classes[1] = X86_64_INTEGER_CLASS;
428 return 2;
429 default:
430 break;
431 }
432 case TYPE_CODE_VOID:
433 return 0;
8dda9770 434 default: /* Avoid warning. */
4657573b 435 break;
53e95fcf 436 }
ce0eebec
AC
437 internal_error (__FILE__, __LINE__,
438 "classify_argument: unknown argument type");
53e95fcf
JS
439}
440
26abbdc4
MK
441/* Examine the argument and set *INT_NREGS and *SSE_NREGS to the
442 number of registers required based on the information passed in
443 CLASSES. Return 0 if parameter should be passed in memory. */
53e95fcf
JS
444
445static int
446examine_argument (enum x86_64_reg_class classes[MAX_CLASSES],
447 int n, int *int_nregs, int *sse_nregs)
448{
449 *int_nregs = 0;
450 *sse_nregs = 0;
451 if (!n)
452 return 0;
453 for (n--; n >= 0; n--)
454 switch (classes[n])
455 {
456 case X86_64_INTEGER_CLASS:
457 case X86_64_INTEGERSI_CLASS:
458 (*int_nregs)++;
459 break;
460 case X86_64_SSE_CLASS:
461 case X86_64_SSESF_CLASS:
462 case X86_64_SSEDF_CLASS:
463 (*sse_nregs)++;
464 break;
465 case X86_64_NO_CLASS:
466 case X86_64_SSEUP_CLASS:
467 case X86_64_X87_CLASS:
468 case X86_64_X87UP_CLASS:
469 break;
470 case X86_64_MEMORY_CLASS:
ce0eebec
AC
471 internal_error (__FILE__, __LINE__,
472 "examine_argument: unexpected memory class");
53e95fcf
JS
473 }
474 return 1;
475}
476
477#define RET_INT_REGS 2
478#define RET_SSE_REGS 2
479
480/* Check if the structure in value_type is returned in registers or in
26abbdc4
MK
481 memory. If this function returns 1, GDB will call
482 STORE_STRUCT_RETURN and EXTRACT_STRUCT_VALUE_ADDRESS else
483 STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE will be used. */
c4f35dd8
MK
484
485static int
53e95fcf
JS
486x86_64_use_struct_convention (int gcc_p, struct type *value_type)
487{
488 enum x86_64_reg_class class[MAX_CLASSES];
489 int n = classify_argument (value_type, class, 0);
490 int needed_intregs;
491 int needed_sseregs;
492
493 return (!n ||
494 !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
495 needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS);
496}
497
53e95fcf
JS
498/* Extract from an array REGBUF containing the (raw) register state, a
499 function return value of TYPE, and copy that, in virtual format,
500 into VALBUF. */
501
c4f35dd8 502static void
48037ead
ML
503x86_64_extract_return_value (struct type *type, struct regcache *regcache,
504 void *valbuf)
53e95fcf
JS
505{
506 enum x86_64_reg_class class[MAX_CLASSES];
507 int n = classify_argument (type, class, 0);
508 int needed_intregs;
509 int needed_sseregs;
510 int intreg = 0;
511 int ssereg = 0;
512 int offset = 0;
c4f35dd8
MK
513 int ret_int_r[RET_INT_REGS] = { X86_64_RAX_REGNUM, X86_64_RDX_REGNUM };
514 int ret_sse_r[RET_SSE_REGS] = { X86_64_XMM0_REGNUM, X86_64_XMM1_REGNUM };
53e95fcf
JS
515
516 if (!n ||
517 !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
518 needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS)
519 { /* memory class */
520 CORE_ADDR addr;
c4f35dd8 521 regcache_cooked_read (regcache, X86_64_RAX_REGNUM, &addr);
53e95fcf
JS
522 read_memory (addr, valbuf, TYPE_LENGTH (type));
523 return;
524 }
525 else
526 {
527 int i;
528 for (i = 0; i < n; i++)
529 {
530 switch (class[i])
531 {
532 case X86_64_NO_CLASS:
533 break;
534 case X86_64_INTEGER_CLASS:
48037ead
ML
535 regcache_cooked_read (regcache, ret_int_r[(intreg + 1) / 2],
536 (char *) valbuf + offset);
53e95fcf
JS
537 offset += 8;
538 intreg += 2;
539 break;
540 case X86_64_INTEGERSI_CLASS:
48037ead
ML
541 regcache_cooked_read_part (regcache, ret_int_r[intreg / 2],
542 0, 4, (char *) valbuf + offset);
53e95fcf
JS
543 offset += 8;
544 intreg++;
545 break;
546 case X86_64_SSEDF_CLASS:
547 case X86_64_SSESF_CLASS:
548 case X86_64_SSE_CLASS:
48037ead
ML
549 regcache_cooked_read_part (regcache,
550 ret_sse_r[(ssereg + 1) / 2], 0, 8,
551 (char *) valbuf + offset);
53e95fcf
JS
552 offset += 8;
553 ssereg += 2;
554 break;
555 case X86_64_SSEUP_CLASS:
48037ead
ML
556 regcache_cooked_read_part (regcache, ret_sse_r[ssereg / 2],
557 0, 8, (char *) valbuf + offset);
53e95fcf
JS
558 offset += 8;
559 ssereg++;
560 break;
561 case X86_64_X87_CLASS:
c4f35dd8 562 regcache_cooked_read_part (regcache, X86_64_ST0_REGNUM,
48037ead 563 0, 8, (char *) valbuf + offset);
53e95fcf
JS
564 offset += 8;
565 break;
566 case X86_64_X87UP_CLASS:
c4f35dd8 567 regcache_cooked_read_part (regcache, X86_64_ST0_REGNUM,
48037ead 568 8, 2, (char *) valbuf + offset);
53e95fcf
JS
569 offset += 8;
570 break;
571 case X86_64_MEMORY_CLASS:
572 default:
573 internal_error (__FILE__, __LINE__,
574 "Unexpected argument class");
575 }
576 }
577 }
578}
579
53e95fcf 580#define INT_REGS 6
c4f35dd8 581#define SSE_REGS 8
53e95fcf 582
c4f35dd8
MK
583static CORE_ADDR
584x86_64_push_arguments (struct regcache *regcache, int nargs,
585 struct value **args, CORE_ADDR sp)
53e95fcf
JS
586{
587 int intreg = 0;
588 int ssereg = 0;
c1da67ba
AJ
589 /* For varargs functions we have to pass the total number of SSE
590 registers used in %rax. So, let's count this number. */
8ffd9b1b
AJ
591 int total_sse_args = 0;
592 /* Once an SSE/int argument is passed on the stack, all subsequent
593 arguments are passed there. */
594 int sse_stack = 0;
595 int int_stack = 0;
c1da67ba 596 unsigned total_sp;
53e95fcf 597 int i;
8ffd9b1b 598 char buf[8];
c4f35dd8
MK
599 static int int_parameter_registers[INT_REGS] =
600 {
601 X86_64_RDI_REGNUM, 4, /* %rdi, %rsi */
602 X86_64_RDX_REGNUM, 2, /* %rdx, %rcx */
603 8, 9 /* %r8, %r9 */
ce0eebec 604 };
c4f35dd8
MK
605 /* %xmm0 - %xmm7 */
606 static int sse_parameter_registers[SSE_REGS] =
607 {
608 X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM,
609 X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3,
610 X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5,
611 X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7,
ce0eebec
AC
612 };
613 int stack_values_count = 0;
82dbc5f7 614 int *stack_values;
e9f30c21 615 stack_values = alloca (nargs * sizeof (int));
fd83bada
ML
616
617 /* Before storing anything to the stack we must skip
618 the "Red zone" (see the "Function calling sequence" section
619 of AMD64 ABI).
620 It could have already been skipped in the function's
621 prologue, but we don't care and will easily skip it once again. */
622 sp -= 128;
623
53e95fcf
JS
624 for (i = 0; i < nargs; i++)
625 {
626 enum x86_64_reg_class class[MAX_CLASSES];
627 int n = classify_argument (args[i]->type, class, 0);
628 int needed_intregs;
629 int needed_sseregs;
630
631 if (!n ||
8ffd9b1b 632 !examine_argument (class, n, &needed_intregs, &needed_sseregs))
ce0eebec
AC
633 { /* memory class */
634 stack_values[stack_values_count++] = i;
53e95fcf
JS
635 }
636 else
637 {
638 int j;
6b53acc6 639 int offset = 0;
8ffd9b1b
AJ
640
641 if (intreg / 2 + needed_intregs > INT_REGS)
642 int_stack = 1;
643 if (ssereg / 2 + needed_sseregs > SSE_REGS)
644 sse_stack = 1;
c1da67ba
AJ
645 if (!sse_stack)
646 total_sse_args += needed_sseregs;
8ffd9b1b 647
53e95fcf
JS
648 for (j = 0; j < n; j++)
649 {
53e95fcf
JS
650 switch (class[j])
651 {
652 case X86_64_NO_CLASS:
653 break;
654 case X86_64_INTEGER_CLASS:
8ffd9b1b
AJ
655 if (int_stack)
656 stack_values[stack_values_count++] = i;
657 else
658 {
659 regcache_cooked_write
660 (regcache, int_parameter_registers[(intreg + 1) / 2],
661 VALUE_CONTENTS_ALL (args[i]) + offset);
662 offset += 8;
663 intreg += 2;
664 }
53e95fcf
JS
665 break;
666 case X86_64_INTEGERSI_CLASS:
8ffd9b1b
AJ
667 if (int_stack)
668 stack_values[stack_values_count++] = i;
669 else
670 {
671 LONGEST val = extract_signed_integer
672 (VALUE_CONTENTS_ALL (args[i]) + offset, 4);
673 regcache_cooked_write_signed
674 (regcache, int_parameter_registers[intreg / 2], val);
675
676 offset += 8;
677 intreg++;
678 }
679 break;
53e95fcf
JS
680 case X86_64_SSEDF_CLASS:
681 case X86_64_SSESF_CLASS:
682 case X86_64_SSE_CLASS:
8ffd9b1b
AJ
683 if (sse_stack)
684 stack_values[stack_values_count++] = i;
685 else
686 {
687 regcache_cooked_write
688 (regcache, sse_parameter_registers[(ssereg + 1) / 2],
689 VALUE_CONTENTS_ALL (args[i]) + offset);
690 offset += 8;
691 ssereg += 2;
692 }
53e95fcf
JS
693 break;
694 case X86_64_SSEUP_CLASS:
8ffd9b1b
AJ
695 if (sse_stack)
696 stack_values[stack_values_count++] = i;
697 else
698 {
699 regcache_cooked_write
700 (regcache, sse_parameter_registers[ssereg / 2],
701 VALUE_CONTENTS_ALL (args[i]) + offset);
702 offset += 8;
703 ssereg++;
704 }
53e95fcf
JS
705 break;
706 case X86_64_X87_CLASS:
53e95fcf 707 case X86_64_MEMORY_CLASS:
ce0eebec 708 stack_values[stack_values_count++] = i;
82dbc5f7
AC
709 break;
710 case X86_64_X87UP_CLASS:
53e95fcf
JS
711 break;
712 default:
713 internal_error (__FILE__, __LINE__,
714 "Unexpected argument class");
715 }
716 intreg += intreg % 2;
717 ssereg += ssereg % 2;
718 }
719 }
720 }
c4f35dd8 721
c1da67ba
AJ
722 /* We have to make sure that the stack is 16-byte aligned after the
723 setup. Let's calculate size of arguments first, align stack and
724 then fill in the arguments. */
725 total_sp = 0;
726 for (i = 0; i < stack_values_count; i++)
727 {
728 struct value *arg = args[stack_values[i]];
729 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
730 total_sp += (len + 7) & ~7;
731 }
732 /* total_sp is now a multiple of 8, if it is not a multiple of 16,
733 change the stack pointer so that it will be afterwards correctly
734 aligned. */
735 if (total_sp & 15)
736 sp -= 8;
737
c4f35dd8 738 /* Push any remaining arguments onto the stack. */
82dbc5f7
AC
739 while (--stack_values_count >= 0)
740 {
e9f30c21 741 struct value *arg = args[stack_values[stack_values_count]];
82dbc5f7 742 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
c4f35dd8 743
c1da67ba 744 /* Make sure the stack is 8-byte-aligned. */
c4f35dd8 745 sp -= (len + 7) & ~7;
82dbc5f7
AC
746 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
747 }
c4f35dd8 748
8ffd9b1b
AJ
749 /* Write number of SSE type arguments to RAX to take care of varargs
750 functions. */
751 store_unsigned_integer (buf, 8, total_sse_args);
752 regcache_cooked_write (regcache, X86_64_RAX_REGNUM, buf);
753
53e95fcf
JS
754 return sp;
755}
756
757/* Write into the appropriate registers a function return value stored
758 in VALBUF of type TYPE, given in virtual format. */
c4f35dd8
MK
759
760static void
48037ead
ML
761x86_64_store_return_value (struct type *type, struct regcache *regcache,
762 const void *valbuf)
53e95fcf
JS
763{
764 int len = TYPE_LENGTH (type);
765
8ffd9b1b
AJ
766 /* First handle long doubles. */
767 if (TYPE_CODE_FLT == TYPE_CODE (type) && len == 16)
53e95fcf 768 {
c4f35dd8
MK
769 ULONGEST fstat;
770 char buf[FPU_REG_RAW_SIZE];
771
772 /* Returning floating-point values is a bit tricky. Apart from
773 storing the return value in %st(0), we have to simulate the
774 state of the FPU at function return point. */
775
776 /* Convert the value found in VALBUF to the extended
777 floating-point format used by the FPU. This is probably
778 not exactly how it would happen on the target itself, but
779 it is the best we can do. */
780 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
781 regcache_raw_write (regcache, X86_64_ST0_REGNUM, buf);
782
783 /* Set the top of the floating-point register stack to 7. The
784 actual value doesn't really matter, but 7 is what a normal
785 function return would end up with if the program started out
786 with a freshly initialized FPU. */
787 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
788 fstat |= (7 << 11);
789 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
790
791 /* Mark %st(1) through %st(7) as empty. Since we set the top of
792 the floating-point register stack to 7, the appropriate value
793 for the tag word is 0x3fff. */
794 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
53e95fcf 795 }
8ffd9b1b
AJ
796 else if (TYPE_CODE_FLT == TYPE_CODE (type))
797 {
798 /* Handle double and float variables. */
249de4f6
MK
799 regcache_cooked_write_part (regcache, X86_64_XMM0_REGNUM,
800 0, len, valbuf);
8ffd9b1b
AJ
801 }
802 /* XXX: What about complex floating point types? */
53e95fcf
JS
803 else
804 {
805 int low_size = REGISTER_RAW_SIZE (0);
806 int high_size = REGISTER_RAW_SIZE (1);
807
808 if (len <= low_size)
48037ead 809 regcache_cooked_write_part (regcache, 0, 0, len, valbuf);
53e95fcf
JS
810 else if (len <= (low_size + high_size))
811 {
48037ead
ML
812 regcache_cooked_write_part (regcache, 0, 0, low_size, valbuf);
813 regcache_cooked_write_part (regcache, 1, 0,
814 len - low_size,
815 (const char *) valbuf + low_size);
53e95fcf
JS
816 }
817 else
818 internal_error (__FILE__, __LINE__,
819 "Cannot store return value of %d bytes long.", len);
820 }
821}
822\f
823
c4f35dd8 824static CORE_ADDR
10f93086
MK
825x86_64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
826 struct regcache *regcache, CORE_ADDR bp_addr,
827 int nargs, struct value **args, CORE_ADDR sp,
828 int struct_return, CORE_ADDR struct_addr)
53e95fcf 829{
c4f35dd8
MK
830 char buf[8];
831
832 /* Pass arguments. */
833 sp = x86_64_push_arguments (regcache, nargs, args, sp);
834
835 /* Pass "hidden" argument". */
836 if (struct_return)
837 {
838 store_unsigned_integer (buf, 8, struct_addr);
839 regcache_cooked_write (regcache, X86_64_RDI_REGNUM, buf);
840 }
841
842 /* Store return address. */
843 sp -= 8;
10f93086 844 store_unsigned_integer (buf, 8, bp_addr);
c4f35dd8
MK
845 write_memory (sp, buf, 8);
846
847 /* Finally, update the stack pointer... */
848 store_unsigned_integer (buf, 8, sp);
849 regcache_cooked_write (regcache, X86_64_RSP_REGNUM, buf);
850
851 /* ...and fake a frame pointer. */
852 regcache_cooked_write (regcache, X86_64_RBP_REGNUM, buf);
853
3e210248 854 return sp + 16;
53e95fcf 855}
c4f35dd8
MK
856\f
857
858/* The maximum number of saved registers. This should include %rip. */
2b5e0749 859#define X86_64_NUM_SAVED_REGS X86_64_NUM_GREGS
c4f35dd8
MK
860
861struct x86_64_frame_cache
862{
863 /* Base address. */
864 CORE_ADDR base;
865 CORE_ADDR sp_offset;
866 CORE_ADDR pc;
867
868 /* Saved registers. */
869 CORE_ADDR saved_regs[X86_64_NUM_SAVED_REGS];
870 CORE_ADDR saved_sp;
871
872 /* Do we have a frame? */
873 int frameless_p;
874};
8dda9770 875
c4f35dd8
MK
876/* Allocate and initialize a frame cache. */
877
878static struct x86_64_frame_cache *
879x86_64_alloc_frame_cache (void)
8dda9770 880{
c4f35dd8
MK
881 struct x86_64_frame_cache *cache;
882 int i;
883
884 cache = FRAME_OBSTACK_ZALLOC (struct x86_64_frame_cache);
8dda9770 885
c4f35dd8
MK
886 /* Base address. */
887 cache->base = 0;
888 cache->sp_offset = -8;
889 cache->pc = 0;
890
891 /* Saved registers. We initialize these to -1 since zero is a valid
892 offset (that's where %rbp is supposed to be stored). */
893 for (i = 0; i < X86_64_NUM_SAVED_REGS; i++)
894 cache->saved_regs[i] = -1;
895 cache->saved_sp = 0;
896
897 /* Frameless until proven otherwise. */
898 cache->frameless_p = 1;
899
900 return cache;
8dda9770 901}
53e95fcf 902
c4f35dd8
MK
903/* Do a limited analysis of the prologue at PC and update CACHE
904 accordingly. Bail out early if CURRENT_PC is reached. Return the
905 address where the analysis stopped.
906
907 We will handle only functions beginning with:
908
909 pushq %rbp 0x55
910 movq %rsp, %rbp 0x48 0x89 0xe5
911
912 Any function that doesn't start with this sequence will be assumed
913 to have no prologue and thus no valid frame pointer in %rbp. */
914
915static CORE_ADDR
916x86_64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
917 struct x86_64_frame_cache *cache)
53e95fcf 918{
c4f35dd8
MK
919 static unsigned char proto[3] = { 0x48, 0x89, 0xe5 };
920 unsigned char buf[3];
921 unsigned char op;
922
923 if (current_pc <= pc)
924 return current_pc;
925
926 op = read_memory_unsigned_integer (pc, 1);
927
928 if (op == 0x55) /* pushq %rbp */
929 {
930 /* Take into account that we've executed the `pushq %rbp' that
931 starts this instruction sequence. */
932 cache->saved_regs[X86_64_RBP_REGNUM] = 0;
933 cache->sp_offset += 8;
934
935 /* If that's all, return now. */
936 if (current_pc <= pc + 1)
937 return current_pc;
938
939 /* Check for `movq %rsp, %rbp'. */
940 read_memory (pc + 1, buf, 3);
941 if (memcmp (buf, proto, 3) != 0)
942 return pc + 1;
943
944 /* OK, we actually have a frame. */
945 cache->frameless_p = 0;
946 return pc + 4;
947 }
948
949 return pc;
53e95fcf
JS
950}
951
c4f35dd8
MK
952/* Return PC of first real instruction. */
953
954static CORE_ADDR
955x86_64_skip_prologue (CORE_ADDR start_pc)
53e95fcf 956{
c4f35dd8
MK
957 struct x86_64_frame_cache cache;
958 CORE_ADDR pc;
959
960 pc = x86_64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache);
961 if (cache.frameless_p)
962 return start_pc;
963
964 return pc;
53e95fcf 965}
c4f35dd8 966\f
53e95fcf 967
c4f35dd8
MK
968/* Normal frames. */
969
970static struct x86_64_frame_cache *
971x86_64_frame_cache (struct frame_info *next_frame, void **this_cache)
6d686a84 972{
c4f35dd8
MK
973 struct x86_64_frame_cache *cache;
974 char buf[8];
6d686a84 975 int i;
6d686a84 976
c4f35dd8
MK
977 if (*this_cache)
978 return *this_cache;
6d686a84 979
c4f35dd8
MK
980 cache = x86_64_alloc_frame_cache ();
981 *this_cache = cache;
982
983 frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf);
984 cache->base = extract_unsigned_integer (buf, 8);
985 if (cache->base == 0)
986 return cache;
987
988 /* For normal frames, %rip is stored at 8(%rbp). */
989 cache->saved_regs[X86_64_RIP_REGNUM] = 8;
990
991 cache->pc = frame_func_unwind (next_frame);
992 if (cache->pc != 0)
993 x86_64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
994
995 if (cache->frameless_p)
996 {
997 /* We didn't find a valid frame, which means that CACHE->base
998 currently holds the frame pointer for our calling frame. If
999 we're at the start of a function, or somewhere half-way its
1000 prologue, the function's frame probably hasn't been fully
1001 setup yet. Try to reconstruct the base address for the stack
1002 frame by looking at the stack pointer. For truly "frameless"
1003 functions this might work too. */
1004
1005 frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf);
1006 cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
1007 }
1008
1009 /* Now that we have the base address for the stack frame we can
1010 calculate the value of %rsp in the calling frame. */
1011 cache->saved_sp = cache->base + 16;
1012
1013 /* Adjust all the saved registers such that they contain addresses
1014 instead of offsets. */
1015 for (i = 0; i < X86_64_NUM_SAVED_REGS; i++)
1016 if (cache->saved_regs[i] != -1)
1017 cache->saved_regs[i] += cache->base;
1018
1019 return cache;
6d686a84
ML
1020}
1021
c4f35dd8
MK
1022static void
1023x86_64_frame_this_id (struct frame_info *next_frame, void **this_cache,
1024 struct frame_id *this_id)
1025{
1026 struct x86_64_frame_cache *cache =
1027 x86_64_frame_cache (next_frame, this_cache);
1028
1029 /* This marks the outermost frame. */
1030 if (cache->base == 0)
1031 return;
1032
1033 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
1034}
e76e1718 1035
c4f35dd8
MK
1036static void
1037x86_64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1038 int regnum, int *optimizedp,
1039 enum lval_type *lvalp, CORE_ADDR *addrp,
1040 int *realnump, void *valuep)
53e95fcf 1041{
c4f35dd8
MK
1042 struct x86_64_frame_cache *cache =
1043 x86_64_frame_cache (next_frame, this_cache);
e76e1718 1044
c4f35dd8 1045 gdb_assert (regnum >= 0);
b1ab997b 1046
c4f35dd8
MK
1047 if (regnum == SP_REGNUM && cache->saved_sp)
1048 {
1049 *optimizedp = 0;
1050 *lvalp = not_lval;
1051 *addrp = 0;
1052 *realnump = -1;
1053 if (valuep)
1054 {
1055 /* Store the value. */
1056 store_unsigned_integer (valuep, 8, cache->saved_sp);
1057 }
1058 return;
1059 }
e76e1718 1060
c4f35dd8
MK
1061 if (regnum < X86_64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1062 {
1063 *optimizedp = 0;
1064 *lvalp = lval_memory;
1065 *addrp = cache->saved_regs[regnum];
1066 *realnump = -1;
1067 if (valuep)
1068 {
1069 /* Read the value in from memory. */
1070 read_memory (*addrp, valuep,
1071 register_size (current_gdbarch, regnum));
1072 }
1073 return;
1074 }
e76e1718 1075
c4f35dd8
MK
1076 frame_register_unwind (next_frame, regnum,
1077 optimizedp, lvalp, addrp, realnump, valuep);
1078}
e76e1718 1079
c4f35dd8
MK
1080static const struct frame_unwind x86_64_frame_unwind =
1081{
1082 NORMAL_FRAME,
1083 x86_64_frame_this_id,
1084 x86_64_frame_prev_register
1085};
e76e1718 1086
c4f35dd8 1087static const struct frame_unwind *
336d1bba 1088x86_64_frame_sniffer (struct frame_info *next_frame)
c4f35dd8
MK
1089{
1090 return &x86_64_frame_unwind;
1091}
1092\f
e76e1718 1093
c4f35dd8
MK
1094/* Signal trampolines. */
1095
1096/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
1097 64-bit variants. This would require using identical frame caches
1098 on both platforms. */
1099
1100static struct x86_64_frame_cache *
1101x86_64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1102{
1103 struct x86_64_frame_cache *cache;
1104 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1105 CORE_ADDR addr;
1106 char buf[8];
2b5e0749 1107 int i;
c4f35dd8
MK
1108
1109 if (*this_cache)
1110 return *this_cache;
1111
1112 cache = x86_64_alloc_frame_cache ();
1113
1114 frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf);
1115 cache->base = extract_unsigned_integer (buf, 8) - 8;
1116
1117 addr = tdep->sigcontext_addr (next_frame);
2b5e0749
MK
1118 gdb_assert (tdep->sc_reg_offset);
1119 gdb_assert (tdep->sc_num_regs <= X86_64_NUM_SAVED_REGS);
1120 for (i = 0; i < tdep->sc_num_regs; i++)
1121 if (tdep->sc_reg_offset[i] != -1)
1122 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
c4f35dd8
MK
1123
1124 *this_cache = cache;
1125 return cache;
53e95fcf
JS
1126}
1127
c4f35dd8
MK
1128static void
1129x86_64_sigtramp_frame_this_id (struct frame_info *next_frame,
1130 void **this_cache, struct frame_id *this_id)
1131{
1132 struct x86_64_frame_cache *cache =
1133 x86_64_sigtramp_frame_cache (next_frame, this_cache);
1134
1135 (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
1136}
1137
1138static void
1139x86_64_sigtramp_frame_prev_register (struct frame_info *next_frame,
1140 void **this_cache,
1141 int regnum, int *optimizedp,
1142 enum lval_type *lvalp, CORE_ADDR *addrp,
1143 int *realnump, void *valuep)
1144{
1145 /* Make sure we've initialized the cache. */
1146 x86_64_sigtramp_frame_cache (next_frame, this_cache);
1147
1148 x86_64_frame_prev_register (next_frame, this_cache, regnum,
1149 optimizedp, lvalp, addrp, realnump, valuep);
1150}
1151
1152static const struct frame_unwind x86_64_sigtramp_frame_unwind =
1153{
1154 SIGTRAMP_FRAME,
1155 x86_64_sigtramp_frame_this_id,
1156 x86_64_sigtramp_frame_prev_register
1157};
1158
1159static const struct frame_unwind *
336d1bba 1160x86_64_sigtramp_frame_sniffer (struct frame_info *next_frame)
c4f35dd8 1161{
336d1bba 1162 CORE_ADDR pc = frame_pc_unwind (next_frame);
c4f35dd8
MK
1163 char *name;
1164
1165 find_pc_partial_function (pc, &name, NULL, NULL);
1166 if (PC_IN_SIGTRAMP (pc, name))
1c3545ae
MK
1167 {
1168 gdb_assert (gdbarch_tdep (current_gdbarch)->sigcontext_addr);
1169
1170 return &x86_64_sigtramp_frame_unwind;
1171 }
c4f35dd8
MK
1172
1173 return NULL;
1174}
1175\f
1176
1177static CORE_ADDR
1178x86_64_frame_base_address (struct frame_info *next_frame, void **this_cache)
1179{
1180 struct x86_64_frame_cache *cache =
1181 x86_64_frame_cache (next_frame, this_cache);
1182
1183 return cache->base;
1184}
1185
1186static const struct frame_base x86_64_frame_base =
1187{
1188 &x86_64_frame_unwind,
1189 x86_64_frame_base_address,
1190 x86_64_frame_base_address,
1191 x86_64_frame_base_address
1192};
1193
166f4c7b 1194static struct frame_id
c4f35dd8 1195x86_64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
166f4c7b 1196{
c4f35dd8
MK
1197 char buf[8];
1198 CORE_ADDR fp;
1199
1200 frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf);
1201 fp = extract_unsigned_integer (buf, 8);
1202
1203 return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
166f4c7b
ML
1204}
1205
2213a65d 1206void
0c1a73d6 1207x86_64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
53e95fcf 1208{
0c1a73d6 1209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
53e95fcf 1210
b83b026c 1211 /* The x86-64 has 16 SSE registers. */
0c1a73d6 1212 tdep->num_xmm_regs = 16;
53e95fcf 1213
0c1a73d6 1214 /* This is what all the fuss is about. */
53e95fcf
JS
1215 set_gdbarch_long_bit (gdbarch, 64);
1216 set_gdbarch_long_long_bit (gdbarch, 64);
1217 set_gdbarch_ptr_bit (gdbarch, 64);
1218
b83b026c
MK
1219 /* In contrast to the i386, on the x86-64 a `long double' actually
1220 takes up 128 bits, even though it's still based on the i387
1221 extended floating-point format which has only 80 significant bits. */
1222 set_gdbarch_long_double_bit (gdbarch, 128);
1223
53e95fcf 1224 set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS);
c4f35dd8
MK
1225 set_gdbarch_register_name (gdbarch, x86_64_register_name);
1226 set_gdbarch_register_type (gdbarch, x86_64_register_type);
b83b026c
MK
1227
1228 /* Register numbers of various important registers. */
c4f35dd8
MK
1229 set_gdbarch_sp_regnum (gdbarch, X86_64_RSP_REGNUM); /* %rsp */
1230 set_gdbarch_pc_regnum (gdbarch, X86_64_RIP_REGNUM); /* %rip */
1231 set_gdbarch_ps_regnum (gdbarch, X86_64_EFLAGS_REGNUM); /* %eflags */
1232 set_gdbarch_fp0_regnum (gdbarch, X86_64_ST0_REGNUM); /* %st(0) */
b83b026c
MK
1233
1234 /* The "default" register numbering scheme for the x86-64 is
c4f35dd8
MK
1235 referred to as the "DWARF Register Number Mapping" in the System
1236 V psABI. The preferred debugging format for all known x86-64
1237 targets is actually DWARF2, and GCC doesn't seem to support DWARF
1238 (that is DWARF-1), but we provide the same mapping just in case.
1239 This mapping is also used for stabs, which GCC does support. */
1240 set_gdbarch_stab_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
1241 set_gdbarch_dwarf_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
1242 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
de220d0f 1243
c4f35dd8
MK
1244 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
1245 be in use on any of the supported x86-64 targets. */
53e95fcf 1246
c4f35dd8
MK
1247 /* Call dummy code. */
1248 set_gdbarch_push_dummy_call (gdbarch, x86_64_push_dummy_call);
53e95fcf 1249
d532c08f
MK
1250 set_gdbarch_convert_register_p (gdbarch, x86_64_convert_register_p);
1251 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
1252 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
1253
48037ead 1254 set_gdbarch_extract_return_value (gdbarch, x86_64_extract_return_value);
48037ead 1255 set_gdbarch_store_return_value (gdbarch, x86_64_store_return_value);
b83b026c
MK
1256 /* Override, since this is handled by x86_64_extract_return_value. */
1257 set_gdbarch_extract_struct_value_address (gdbarch, NULL);
1258 set_gdbarch_use_struct_convention (gdbarch, x86_64_use_struct_convention);
53e95fcf 1259
b83b026c 1260 set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue);
53e95fcf 1261
c4f35dd8 1262 /* Avoid wiring in the MMX registers for now. */
2213a65d
MK
1263 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1264
c4f35dd8 1265 set_gdbarch_unwind_dummy_id (gdbarch, x86_64_unwind_dummy_id);
53e95fcf 1266
b83b026c
MK
1267 /* FIXME: kettenis/20021026: This is ELF-specific. Fine for now,
1268 since all supported x86-64 targets are ELF, but that might change
1269 in the future. */
8a8ab2b9 1270 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
c4f35dd8 1271
336d1bba
AC
1272 frame_unwind_append_sniffer (gdbarch, x86_64_sigtramp_frame_sniffer);
1273 frame_unwind_append_sniffer (gdbarch, x86_64_frame_sniffer);
c4f35dd8
MK
1274 frame_base_set_default (gdbarch, &x86_64_frame_base);
1275}
1276\f
1277
1278#define I387_FISEG_REGNUM FISEG_REGNUM
1279#define I387_FOSEG_REGNUM FOSEG_REGNUM
1280
1281/* The 64-bit FXSAVE format differs from the 32-bit format in the
1282 sense that the instruction pointer and data pointer are simply
1283 64-bit offsets into the code segment and the data segment instead
1284 of a selector offset pair. The functions below store the upper 32
1285 bits of these pointers (instead of just the 16-bits of the segment
1286 selector). */
1287
1288/* Fill GDB's register array with the floating-point and SSE register
1289 values in *FXSAVE. This function masks off any of the reserved
1290 bits in *FXSAVE. */
1291
1292void
1293x86_64_supply_fxsave (char *fxsave)
1294{
1295 i387_supply_fxsave (fxsave);
1296
1297 if (fxsave)
1298 {
1299 supply_register (I387_FISEG_REGNUM, fxsave + 12);
1300 supply_register (I387_FOSEG_REGNUM, fxsave + 20);
1301 }
0c1a73d6
MK
1302}
1303
c4f35dd8
MK
1304/* Fill register REGNUM (if it is a floating-point or SSE register) in
1305 *FXSAVE with the value in GDB's register array. If REGNUM is -1, do
1306 this for all registers. This function doesn't touch any of the
1307 reserved bits in *FXSAVE. */
1308
53e95fcf 1309void
c4f35dd8 1310x86_64_fill_fxsave (char *fxsave, int regnum)
53e95fcf 1311{
c4f35dd8 1312 i387_fill_fxsave (fxsave, regnum);
53e95fcf 1313
c4f35dd8 1314 if (regnum == -1 || regnum == I387_FISEG_REGNUM)
088ce440 1315 regcache_collect (I387_FISEG_REGNUM, fxsave + 12);
c4f35dd8 1316 if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
088ce440 1317 regcache_collect (I387_FOSEG_REGNUM, fxsave + 20);
53e95fcf 1318}
This page took 0.596097 seconds and 4 git commands to generate.