Commit | Line | Data |
---|---|---|
ef15dade ST |
1 | // icf.cc -- Identical Code Folding. |
2 | // | |
b3adc24a | 3 | // Copyright (C) 2009-2020 Free Software Foundation, Inc. |
ef15dade ST |
4 | // Written by Sriraman Tallam <tmsriram@google.com>. |
5 | ||
6 | // This file is part of gold. | |
7 | ||
8 | // This program is free software; you can redistribute it and/or modify | |
9 | // it under the terms of the GNU General Public License as published by | |
10 | // the Free Software Foundation; either version 3 of the License, or | |
11 | // (at your option) any later version. | |
12 | ||
13 | // This program is distributed in the hope that it will be useful, | |
14 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | // GNU General Public License for more details. | |
17 | ||
18 | // You should have received a copy of the GNU General Public License | |
19 | // along with this program; if not, write to the Free Software | |
20 | // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | |
21 | // MA 02110-1301, USA. | |
22 | ||
23 | // Identical Code Folding Algorithm | |
24 | // ---------------------------------- | |
25 | // Detecting identical functions is done here and the basic algorithm | |
55a2bb35 | 26 | // is as follows. A checksum is computed on each foldable section using |
ef15dade ST |
27 | // its contents and relocations. If the symbol name corresponding to |
28 | // a relocation is known it is used to compute the checksum. If the | |
29 | // symbol name is not known the stringified name of the object and the | |
30 | // section number pointed to by the relocation is used. The checksums | |
31 | // are stored as keys in a hash map and a section is identical to some | |
32 | // other section if its checksum is already present in the hash map. | |
33 | // Checksum collisions are handled by using a multimap and explicitly | |
34 | // checking the contents when two sections have the same checksum. | |
35 | // | |
36 | // However, two functions A and B with identical text but with | |
55a2bb35 ST |
37 | // relocations pointing to different foldable sections can be identical if |
38 | // the corresponding foldable sections to which their relocations point to | |
ef15dade ST |
39 | // turn out to be identical. Hence, this checksumming process must be |
40 | // done repeatedly until convergence is obtained. Here is an example for | |
41 | // the following case : | |
42 | // | |
43 | // int funcA () int funcB () | |
44 | // { { | |
45 | // return foo(); return goo(); | |
46 | // } } | |
47 | // | |
48 | // The functions funcA and funcB are identical if functions foo() and | |
49 | // goo() are identical. | |
50 | // | |
51 | // Hence, as described above, we repeatedly do the checksumming, | |
52 | // assigning identical functions to the same group, until convergence is | |
53 | // obtained. Now, we have two different ways to do this depending on how | |
54 | // we initialize. | |
55 | // | |
56 | // Algorithm I : | |
57 | // ----------- | |
58 | // We can start with marking all functions as different and repeatedly do | |
59 | // the checksumming. This has the advantage that we do not need to wait | |
60 | // for convergence. We can stop at any point and correctness will be | |
61 | // guaranteed although not all cases would have been found. However, this | |
62 | // has a problem that some cases can never be found even if it is run until | |
63 | // convergence. Here is an example with mutually recursive functions : | |
64 | // | |
65 | // int funcA (int a) int funcB (int a) | |
66 | // { { | |
67 | // if (a == 1) if (a == 1) | |
68 | // return 1; return 1; | |
69 | // return 1 + funcB(a - 1); return 1 + funcA(a - 1); | |
70 | // } } | |
71 | // | |
72 | // In this example funcA and funcB are identical and one of them could be | |
73 | // folded into the other. However, if we start with assuming that funcA | |
74 | // and funcB are not identical, the algorithm, even after it is run to | |
75 | // convergence, cannot detect that they are identical. It should be noted | |
76 | // that even if the functions were self-recursive, Algorithm I cannot catch | |
77 | // that they are identical, at least as is. | |
78 | // | |
79 | // Algorithm II : | |
80 | // ------------ | |
81 | // Here we start with marking all functions as identical and then repeat | |
82 | // the checksumming until convergence. This can detect the above case | |
83 | // mentioned above. It can detect all cases that Algorithm I can and more. | |
84 | // However, the caveat is that it has to be run to convergence. It cannot | |
85 | // be stopped arbitrarily like Algorithm I as correctness cannot be | |
86 | // guaranteed. Algorithm II is not implemented. | |
87 | // | |
88 | // Algorithm I is used because experiments show that about three | |
89 | // iterations are more than enough to achieve convergence. Algorithm I can | |
90 | // handle recursive calls if it is changed to use a special common symbol | |
91 | // for recursive relocs. This seems to be the most common case that | |
92 | // Algorithm I could not catch as is. Mutually recursive calls are not | |
93 | // frequent and Algorithm I wins because of its ability to be stopped | |
94 | // arbitrarily. | |
95 | // | |
96 | // Caveat with using function pointers : | |
97 | // ------------------------------------ | |
98 | // | |
99 | // Programs using function pointer comparisons/checks should use function | |
100 | // folding with caution as the result of such comparisons could be different | |
101 | // when folding takes place. This could lead to unexpected run-time | |
102 | // behaviour. | |
103 | // | |
21bb3914 ST |
104 | // Safe Folding : |
105 | // ------------ | |
106 | // | |
107 | // ICF in safe mode folds only ctors and dtors if their function pointers can | |
108 | // never be taken. Also, for X86-64, safe folding uses the relocation | |
109 | // type to determine if a function's pointer is taken or not and only folds | |
110 | // functions whose pointers are definitely not taken. | |
111 | // | |
112 | // Caveat with safe folding : | |
113 | // ------------------------ | |
114 | // | |
115 | // This applies only to x86_64. | |
116 | // | |
117 | // Position independent executables are created from PIC objects (compiled | |
118 | // with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the | |
119 | // relocation types for function pointer taken and a call are the same. | |
120 | // Now, it is not always possible to tell if an object used in the link of | |
121 | // a pie executable is a PIC object or a PIE object. Hence, for pie | |
122 | // executables, using relocation types to disambiguate function pointers is | |
123 | // currently disabled. | |
124 | // | |
125 | // Further, it is not correct to use safe folding to build non-pie | |
126 | // executables using PIC/PIE objects. PIC/PIE objects have different | |
127 | // relocation types for function pointers than non-PIC objects, and the | |
128 | // current implementation of safe folding does not handle those relocation | |
129 | // types. Hence, if used, functions whose pointers are taken could still be | |
130 | // folded causing unpredictable run-time behaviour if the pointers were used | |
131 | // in comparisons. | |
132 | // | |
e173ea00 JO |
133 | // Notes regarding C++ exception handling : |
134 | // -------------------------------------- | |
135 | // | |
136 | // It is possible for two sections to have identical text, identical | |
137 | // relocations, but different exception handling metadata (unwind | |
138 | // information in the .eh_frame section, and/or handler information in | |
139 | // a .gcc_except_table section). Thus, if a foldable section is | |
140 | // referenced from a .eh_frame FDE, we must include in its checksum | |
141 | // the contents of that FDE as well as of the CIE that the FDE refers | |
142 | // to. The CIE and FDE in turn probably contain relocations to the | |
143 | // personality routine and LSDA, which are handled like any other | |
144 | // relocation for ICF purposes. This logic is helped by the fact that | |
145 | // gcc with -ffunction-sections puts each function's LSDA in its own | |
146 | // .gcc_except_table.<functionname> section. Given sections for two | |
147 | // functions with nontrivial exception handling logic, we will | |
148 | // determine on the first iteration that their .gcc_except_table | |
149 | // sections are identical and can be folded, and on the second | |
150 | // iteration that their .text and .eh_frame contents (including the | |
151 | // now-merged .gcc_except_table relocations for the LSDA) are | |
152 | // identical and can be folded. | |
21bb3914 | 153 | // |
ef15dade | 154 | // |
55a2bb35 | 155 | // How to run : --icf=[safe|all|none] |
ef15dade ST |
156 | // Optional parameters : --icf-iterations <num> --print-icf-sections |
157 | // | |
158 | // Performance : Less than 20 % link-time overhead on industry strength | |
159 | // applications. Up to 6 % text size reductions. | |
160 | ||
161 | #include "gold.h" | |
162 | #include "object.h" | |
163 | #include "gc.h" | |
164 | #include "icf.h" | |
165 | #include "symtab.h" | |
166 | #include "libiberty.h" | |
032ce4e9 | 167 | #include "demangle.h" |
41cbeecc ST |
168 | #include "elfcpp.h" |
169 | #include "int_encoding.h" | |
ef15dade | 170 | |
e173ea00 JO |
171 | #include <limits> |
172 | ||
ef15dade ST |
173 | namespace gold |
174 | { | |
175 | ||
176 | // This function determines if a section or a group of identical | |
177 | // sections has unique contents. Such unique sections or groups can be | |
178 | // declared final and need not be processed any further. | |
179 | // Parameters : | |
180 | // ID_SECTION : Vector mapping a section index to a Section_id pair. | |
181 | // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical | |
182 | // sections is already known to be unique. | |
183 | // SECTION_CONTENTS : Contains the section's text and relocs to sections | |
184 | // that cannot be folded. SECTION_CONTENTS are NULL | |
185 | // implies that this function is being called for the | |
186 | // first time before the first iteration of icf. | |
187 | ||
188 | static void | |
189 | preprocess_for_unique_sections(const std::vector<Section_id>& id_section, | |
190 | std::vector<bool>* is_secn_or_group_unique, | |
191 | std::vector<std::string>* section_contents) | |
192 | { | |
193 | Unordered_map<uint32_t, unsigned int> uniq_map; | |
194 | std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool> | |
195 | uniq_map_insert; | |
196 | ||
197 | for (unsigned int i = 0; i < id_section.size(); i++) | |
198 | { | |
199 | if ((*is_secn_or_group_unique)[i]) | |
200 | continue; | |
201 | ||
202 | uint32_t cksum; | |
203 | Section_id secn = id_section[i]; | |
204 | section_size_type plen; | |
205 | if (section_contents == NULL) | |
206 | { | |
5f9bcf58 CC |
207 | // Lock the object so we can read from it. This is only called |
208 | // single-threaded from queue_middle_tasks, so it is OK to lock. | |
209 | // Unfortunately we have no way to pass in a Task token. | |
210 | const Task* dummy_task = reinterpret_cast<const Task*>(-1); | |
211 | Task_lock_obj<Object> tl(dummy_task, secn.first); | |
ef15dade ST |
212 | const unsigned char* contents; |
213 | contents = secn.first->section_contents(secn.second, | |
214 | &plen, | |
215 | false); | |
216 | cksum = xcrc32(contents, plen, 0xffffffff); | |
217 | } | |
218 | else | |
219 | { | |
220 | const unsigned char* contents_array = reinterpret_cast | |
221 | <const unsigned char*>((*section_contents)[i].c_str()); | |
222 | cksum = xcrc32(contents_array, (*section_contents)[i].length(), | |
223 | 0xffffffff); | |
224 | } | |
225 | uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i)); | |
226 | if (uniq_map_insert.second) | |
227 | { | |
228 | (*is_secn_or_group_unique)[i] = true; | |
229 | } | |
230 | else | |
231 | { | |
232 | (*is_secn_or_group_unique)[i] = false; | |
233 | (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false; | |
234 | } | |
235 | } | |
236 | } | |
237 | ||
84d543b7 ST |
238 | // For SHF_MERGE sections that use REL relocations, the addend is stored in |
239 | // the text section at the relocation offset. Read the addend value given | |
240 | // the pointer to the addend in the text section and the addend size. | |
241 | // Update the addend value if a valid addend is found. | |
242 | // Parameters: | |
243 | // RELOC_ADDEND_PTR : Pointer to the addend in the text section. | |
244 | // ADDEND_SIZE : The size of the addend. | |
245 | // RELOC_ADDEND_VALUE : Pointer to the addend that is updated. | |
246 | ||
247 | inline void | |
248 | get_rel_addend(const unsigned char* reloc_addend_ptr, | |
249 | const unsigned int addend_size, | |
250 | uint64_t* reloc_addend_value) | |
251 | { | |
252 | switch (addend_size) | |
253 | { | |
254 | case 0: | |
255 | break; | |
256 | case 1: | |
257 | *reloc_addend_value = | |
258 | read_from_pointer<8>(reloc_addend_ptr); | |
259 | break; | |
260 | case 2: | |
261 | *reloc_addend_value = | |
262 | read_from_pointer<16>(reloc_addend_ptr); | |
263 | break; | |
264 | case 4: | |
265 | *reloc_addend_value = | |
266 | read_from_pointer<32>(reloc_addend_ptr); | |
267 | break; | |
268 | case 8: | |
269 | *reloc_addend_value = | |
270 | read_from_pointer<64>(reloc_addend_ptr); | |
271 | break; | |
272 | default: | |
273 | gold_unreachable(); | |
274 | } | |
275 | } | |
276 | ||
ef15dade ST |
277 | // This returns the buffer containing the section's contents, both |
278 | // text and relocs. Relocs are differentiated as those pointing to | |
279 | // sections that could be folded and those that cannot. Only relocs | |
280 | // pointing to sections that could be folded are recomputed on | |
281 | // subsequent invocations of this function. | |
282 | // Parameters : | |
283 | // FIRST_ITERATION : true if it is the first invocation. | |
e173ea00 JO |
284 | // FIXED_CACHE : String that stores the portion of the result that |
285 | // does not change from iteration to iteration; | |
286 | // written if first_iteration is true, read if it's false. | |
ef15dade | 287 | // SECN : Section for which contents are desired. |
e173ea00 JO |
288 | // SELF_SECN : Relocations that target this section will be |
289 | // considered "relocations to self" so that recursive | |
290 | // functions can be folded. Should normally be the | |
291 | // same as `secn` except when processing extra identity | |
292 | // regions. | |
ef15dade ST |
293 | // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs |
294 | // to ICF sections. | |
295 | // KEPT_SECTION_ID : Vector which maps folded sections to kept sections. | |
e173ea00 JO |
296 | // START_OFFSET : Only consider the part of the section at and after |
297 | // this offset. | |
298 | // END_OFFSET : Only consider the part of the section before this | |
299 | // offset. | |
ef15dade ST |
300 | |
301 | static std::string | |
302 | get_section_contents(bool first_iteration, | |
e173ea00 | 303 | std::string* fixed_cache, |
ef15dade | 304 | const Section_id& secn, |
e173ea00 | 305 | const Section_id& self_secn, |
ef15dade ST |
306 | unsigned int* num_tracked_relocs, |
307 | Symbol_table* symtab, | |
308 | const std::vector<unsigned int>& kept_section_id, | |
e173ea00 JO |
309 | section_offset_type start_offset = 0, |
310 | section_offset_type end_offset = | |
311 | std::numeric_limits<section_offset_type>::max()) | |
ef15dade ST |
312 | { |
313 | section_size_type plen; | |
314 | const unsigned char* contents = NULL; | |
ef15dade | 315 | if (first_iteration) |
880473a6 | 316 | contents = secn.first->section_contents(secn.second, &plen, false); |
ef15dade ST |
317 | |
318 | // The buffer to hold all the contents including relocs. A checksum | |
319 | // is then computed on this buffer. | |
320 | std::string buffer; | |
321 | std::string icf_reloc_buffer; | |
322 | ||
b487ad64 ST |
323 | Icf::Reloc_info_list& reloc_info_list = |
324 | symtab->icf()->reloc_info_list(); | |
ef15dade | 325 | |
b487ad64 ST |
326 | Icf::Reloc_info_list::iterator it_reloc_info_list = |
327 | reloc_info_list.find(secn); | |
ef15dade ST |
328 | |
329 | buffer.clear(); | |
330 | icf_reloc_buffer.clear(); | |
331 | ||
332 | // Process relocs and put them into the buffer. | |
333 | ||
b487ad64 | 334 | if (it_reloc_info_list != reloc_info_list.end()) |
ef15dade | 335 | { |
c4eb27e1 | 336 | Icf::Sections_reachable_info &v = |
b487ad64 | 337 | (it_reloc_info_list->second).section_info; |
ef38fd8a | 338 | // Stores the information of the symbol pointed to by the reloc. |
c4eb27e1 | 339 | const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info; |
ef38fd8a | 340 | // Stores the addend and the symbol value. |
c4eb27e1 | 341 | Icf::Addend_info &a = (it_reloc_info_list->second).addend_info; |
ef38fd8a | 342 | // Stores the offset of the reloc. |
c4eb27e1 ST |
343 | const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info; |
344 | const Icf::Reloc_addend_size_info &reloc_addend_size_info = | |
41cbeecc | 345 | (it_reloc_info_list->second).reloc_addend_size_info; |
b487ad64 | 346 | Icf::Sections_reachable_info::iterator it_v = v.begin(); |
c4eb27e1 | 347 | Icf::Symbol_info::const_iterator it_s = s.begin(); |
ef15dade | 348 | Icf::Addend_info::iterator it_a = a.begin(); |
c4eb27e1 ST |
349 | Icf::Offset_info::const_iterator it_o = o.begin(); |
350 | Icf::Reloc_addend_size_info::const_iterator it_addend_size = | |
41cbeecc | 351 | reloc_addend_size_info.begin(); |
ef15dade | 352 | |
41cbeecc | 353 | for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size) |
ef15dade | 354 | { |
651d1620 CC |
355 | Symbol* gsym = *it_s; |
356 | bool is_section_symbol = false; | |
357 | ||
e173ea00 JO |
358 | // Ignore relocations outside the region we were told to look at |
359 | if (static_cast<section_offset_type>(*it_o) < start_offset | |
360 | || static_cast<section_offset_type>(*it_o) >= end_offset) | |
361 | continue; | |
362 | ||
651d1620 CC |
363 | // A -1 value in the symbol vector indicates a local section symbol. |
364 | if (gsym == reinterpret_cast<Symbol*>(-1)) | |
365 | { | |
366 | is_section_symbol = true; | |
367 | gsym = NULL; | |
368 | } | |
369 | ||
ad3d8a2f AM |
370 | if (first_iteration |
371 | && it_v->first != NULL) | |
372 | { | |
373 | Symbol_location loc; | |
374 | loc.object = it_v->first; | |
375 | loc.shndx = it_v->second; | |
376 | loc.offset = convert_types<off_t, long long>(it_a->first | |
377 | + it_a->second); | |
378 | // Look through function descriptors | |
379 | parameters->target().function_location(&loc); | |
380 | if (loc.shndx != it_v->second) | |
381 | { | |
382 | it_v->second = loc.shndx; | |
383 | // Modify symvalue/addend to the code entry. | |
384 | it_a->first = loc.offset; | |
385 | it_a->second = 0; | |
386 | } | |
387 | } | |
388 | ||
b487ad64 | 389 | // ADDEND_STR stores the symbol value and addend and offset, |
9b547ce6 | 390 | // each at most 16 hex digits long. it_a points to a pair |
ef15dade ST |
391 | // where first is the symbol value and second is the |
392 | // addend. | |
b487ad64 | 393 | char addend_str[50]; |
bb0bfe4f DK |
394 | |
395 | // It would be nice if we could use format macros in inttypes.h | |
396 | // here but there are not in ISO/IEC C++ 1998. | |
651d1620 | 397 | snprintf(addend_str, sizeof(addend_str), "%llx %llx %llx", |
bb0bfe4f DK |
398 | static_cast<long long>((*it_a).first), |
399 | static_cast<long long>((*it_a).second), | |
e173ea00 | 400 | static_cast<unsigned long long>(*it_o - start_offset)); |
ef38fd8a ST |
401 | |
402 | // If the symbol pointed to by the reloc is not in an ordinary | |
403 | // section or if the symbol type is not FROM_OBJECT, then the | |
404 | // object is NULL. | |
405 | if (it_v->first == NULL) | |
406 | { | |
407 | if (first_iteration) | |
408 | { | |
409 | // If the symbol name is available, use it. | |
651d1620 CC |
410 | if (gsym != NULL) |
411 | buffer.append(gsym->name()); | |
ef38fd8a ST |
412 | // Append the addend. |
413 | buffer.append(addend_str); | |
414 | buffer.append("@"); | |
415 | } | |
416 | continue; | |
417 | } | |
418 | ||
ef15dade ST |
419 | Section_id reloc_secn(it_v->first, it_v->second); |
420 | ||
421 | // If this reloc turns back and points to the same section, | |
422 | // like a recursive call, use a special symbol to mark this. | |
e173ea00 JO |
423 | if (reloc_secn.first == self_secn.first |
424 | && reloc_secn.second == self_secn.second) | |
ef15dade ST |
425 | { |
426 | if (first_iteration) | |
427 | { | |
428 | buffer.append("R"); | |
429 | buffer.append(addend_str); | |
430 | buffer.append("@"); | |
431 | } | |
432 | continue; | |
433 | } | |
434 | Icf::Uniq_secn_id_map& section_id_map = | |
435 | symtab->icf()->section_to_int_map(); | |
436 | Icf::Uniq_secn_id_map::iterator section_id_map_it = | |
437 | section_id_map.find(reloc_secn); | |
651d1620 CC |
438 | bool is_sym_preemptible = (gsym != NULL |
439 | && !gsym->is_from_dynobj() | |
440 | && !gsym->is_undefined() | |
441 | && gsym->is_preemptible()); | |
ce97fa81 ST |
442 | if (!is_sym_preemptible |
443 | && section_id_map_it != section_id_map.end()) | |
ef15dade ST |
444 | { |
445 | // This is a reloc to a section that might be folded. | |
446 | if (num_tracked_relocs) | |
447 | (*num_tracked_relocs)++; | |
448 | ||
449 | char kept_section_str[10]; | |
450 | unsigned int secn_id = section_id_map_it->second; | |
451 | snprintf(kept_section_str, sizeof(kept_section_str), "%u", | |
452 | kept_section_id[secn_id]); | |
453 | if (first_iteration) | |
454 | { | |
455 | buffer.append("ICF_R"); | |
456 | buffer.append(addend_str); | |
457 | } | |
458 | icf_reloc_buffer.append(kept_section_str); | |
459 | // Append the addend. | |
460 | icf_reloc_buffer.append(addend_str); | |
461 | icf_reloc_buffer.append("@"); | |
462 | } | |
463 | else | |
464 | { | |
465 | // This is a reloc to a section that cannot be folded. | |
466 | // Process it only in the first iteration. | |
467 | if (!first_iteration) | |
468 | continue; | |
469 | ||
470 | uint64_t secn_flags = (it_v->first)->section_flags(it_v->second); | |
471 | // This reloc points to a merge section. Hash the | |
472 | // contents of this section. | |
c95e9f27 | 473 | if ((secn_flags & elfcpp::SHF_MERGE) != 0 |
b3ce541e | 474 | && parameters->target().can_icf_inline_merge_sections()) |
ef15dade ST |
475 | { |
476 | uint64_t entsize = | |
477 | (it_v->first)->section_entsize(it_v->second); | |
ce97fa81 | 478 | long long offset = it_a->first; |
651d1620 CC |
479 | |
480 | // Handle SHT_RELA and SHT_REL addends. Only one of these | |
481 | // addends exists. When pointing to a merge section, the | |
482 | // addend only matters if it's relative to a section | |
483 | // symbol. In order to unambiguously identify the target | |
484 | // of the relocation, the compiler (and assembler) must use | |
485 | // a local non-section symbol unless Symbol+Addend does in | |
486 | // fact point directly to the target. (In other words, | |
487 | // a bias for a pc-relative reference or a non-zero based | |
488 | // access forces the use of a local symbol, and the addend | |
489 | // is used only to provide that bias.) | |
490 | uint64_t reloc_addend_value = 0; | |
491 | if (is_section_symbol) | |
492 | { | |
493 | // Get the SHT_RELA addend. For RELA relocations, | |
494 | // we have the addend from the relocation. | |
495 | reloc_addend_value = it_a->second; | |
496 | ||
497 | // Handle SHT_REL addends. | |
498 | // For REL relocations, we need to fetch the addend | |
499 | // from the section contents. | |
500 | const unsigned char* reloc_addend_ptr = | |
501 | contents + static_cast<unsigned long long>(*it_o); | |
502 | ||
503 | // Update the addend value with the SHT_REL addend if | |
504 | // available. | |
505 | get_rel_addend(reloc_addend_ptr, *it_addend_size, | |
506 | &reloc_addend_value); | |
507 | ||
508 | // Ignore the addend when it is a negative value. | |
509 | // See the comments in Merged_symbol_value::value | |
510 | // in object.h. | |
511 | if (reloc_addend_value < 0xffffff00) | |
512 | offset = offset + reloc_addend_value; | |
513 | } | |
41cbeecc | 514 | |
ef15dade | 515 | section_size_type secn_len; |
84d543b7 | 516 | |
ef15dade ST |
517 | const unsigned char* str_contents = |
518 | (it_v->first)->section_contents(it_v->second, | |
519 | &secn_len, | |
520 | false) + offset; | |
84d543b7 ST |
521 | gold_assert (offset < (long long) secn_len); |
522 | ||
ef15dade ST |
523 | if ((secn_flags & elfcpp::SHF_STRINGS) != 0) |
524 | { | |
525 | // String merge section. | |
526 | const char* str_char = | |
527 | reinterpret_cast<const char*>(str_contents); | |
528 | switch(entsize) | |
529 | { | |
530 | case 1: | |
531 | { | |
532 | buffer.append(str_char); | |
533 | break; | |
534 | } | |
535 | case 2: | |
536 | { | |
537 | const uint16_t* ptr_16 = | |
538 | reinterpret_cast<const uint16_t*>(str_char); | |
539 | unsigned int strlen_16 = 0; | |
540 | // Find the NULL character. | |
541 | while(*(ptr_16 + strlen_16) != 0) | |
542 | strlen_16++; | |
543 | buffer.append(str_char, strlen_16 * 2); | |
544 | } | |
545 | break; | |
546 | case 4: | |
547 | { | |
548 | const uint32_t* ptr_32 = | |
549 | reinterpret_cast<const uint32_t*>(str_char); | |
550 | unsigned int strlen_32 = 0; | |
551 | // Find the NULL character. | |
552 | while(*(ptr_32 + strlen_32) != 0) | |
553 | strlen_32++; | |
554 | buffer.append(str_char, strlen_32 * 4); | |
555 | } | |
556 | break; | |
557 | default: | |
558 | gold_unreachable(); | |
559 | } | |
560 | } | |
561 | else | |
562 | { | |
84d543b7 ST |
563 | // Use the entsize to determine the length to copy. |
564 | uint64_t bufsize = entsize; | |
565 | // If entsize is too big, copy all the remaining bytes. | |
566 | if ((offset + entsize) > secn_len) | |
567 | bufsize = secn_len - offset; | |
568 | buffer.append(reinterpret_cast<const | |
ef15dade | 569 | char*>(str_contents), |
84d543b7 | 570 | bufsize); |
ef15dade | 571 | } |
d62d0f5f | 572 | buffer.append("@"); |
ef15dade | 573 | } |
651d1620 | 574 | else if (gsym != NULL) |
ef15dade ST |
575 | { |
576 | // If symbol name is available use that. | |
651d1620 | 577 | buffer.append(gsym->name()); |
ef15dade ST |
578 | // Append the addend. |
579 | buffer.append(addend_str); | |
580 | buffer.append("@"); | |
581 | } | |
582 | else | |
583 | { | |
584 | // Symbol name is not available, like for a local symbol, | |
585 | // use object and section id. | |
586 | buffer.append(it_v->first->name()); | |
587 | char secn_id[10]; | |
588 | snprintf(secn_id, sizeof(secn_id), "%u",it_v->second); | |
589 | buffer.append(secn_id); | |
590 | // Append the addend. | |
591 | buffer.append(addend_str); | |
592 | buffer.append("@"); | |
593 | } | |
594 | } | |
595 | } | |
596 | } | |
597 | ||
598 | if (first_iteration) | |
599 | { | |
600 | buffer.append("Contents = "); | |
e173ea00 JO |
601 | |
602 | const unsigned char* slice_end = | |
603 | contents + std::min<section_offset_type>(plen, end_offset); | |
604 | ||
605 | if (contents + start_offset < slice_end) | |
606 | { | |
607 | buffer.append(reinterpret_cast<const char*>(contents + start_offset), | |
608 | slice_end - (contents + start_offset)); | |
609 | } | |
610 | } | |
611 | ||
612 | // Add any extra identity regions. | |
613 | std::pair<Icf::Extra_identity_list::const_iterator, | |
614 | Icf::Extra_identity_list::const_iterator> | |
615 | extra_range = symtab->icf()->extra_identity_list().equal_range(secn); | |
616 | for (Icf::Extra_identity_list::const_iterator it_ext = extra_range.first; | |
617 | it_ext != extra_range.second; ++it_ext) | |
618 | { | |
619 | std::string external_fixed; | |
620 | std::string external_all = | |
621 | get_section_contents(first_iteration, &external_fixed, | |
622 | it_ext->second.section, self_secn, | |
623 | num_tracked_relocs, symtab, | |
624 | kept_section_id, it_ext->second.offset, | |
625 | it_ext->second.offset + it_ext->second.length); | |
626 | buffer.append(external_fixed); | |
627 | icf_reloc_buffer.append(external_all, external_fixed.length(), | |
628 | std::string::npos); | |
629 | } | |
630 | ||
631 | if (first_iteration) | |
632 | { | |
5c3024d2 | 633 | // Store the section contents that don't change to avoid recomputing |
ef15dade | 634 | // during the next call to this function. |
e173ea00 | 635 | *fixed_cache = buffer; |
ef15dade ST |
636 | } |
637 | else | |
638 | { | |
639 | gold_assert(buffer.empty()); | |
e173ea00 | 640 | |
ef15dade | 641 | // Reuse the contents computed in the previous iteration. |
e173ea00 | 642 | buffer.append(*fixed_cache); |
ef15dade ST |
643 | } |
644 | ||
645 | buffer.append(icf_reloc_buffer); | |
646 | return buffer; | |
647 | } | |
648 | ||
649 | // This function computes a checksum on each section to detect and form | |
650 | // groups of identical sections. The first iteration does this for all | |
651 | // sections. | |
652 | // Further iterations do this only for the kept sections from each group to | |
653 | // determine if larger groups of identical sections could be formed. The | |
654 | // first section in each group is the kept section for that group. | |
655 | // | |
656 | // CRC32 is the checksumming algorithm and can have collisions. That is, | |
657 | // two sections with different contents can have the same checksum. Hence, | |
658 | // a multimap is used to maintain more than one group of checksum | |
659 | // identical sections. A section is added to a group only after its | |
660 | // contents are explicitly compared with the kept section of the group. | |
661 | // | |
662 | // Parameters : | |
663 | // ITERATION_NUM : Invocation instance of this function. | |
664 | // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs | |
665 | // to ICF sections. | |
666 | // KEPT_SECTION_ID : Vector which maps folded sections to kept sections. | |
667 | // ID_SECTION : Vector mapping a section to an unique integer. | |
668 | // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical | |
9b547ce6 | 669 | // sections is already known to be unique. |
ef15dade ST |
670 | // SECTION_CONTENTS : Store the section's text and relocs to non-ICF |
671 | // sections. | |
672 | ||
673 | static bool | |
674 | match_sections(unsigned int iteration_num, | |
675 | Symbol_table* symtab, | |
676 | std::vector<unsigned int>* num_tracked_relocs, | |
677 | std::vector<unsigned int>* kept_section_id, | |
678 | const std::vector<Section_id>& id_section, | |
ac423761 | 679 | const std::vector<uint64_t>& section_addraligns, |
ef15dade ST |
680 | std::vector<bool>* is_secn_or_group_unique, |
681 | std::vector<std::string>* section_contents) | |
682 | { | |
683 | Unordered_multimap<uint32_t, unsigned int> section_cksum; | |
684 | std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator, | |
685 | Unordered_multimap<uint32_t, unsigned int>::iterator> key_range; | |
686 | bool converged = true; | |
687 | ||
688 | if (iteration_num == 1) | |
689 | preprocess_for_unique_sections(id_section, | |
690 | is_secn_or_group_unique, | |
691 | NULL); | |
692 | else | |
693 | preprocess_for_unique_sections(id_section, | |
694 | is_secn_or_group_unique, | |
695 | section_contents); | |
696 | ||
697 | std::vector<std::string> full_section_contents; | |
698 | ||
699 | for (unsigned int i = 0; i < id_section.size(); i++) | |
700 | { | |
701 | full_section_contents.push_back(""); | |
702 | if ((*is_secn_or_group_unique)[i]) | |
703 | continue; | |
704 | ||
705 | Section_id secn = id_section[i]; | |
e173ea00 JO |
706 | |
707 | // Lock the object so we can read from it. This is only called | |
708 | // single-threaded from queue_middle_tasks, so it is OK to lock. | |
709 | // Unfortunately we have no way to pass in a Task token. | |
710 | const Task* dummy_task = reinterpret_cast<const Task*>(-1); | |
711 | Task_lock_obj<Object> tl(dummy_task, secn.first); | |
712 | ||
ef15dade ST |
713 | std::string this_secn_contents; |
714 | uint32_t cksum; | |
e173ea00 | 715 | std::string* this_secn_cache = &((*section_contents)[i]); |
ef15dade ST |
716 | if (iteration_num == 1) |
717 | { | |
718 | unsigned int num_relocs = 0; | |
e173ea00 JO |
719 | this_secn_contents = get_section_contents(true, this_secn_cache, |
720 | secn, secn, &num_relocs, | |
721 | symtab, (*kept_section_id)); | |
ef15dade ST |
722 | (*num_tracked_relocs)[i] = num_relocs; |
723 | } | |
724 | else | |
725 | { | |
726 | if ((*kept_section_id)[i] != i) | |
727 | { | |
ac423761 | 728 | // This section is already folded into something. |
ef15dade ST |
729 | continue; |
730 | } | |
e173ea00 JO |
731 | this_secn_contents = get_section_contents(false, this_secn_cache, |
732 | secn, secn, NULL, | |
733 | symtab, (*kept_section_id)); | |
ef15dade ST |
734 | } |
735 | ||
736 | const unsigned char* this_secn_contents_array = | |
737 | reinterpret_cast<const unsigned char*>(this_secn_contents.c_str()); | |
738 | cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(), | |
739 | 0xffffffff); | |
740 | size_t count = section_cksum.count(cksum); | |
741 | ||
742 | if (count == 0) | |
743 | { | |
744 | // Start a group with this cksum. | |
745 | section_cksum.insert(std::make_pair(cksum, i)); | |
746 | full_section_contents[i] = this_secn_contents; | |
747 | } | |
748 | else | |
749 | { | |
750 | key_range = section_cksum.equal_range(cksum); | |
751 | Unordered_multimap<uint32_t, unsigned int>::iterator it; | |
752 | // Search all the groups with this cksum for a match. | |
753 | for (it = key_range.first; it != key_range.second; ++it) | |
754 | { | |
755 | unsigned int kept_section = it->second; | |
756 | if (full_section_contents[kept_section].length() | |
757 | != this_secn_contents.length()) | |
758 | continue; | |
759 | if (memcmp(full_section_contents[kept_section].c_str(), | |
760 | this_secn_contents.c_str(), | |
761 | this_secn_contents.length()) != 0) | |
762 | continue; | |
ac423761 GN |
763 | |
764 | // Check section alignment here. | |
765 | // The section with the larger alignment requirement | |
766 | // should be kept. We assume alignment can only be | |
5c3024d2 | 767 | // zero or positive integral powers of two. |
ac423761 GN |
768 | uint64_t align_i = section_addraligns[i]; |
769 | uint64_t align_kept = section_addraligns[kept_section]; | |
770 | if (align_i <= align_kept) | |
771 | { | |
772 | (*kept_section_id)[i] = kept_section; | |
773 | } | |
774 | else | |
775 | { | |
776 | (*kept_section_id)[kept_section] = i; | |
777 | it->second = i; | |
778 | full_section_contents[kept_section].swap( | |
779 | full_section_contents[i]); | |
780 | } | |
781 | ||
ef15dade ST |
782 | converged = false; |
783 | break; | |
784 | } | |
785 | if (it == key_range.second) | |
786 | { | |
787 | // Create a new group for this cksum. | |
788 | section_cksum.insert(std::make_pair(cksum, i)); | |
789 | full_section_contents[i] = this_secn_contents; | |
790 | } | |
791 | } | |
792 | // If there are no relocs to foldable sections do not process | |
793 | // this section any further. | |
794 | if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0) | |
795 | (*is_secn_or_group_unique)[i] = true; | |
796 | } | |
797 | ||
ac423761 GN |
798 | // If a section was folded into another section that was later folded |
799 | // again then the former has to be updated. | |
800 | for (unsigned int i = 0; i < id_section.size(); i++) | |
801 | { | |
802 | // Find the end of the folding chain | |
803 | unsigned int kept = i; | |
804 | while ((*kept_section_id)[kept] != kept) | |
805 | { | |
806 | kept = (*kept_section_id)[kept]; | |
807 | } | |
808 | // Update every element of the chain | |
809 | unsigned int current = i; | |
810 | while ((*kept_section_id)[current] != kept) | |
811 | { | |
812 | unsigned int next = (*kept_section_id)[current]; | |
813 | (*kept_section_id)[current] = kept; | |
814 | current = next; | |
815 | } | |
816 | } | |
817 | ||
ef15dade ST |
818 | return converged; |
819 | } | |
820 | ||
032ce4e9 | 821 | // During safe icf (--icf=safe), only fold functions that are ctors or dtors. |
4e271fff | 822 | // This function returns true if the section name is that of a ctor or a dtor. |
032ce4e9 ST |
823 | |
824 | static bool | |
4e271fff | 825 | is_function_ctor_or_dtor(const std::string& section_name) |
032ce4e9 | 826 | { |
4e271fff ST |
827 | const char* mangled_func_name = strrchr(section_name.c_str(), '.'); |
828 | gold_assert(mangled_func_name != NULL); | |
829 | if ((is_prefix_of("._ZN", mangled_func_name) | |
830 | || is_prefix_of("._ZZ", mangled_func_name)) | |
831 | && (is_gnu_v3_mangled_ctor(mangled_func_name + 1) | |
832 | || is_gnu_v3_mangled_dtor(mangled_func_name + 1))) | |
032ce4e9 ST |
833 | { |
834 | return true; | |
835 | } | |
836 | return false; | |
837 | } | |
ef15dade | 838 | |
e173ea00 JO |
839 | // Iterate through the .eh_frame section that has index |
840 | // `ehframe_shndx` in `object`, adding entries to extra_identity_list_ | |
841 | // that will cause the contents of each FDE and its CIE to be included | |
842 | // in the logical ICF identity of the function that the FDE refers to. | |
843 | ||
844 | bool | |
845 | Icf::add_ehframe_links(Relobj* object, unsigned int ehframe_shndx, | |
846 | Reloc_info& relocs) | |
847 | { | |
848 | section_size_type contents_len; | |
849 | const unsigned char* pcontents = object->section_contents(ehframe_shndx, | |
850 | &contents_len, | |
851 | false); | |
852 | const unsigned char* p = pcontents; | |
853 | const unsigned char* pend = pcontents + contents_len; | |
854 | ||
855 | Sections_reachable_info::iterator it_target = relocs.section_info.begin(); | |
856 | Sections_reachable_info::iterator it_target_end = relocs.section_info.end(); | |
857 | Offset_info::iterator it_offset = relocs.offset_info.begin(); | |
858 | Offset_info::iterator it_offset_end = relocs.offset_info.end(); | |
859 | ||
860 | // Maps section offset to the length of the CIE defined at that offset. | |
861 | typedef Unordered_map<section_offset_type, section_size_type> Cie_map; | |
862 | Cie_map cies; | |
863 | ||
864 | uint32_t (*read_swap_32)(const unsigned char*); | |
865 | if (object->is_big_endian()) | |
866 | read_swap_32 = &elfcpp::Swap<32, true>::readval; | |
867 | else | |
868 | read_swap_32 = &elfcpp::Swap<32, false>::readval; | |
869 | ||
870 | // TODO: The logic for parsing the CIE/FDE framing is copied from | |
871 | // Eh_frame::do_add_ehframe_input_section() and might want to be | |
872 | // factored into a shared helper function. | |
873 | while (p < pend) | |
874 | { | |
875 | if (pend - p < 4) | |
876 | return false; | |
877 | ||
878 | unsigned int len = read_swap_32(p); | |
879 | p += 4; | |
880 | if (len == 0) | |
881 | { | |
882 | // We should only find a zero-length entry at the end of the | |
883 | // section. | |
884 | if (p < pend) | |
885 | return false; | |
886 | break; | |
887 | } | |
888 | // We don't support a 64-bit .eh_frame. | |
889 | if (len == 0xffffffff) | |
890 | return false; | |
891 | if (static_cast<unsigned int>(pend - p) < len) | |
892 | return false; | |
893 | ||
894 | const unsigned char* const pentend = p + len; | |
895 | ||
896 | if (pend - p < 4) | |
897 | return false; | |
898 | ||
899 | unsigned int id = read_swap_32(p); | |
900 | p += 4; | |
901 | ||
902 | if (id == 0) | |
903 | { | |
904 | // CIE. | |
905 | cies.insert(std::make_pair(p - pcontents, len - 4)); | |
906 | } | |
907 | else | |
908 | { | |
909 | // FDE. | |
910 | Cie_map::const_iterator it; | |
911 | it = cies.find((p - pcontents) - (id - 4)); | |
912 | if (it == cies.end()) | |
913 | return false; | |
914 | ||
915 | // Figure out which section this FDE refers into. The word at `p` | |
916 | // is an address, and we expect to see a relocation there. If not, | |
917 | // this FDE isn't ICF-relevant. | |
918 | while (it_offset != it_offset_end | |
919 | && it_target != it_target_end | |
920 | && static_cast<ptrdiff_t>(*it_offset) < (p - pcontents)) | |
921 | { | |
922 | ++it_offset; | |
923 | ++it_target; | |
924 | } | |
925 | if (it_offset != it_offset_end | |
926 | && it_target != it_target_end | |
927 | && static_cast<ptrdiff_t>(*it_offset) == (p - pcontents)) | |
928 | { | |
929 | // Found a reloc. Add this FDE and its CIE as extra identity | |
930 | // info for the section it refers to. | |
931 | Extra_identity_info rec_fde = {Section_id(object, ehframe_shndx), | |
932 | p - pcontents, len - 4}; | |
933 | Extra_identity_info rec_cie = {Section_id(object, ehframe_shndx), | |
934 | it->first, it->second}; | |
935 | extra_identity_list_.insert(std::make_pair(*it_target, rec_fde)); | |
936 | extra_identity_list_.insert(std::make_pair(*it_target, rec_cie)); | |
937 | } | |
938 | } | |
939 | ||
940 | p = pentend; | |
941 | } | |
942 | ||
943 | return true; | |
944 | } | |
945 | ||
ef15dade | 946 | // This is the main ICF function called in gold.cc. This does the |
e173ea00 | 947 | // initialization and calls match_sections repeatedly (thrice by default) |
ef15dade ST |
948 | // which computes the crc checksums and detects identical functions. |
949 | ||
950 | void | |
951 | Icf::find_identical_sections(const Input_objects* input_objects, | |
952 | Symbol_table* symtab) | |
953 | { | |
954 | unsigned int section_num = 0; | |
2ea97941 | 955 | std::vector<unsigned int> num_tracked_relocs; |
ac423761 | 956 | std::vector<uint64_t> section_addraligns; |
ef15dade ST |
957 | std::vector<bool> is_secn_or_group_unique; |
958 | std::vector<std::string> section_contents; | |
21bb3914 | 959 | const Target& target = parameters->target(); |
ef15dade ST |
960 | |
961 | // Decide which sections are possible candidates first. | |
962 | ||
963 | for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); | |
964 | p != input_objects->relobj_end(); | |
965 | ++p) | |
966 | { | |
5f9bcf58 CC |
967 | // Lock the object so we can read from it. This is only called |
968 | // single-threaded from queue_middle_tasks, so it is OK to lock. | |
969 | // Unfortunately we have no way to pass in a Task token. | |
970 | const Task* dummy_task = reinterpret_cast<const Task*>(-1); | |
971 | Task_lock_obj<Object> tl(dummy_task, *p); | |
e173ea00 | 972 | std::vector<unsigned int> eh_frame_ind; |
5f9bcf58 | 973 | |
e173ea00 | 974 | for (unsigned int i = 0; i < (*p)->shnum(); ++i) |
ef15dade | 975 | { |
4e271fff | 976 | const std::string section_name = (*p)->section_name(i); |
55a2bb35 | 977 | if (!is_section_foldable_candidate(section_name)) |
e173ea00 JO |
978 | { |
979 | if (is_prefix_of(".eh_frame", section_name.c_str())) | |
980 | eh_frame_ind.push_back(i); | |
981 | continue; | |
982 | } | |
983 | ||
ef15dade ST |
984 | if (!(*p)->is_section_included(i)) |
985 | continue; | |
986 | if (parameters->options().gc_sections() | |
987 | && symtab->gc()->is_section_garbage(*p, i)) | |
988 | continue; | |
55a2bb35 ST |
989 | // With --icf=safe, check if the mangled function name is a ctor |
990 | // or a dtor. The mangled function name can be obtained from the | |
991 | // section name by stripping the section prefix. | |
032ce4e9 | 992 | if (parameters->options().icf_safe_folding() |
4e271fff | 993 | && !is_function_ctor_or_dtor(section_name) |
21bb3914 ST |
994 | && (!target.can_check_for_function_pointers() |
995 | || section_has_function_pointers(*p, i))) | |
996 | { | |
997 | continue; | |
998 | } | |
ef15dade ST |
999 | this->id_section_.push_back(Section_id(*p, i)); |
1000 | this->section_id_[Section_id(*p, i)] = section_num; | |
1001 | this->kept_section_id_.push_back(section_num); | |
2ea97941 | 1002 | num_tracked_relocs.push_back(0); |
ac423761 | 1003 | section_addraligns.push_back((*p)->section_addralign(i)); |
ef15dade ST |
1004 | is_secn_or_group_unique.push_back(false); |
1005 | section_contents.push_back(""); | |
1006 | section_num++; | |
1007 | } | |
e173ea00 JO |
1008 | |
1009 | for (std::vector<unsigned int>::iterator it_eh_ind = eh_frame_ind.begin(); | |
1010 | it_eh_ind != eh_frame_ind.end(); ++it_eh_ind) | |
1011 | { | |
1012 | // gc_process_relocs() recorded relocations for this | |
1013 | // section even though we can't fold it. We need to | |
1014 | // use those relocations to associate other foldable | |
1015 | // sections with the FDEs and CIEs that are relevant | |
1016 | // to them, so we can avoid merging sections that | |
1017 | // don't have identical exception-handling behavior. | |
1018 | ||
1019 | Section_id sect(*p, *it_eh_ind); | |
1020 | Reloc_info_list::iterator it_rel = this->reloc_info_list().find(sect); | |
1021 | if (it_rel != this->reloc_info_list().end()) | |
1022 | { | |
1023 | if (!add_ehframe_links(*p, *it_eh_ind, it_rel->second)) | |
1024 | { | |
1025 | gold_warning(_("could not parse eh_frame section %s(%s); ICF " | |
1026 | "might not preserve exception handling " | |
1027 | "behavior"), | |
1028 | (*p)->name().c_str(), | |
1029 | (*p)->section_name(*it_eh_ind).c_str()); | |
1030 | } | |
1031 | } | |
1032 | } | |
ef15dade ST |
1033 | } |
1034 | ||
1035 | unsigned int num_iterations = 0; | |
1036 | ||
e173ea00 | 1037 | // Default number of iterations to run ICF is 3. |
ef15dade ST |
1038 | unsigned int max_iterations = (parameters->options().icf_iterations() > 0) |
1039 | ? parameters->options().icf_iterations() | |
e173ea00 | 1040 | : 3; |
ef15dade ST |
1041 | |
1042 | bool converged = false; | |
1043 | ||
1044 | while (!converged && (num_iterations < max_iterations)) | |
1045 | { | |
1046 | num_iterations++; | |
1047 | converged = match_sections(num_iterations, symtab, | |
2ea97941 | 1048 | &num_tracked_relocs, &this->kept_section_id_, |
ac423761 GN |
1049 | this->id_section_, section_addraligns, |
1050 | &is_secn_or_group_unique, §ion_contents); | |
ef15dade ST |
1051 | } |
1052 | ||
1053 | if (parameters->options().print_icf_sections()) | |
1054 | { | |
1055 | if (converged) | |
1056 | gold_info(_("%s: ICF Converged after %u iteration(s)"), | |
1057 | program_name, num_iterations); | |
1058 | else | |
1059 | gold_info(_("%s: ICF stopped after %u iteration(s)"), | |
1060 | program_name, num_iterations); | |
1061 | } | |
1062 | ||
48c187ce ST |
1063 | // Unfold --keep-unique symbols. |
1064 | for (options::String_set::const_iterator p = | |
1065 | parameters->options().keep_unique_begin(); | |
1066 | p != parameters->options().keep_unique_end(); | |
1067 | ++p) | |
1068 | { | |
1069 | const char* name = p->c_str(); | |
1070 | Symbol* sym = symtab->lookup(name); | |
ef5e0cb1 ST |
1071 | if (sym == NULL) |
1072 | { | |
1073 | gold_warning(_("Could not find symbol %s to unfold\n"), name); | |
1074 | } | |
1075 | else if (sym->source() == Symbol::FROM_OBJECT | |
1076 | && !sym->object()->is_dynamic()) | |
48c187ce | 1077 | { |
efc6fa12 | 1078 | Relobj* obj = static_cast<Relobj*>(sym->object()); |
48c187ce ST |
1079 | bool is_ordinary; |
1080 | unsigned int shndx = sym->shndx(&is_ordinary); | |
1081 | if (is_ordinary) | |
1082 | { | |
1083 | this->unfold_section(obj, shndx); | |
1084 | } | |
1085 | } | |
1086 | ||
1087 | } | |
1088 | ||
ef15dade ST |
1089 | this->icf_ready(); |
1090 | } | |
1091 | ||
48c187ce ST |
1092 | // Unfolds the section denoted by OBJ and SHNDX if folded. |
1093 | ||
1094 | void | |
efc6fa12 | 1095 | Icf::unfold_section(Relobj* obj, unsigned int shndx) |
48c187ce ST |
1096 | { |
1097 | Section_id secn(obj, shndx); | |
1098 | Uniq_secn_id_map::iterator it = this->section_id_.find(secn); | |
1099 | if (it == this->section_id_.end()) | |
1100 | return; | |
1101 | unsigned int section_num = it->second; | |
1102 | unsigned int kept_section_id = this->kept_section_id_[section_num]; | |
1103 | if (kept_section_id != section_num) | |
1104 | this->kept_section_id_[section_num] = section_num; | |
1105 | } | |
1106 | ||
ef15dade ST |
1107 | // This function determines if the section corresponding to the |
1108 | // given object and index is folded based on if the kept section | |
1109 | // is different from this section. | |
1110 | ||
1111 | bool | |
efc6fa12 | 1112 | Icf::is_section_folded(Relobj* obj, unsigned int shndx) |
ef15dade ST |
1113 | { |
1114 | Section_id secn(obj, shndx); | |
1115 | Uniq_secn_id_map::iterator it = this->section_id_.find(secn); | |
1116 | if (it == this->section_id_.end()) | |
1117 | return false; | |
1118 | unsigned int section_num = it->second; | |
1119 | unsigned int kept_section_id = this->kept_section_id_[section_num]; | |
1120 | return kept_section_id != section_num; | |
1121 | } | |
1122 | ||
1123 | // This function returns the folded section for the given section. | |
1124 | ||
1125 | Section_id | |
efc6fa12 | 1126 | Icf::get_folded_section(Relobj* dup_obj, unsigned int dup_shndx) |
ef15dade ST |
1127 | { |
1128 | Section_id dup_secn(dup_obj, dup_shndx); | |
1129 | Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn); | |
1130 | gold_assert(it != this->section_id_.end()); | |
1131 | unsigned int section_num = it->second; | |
1132 | unsigned int kept_section_id = this->kept_section_id_[section_num]; | |
1133 | Section_id folded_section = this->id_section_[kept_section_id]; | |
1134 | return folded_section; | |
1135 | } | |
1136 | ||
1137 | } // End of namespace gold. |