[ARC] Don't allow pc-rel relocations for J* instructions.
[deliverable/binutils-gdb.git] / gold / icf.cc
CommitLineData
ef15dade
ST
1// icf.cc -- Identical Code Folding.
2//
6f2750fe 3// Copyright (C) 2009-2016 Free Software Foundation, Inc.
ef15dade
ST
4// Written by Sriraman Tallam <tmsriram@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23// Identical Code Folding Algorithm
24// ----------------------------------
25// Detecting identical functions is done here and the basic algorithm
55a2bb35 26// is as follows. A checksum is computed on each foldable section using
ef15dade
ST
27// its contents and relocations. If the symbol name corresponding to
28// a relocation is known it is used to compute the checksum. If the
29// symbol name is not known the stringified name of the object and the
30// section number pointed to by the relocation is used. The checksums
31// are stored as keys in a hash map and a section is identical to some
32// other section if its checksum is already present in the hash map.
33// Checksum collisions are handled by using a multimap and explicitly
34// checking the contents when two sections have the same checksum.
35//
36// However, two functions A and B with identical text but with
55a2bb35
ST
37// relocations pointing to different foldable sections can be identical if
38// the corresponding foldable sections to which their relocations point to
ef15dade
ST
39// turn out to be identical. Hence, this checksumming process must be
40// done repeatedly until convergence is obtained. Here is an example for
41// the following case :
42//
43// int funcA () int funcB ()
44// { {
45// return foo(); return goo();
46// } }
47//
48// The functions funcA and funcB are identical if functions foo() and
49// goo() are identical.
50//
51// Hence, as described above, we repeatedly do the checksumming,
52// assigning identical functions to the same group, until convergence is
53// obtained. Now, we have two different ways to do this depending on how
54// we initialize.
55//
56// Algorithm I :
57// -----------
58// We can start with marking all functions as different and repeatedly do
59// the checksumming. This has the advantage that we do not need to wait
60// for convergence. We can stop at any point and correctness will be
61// guaranteed although not all cases would have been found. However, this
62// has a problem that some cases can never be found even if it is run until
63// convergence. Here is an example with mutually recursive functions :
64//
65// int funcA (int a) int funcB (int a)
66// { {
67// if (a == 1) if (a == 1)
68// return 1; return 1;
69// return 1 + funcB(a - 1); return 1 + funcA(a - 1);
70// } }
71//
72// In this example funcA and funcB are identical and one of them could be
73// folded into the other. However, if we start with assuming that funcA
74// and funcB are not identical, the algorithm, even after it is run to
75// convergence, cannot detect that they are identical. It should be noted
76// that even if the functions were self-recursive, Algorithm I cannot catch
77// that they are identical, at least as is.
78//
79// Algorithm II :
80// ------------
81// Here we start with marking all functions as identical and then repeat
82// the checksumming until convergence. This can detect the above case
83// mentioned above. It can detect all cases that Algorithm I can and more.
84// However, the caveat is that it has to be run to convergence. It cannot
85// be stopped arbitrarily like Algorithm I as correctness cannot be
86// guaranteed. Algorithm II is not implemented.
87//
88// Algorithm I is used because experiments show that about three
89// iterations are more than enough to achieve convergence. Algorithm I can
90// handle recursive calls if it is changed to use a special common symbol
91// for recursive relocs. This seems to be the most common case that
92// Algorithm I could not catch as is. Mutually recursive calls are not
93// frequent and Algorithm I wins because of its ability to be stopped
94// arbitrarily.
95//
96// Caveat with using function pointers :
97// ------------------------------------
98//
99// Programs using function pointer comparisons/checks should use function
100// folding with caution as the result of such comparisons could be different
101// when folding takes place. This could lead to unexpected run-time
102// behaviour.
103//
21bb3914
ST
104// Safe Folding :
105// ------------
106//
107// ICF in safe mode folds only ctors and dtors if their function pointers can
108// never be taken. Also, for X86-64, safe folding uses the relocation
109// type to determine if a function's pointer is taken or not and only folds
110// functions whose pointers are definitely not taken.
111//
112// Caveat with safe folding :
113// ------------------------
114//
115// This applies only to x86_64.
116//
117// Position independent executables are created from PIC objects (compiled
118// with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the
119// relocation types for function pointer taken and a call are the same.
120// Now, it is not always possible to tell if an object used in the link of
121// a pie executable is a PIC object or a PIE object. Hence, for pie
122// executables, using relocation types to disambiguate function pointers is
123// currently disabled.
124//
125// Further, it is not correct to use safe folding to build non-pie
126// executables using PIC/PIE objects. PIC/PIE objects have different
127// relocation types for function pointers than non-PIC objects, and the
128// current implementation of safe folding does not handle those relocation
129// types. Hence, if used, functions whose pointers are taken could still be
130// folded causing unpredictable run-time behaviour if the pointers were used
131// in comparisons.
132//
133//
ef15dade 134//
55a2bb35 135// How to run : --icf=[safe|all|none]
ef15dade
ST
136// Optional parameters : --icf-iterations <num> --print-icf-sections
137//
138// Performance : Less than 20 % link-time overhead on industry strength
139// applications. Up to 6 % text size reductions.
140
141#include "gold.h"
142#include "object.h"
143#include "gc.h"
144#include "icf.h"
145#include "symtab.h"
146#include "libiberty.h"
032ce4e9 147#include "demangle.h"
41cbeecc
ST
148#include "elfcpp.h"
149#include "int_encoding.h"
ef15dade
ST
150
151namespace gold
152{
153
154// This function determines if a section or a group of identical
155// sections has unique contents. Such unique sections or groups can be
156// declared final and need not be processed any further.
157// Parameters :
158// ID_SECTION : Vector mapping a section index to a Section_id pair.
159// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
160// sections is already known to be unique.
161// SECTION_CONTENTS : Contains the section's text and relocs to sections
162// that cannot be folded. SECTION_CONTENTS are NULL
163// implies that this function is being called for the
164// first time before the first iteration of icf.
165
166static void
167preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
168 std::vector<bool>* is_secn_or_group_unique,
169 std::vector<std::string>* section_contents)
170{
171 Unordered_map<uint32_t, unsigned int> uniq_map;
172 std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
173 uniq_map_insert;
174
175 for (unsigned int i = 0; i < id_section.size(); i++)
176 {
177 if ((*is_secn_or_group_unique)[i])
178 continue;
179
180 uint32_t cksum;
181 Section_id secn = id_section[i];
182 section_size_type plen;
183 if (section_contents == NULL)
184 {
5f9bcf58
CC
185 // Lock the object so we can read from it. This is only called
186 // single-threaded from queue_middle_tasks, so it is OK to lock.
187 // Unfortunately we have no way to pass in a Task token.
188 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
189 Task_lock_obj<Object> tl(dummy_task, secn.first);
ef15dade
ST
190 const unsigned char* contents;
191 contents = secn.first->section_contents(secn.second,
192 &plen,
193 false);
194 cksum = xcrc32(contents, plen, 0xffffffff);
195 }
196 else
197 {
198 const unsigned char* contents_array = reinterpret_cast
199 <const unsigned char*>((*section_contents)[i].c_str());
200 cksum = xcrc32(contents_array, (*section_contents)[i].length(),
201 0xffffffff);
202 }
203 uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
204 if (uniq_map_insert.second)
205 {
206 (*is_secn_or_group_unique)[i] = true;
207 }
208 else
209 {
210 (*is_secn_or_group_unique)[i] = false;
211 (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
212 }
213 }
214}
215
84d543b7
ST
216// For SHF_MERGE sections that use REL relocations, the addend is stored in
217// the text section at the relocation offset. Read the addend value given
218// the pointer to the addend in the text section and the addend size.
219// Update the addend value if a valid addend is found.
220// Parameters:
221// RELOC_ADDEND_PTR : Pointer to the addend in the text section.
222// ADDEND_SIZE : The size of the addend.
223// RELOC_ADDEND_VALUE : Pointer to the addend that is updated.
224
225inline void
226get_rel_addend(const unsigned char* reloc_addend_ptr,
227 const unsigned int addend_size,
228 uint64_t* reloc_addend_value)
229{
230 switch (addend_size)
231 {
232 case 0:
233 break;
234 case 1:
235 *reloc_addend_value =
236 read_from_pointer<8>(reloc_addend_ptr);
237 break;
238 case 2:
239 *reloc_addend_value =
240 read_from_pointer<16>(reloc_addend_ptr);
241 break;
242 case 4:
243 *reloc_addend_value =
244 read_from_pointer<32>(reloc_addend_ptr);
245 break;
246 case 8:
247 *reloc_addend_value =
248 read_from_pointer<64>(reloc_addend_ptr);
249 break;
250 default:
251 gold_unreachable();
252 }
253}
254
ef15dade
ST
255// This returns the buffer containing the section's contents, both
256// text and relocs. Relocs are differentiated as those pointing to
257// sections that could be folded and those that cannot. Only relocs
258// pointing to sections that could be folded are recomputed on
259// subsequent invocations of this function.
260// Parameters :
261// FIRST_ITERATION : true if it is the first invocation.
262// SECN : Section for which contents are desired.
263// SECTION_NUM : Unique section number of this section.
264// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
265// to ICF sections.
266// KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
267// SECTION_CONTENTS : Store the section's text and relocs to non-ICF
268// sections.
269
270static std::string
271get_section_contents(bool first_iteration,
272 const Section_id& secn,
273 unsigned int section_num,
274 unsigned int* num_tracked_relocs,
275 Symbol_table* symtab,
276 const std::vector<unsigned int>& kept_section_id,
277 std::vector<std::string>* section_contents)
278{
880473a6
DK
279 // Lock the object so we can read from it. This is only called
280 // single-threaded from queue_middle_tasks, so it is OK to lock.
281 // Unfortunately we have no way to pass in a Task token.
282 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
283 Task_lock_obj<Object> tl(dummy_task, secn.first);
284
ef15dade
ST
285 section_size_type plen;
286 const unsigned char* contents = NULL;
ef15dade 287 if (first_iteration)
880473a6 288 contents = secn.first->section_contents(secn.second, &plen, false);
ef15dade
ST
289
290 // The buffer to hold all the contents including relocs. A checksum
291 // is then computed on this buffer.
292 std::string buffer;
293 std::string icf_reloc_buffer;
294
295 if (num_tracked_relocs)
296 *num_tracked_relocs = 0;
297
b487ad64
ST
298 Icf::Reloc_info_list& reloc_info_list =
299 symtab->icf()->reloc_info_list();
ef15dade 300
b487ad64
ST
301 Icf::Reloc_info_list::iterator it_reloc_info_list =
302 reloc_info_list.find(secn);
ef15dade
ST
303
304 buffer.clear();
305 icf_reloc_buffer.clear();
306
307 // Process relocs and put them into the buffer.
308
b487ad64 309 if (it_reloc_info_list != reloc_info_list.end())
ef15dade 310 {
c4eb27e1 311 Icf::Sections_reachable_info &v =
b487ad64 312 (it_reloc_info_list->second).section_info;
ef38fd8a 313 // Stores the information of the symbol pointed to by the reloc.
c4eb27e1 314 const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info;
ef38fd8a 315 // Stores the addend and the symbol value.
c4eb27e1 316 Icf::Addend_info &a = (it_reloc_info_list->second).addend_info;
ef38fd8a 317 // Stores the offset of the reloc.
c4eb27e1
ST
318 const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info;
319 const Icf::Reloc_addend_size_info &reloc_addend_size_info =
41cbeecc 320 (it_reloc_info_list->second).reloc_addend_size_info;
b487ad64 321 Icf::Sections_reachable_info::iterator it_v = v.begin();
c4eb27e1 322 Icf::Symbol_info::const_iterator it_s = s.begin();
ef15dade 323 Icf::Addend_info::iterator it_a = a.begin();
c4eb27e1
ST
324 Icf::Offset_info::const_iterator it_o = o.begin();
325 Icf::Reloc_addend_size_info::const_iterator it_addend_size =
41cbeecc 326 reloc_addend_size_info.begin();
ef15dade 327
41cbeecc 328 for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
ef15dade 329 {
ad3d8a2f
AM
330 if (first_iteration
331 && it_v->first != NULL)
332 {
333 Symbol_location loc;
334 loc.object = it_v->first;
335 loc.shndx = it_v->second;
336 loc.offset = convert_types<off_t, long long>(it_a->first
337 + it_a->second);
338 // Look through function descriptors
339 parameters->target().function_location(&loc);
340 if (loc.shndx != it_v->second)
341 {
342 it_v->second = loc.shndx;
343 // Modify symvalue/addend to the code entry.
344 it_a->first = loc.offset;
345 it_a->second = 0;
346 }
347 }
348
b487ad64 349 // ADDEND_STR stores the symbol value and addend and offset,
9b547ce6 350 // each at most 16 hex digits long. it_a points to a pair
ef15dade
ST
351 // where first is the symbol value and second is the
352 // addend.
b487ad64 353 char addend_str[50];
bb0bfe4f
DK
354
355 // It would be nice if we could use format macros in inttypes.h
356 // here but there are not in ISO/IEC C++ 1998.
357 snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
358 static_cast<long long>((*it_a).first),
359 static_cast<long long>((*it_a).second),
360 static_cast<unsigned long long>(*it_o));
ef38fd8a
ST
361
362 // If the symbol pointed to by the reloc is not in an ordinary
363 // section or if the symbol type is not FROM_OBJECT, then the
364 // object is NULL.
365 if (it_v->first == NULL)
366 {
367 if (first_iteration)
368 {
369 // If the symbol name is available, use it.
370 if ((*it_s) != NULL)
371 buffer.append((*it_s)->name());
372 // Append the addend.
373 buffer.append(addend_str);
374 buffer.append("@");
375 }
376 continue;
377 }
378
ef15dade
ST
379 Section_id reloc_secn(it_v->first, it_v->second);
380
381 // If this reloc turns back and points to the same section,
382 // like a recursive call, use a special symbol to mark this.
383 if (reloc_secn.first == secn.first
384 && reloc_secn.second == secn.second)
385 {
386 if (first_iteration)
387 {
388 buffer.append("R");
389 buffer.append(addend_str);
390 buffer.append("@");
391 }
392 continue;
393 }
394 Icf::Uniq_secn_id_map& section_id_map =
395 symtab->icf()->section_to_int_map();
396 Icf::Uniq_secn_id_map::iterator section_id_map_it =
397 section_id_map.find(reloc_secn);
ce97fa81
ST
398 bool is_sym_preemptible = (*it_s != NULL
399 && !(*it_s)->is_from_dynobj()
400 && !(*it_s)->is_undefined()
401 && (*it_s)->is_preemptible());
402 if (!is_sym_preemptible
403 && section_id_map_it != section_id_map.end())
ef15dade
ST
404 {
405 // This is a reloc to a section that might be folded.
406 if (num_tracked_relocs)
407 (*num_tracked_relocs)++;
408
409 char kept_section_str[10];
410 unsigned int secn_id = section_id_map_it->second;
411 snprintf(kept_section_str, sizeof(kept_section_str), "%u",
412 kept_section_id[secn_id]);
413 if (first_iteration)
414 {
415 buffer.append("ICF_R");
416 buffer.append(addend_str);
417 }
418 icf_reloc_buffer.append(kept_section_str);
419 // Append the addend.
420 icf_reloc_buffer.append(addend_str);
421 icf_reloc_buffer.append("@");
422 }
423 else
424 {
425 // This is a reloc to a section that cannot be folded.
426 // Process it only in the first iteration.
427 if (!first_iteration)
428 continue;
429
430 uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
431 // This reloc points to a merge section. Hash the
432 // contents of this section.
c95e9f27 433 if ((secn_flags & elfcpp::SHF_MERGE) != 0
b3ce541e 434 && parameters->target().can_icf_inline_merge_sections())
ef15dade
ST
435 {
436 uint64_t entsize =
437 (it_v->first)->section_entsize(it_v->second);
ce97fa81 438 long long offset = it_a->first;
84d543b7
ST
439 // Handle SHT_RELA and SHT_REL addends, only one of these
440 // addends exists.
441 // Get the SHT_RELA addend. For RELA relocations, we have
442 // the addend from the relocation.
443 uint64_t reloc_addend_value = it_a->second;
444
445 // Handle SHT_REL addends.
446 // For REL relocations, we need to fetch the addend from the
447 // section contents.
41cbeecc
ST
448 const unsigned char* reloc_addend_ptr =
449 contents + static_cast<unsigned long long>(*it_o);
84d543b7
ST
450
451 // Update the addend value with the SHT_REL addend if
452 // available.
453 get_rel_addend(reloc_addend_ptr, *it_addend_size,
454 &reloc_addend_value);
455
456 // Ignore the addend when it is a negative value. See the
457 // comments in Merged_symbol_value::value in object.h.
458 if (reloc_addend_value < 0xffffff00)
459 offset = offset + reloc_addend_value;
41cbeecc 460
ef15dade 461 section_size_type secn_len;
84d543b7 462
ef15dade
ST
463 const unsigned char* str_contents =
464 (it_v->first)->section_contents(it_v->second,
465 &secn_len,
466 false) + offset;
84d543b7
ST
467 gold_assert (offset < (long long) secn_len);
468
ef15dade
ST
469 if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
470 {
471 // String merge section.
472 const char* str_char =
473 reinterpret_cast<const char*>(str_contents);
474 switch(entsize)
475 {
476 case 1:
477 {
478 buffer.append(str_char);
479 break;
480 }
481 case 2:
482 {
483 const uint16_t* ptr_16 =
484 reinterpret_cast<const uint16_t*>(str_char);
485 unsigned int strlen_16 = 0;
486 // Find the NULL character.
487 while(*(ptr_16 + strlen_16) != 0)
488 strlen_16++;
489 buffer.append(str_char, strlen_16 * 2);
490 }
491 break;
492 case 4:
493 {
494 const uint32_t* ptr_32 =
495 reinterpret_cast<const uint32_t*>(str_char);
496 unsigned int strlen_32 = 0;
497 // Find the NULL character.
498 while(*(ptr_32 + strlen_32) != 0)
499 strlen_32++;
500 buffer.append(str_char, strlen_32 * 4);
501 }
502 break;
503 default:
504 gold_unreachable();
505 }
506 }
507 else
508 {
84d543b7
ST
509 // Use the entsize to determine the length to copy.
510 uint64_t bufsize = entsize;
511 // If entsize is too big, copy all the remaining bytes.
512 if ((offset + entsize) > secn_len)
513 bufsize = secn_len - offset;
514 buffer.append(reinterpret_cast<const
ef15dade 515 char*>(str_contents),
84d543b7 516 bufsize);
ef15dade 517 }
d62d0f5f 518 buffer.append("@");
ef15dade
ST
519 }
520 else if ((*it_s) != NULL)
521 {
522 // If symbol name is available use that.
ef38fd8a 523 buffer.append((*it_s)->name());
ef15dade
ST
524 // Append the addend.
525 buffer.append(addend_str);
526 buffer.append("@");
527 }
528 else
529 {
530 // Symbol name is not available, like for a local symbol,
531 // use object and section id.
532 buffer.append(it_v->first->name());
533 char secn_id[10];
534 snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
535 buffer.append(secn_id);
536 // Append the addend.
537 buffer.append(addend_str);
538 buffer.append("@");
539 }
540 }
541 }
542 }
543
544 if (first_iteration)
545 {
546 buffer.append("Contents = ");
547 buffer.append(reinterpret_cast<const char*>(contents), plen);
548 // Store the section contents that dont change to avoid recomputing
549 // during the next call to this function.
550 (*section_contents)[section_num] = buffer;
551 }
552 else
553 {
554 gold_assert(buffer.empty());
555 // Reuse the contents computed in the previous iteration.
556 buffer.append((*section_contents)[section_num]);
557 }
558
559 buffer.append(icf_reloc_buffer);
560 return buffer;
561}
562
563// This function computes a checksum on each section to detect and form
564// groups of identical sections. The first iteration does this for all
565// sections.
566// Further iterations do this only for the kept sections from each group to
567// determine if larger groups of identical sections could be formed. The
568// first section in each group is the kept section for that group.
569//
570// CRC32 is the checksumming algorithm and can have collisions. That is,
571// two sections with different contents can have the same checksum. Hence,
572// a multimap is used to maintain more than one group of checksum
573// identical sections. A section is added to a group only after its
574// contents are explicitly compared with the kept section of the group.
575//
576// Parameters :
577// ITERATION_NUM : Invocation instance of this function.
578// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
579// to ICF sections.
580// KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
581// ID_SECTION : Vector mapping a section to an unique integer.
582// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
9b547ce6 583// sections is already known to be unique.
ef15dade
ST
584// SECTION_CONTENTS : Store the section's text and relocs to non-ICF
585// sections.
586
587static bool
588match_sections(unsigned int iteration_num,
589 Symbol_table* symtab,
590 std::vector<unsigned int>* num_tracked_relocs,
591 std::vector<unsigned int>* kept_section_id,
592 const std::vector<Section_id>& id_section,
593 std::vector<bool>* is_secn_or_group_unique,
594 std::vector<std::string>* section_contents)
595{
596 Unordered_multimap<uint32_t, unsigned int> section_cksum;
597 std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
598 Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
599 bool converged = true;
600
601 if (iteration_num == 1)
602 preprocess_for_unique_sections(id_section,
603 is_secn_or_group_unique,
604 NULL);
605 else
606 preprocess_for_unique_sections(id_section,
607 is_secn_or_group_unique,
608 section_contents);
609
610 std::vector<std::string> full_section_contents;
611
612 for (unsigned int i = 0; i < id_section.size(); i++)
613 {
614 full_section_contents.push_back("");
615 if ((*is_secn_or_group_unique)[i])
616 continue;
617
618 Section_id secn = id_section[i];
619 std::string this_secn_contents;
620 uint32_t cksum;
621 if (iteration_num == 1)
622 {
623 unsigned int num_relocs = 0;
624 this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
625 symtab, (*kept_section_id),
626 section_contents);
627 (*num_tracked_relocs)[i] = num_relocs;
628 }
629 else
630 {
631 if ((*kept_section_id)[i] != i)
632 {
633 // This section is already folded into something. See
634 // if it should point to a different kept section.
635 unsigned int kept_section = (*kept_section_id)[i];
636 if (kept_section != (*kept_section_id)[kept_section])
637 {
638 (*kept_section_id)[i] = (*kept_section_id)[kept_section];
639 }
640 continue;
641 }
642 this_secn_contents = get_section_contents(false, secn, i, NULL,
643 symtab, (*kept_section_id),
644 section_contents);
645 }
646
647 const unsigned char* this_secn_contents_array =
648 reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
649 cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
650 0xffffffff);
651 size_t count = section_cksum.count(cksum);
652
653 if (count == 0)
654 {
655 // Start a group with this cksum.
656 section_cksum.insert(std::make_pair(cksum, i));
657 full_section_contents[i] = this_secn_contents;
658 }
659 else
660 {
661 key_range = section_cksum.equal_range(cksum);
662 Unordered_multimap<uint32_t, unsigned int>::iterator it;
663 // Search all the groups with this cksum for a match.
664 for (it = key_range.first; it != key_range.second; ++it)
665 {
666 unsigned int kept_section = it->second;
667 if (full_section_contents[kept_section].length()
668 != this_secn_contents.length())
669 continue;
670 if (memcmp(full_section_contents[kept_section].c_str(),
671 this_secn_contents.c_str(),
672 this_secn_contents.length()) != 0)
673 continue;
674 (*kept_section_id)[i] = kept_section;
675 converged = false;
676 break;
677 }
678 if (it == key_range.second)
679 {
680 // Create a new group for this cksum.
681 section_cksum.insert(std::make_pair(cksum, i));
682 full_section_contents[i] = this_secn_contents;
683 }
684 }
685 // If there are no relocs to foldable sections do not process
686 // this section any further.
687 if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
688 (*is_secn_or_group_unique)[i] = true;
689 }
690
691 return converged;
692}
693
032ce4e9 694// During safe icf (--icf=safe), only fold functions that are ctors or dtors.
4e271fff 695// This function returns true if the section name is that of a ctor or a dtor.
032ce4e9
ST
696
697static bool
4e271fff 698is_function_ctor_or_dtor(const std::string& section_name)
032ce4e9 699{
4e271fff
ST
700 const char* mangled_func_name = strrchr(section_name.c_str(), '.');
701 gold_assert(mangled_func_name != NULL);
702 if ((is_prefix_of("._ZN", mangled_func_name)
703 || is_prefix_of("._ZZ", mangled_func_name))
704 && (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
705 || is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
032ce4e9
ST
706 {
707 return true;
708 }
709 return false;
710}
ef15dade
ST
711
712// This is the main ICF function called in gold.cc. This does the
713// initialization and calls match_sections repeatedly (twice by default)
714// which computes the crc checksums and detects identical functions.
715
716void
717Icf::find_identical_sections(const Input_objects* input_objects,
718 Symbol_table* symtab)
719{
720 unsigned int section_num = 0;
2ea97941 721 std::vector<unsigned int> num_tracked_relocs;
ef15dade
ST
722 std::vector<bool> is_secn_or_group_unique;
723 std::vector<std::string> section_contents;
21bb3914 724 const Target& target = parameters->target();
ef15dade
ST
725
726 // Decide which sections are possible candidates first.
727
728 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
729 p != input_objects->relobj_end();
730 ++p)
731 {
5f9bcf58
CC
732 // Lock the object so we can read from it. This is only called
733 // single-threaded from queue_middle_tasks, so it is OK to lock.
734 // Unfortunately we have no way to pass in a Task token.
735 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
736 Task_lock_obj<Object> tl(dummy_task, *p);
737
ef15dade
ST
738 for (unsigned int i = 0;i < (*p)->shnum(); ++i)
739 {
4e271fff 740 const std::string section_name = (*p)->section_name(i);
55a2bb35 741 if (!is_section_foldable_candidate(section_name))
ef15dade
ST
742 continue;
743 if (!(*p)->is_section_included(i))
744 continue;
745 if (parameters->options().gc_sections()
746 && symtab->gc()->is_section_garbage(*p, i))
747 continue;
55a2bb35
ST
748 // With --icf=safe, check if the mangled function name is a ctor
749 // or a dtor. The mangled function name can be obtained from the
750 // section name by stripping the section prefix.
032ce4e9 751 if (parameters->options().icf_safe_folding()
4e271fff 752 && !is_function_ctor_or_dtor(section_name)
21bb3914
ST
753 && (!target.can_check_for_function_pointers()
754 || section_has_function_pointers(*p, i)))
755 {
756 continue;
757 }
ef15dade
ST
758 this->id_section_.push_back(Section_id(*p, i));
759 this->section_id_[Section_id(*p, i)] = section_num;
760 this->kept_section_id_.push_back(section_num);
2ea97941 761 num_tracked_relocs.push_back(0);
ef15dade
ST
762 is_secn_or_group_unique.push_back(false);
763 section_contents.push_back("");
764 section_num++;
765 }
766 }
767
768 unsigned int num_iterations = 0;
769
770 // Default number of iterations to run ICF is 2.
771 unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
772 ? parameters->options().icf_iterations()
773 : 2;
774
775 bool converged = false;
776
777 while (!converged && (num_iterations < max_iterations))
778 {
779 num_iterations++;
780 converged = match_sections(num_iterations, symtab,
2ea97941 781 &num_tracked_relocs, &this->kept_section_id_,
ef15dade
ST
782 this->id_section_, &is_secn_or_group_unique,
783 &section_contents);
784 }
785
786 if (parameters->options().print_icf_sections())
787 {
788 if (converged)
789 gold_info(_("%s: ICF Converged after %u iteration(s)"),
790 program_name, num_iterations);
791 else
792 gold_info(_("%s: ICF stopped after %u iteration(s)"),
793 program_name, num_iterations);
794 }
795
48c187ce
ST
796 // Unfold --keep-unique symbols.
797 for (options::String_set::const_iterator p =
798 parameters->options().keep_unique_begin();
799 p != parameters->options().keep_unique_end();
800 ++p)
801 {
802 const char* name = p->c_str();
803 Symbol* sym = symtab->lookup(name);
ef5e0cb1
ST
804 if (sym == NULL)
805 {
806 gold_warning(_("Could not find symbol %s to unfold\n"), name);
807 }
808 else if (sym->source() == Symbol::FROM_OBJECT
809 && !sym->object()->is_dynamic())
48c187ce 810 {
efc6fa12 811 Relobj* obj = static_cast<Relobj*>(sym->object());
48c187ce
ST
812 bool is_ordinary;
813 unsigned int shndx = sym->shndx(&is_ordinary);
814 if (is_ordinary)
815 {
816 this->unfold_section(obj, shndx);
817 }
818 }
819
820 }
821
ef15dade
ST
822 this->icf_ready();
823}
824
48c187ce
ST
825// Unfolds the section denoted by OBJ and SHNDX if folded.
826
827void
efc6fa12 828Icf::unfold_section(Relobj* obj, unsigned int shndx)
48c187ce
ST
829{
830 Section_id secn(obj, shndx);
831 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
832 if (it == this->section_id_.end())
833 return;
834 unsigned int section_num = it->second;
835 unsigned int kept_section_id = this->kept_section_id_[section_num];
836 if (kept_section_id != section_num)
837 this->kept_section_id_[section_num] = section_num;
838}
839
ef15dade
ST
840// This function determines if the section corresponding to the
841// given object and index is folded based on if the kept section
842// is different from this section.
843
844bool
efc6fa12 845Icf::is_section_folded(Relobj* obj, unsigned int shndx)
ef15dade
ST
846{
847 Section_id secn(obj, shndx);
848 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
849 if (it == this->section_id_.end())
850 return false;
851 unsigned int section_num = it->second;
852 unsigned int kept_section_id = this->kept_section_id_[section_num];
853 return kept_section_id != section_num;
854}
855
856// This function returns the folded section for the given section.
857
858Section_id
efc6fa12 859Icf::get_folded_section(Relobj* dup_obj, unsigned int dup_shndx)
ef15dade
ST
860{
861 Section_id dup_secn(dup_obj, dup_shndx);
862 Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
863 gold_assert(it != this->section_id_.end());
864 unsigned int section_num = it->second;
865 unsigned int kept_section_id = this->kept_section_id_[section_num];
866 Section_id folded_section = this->id_section_[kept_section_id];
867 return folded_section;
868}
869
870} // End of namespace gold.
This page took 0.49999 seconds and 4 git commands to generate.