*** empty log message ***
[deliverable/binutils-gdb.git] / gold / icf.cc
CommitLineData
ef15dade
ST
1// icf.cc -- Identical Code Folding.
2//
3// Copyright 2009 Free Software Foundation, Inc.
4// Written by Sriraman Tallam <tmsriram@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23// Identical Code Folding Algorithm
24// ----------------------------------
25// Detecting identical functions is done here and the basic algorithm
26// is as follows. A checksum is computed on each .text section using
27// its contents and relocations. If the symbol name corresponding to
28// a relocation is known it is used to compute the checksum. If the
29// symbol name is not known the stringified name of the object and the
30// section number pointed to by the relocation is used. The checksums
31// are stored as keys in a hash map and a section is identical to some
32// other section if its checksum is already present in the hash map.
33// Checksum collisions are handled by using a multimap and explicitly
34// checking the contents when two sections have the same checksum.
35//
36// However, two functions A and B with identical text but with
37// relocations pointing to different .text sections can be identical if
38// the corresponding .text sections to which their relocations point to
39// turn out to be identical. Hence, this checksumming process must be
40// done repeatedly until convergence is obtained. Here is an example for
41// the following case :
42//
43// int funcA () int funcB ()
44// { {
45// return foo(); return goo();
46// } }
47//
48// The functions funcA and funcB are identical if functions foo() and
49// goo() are identical.
50//
51// Hence, as described above, we repeatedly do the checksumming,
52// assigning identical functions to the same group, until convergence is
53// obtained. Now, we have two different ways to do this depending on how
54// we initialize.
55//
56// Algorithm I :
57// -----------
58// We can start with marking all functions as different and repeatedly do
59// the checksumming. This has the advantage that we do not need to wait
60// for convergence. We can stop at any point and correctness will be
61// guaranteed although not all cases would have been found. However, this
62// has a problem that some cases can never be found even if it is run until
63// convergence. Here is an example with mutually recursive functions :
64//
65// int funcA (int a) int funcB (int a)
66// { {
67// if (a == 1) if (a == 1)
68// return 1; return 1;
69// return 1 + funcB(a - 1); return 1 + funcA(a - 1);
70// } }
71//
72// In this example funcA and funcB are identical and one of them could be
73// folded into the other. However, if we start with assuming that funcA
74// and funcB are not identical, the algorithm, even after it is run to
75// convergence, cannot detect that they are identical. It should be noted
76// that even if the functions were self-recursive, Algorithm I cannot catch
77// that they are identical, at least as is.
78//
79// Algorithm II :
80// ------------
81// Here we start with marking all functions as identical and then repeat
82// the checksumming until convergence. This can detect the above case
83// mentioned above. It can detect all cases that Algorithm I can and more.
84// However, the caveat is that it has to be run to convergence. It cannot
85// be stopped arbitrarily like Algorithm I as correctness cannot be
86// guaranteed. Algorithm II is not implemented.
87//
88// Algorithm I is used because experiments show that about three
89// iterations are more than enough to achieve convergence. Algorithm I can
90// handle recursive calls if it is changed to use a special common symbol
91// for recursive relocs. This seems to be the most common case that
92// Algorithm I could not catch as is. Mutually recursive calls are not
93// frequent and Algorithm I wins because of its ability to be stopped
94// arbitrarily.
95//
96// Caveat with using function pointers :
97// ------------------------------------
98//
99// Programs using function pointer comparisons/checks should use function
100// folding with caution as the result of such comparisons could be different
101// when folding takes place. This could lead to unexpected run-time
102// behaviour.
103//
104//
105// How to run : --icf
106// Optional parameters : --icf-iterations <num> --print-icf-sections
107//
108// Performance : Less than 20 % link-time overhead on industry strength
109// applications. Up to 6 % text size reductions.
110
111#include "gold.h"
112#include "object.h"
113#include "gc.h"
114#include "icf.h"
115#include "symtab.h"
116#include "libiberty.h"
117
118namespace gold
119{
120
121// This function determines if a section or a group of identical
122// sections has unique contents. Such unique sections or groups can be
123// declared final and need not be processed any further.
124// Parameters :
125// ID_SECTION : Vector mapping a section index to a Section_id pair.
126// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
127// sections is already known to be unique.
128// SECTION_CONTENTS : Contains the section's text and relocs to sections
129// that cannot be folded. SECTION_CONTENTS are NULL
130// implies that this function is being called for the
131// first time before the first iteration of icf.
132
133static void
134preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
135 std::vector<bool>* is_secn_or_group_unique,
136 std::vector<std::string>* section_contents)
137{
138 Unordered_map<uint32_t, unsigned int> uniq_map;
139 std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
140 uniq_map_insert;
141
142 for (unsigned int i = 0; i < id_section.size(); i++)
143 {
144 if ((*is_secn_or_group_unique)[i])
145 continue;
146
147 uint32_t cksum;
148 Section_id secn = id_section[i];
149 section_size_type plen;
150 if (section_contents == NULL)
151 {
152 const unsigned char* contents;
153 contents = secn.first->section_contents(secn.second,
154 &plen,
155 false);
156 cksum = xcrc32(contents, plen, 0xffffffff);
157 }
158 else
159 {
160 const unsigned char* contents_array = reinterpret_cast
161 <const unsigned char*>((*section_contents)[i].c_str());
162 cksum = xcrc32(contents_array, (*section_contents)[i].length(),
163 0xffffffff);
164 }
165 uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
166 if (uniq_map_insert.second)
167 {
168 (*is_secn_or_group_unique)[i] = true;
169 }
170 else
171 {
172 (*is_secn_or_group_unique)[i] = false;
173 (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
174 }
175 }
176}
177
178// This returns the buffer containing the section's contents, both
179// text and relocs. Relocs are differentiated as those pointing to
180// sections that could be folded and those that cannot. Only relocs
181// pointing to sections that could be folded are recomputed on
182// subsequent invocations of this function.
183// Parameters :
184// FIRST_ITERATION : true if it is the first invocation.
185// SECN : Section for which contents are desired.
186// SECTION_NUM : Unique section number of this section.
187// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
188// to ICF sections.
189// KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
190// SECTION_CONTENTS : Store the section's text and relocs to non-ICF
191// sections.
192
193static std::string
194get_section_contents(bool first_iteration,
195 const Section_id& secn,
196 unsigned int section_num,
197 unsigned int* num_tracked_relocs,
198 Symbol_table* symtab,
199 const std::vector<unsigned int>& kept_section_id,
200 std::vector<std::string>* section_contents)
201{
202 section_size_type plen;
203 const unsigned char* contents = NULL;
204
205 if (first_iteration)
206 {
207 contents = secn.first->section_contents(secn.second,
208 &plen,
209 false);
210 }
211
212 // The buffer to hold all the contents including relocs. A checksum
213 // is then computed on this buffer.
214 std::string buffer;
215 std::string icf_reloc_buffer;
216
217 if (num_tracked_relocs)
218 *num_tracked_relocs = 0;
219
220 Icf::Section_list& seclist = symtab->icf()->section_reloc_list();
221 Icf::Symbol_list& symlist = symtab->icf()->symbol_reloc_list();
222 Icf::Addend_list& addendlist = symtab->icf()->addend_reloc_list();
223
224 Icf::Section_list::iterator it_seclist = seclist.find(secn);
225 Icf::Symbol_list::iterator it_symlist = symlist.find(secn);
226 Icf::Addend_list::iterator it_addendlist = addendlist.find(secn);
227
228 buffer.clear();
229 icf_reloc_buffer.clear();
230
231 // Process relocs and put them into the buffer.
232
233 if (it_seclist != seclist.end())
234 {
235 gold_assert(it_symlist != symlist.end());
236 gold_assert(it_addendlist != addendlist.end());
237 Icf::Sections_reachable_list v = it_seclist->second;
238 Icf::Symbol_info s = it_symlist->second;
239 Icf::Addend_info a = it_addendlist->second;
240 Icf::Sections_reachable_list::iterator it_v = v.begin();
241 Icf::Symbol_info::iterator it_s = s.begin();
242 Icf::Addend_info::iterator it_a = a.begin();
243
244 for (; it_v != v.end(); ++it_v, ++it_s, ++it_a)
245 {
246 // ADDEND_STR stores the symbol value and addend, each
247 // atmost 16 hex digits long. it_v points to a pair
248 // where first is the symbol value and second is the
249 // addend.
250 char addend_str[34];
251 snprintf(addend_str, sizeof(addend_str), "%llx %llx",
252 (*it_a).first, (*it_a).second);
253 Section_id reloc_secn(it_v->first, it_v->second);
254
255 // If this reloc turns back and points to the same section,
256 // like a recursive call, use a special symbol to mark this.
257 if (reloc_secn.first == secn.first
258 && reloc_secn.second == secn.second)
259 {
260 if (first_iteration)
261 {
262 buffer.append("R");
263 buffer.append(addend_str);
264 buffer.append("@");
265 }
266 continue;
267 }
268 Icf::Uniq_secn_id_map& section_id_map =
269 symtab->icf()->section_to_int_map();
270 Icf::Uniq_secn_id_map::iterator section_id_map_it =
271 section_id_map.find(reloc_secn);
272 if (section_id_map_it != section_id_map.end())
273 {
274 // This is a reloc to a section that might be folded.
275 if (num_tracked_relocs)
276 (*num_tracked_relocs)++;
277
278 char kept_section_str[10];
279 unsigned int secn_id = section_id_map_it->second;
280 snprintf(kept_section_str, sizeof(kept_section_str), "%u",
281 kept_section_id[secn_id]);
282 if (first_iteration)
283 {
284 buffer.append("ICF_R");
285 buffer.append(addend_str);
286 }
287 icf_reloc_buffer.append(kept_section_str);
288 // Append the addend.
289 icf_reloc_buffer.append(addend_str);
290 icf_reloc_buffer.append("@");
291 }
292 else
293 {
294 // This is a reloc to a section that cannot be folded.
295 // Process it only in the first iteration.
296 if (!first_iteration)
297 continue;
298
299 uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
300 // This reloc points to a merge section. Hash the
301 // contents of this section.
302 if ((secn_flags & elfcpp::SHF_MERGE) != 0)
303 {
304 uint64_t entsize =
305 (it_v->first)->section_entsize(it_v->second);
306 long long offset = it_a->first + it_a->second;
307 section_size_type secn_len;
308 const unsigned char* str_contents =
309 (it_v->first)->section_contents(it_v->second,
310 &secn_len,
311 false) + offset;
312 if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
313 {
314 // String merge section.
315 const char* str_char =
316 reinterpret_cast<const char*>(str_contents);
317 switch(entsize)
318 {
319 case 1:
320 {
321 buffer.append(str_char);
322 break;
323 }
324 case 2:
325 {
326 const uint16_t* ptr_16 =
327 reinterpret_cast<const uint16_t*>(str_char);
328 unsigned int strlen_16 = 0;
329 // Find the NULL character.
330 while(*(ptr_16 + strlen_16) != 0)
331 strlen_16++;
332 buffer.append(str_char, strlen_16 * 2);
333 }
334 break;
335 case 4:
336 {
337 const uint32_t* ptr_32 =
338 reinterpret_cast<const uint32_t*>(str_char);
339 unsigned int strlen_32 = 0;
340 // Find the NULL character.
341 while(*(ptr_32 + strlen_32) != 0)
342 strlen_32++;
343 buffer.append(str_char, strlen_32 * 4);
344 }
345 break;
346 default:
347 gold_unreachable();
348 }
349 }
350 else
351 {
352 // Use the entsize to determine the length.
353 buffer.append(reinterpret_cast<const
354 char*>(str_contents),
355 entsize);
356 }
357 }
358 else if ((*it_s) != NULL)
359 {
360 // If symbol name is available use that.
361 const char *sym_name = (*it_s)->name();
362 buffer.append(sym_name);
363 // Append the addend.
364 buffer.append(addend_str);
365 buffer.append("@");
366 }
367 else
368 {
369 // Symbol name is not available, like for a local symbol,
370 // use object and section id.
371 buffer.append(it_v->first->name());
372 char secn_id[10];
373 snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
374 buffer.append(secn_id);
375 // Append the addend.
376 buffer.append(addend_str);
377 buffer.append("@");
378 }
379 }
380 }
381 }
382
383 if (first_iteration)
384 {
385 buffer.append("Contents = ");
386 buffer.append(reinterpret_cast<const char*>(contents), plen);
387 // Store the section contents that dont change to avoid recomputing
388 // during the next call to this function.
389 (*section_contents)[section_num] = buffer;
390 }
391 else
392 {
393 gold_assert(buffer.empty());
394 // Reuse the contents computed in the previous iteration.
395 buffer.append((*section_contents)[section_num]);
396 }
397
398 buffer.append(icf_reloc_buffer);
399 return buffer;
400}
401
402// This function computes a checksum on each section to detect and form
403// groups of identical sections. The first iteration does this for all
404// sections.
405// Further iterations do this only for the kept sections from each group to
406// determine if larger groups of identical sections could be formed. The
407// first section in each group is the kept section for that group.
408//
409// CRC32 is the checksumming algorithm and can have collisions. That is,
410// two sections with different contents can have the same checksum. Hence,
411// a multimap is used to maintain more than one group of checksum
412// identical sections. A section is added to a group only after its
413// contents are explicitly compared with the kept section of the group.
414//
415// Parameters :
416// ITERATION_NUM : Invocation instance of this function.
417// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
418// to ICF sections.
419// KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
420// ID_SECTION : Vector mapping a section to an unique integer.
421// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
422// sectionsis already known to be unique.
423// SECTION_CONTENTS : Store the section's text and relocs to non-ICF
424// sections.
425
426static bool
427match_sections(unsigned int iteration_num,
428 Symbol_table* symtab,
429 std::vector<unsigned int>* num_tracked_relocs,
430 std::vector<unsigned int>* kept_section_id,
431 const std::vector<Section_id>& id_section,
432 std::vector<bool>* is_secn_or_group_unique,
433 std::vector<std::string>* section_contents)
434{
435 Unordered_multimap<uint32_t, unsigned int> section_cksum;
436 std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
437 Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
438 bool converged = true;
439
440 if (iteration_num == 1)
441 preprocess_for_unique_sections(id_section,
442 is_secn_or_group_unique,
443 NULL);
444 else
445 preprocess_for_unique_sections(id_section,
446 is_secn_or_group_unique,
447 section_contents);
448
449 std::vector<std::string> full_section_contents;
450
451 for (unsigned int i = 0; i < id_section.size(); i++)
452 {
453 full_section_contents.push_back("");
454 if ((*is_secn_or_group_unique)[i])
455 continue;
456
457 Section_id secn = id_section[i];
458 std::string this_secn_contents;
459 uint32_t cksum;
460 if (iteration_num == 1)
461 {
462 unsigned int num_relocs = 0;
463 this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
464 symtab, (*kept_section_id),
465 section_contents);
466 (*num_tracked_relocs)[i] = num_relocs;
467 }
468 else
469 {
470 if ((*kept_section_id)[i] != i)
471 {
472 // This section is already folded into something. See
473 // if it should point to a different kept section.
474 unsigned int kept_section = (*kept_section_id)[i];
475 if (kept_section != (*kept_section_id)[kept_section])
476 {
477 (*kept_section_id)[i] = (*kept_section_id)[kept_section];
478 }
479 continue;
480 }
481 this_secn_contents = get_section_contents(false, secn, i, NULL,
482 symtab, (*kept_section_id),
483 section_contents);
484 }
485
486 const unsigned char* this_secn_contents_array =
487 reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
488 cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
489 0xffffffff);
490 size_t count = section_cksum.count(cksum);
491
492 if (count == 0)
493 {
494 // Start a group with this cksum.
495 section_cksum.insert(std::make_pair(cksum, i));
496 full_section_contents[i] = this_secn_contents;
497 }
498 else
499 {
500 key_range = section_cksum.equal_range(cksum);
501 Unordered_multimap<uint32_t, unsigned int>::iterator it;
502 // Search all the groups with this cksum for a match.
503 for (it = key_range.first; it != key_range.second; ++it)
504 {
505 unsigned int kept_section = it->second;
506 if (full_section_contents[kept_section].length()
507 != this_secn_contents.length())
508 continue;
509 if (memcmp(full_section_contents[kept_section].c_str(),
510 this_secn_contents.c_str(),
511 this_secn_contents.length()) != 0)
512 continue;
513 (*kept_section_id)[i] = kept_section;
514 converged = false;
515 break;
516 }
517 if (it == key_range.second)
518 {
519 // Create a new group for this cksum.
520 section_cksum.insert(std::make_pair(cksum, i));
521 full_section_contents[i] = this_secn_contents;
522 }
523 }
524 // If there are no relocs to foldable sections do not process
525 // this section any further.
526 if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
527 (*is_secn_or_group_unique)[i] = true;
528 }
529
530 return converged;
531}
532
533
534// This is the main ICF function called in gold.cc. This does the
535// initialization and calls match_sections repeatedly (twice by default)
536// which computes the crc checksums and detects identical functions.
537
538void
539Icf::find_identical_sections(const Input_objects* input_objects,
540 Symbol_table* symtab)
541{
542 unsigned int section_num = 0;
543 std::vector<unsigned int> num_tracked_relocs;
544 std::vector<bool> is_secn_or_group_unique;
545 std::vector<std::string> section_contents;
546
547 // Decide which sections are possible candidates first.
548
549 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
550 p != input_objects->relobj_end();
551 ++p)
552 {
553 for (unsigned int i = 0;i < (*p)->shnum(); ++i)
554 {
555 // Only looking to fold functions, so just look at .text sections.
556 if (!is_prefix_of(".text.", (*p)->section_name(i).c_str()))
557 continue;
558 if (!(*p)->is_section_included(i))
559 continue;
560 if (parameters->options().gc_sections()
561 && symtab->gc()->is_section_garbage(*p, i))
562 continue;
563 this->id_section_.push_back(Section_id(*p, i));
564 this->section_id_[Section_id(*p, i)] = section_num;
565 this->kept_section_id_.push_back(section_num);
566 num_tracked_relocs.push_back(0);
567 is_secn_or_group_unique.push_back(false);
568 section_contents.push_back("");
569 section_num++;
570 }
571 }
572
573 unsigned int num_iterations = 0;
574
575 // Default number of iterations to run ICF is 2.
576 unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
577 ? parameters->options().icf_iterations()
578 : 2;
579
580 bool converged = false;
581
582 while (!converged && (num_iterations < max_iterations))
583 {
584 num_iterations++;
585 converged = match_sections(num_iterations, symtab,
586 &num_tracked_relocs, &this->kept_section_id_,
587 this->id_section_, &is_secn_or_group_unique,
588 &section_contents);
589 }
590
591 if (parameters->options().print_icf_sections())
592 {
593 if (converged)
594 gold_info(_("%s: ICF Converged after %u iteration(s)"),
595 program_name, num_iterations);
596 else
597 gold_info(_("%s: ICF stopped after %u iteration(s)"),
598 program_name, num_iterations);
599 }
600
48c187ce
ST
601 // Unfold --keep-unique symbols.
602 for (options::String_set::const_iterator p =
603 parameters->options().keep_unique_begin();
604 p != parameters->options().keep_unique_end();
605 ++p)
606 {
607 const char* name = p->c_str();
608 Symbol* sym = symtab->lookup(name);
609 if (sym != NULL
610 && sym->source() == Symbol::FROM_OBJECT
611 && !sym->object()->is_dynamic())
612 {
613 Object* obj = sym->object();
614 bool is_ordinary;
615 unsigned int shndx = sym->shndx(&is_ordinary);
616 if (is_ordinary)
617 {
618 this->unfold_section(obj, shndx);
619 }
620 }
621
622 }
623
ef15dade
ST
624 this->icf_ready();
625}
626
48c187ce
ST
627// Unfolds the section denoted by OBJ and SHNDX if folded.
628
629void
630Icf::unfold_section(Object* obj, unsigned int shndx)
631{
632 Section_id secn(obj, shndx);
633 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
634 if (it == this->section_id_.end())
635 return;
636 unsigned int section_num = it->second;
637 unsigned int kept_section_id = this->kept_section_id_[section_num];
638 if (kept_section_id != section_num)
639 this->kept_section_id_[section_num] = section_num;
640}
641
ef15dade
ST
642// This function determines if the section corresponding to the
643// given object and index is folded based on if the kept section
644// is different from this section.
645
646bool
647Icf::is_section_folded(Object* obj, unsigned int shndx)
648{
649 Section_id secn(obj, shndx);
650 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
651 if (it == this->section_id_.end())
652 return false;
653 unsigned int section_num = it->second;
654 unsigned int kept_section_id = this->kept_section_id_[section_num];
655 return kept_section_id != section_num;
656}
657
658// This function returns the folded section for the given section.
659
660Section_id
661Icf::get_folded_section(Object* dup_obj, unsigned int dup_shndx)
662{
663 Section_id dup_secn(dup_obj, dup_shndx);
664 Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
665 gold_assert(it != this->section_id_.end());
666 unsigned int section_num = it->second;
667 unsigned int kept_section_id = this->kept_section_id_[section_num];
668 Section_id folded_section = this->id_section_[kept_section_id];
669 return folded_section;
670}
671
672} // End of namespace gold.
This page took 0.048302 seconds and 4 git commands to generate.