[include/opcode]
[deliverable/binutils-gdb.git] / gold / icf.cc
CommitLineData
ef15dade
ST
1// icf.cc -- Identical Code Folding.
2//
55a2bb35 3// Copyright 2009, 2010 Free Software Foundation, Inc.
ef15dade
ST
4// Written by Sriraman Tallam <tmsriram@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23// Identical Code Folding Algorithm
24// ----------------------------------
25// Detecting identical functions is done here and the basic algorithm
55a2bb35 26// is as follows. A checksum is computed on each foldable section using
ef15dade
ST
27// its contents and relocations. If the symbol name corresponding to
28// a relocation is known it is used to compute the checksum. If the
29// symbol name is not known the stringified name of the object and the
30// section number pointed to by the relocation is used. The checksums
31// are stored as keys in a hash map and a section is identical to some
32// other section if its checksum is already present in the hash map.
33// Checksum collisions are handled by using a multimap and explicitly
34// checking the contents when two sections have the same checksum.
35//
36// However, two functions A and B with identical text but with
55a2bb35
ST
37// relocations pointing to different foldable sections can be identical if
38// the corresponding foldable sections to which their relocations point to
ef15dade
ST
39// turn out to be identical. Hence, this checksumming process must be
40// done repeatedly until convergence is obtained. Here is an example for
41// the following case :
42//
43// int funcA () int funcB ()
44// { {
45// return foo(); return goo();
46// } }
47//
48// The functions funcA and funcB are identical if functions foo() and
49// goo() are identical.
50//
51// Hence, as described above, we repeatedly do the checksumming,
52// assigning identical functions to the same group, until convergence is
53// obtained. Now, we have two different ways to do this depending on how
54// we initialize.
55//
56// Algorithm I :
57// -----------
58// We can start with marking all functions as different and repeatedly do
59// the checksumming. This has the advantage that we do not need to wait
60// for convergence. We can stop at any point and correctness will be
61// guaranteed although not all cases would have been found. However, this
62// has a problem that some cases can never be found even if it is run until
63// convergence. Here is an example with mutually recursive functions :
64//
65// int funcA (int a) int funcB (int a)
66// { {
67// if (a == 1) if (a == 1)
68// return 1; return 1;
69// return 1 + funcB(a - 1); return 1 + funcA(a - 1);
70// } }
71//
72// In this example funcA and funcB are identical and one of them could be
73// folded into the other. However, if we start with assuming that funcA
74// and funcB are not identical, the algorithm, even after it is run to
75// convergence, cannot detect that they are identical. It should be noted
76// that even if the functions were self-recursive, Algorithm I cannot catch
77// that they are identical, at least as is.
78//
79// Algorithm II :
80// ------------
81// Here we start with marking all functions as identical and then repeat
82// the checksumming until convergence. This can detect the above case
83// mentioned above. It can detect all cases that Algorithm I can and more.
84// However, the caveat is that it has to be run to convergence. It cannot
85// be stopped arbitrarily like Algorithm I as correctness cannot be
86// guaranteed. Algorithm II is not implemented.
87//
88// Algorithm I is used because experiments show that about three
89// iterations are more than enough to achieve convergence. Algorithm I can
90// handle recursive calls if it is changed to use a special common symbol
91// for recursive relocs. This seems to be the most common case that
92// Algorithm I could not catch as is. Mutually recursive calls are not
93// frequent and Algorithm I wins because of its ability to be stopped
94// arbitrarily.
95//
96// Caveat with using function pointers :
97// ------------------------------------
98//
99// Programs using function pointer comparisons/checks should use function
100// folding with caution as the result of such comparisons could be different
101// when folding takes place. This could lead to unexpected run-time
102// behaviour.
103//
21bb3914
ST
104// Safe Folding :
105// ------------
106//
107// ICF in safe mode folds only ctors and dtors if their function pointers can
108// never be taken. Also, for X86-64, safe folding uses the relocation
109// type to determine if a function's pointer is taken or not and only folds
110// functions whose pointers are definitely not taken.
111//
112// Caveat with safe folding :
113// ------------------------
114//
115// This applies only to x86_64.
116//
117// Position independent executables are created from PIC objects (compiled
118// with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the
119// relocation types for function pointer taken and a call are the same.
120// Now, it is not always possible to tell if an object used in the link of
121// a pie executable is a PIC object or a PIE object. Hence, for pie
122// executables, using relocation types to disambiguate function pointers is
123// currently disabled.
124//
125// Further, it is not correct to use safe folding to build non-pie
126// executables using PIC/PIE objects. PIC/PIE objects have different
127// relocation types for function pointers than non-PIC objects, and the
128// current implementation of safe folding does not handle those relocation
129// types. Hence, if used, functions whose pointers are taken could still be
130// folded causing unpredictable run-time behaviour if the pointers were used
131// in comparisons.
132//
133//
ef15dade 134//
55a2bb35 135// How to run : --icf=[safe|all|none]
ef15dade
ST
136// Optional parameters : --icf-iterations <num> --print-icf-sections
137//
138// Performance : Less than 20 % link-time overhead on industry strength
139// applications. Up to 6 % text size reductions.
140
141#include "gold.h"
142#include "object.h"
143#include "gc.h"
144#include "icf.h"
145#include "symtab.h"
146#include "libiberty.h"
032ce4e9 147#include "demangle.h"
ef15dade
ST
148
149namespace gold
150{
151
152// This function determines if a section or a group of identical
153// sections has unique contents. Such unique sections or groups can be
154// declared final and need not be processed any further.
155// Parameters :
156// ID_SECTION : Vector mapping a section index to a Section_id pair.
157// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
158// sections is already known to be unique.
159// SECTION_CONTENTS : Contains the section's text and relocs to sections
160// that cannot be folded. SECTION_CONTENTS are NULL
161// implies that this function is being called for the
162// first time before the first iteration of icf.
163
164static void
165preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
166 std::vector<bool>* is_secn_or_group_unique,
167 std::vector<std::string>* section_contents)
168{
169 Unordered_map<uint32_t, unsigned int> uniq_map;
170 std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
171 uniq_map_insert;
172
173 for (unsigned int i = 0; i < id_section.size(); i++)
174 {
175 if ((*is_secn_or_group_unique)[i])
176 continue;
177
178 uint32_t cksum;
179 Section_id secn = id_section[i];
180 section_size_type plen;
181 if (section_contents == NULL)
182 {
183 const unsigned char* contents;
184 contents = secn.first->section_contents(secn.second,
185 &plen,
186 false);
187 cksum = xcrc32(contents, plen, 0xffffffff);
188 }
189 else
190 {
191 const unsigned char* contents_array = reinterpret_cast
192 <const unsigned char*>((*section_contents)[i].c_str());
193 cksum = xcrc32(contents_array, (*section_contents)[i].length(),
194 0xffffffff);
195 }
196 uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
197 if (uniq_map_insert.second)
198 {
199 (*is_secn_or_group_unique)[i] = true;
200 }
201 else
202 {
203 (*is_secn_or_group_unique)[i] = false;
204 (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
205 }
206 }
207}
208
209// This returns the buffer containing the section's contents, both
210// text and relocs. Relocs are differentiated as those pointing to
211// sections that could be folded and those that cannot. Only relocs
212// pointing to sections that could be folded are recomputed on
213// subsequent invocations of this function.
214// Parameters :
215// FIRST_ITERATION : true if it is the first invocation.
216// SECN : Section for which contents are desired.
217// SECTION_NUM : Unique section number of this section.
218// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
219// to ICF sections.
220// KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
221// SECTION_CONTENTS : Store the section's text and relocs to non-ICF
222// sections.
223
224static std::string
225get_section_contents(bool first_iteration,
226 const Section_id& secn,
227 unsigned int section_num,
228 unsigned int* num_tracked_relocs,
229 Symbol_table* symtab,
230 const std::vector<unsigned int>& kept_section_id,
231 std::vector<std::string>* section_contents)
232{
233 section_size_type plen;
234 const unsigned char* contents = NULL;
235
236 if (first_iteration)
237 {
238 contents = secn.first->section_contents(secn.second,
239 &plen,
240 false);
241 }
242
243 // The buffer to hold all the contents including relocs. A checksum
244 // is then computed on this buffer.
245 std::string buffer;
246 std::string icf_reloc_buffer;
247
248 if (num_tracked_relocs)
249 *num_tracked_relocs = 0;
250
b487ad64
ST
251 Icf::Reloc_info_list& reloc_info_list =
252 symtab->icf()->reloc_info_list();
ef15dade 253
b487ad64
ST
254 Icf::Reloc_info_list::iterator it_reloc_info_list =
255 reloc_info_list.find(secn);
ef15dade
ST
256
257 buffer.clear();
258 icf_reloc_buffer.clear();
259
260 // Process relocs and put them into the buffer.
261
b487ad64 262 if (it_reloc_info_list != reloc_info_list.end())
ef15dade 263 {
b487ad64
ST
264 Icf::Sections_reachable_info v =
265 (it_reloc_info_list->second).section_info;
ef38fd8a 266 // Stores the information of the symbol pointed to by the reloc.
b487ad64 267 Icf::Symbol_info s = (it_reloc_info_list->second).symbol_info;
ef38fd8a 268 // Stores the addend and the symbol value.
b487ad64 269 Icf::Addend_info a = (it_reloc_info_list->second).addend_info;
ef38fd8a 270 // Stores the offset of the reloc.
b487ad64
ST
271 Icf::Offset_info o = (it_reloc_info_list->second).offset_info;
272 Icf::Sections_reachable_info::iterator it_v = v.begin();
ef15dade
ST
273 Icf::Symbol_info::iterator it_s = s.begin();
274 Icf::Addend_info::iterator it_a = a.begin();
b487ad64 275 Icf::Offset_info::iterator it_o = o.begin();
ef15dade 276
b487ad64 277 for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o)
ef15dade 278 {
b487ad64
ST
279 // ADDEND_STR stores the symbol value and addend and offset,
280 // each atmost 16 hex digits long. it_a points to a pair
ef15dade
ST
281 // where first is the symbol value and second is the
282 // addend.
b487ad64 283 char addend_str[50];
bb0bfe4f
DK
284
285 // It would be nice if we could use format macros in inttypes.h
286 // here but there are not in ISO/IEC C++ 1998.
287 snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
288 static_cast<long long>((*it_a).first),
289 static_cast<long long>((*it_a).second),
290 static_cast<unsigned long long>(*it_o));
ef38fd8a
ST
291
292 // If the symbol pointed to by the reloc is not in an ordinary
293 // section or if the symbol type is not FROM_OBJECT, then the
294 // object is NULL.
295 if (it_v->first == NULL)
296 {
297 if (first_iteration)
298 {
299 // If the symbol name is available, use it.
300 if ((*it_s) != NULL)
301 buffer.append((*it_s)->name());
302 // Append the addend.
303 buffer.append(addend_str);
304 buffer.append("@");
305 }
306 continue;
307 }
308
ef15dade
ST
309 Section_id reloc_secn(it_v->first, it_v->second);
310
311 // If this reloc turns back and points to the same section,
312 // like a recursive call, use a special symbol to mark this.
313 if (reloc_secn.first == secn.first
314 && reloc_secn.second == secn.second)
315 {
316 if (first_iteration)
317 {
318 buffer.append("R");
319 buffer.append(addend_str);
320 buffer.append("@");
321 }
322 continue;
323 }
324 Icf::Uniq_secn_id_map& section_id_map =
325 symtab->icf()->section_to_int_map();
326 Icf::Uniq_secn_id_map::iterator section_id_map_it =
327 section_id_map.find(reloc_secn);
ce97fa81
ST
328 bool is_sym_preemptible = (*it_s != NULL
329 && !(*it_s)->is_from_dynobj()
330 && !(*it_s)->is_undefined()
331 && (*it_s)->is_preemptible());
332 if (!is_sym_preemptible
333 && section_id_map_it != section_id_map.end())
ef15dade
ST
334 {
335 // This is a reloc to a section that might be folded.
336 if (num_tracked_relocs)
337 (*num_tracked_relocs)++;
338
339 char kept_section_str[10];
340 unsigned int secn_id = section_id_map_it->second;
341 snprintf(kept_section_str, sizeof(kept_section_str), "%u",
342 kept_section_id[secn_id]);
343 if (first_iteration)
344 {
345 buffer.append("ICF_R");
346 buffer.append(addend_str);
347 }
348 icf_reloc_buffer.append(kept_section_str);
349 // Append the addend.
350 icf_reloc_buffer.append(addend_str);
351 icf_reloc_buffer.append("@");
352 }
353 else
354 {
355 // This is a reloc to a section that cannot be folded.
356 // Process it only in the first iteration.
357 if (!first_iteration)
358 continue;
359
360 uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
361 // This reloc points to a merge section. Hash the
362 // contents of this section.
363 if ((secn_flags & elfcpp::SHF_MERGE) != 0)
364 {
365 uint64_t entsize =
366 (it_v->first)->section_entsize(it_v->second);
ce97fa81
ST
367 long long offset = it_a->first;
368
369 unsigned long long addend = it_a->second;
370 // Ignoring the addend when it is a negative value. See the
371 // comments in Merged_symbol_value::Value in object.h.
372 if (addend < 0xffffff00)
373 offset = offset + addend;
374
ef15dade
ST
375 section_size_type secn_len;
376 const unsigned char* str_contents =
377 (it_v->first)->section_contents(it_v->second,
378 &secn_len,
379 false) + offset;
380 if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
381 {
382 // String merge section.
383 const char* str_char =
384 reinterpret_cast<const char*>(str_contents);
385 switch(entsize)
386 {
387 case 1:
388 {
389 buffer.append(str_char);
390 break;
391 }
392 case 2:
393 {
394 const uint16_t* ptr_16 =
395 reinterpret_cast<const uint16_t*>(str_char);
396 unsigned int strlen_16 = 0;
397 // Find the NULL character.
398 while(*(ptr_16 + strlen_16) != 0)
399 strlen_16++;
400 buffer.append(str_char, strlen_16 * 2);
401 }
402 break;
403 case 4:
404 {
405 const uint32_t* ptr_32 =
406 reinterpret_cast<const uint32_t*>(str_char);
407 unsigned int strlen_32 = 0;
408 // Find the NULL character.
409 while(*(ptr_32 + strlen_32) != 0)
410 strlen_32++;
411 buffer.append(str_char, strlen_32 * 4);
412 }
413 break;
414 default:
415 gold_unreachable();
416 }
417 }
418 else
419 {
420 // Use the entsize to determine the length.
421 buffer.append(reinterpret_cast<const
422 char*>(str_contents),
423 entsize);
424 }
d62d0f5f 425 buffer.append("@");
ef15dade
ST
426 }
427 else if ((*it_s) != NULL)
428 {
429 // If symbol name is available use that.
ef38fd8a 430 buffer.append((*it_s)->name());
ef15dade
ST
431 // Append the addend.
432 buffer.append(addend_str);
433 buffer.append("@");
434 }
435 else
436 {
437 // Symbol name is not available, like for a local symbol,
438 // use object and section id.
439 buffer.append(it_v->first->name());
440 char secn_id[10];
441 snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
442 buffer.append(secn_id);
443 // Append the addend.
444 buffer.append(addend_str);
445 buffer.append("@");
446 }
447 }
448 }
449 }
450
451 if (first_iteration)
452 {
453 buffer.append("Contents = ");
454 buffer.append(reinterpret_cast<const char*>(contents), plen);
455 // Store the section contents that dont change to avoid recomputing
456 // during the next call to this function.
457 (*section_contents)[section_num] = buffer;
458 }
459 else
460 {
461 gold_assert(buffer.empty());
462 // Reuse the contents computed in the previous iteration.
463 buffer.append((*section_contents)[section_num]);
464 }
465
466 buffer.append(icf_reloc_buffer);
467 return buffer;
468}
469
470// This function computes a checksum on each section to detect and form
471// groups of identical sections. The first iteration does this for all
472// sections.
473// Further iterations do this only for the kept sections from each group to
474// determine if larger groups of identical sections could be formed. The
475// first section in each group is the kept section for that group.
476//
477// CRC32 is the checksumming algorithm and can have collisions. That is,
478// two sections with different contents can have the same checksum. Hence,
479// a multimap is used to maintain more than one group of checksum
480// identical sections. A section is added to a group only after its
481// contents are explicitly compared with the kept section of the group.
482//
483// Parameters :
484// ITERATION_NUM : Invocation instance of this function.
485// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
486// to ICF sections.
487// KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
488// ID_SECTION : Vector mapping a section to an unique integer.
489// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
490// sectionsis already known to be unique.
491// SECTION_CONTENTS : Store the section's text and relocs to non-ICF
492// sections.
493
494static bool
495match_sections(unsigned int iteration_num,
496 Symbol_table* symtab,
497 std::vector<unsigned int>* num_tracked_relocs,
498 std::vector<unsigned int>* kept_section_id,
499 const std::vector<Section_id>& id_section,
500 std::vector<bool>* is_secn_or_group_unique,
501 std::vector<std::string>* section_contents)
502{
503 Unordered_multimap<uint32_t, unsigned int> section_cksum;
504 std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
505 Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
506 bool converged = true;
507
508 if (iteration_num == 1)
509 preprocess_for_unique_sections(id_section,
510 is_secn_or_group_unique,
511 NULL);
512 else
513 preprocess_for_unique_sections(id_section,
514 is_secn_or_group_unique,
515 section_contents);
516
517 std::vector<std::string> full_section_contents;
518
519 for (unsigned int i = 0; i < id_section.size(); i++)
520 {
521 full_section_contents.push_back("");
522 if ((*is_secn_or_group_unique)[i])
523 continue;
524
525 Section_id secn = id_section[i];
526 std::string this_secn_contents;
527 uint32_t cksum;
528 if (iteration_num == 1)
529 {
530 unsigned int num_relocs = 0;
531 this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
532 symtab, (*kept_section_id),
533 section_contents);
534 (*num_tracked_relocs)[i] = num_relocs;
535 }
536 else
537 {
538 if ((*kept_section_id)[i] != i)
539 {
540 // This section is already folded into something. See
541 // if it should point to a different kept section.
542 unsigned int kept_section = (*kept_section_id)[i];
543 if (kept_section != (*kept_section_id)[kept_section])
544 {
545 (*kept_section_id)[i] = (*kept_section_id)[kept_section];
546 }
547 continue;
548 }
549 this_secn_contents = get_section_contents(false, secn, i, NULL,
550 symtab, (*kept_section_id),
551 section_contents);
552 }
553
554 const unsigned char* this_secn_contents_array =
555 reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
556 cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
557 0xffffffff);
558 size_t count = section_cksum.count(cksum);
559
560 if (count == 0)
561 {
562 // Start a group with this cksum.
563 section_cksum.insert(std::make_pair(cksum, i));
564 full_section_contents[i] = this_secn_contents;
565 }
566 else
567 {
568 key_range = section_cksum.equal_range(cksum);
569 Unordered_multimap<uint32_t, unsigned int>::iterator it;
570 // Search all the groups with this cksum for a match.
571 for (it = key_range.first; it != key_range.second; ++it)
572 {
573 unsigned int kept_section = it->second;
574 if (full_section_contents[kept_section].length()
575 != this_secn_contents.length())
576 continue;
577 if (memcmp(full_section_contents[kept_section].c_str(),
578 this_secn_contents.c_str(),
579 this_secn_contents.length()) != 0)
580 continue;
581 (*kept_section_id)[i] = kept_section;
582 converged = false;
583 break;
584 }
585 if (it == key_range.second)
586 {
587 // Create a new group for this cksum.
588 section_cksum.insert(std::make_pair(cksum, i));
589 full_section_contents[i] = this_secn_contents;
590 }
591 }
592 // If there are no relocs to foldable sections do not process
593 // this section any further.
594 if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
595 (*is_secn_or_group_unique)[i] = true;
596 }
597
598 return converged;
599}
600
032ce4e9
ST
601// During safe icf (--icf=safe), only fold functions that are ctors or dtors.
602// This function returns true if the mangled function name is a ctor or a
603// dtor.
604
605static bool
606is_function_ctor_or_dtor(const char* mangled_func_name)
607{
608 if ((is_prefix_of("_ZN", mangled_func_name)
609 || is_prefix_of("_ZZ", mangled_func_name))
610 && (is_gnu_v3_mangled_ctor(mangled_func_name)
611 || is_gnu_v3_mangled_dtor(mangled_func_name)))
612 {
613 return true;
614 }
615 return false;
616}
ef15dade
ST
617
618// This is the main ICF function called in gold.cc. This does the
619// initialization and calls match_sections repeatedly (twice by default)
620// which computes the crc checksums and detects identical functions.
621
622void
623Icf::find_identical_sections(const Input_objects* input_objects,
624 Symbol_table* symtab)
625{
626 unsigned int section_num = 0;
2ea97941 627 std::vector<unsigned int> num_tracked_relocs;
ef15dade
ST
628 std::vector<bool> is_secn_or_group_unique;
629 std::vector<std::string> section_contents;
21bb3914 630 const Target& target = parameters->target();
ef15dade
ST
631
632 // Decide which sections are possible candidates first.
633
634 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
635 p != input_objects->relobj_end();
636 ++p)
637 {
638 for (unsigned int i = 0;i < (*p)->shnum(); ++i)
639 {
032ce4e9 640 const char* section_name = (*p)->section_name(i).c_str();
55a2bb35 641 if (!is_section_foldable_candidate(section_name))
ef15dade
ST
642 continue;
643 if (!(*p)->is_section_included(i))
644 continue;
645 if (parameters->options().gc_sections()
646 && symtab->gc()->is_section_garbage(*p, i))
647 continue;
21bb3914
ST
648 const char* mangled_func_name = strrchr(section_name, '.');
649 gold_assert(mangled_func_name != NULL);
55a2bb35
ST
650 // With --icf=safe, check if the mangled function name is a ctor
651 // or a dtor. The mangled function name can be obtained from the
652 // section name by stripping the section prefix.
032ce4e9 653 if (parameters->options().icf_safe_folding()
21bb3914
ST
654 && !is_function_ctor_or_dtor(mangled_func_name + 1)
655 && (!target.can_check_for_function_pointers()
656 || section_has_function_pointers(*p, i)))
657 {
658 continue;
659 }
ef15dade
ST
660 this->id_section_.push_back(Section_id(*p, i));
661 this->section_id_[Section_id(*p, i)] = section_num;
662 this->kept_section_id_.push_back(section_num);
2ea97941 663 num_tracked_relocs.push_back(0);
ef15dade
ST
664 is_secn_or_group_unique.push_back(false);
665 section_contents.push_back("");
666 section_num++;
667 }
668 }
669
670 unsigned int num_iterations = 0;
671
672 // Default number of iterations to run ICF is 2.
673 unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
674 ? parameters->options().icf_iterations()
675 : 2;
676
677 bool converged = false;
678
679 while (!converged && (num_iterations < max_iterations))
680 {
681 num_iterations++;
682 converged = match_sections(num_iterations, symtab,
2ea97941 683 &num_tracked_relocs, &this->kept_section_id_,
ef15dade
ST
684 this->id_section_, &is_secn_or_group_unique,
685 &section_contents);
686 }
687
688 if (parameters->options().print_icf_sections())
689 {
690 if (converged)
691 gold_info(_("%s: ICF Converged after %u iteration(s)"),
692 program_name, num_iterations);
693 else
694 gold_info(_("%s: ICF stopped after %u iteration(s)"),
695 program_name, num_iterations);
696 }
697
48c187ce
ST
698 // Unfold --keep-unique symbols.
699 for (options::String_set::const_iterator p =
700 parameters->options().keep_unique_begin();
701 p != parameters->options().keep_unique_end();
702 ++p)
703 {
704 const char* name = p->c_str();
705 Symbol* sym = symtab->lookup(name);
ef5e0cb1
ST
706 if (sym == NULL)
707 {
708 gold_warning(_("Could not find symbol %s to unfold\n"), name);
709 }
710 else if (sym->source() == Symbol::FROM_OBJECT
711 && !sym->object()->is_dynamic())
48c187ce
ST
712 {
713 Object* obj = sym->object();
714 bool is_ordinary;
715 unsigned int shndx = sym->shndx(&is_ordinary);
716 if (is_ordinary)
717 {
718 this->unfold_section(obj, shndx);
719 }
720 }
721
722 }
723
ef15dade
ST
724 this->icf_ready();
725}
726
48c187ce
ST
727// Unfolds the section denoted by OBJ and SHNDX if folded.
728
729void
730Icf::unfold_section(Object* obj, unsigned int shndx)
731{
732 Section_id secn(obj, shndx);
733 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
734 if (it == this->section_id_.end())
735 return;
736 unsigned int section_num = it->second;
737 unsigned int kept_section_id = this->kept_section_id_[section_num];
738 if (kept_section_id != section_num)
739 this->kept_section_id_[section_num] = section_num;
740}
741
ef15dade
ST
742// This function determines if the section corresponding to the
743// given object and index is folded based on if the kept section
744// is different from this section.
745
746bool
747Icf::is_section_folded(Object* obj, unsigned int shndx)
748{
749 Section_id secn(obj, shndx);
750 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
751 if (it == this->section_id_.end())
752 return false;
753 unsigned int section_num = it->second;
754 unsigned int kept_section_id = this->kept_section_id_[section_num];
755 return kept_section_id != section_num;
756}
757
758// This function returns the folded section for the given section.
759
760Section_id
761Icf::get_folded_section(Object* dup_obj, unsigned int dup_shndx)
762{
763 Section_id dup_secn(dup_obj, dup_shndx);
764 Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
765 gold_assert(it != this->section_id_.end());
766 unsigned int section_num = it->second;
767 unsigned int kept_section_id = this->kept_section_id_[section_num];
768 Section_id folded_section = this->id_section_[kept_section_id];
769 return folded_section;
770}
771
772} // End of namespace gold.
This page took 0.095194 seconds and 4 git commands to generate.