2012-08-10 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
88597d34 3// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
4e9d8586 30#include <sys/stat.h>
75f65a3e 31#include <algorithm>
88597d34
ILT
32
33#ifdef HAVE_SYS_MMAN_H
34#include <sys/mman.h>
35#endif
36
6a89f575 37#include "libiberty.h"
a2fb1b05 38
8ea8cd50 39#include "dwarf.h"
7e1edb90 40#include "parameters.h"
a2fb1b05 41#include "object.h"
ead1e424
ILT
42#include "symtab.h"
43#include "reloc.h"
b8e6aad9 44#include "merge.h"
2a00e4fb 45#include "descriptors.h"
5393d741 46#include "layout.h"
a2fb1b05
ILT
47#include "output.h"
48
88597d34
ILT
49// For systems without mmap support.
50#ifndef HAVE_MMAP
51# define mmap gold_mmap
52# define munmap gold_munmap
53# define mremap gold_mremap
54# ifndef MAP_FAILED
55# define MAP_FAILED (reinterpret_cast<void*>(-1))
56# endif
57# ifndef PROT_READ
58# define PROT_READ 0
59# endif
60# ifndef PROT_WRITE
61# define PROT_WRITE 0
62# endif
63# ifndef MAP_PRIVATE
64# define MAP_PRIVATE 0
65# endif
66# ifndef MAP_ANONYMOUS
67# define MAP_ANONYMOUS 0
68# endif
69# ifndef MAP_SHARED
70# define MAP_SHARED 0
71# endif
72
73# ifndef ENOSYS
74# define ENOSYS EINVAL
75# endif
76
77static void *
78gold_mmap(void *, size_t, int, int, int, off_t)
79{
80 errno = ENOSYS;
81 return MAP_FAILED;
82}
83
84static int
85gold_munmap(void *, size_t)
86{
87 errno = ENOSYS;
88 return -1;
89}
90
91static void *
92gold_mremap(void *, size_t, size_t, int)
93{
94 errno = ENOSYS;
95 return MAP_FAILED;
96}
97
98#endif
99
100#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101# define mremap gold_mremap
102extern "C" void *gold_mremap(void *, size_t, size_t, int);
103#endif
104
c420411f
ILT
105// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106#ifndef MAP_ANONYMOUS
107# define MAP_ANONYMOUS MAP_ANON
108#endif
109
88597d34
ILT
110#ifndef MREMAP_MAYMOVE
111# define MREMAP_MAYMOVE 1
112#endif
113
d0a9ace3
ILT
114// Mingw does not have S_ISLNK.
115#ifndef S_ISLNK
116# define S_ISLNK(mode) 0
117#endif
118
a2fb1b05
ILT
119namespace gold
120{
121
7c0640fa
CC
122// A wrapper around posix_fallocate. If we don't have posix_fallocate,
123// or the --no-posix-fallocate option is set, we try the fallocate
124// system call directly. If that fails, we use ftruncate to set
125// the file size and hope that there is enough disk space.
126
127static int
128gold_fallocate(int o, off_t offset, off_t len)
129{
130#ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133#endif // defined(HAVE_POSIX_FALLOCATE)
134#ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137#endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141}
142
a3ad94ed
ILT
143// Output_data variables.
144
27bc2bce 145bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 146
a2fb1b05
ILT
147// Output_data methods.
148
149Output_data::~Output_data()
150{
151}
152
730cdc88
ILT
153// Return the default alignment for the target size.
154
155uint64_t
156Output_data::default_alignment()
157{
8851ecca
ILT
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
730cdc88
ILT
160}
161
75f65a3e
ILT
162// Return the default alignment for a size--32 or 64.
163
164uint64_t
730cdc88 165Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
166{
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
a3ad94ed 172 gold_unreachable();
75f65a3e
ILT
173}
174
75f65a3e
ILT
175// Output_section_header methods. This currently assumes that the
176// segment and section lists are complete at construction time.
177
178Output_section_headers::Output_section_headers(
16649710
ILT
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
6a74a719 181 const Layout::Section_list* section_list,
16649710 182 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
9025d29d 185 : layout_(layout),
75f65a3e 186 segment_list_(segment_list),
6a74a719 187 section_list_(section_list),
a3ad94ed 188 unattached_section_list_(unattached_section_list),
d491d34e
ILT
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
191{
192}
193
194// Compute the current data size.
195
196off_t
197Output_section_headers::do_size() const
75f65a3e 198{
61ba1cf9
ILT
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
8851ecca 201 if (!parameters->options().relocatable())
6a74a719 202 {
20e6d0d6
DK
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
6a74a719
ILT
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
20e6d0d6
DK
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
6a74a719
ILT
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
20e6d0d6 219 count += this->unattached_section_list_->size();
75f65a3e 220
8851ecca 221 const int size = parameters->target().get_size();
75f65a3e
ILT
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
a3ad94ed 228 gold_unreachable();
75f65a3e 229
20e6d0d6 230 return count * shdr_size;
75f65a3e
ILT
231}
232
61ba1cf9
ILT
233// Write out the section headers.
234
75f65a3e 235void
61ba1cf9 236Output_section_headers::do_write(Output_file* of)
a2fb1b05 237{
8851ecca 238 switch (parameters->size_and_endianness())
61ba1cf9 239 {
9025d29d 240#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
9025d29d 244#endif
8851ecca
ILT
245#ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
9025d29d 249#endif
9025d29d 250#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
9025d29d 254#endif
8851ecca
ILT
255#ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259#endif
260 default:
261 gold_unreachable();
61ba1cf9 262 }
61ba1cf9
ILT
263}
264
265template<int size, bool big_endian>
266void
267Output_section_headers::do_sized_write(Output_file* of)
268{
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
d491d34e
ILT
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
5696ab0b
ILT
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
61ba1cf9
ILT
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
6a74a719 305 unsigned int shndx = 1;
8851ecca 306 if (!parameters->options().relocatable())
6a74a719
ILT
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
a3ad94ed 337 for (Layout::Section_list::const_iterator p =
16649710
ILT
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
61ba1cf9
ILT
340 ++p)
341 {
6a74a719
ILT
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 345 && parameters->options().relocatable())
6a74a719 346 continue;
a3ad94ed 347 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 350 v += shdr_size;
ead1e424 351 ++shndx;
61ba1cf9
ILT
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
355}
356
54dc6425
ILT
357// Output_segment_header methods.
358
61ba1cf9 359Output_segment_headers::Output_segment_headers(
61ba1cf9 360 const Layout::Segment_list& segment_list)
9025d29d 361 : segment_list_(segment_list)
61ba1cf9 362{
cdc29364 363 this->set_current_data_size_for_child(this->do_size());
61ba1cf9
ILT
364}
365
54dc6425 366void
61ba1cf9 367Output_segment_headers::do_write(Output_file* of)
75f65a3e 368{
8851ecca 369 switch (parameters->size_and_endianness())
61ba1cf9 370 {
9025d29d 371#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
9025d29d 375#endif
8851ecca
ILT
376#ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
9025d29d 380#endif
9025d29d 381#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
9025d29d 385#endif
8851ecca
ILT
386#ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390#endif
391 default:
392 gold_unreachable();
61ba1cf9 393 }
61ba1cf9
ILT
394}
395
396template<int size, bool big_endian>
397void
398Output_segment_headers::do_sized_write(Output_file* of)
399{
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 402 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
a445fddf
ILT
415 gold_assert(v - view == all_phdrs_size);
416
61ba1cf9 417 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
418}
419
20e6d0d6
DK
420off_t
421Output_segment_headers::do_size() const
422{
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433}
434
75f65a3e
ILT
435// Output_file_header methods.
436
9025d29d 437Output_file_header::Output_file_header(const Target* target,
75f65a3e 438 const Symbol_table* symtab,
a10ae760 439 const Output_segment_headers* osh)
9025d29d 440 : target_(target),
75f65a3e 441 symtab_(symtab),
61ba1cf9 442 segment_header_(osh),
75f65a3e 443 section_header_(NULL),
a10ae760 444 shstrtab_(NULL)
75f65a3e 445{
20e6d0d6 446 this->set_data_size(this->do_size());
75f65a3e
ILT
447}
448
449// Set the section table information for a file header.
450
451void
452Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454{
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457}
458
459// Write out the file header.
460
461void
61ba1cf9 462Output_file_header::do_write(Output_file* of)
54dc6425 463{
27bc2bce
ILT
464 gold_assert(this->offset() == 0);
465
8851ecca 466 switch (parameters->size_and_endianness())
61ba1cf9 467 {
9025d29d 468#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
9025d29d 472#endif
8851ecca
ILT
473#ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
9025d29d 477#endif
9025d29d 478#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
9025d29d 482#endif
8851ecca
ILT
483#ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487#endif
488 default:
489 gold_unreachable();
61ba1cf9 490 }
61ba1cf9
ILT
491}
492
cc643b88 493// Write out the file header with appropriate size and endianness.
61ba1cf9
ILT
494
495template<int size, bool big_endian>
496void
497Output_file_header::do_sized_write(Output_file* of)
498{
a3ad94ed 499 gold_assert(this->offset() == 0);
61ba1cf9
ILT
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
a3ad94ed 516 gold_unreachable();
61ba1cf9
ILT
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
8851ecca 524 if (parameters->options().relocatable())
61ba1cf9 525 e_type = elfcpp::ET_REL;
374ad285 526 else if (parameters->options().output_is_position_independent())
436ca963 527 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
d391083d 535 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 536
6a74a719
ILT
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
61ba1cf9 542 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 543 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
6a74a719
ILT
559 }
560
61ba1cf9 561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 576
36959681
ILT
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 parameters->target().adjust_elf_header(view, ehdr_size);
580
61ba1cf9 581 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
582}
583
a10ae760 584// Return the value to use for the entry address.
d391083d
ILT
585
586template<int size>
587typename elfcpp::Elf_types<size>::Elf_Addr
588Output_file_header::entry()
589{
a10ae760 590 const bool should_issue_warning = (parameters->options().entry() != NULL
8851ecca
ILT
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
a10ae760 593 const char* entry = parameters->entry();
2ea97941 594 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
2ea97941 602 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
2ea97941 610 v = strtoull(entry, &endptr, 0);
d391083d
ILT
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
2ea97941 614 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
615 v = 0;
616 }
617 }
618
619 return v;
620}
621
20e6d0d6
DK
622// Compute the current data size.
623
624off_t
625Output_file_header::do_size() const
626{
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634}
635
dbe717ef
ILT
636// Output_data_const methods.
637
638void
a3ad94ed 639Output_data_const::do_write(Output_file* of)
dbe717ef 640{
a3ad94ed
ILT
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642}
643
644// Output_data_const_buffer methods.
645
646void
647Output_data_const_buffer::do_write(Output_file* of)
648{
649 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
650}
651
652// Output_section_data methods.
653
16649710
ILT
654// Record the output section, and set the entry size and such.
655
656void
657Output_section_data::set_output_section(Output_section* os)
658{
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662}
663
664// Return the section index of the output section.
665
dbe717ef
ILT
666unsigned int
667Output_section_data::do_out_shndx() const
668{
a3ad94ed 669 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
670 return this->output_section_->out_shndx();
671}
672
759b1a24
ILT
673// Set the alignment, which means we may need to update the alignment
674// of the output section.
675
676void
2ea97941 677Output_section_data::set_addralign(uint64_t addralign)
759b1a24 678{
2ea97941 679 this->addralign_ = addralign;
759b1a24 680 if (this->output_section_ != NULL
2ea97941
ILT
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
759b1a24
ILT
683}
684
a3ad94ed
ILT
685// Output_data_strtab methods.
686
27bc2bce 687// Set the final data size.
a3ad94ed
ILT
688
689void
27bc2bce 690Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
691{
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694}
695
696// Write out a string table.
697
698void
699Output_data_strtab::do_write(Output_file* of)
700{
701 this->strtab_->write(of, this->offset());
702}
703
c06b7b0b
ILT
704// Output_reloc methods.
705
7bf1f802
ILT
706// A reloc against a global symbol.
707
708template<bool dynamic, int size, bool big_endian>
709Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
e8c846c3 713 Address address,
0da6fa6c 714 bool is_relative,
13cf9988
DM
715 bool is_symbolless,
716 bool use_plt_offset)
7bf1f802 717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 718 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
7bf1f802 720{
dceae3c1
ILT
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
7bf1f802
ILT
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
dceae3c1
ILT
725 if (dynamic)
726 this->set_needs_dynsym_index();
7bf1f802
ILT
727}
728
729template<bool dynamic, int size, bool big_endian>
730Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
ef9beddf 733 Sized_relobj<size, big_endian>* relobj,
7bf1f802 734 unsigned int shndx,
e8c846c3 735 Address address,
0da6fa6c 736 bool is_relative,
13cf9988
DM
737 bool is_symbolless,
738 bool use_plt_offset)
7bf1f802 739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 740 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
7bf1f802
ILT
742{
743 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
7bf1f802
ILT
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
dceae3c1
ILT
748 if (dynamic)
749 this->set_needs_dynsym_index();
7bf1f802
ILT
750}
751
752// A reloc against a local symbol.
753
754template<bool dynamic, int size, bool big_endian>
755Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
e8c846c3 760 Address address,
2ea97941 761 bool is_relative,
0da6fa6c 762 bool is_symbolless,
397b129b
CC
763 bool is_section_symbol,
764 bool use_plt_offset)
7bf1f802 765 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 766 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
7bf1f802
ILT
769{
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
7bf1f802
ILT
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
dceae3c1
ILT
776 if (dynamic)
777 this->set_needs_dynsym_index();
7bf1f802
ILT
778}
779
780template<bool dynamic, int size, bool big_endian>
781Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
e8c846c3 786 Address address,
2ea97941 787 bool is_relative,
0da6fa6c 788 bool is_symbolless,
397b129b
CC
789 bool is_section_symbol,
790 bool use_plt_offset)
7bf1f802 791 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 792 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
7bf1f802
ILT
795{
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
7bf1f802
ILT
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
dceae3c1
ILT
803 if (dynamic)
804 this->set_needs_dynsym_index();
7bf1f802
ILT
805}
806
807// A reloc against the STT_SECTION symbol of an output section.
808
809template<bool dynamic, int size, bool big_endian>
810Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address)
815 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c 816 is_relative_(false), is_symbolless_(false),
397b129b 817 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
7bf1f802 818{
dceae3c1
ILT
819 // this->type_ is a bitfield; make sure TYPE fits.
820 gold_assert(this->type_ == type);
7bf1f802
ILT
821 this->u1_.os = os;
822 this->u2_.od = od;
823 if (dynamic)
dceae3c1
ILT
824 this->set_needs_dynsym_index();
825 else
826 os->set_needs_symtab_index();
7bf1f802
ILT
827}
828
829template<bool dynamic, int size, bool big_endian>
830Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
831 Output_section* os,
832 unsigned int type,
ef9beddf 833 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
834 unsigned int shndx,
835 Address address)
836 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c 837 is_relative_(false), is_symbolless_(false),
397b129b 838 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
7bf1f802
ILT
839{
840 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
841 // this->type_ is a bitfield; make sure TYPE fits.
842 gold_assert(this->type_ == type);
7bf1f802
ILT
843 this->u1_.os = os;
844 this->u2_.relobj = relobj;
845 if (dynamic)
dceae3c1
ILT
846 this->set_needs_dynsym_index();
847 else
848 os->set_needs_symtab_index();
849}
850
e291e7b9
ILT
851// An absolute relocation.
852
853template<bool dynamic, int size, bool big_endian>
854Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855 unsigned int type,
856 Output_data* od,
857 Address address)
858 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c 859 is_relative_(false), is_symbolless_(false),
397b129b 860 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
861{
862 // this->type_ is a bitfield; make sure TYPE fits.
863 gold_assert(this->type_ == type);
864 this->u1_.relobj = NULL;
865 this->u2_.od = od;
866}
867
868template<bool dynamic, int size, bool big_endian>
869Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
870 unsigned int type,
871 Sized_relobj<size, big_endian>* relobj,
872 unsigned int shndx,
873 Address address)
874 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c 875 is_relative_(false), is_symbolless_(false),
397b129b 876 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
877{
878 gold_assert(shndx != INVALID_CODE);
879 // this->type_ is a bitfield; make sure TYPE fits.
880 gold_assert(this->type_ == type);
881 this->u1_.relobj = NULL;
882 this->u2_.relobj = relobj;
883}
884
885// A target specific relocation.
886
887template<bool dynamic, int size, bool big_endian>
888Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
889 unsigned int type,
890 void* arg,
891 Output_data* od,
892 Address address)
893 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 894 is_relative_(false), is_symbolless_(false),
397b129b 895 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
896{
897 // this->type_ is a bitfield; make sure TYPE fits.
898 gold_assert(this->type_ == type);
899 this->u1_.arg = arg;
900 this->u2_.od = od;
901}
902
903template<bool dynamic, int size, bool big_endian>
904Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
905 unsigned int type,
906 void* arg,
907 Sized_relobj<size, big_endian>* relobj,
908 unsigned int shndx,
909 Address address)
910 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 911 is_relative_(false), is_symbolless_(false),
397b129b 912 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
913{
914 gold_assert(shndx != INVALID_CODE);
915 // this->type_ is a bitfield; make sure TYPE fits.
916 gold_assert(this->type_ == type);
917 this->u1_.arg = arg;
918 this->u2_.relobj = relobj;
919}
920
dceae3c1
ILT
921// Record that we need a dynamic symbol index for this relocation.
922
923template<bool dynamic, int size, bool big_endian>
924void
925Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
926set_needs_dynsym_index()
927{
0da6fa6c 928 if (this->is_symbolless_)
dceae3c1
ILT
929 return;
930 switch (this->local_sym_index_)
931 {
932 case INVALID_CODE:
933 gold_unreachable();
934
935 case GSYM_CODE:
936 this->u1_.gsym->set_needs_dynsym_entry();
937 break;
938
939 case SECTION_CODE:
940 this->u1_.os->set_needs_dynsym_index();
941 break;
942
e291e7b9
ILT
943 case TARGET_CODE:
944 // The target must take care of this if necessary.
945 break;
946
dceae3c1
ILT
947 case 0:
948 break;
949
950 default:
951 {
952 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
953 Sized_relobj_file<size, big_endian>* relobj =
954 this->u1_.relobj->sized_relobj();
955 gold_assert(relobj != NULL);
dceae3c1 956 if (!this->is_section_symbol_)
6fa2a40b 957 relobj->set_needs_output_dynsym_entry(lsi);
dceae3c1 958 else
6fa2a40b 959 relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
960 }
961 break;
962 }
7bf1f802
ILT
963}
964
c06b7b0b
ILT
965// Get the symbol index of a relocation.
966
967template<bool dynamic, int size, bool big_endian>
968unsigned int
969Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
970 const
971{
972 unsigned int index;
0da6fa6c
DM
973 if (this->is_symbolless_)
974 return 0;
c06b7b0b
ILT
975 switch (this->local_sym_index_)
976 {
977 case INVALID_CODE:
a3ad94ed 978 gold_unreachable();
c06b7b0b
ILT
979
980 case GSYM_CODE:
5a6f7e2d 981 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
982 index = 0;
983 else if (dynamic)
5a6f7e2d 984 index = this->u1_.gsym->dynsym_index();
c06b7b0b 985 else
5a6f7e2d 986 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
987 break;
988
989 case SECTION_CODE:
990 if (dynamic)
5a6f7e2d 991 index = this->u1_.os->dynsym_index();
c06b7b0b 992 else
5a6f7e2d 993 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
994 break;
995
e291e7b9
ILT
996 case TARGET_CODE:
997 index = parameters->target().reloc_symbol_index(this->u1_.arg,
998 this->type_);
999 break;
1000
436ca963
ILT
1001 case 0:
1002 // Relocations without symbols use a symbol index of 0.
1003 index = 0;
1004 break;
1005
c06b7b0b 1006 default:
dceae3c1
ILT
1007 {
1008 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1009 Sized_relobj_file<size, big_endian>* relobj =
1010 this->u1_.relobj->sized_relobj();
1011 gold_assert(relobj != NULL);
dceae3c1
ILT
1012 if (!this->is_section_symbol_)
1013 {
1014 if (dynamic)
6fa2a40b 1015 index = relobj->dynsym_index(lsi);
dceae3c1 1016 else
6fa2a40b 1017 index = relobj->symtab_index(lsi);
dceae3c1
ILT
1018 }
1019 else
1020 {
6fa2a40b 1021 Output_section* os = relobj->output_section(lsi);
dceae3c1
ILT
1022 gold_assert(os != NULL);
1023 if (dynamic)
1024 index = os->dynsym_index();
1025 else
1026 index = os->symtab_index();
1027 }
1028 }
c06b7b0b
ILT
1029 break;
1030 }
a3ad94ed 1031 gold_assert(index != -1U);
c06b7b0b
ILT
1032 return index;
1033}
1034
624f8810
ILT
1035// For a local section symbol, get the address of the offset ADDEND
1036// within the input section.
dceae3c1
ILT
1037
1038template<bool dynamic, int size, bool big_endian>
ef9beddf 1039typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 1040Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 1041 local_section_offset(Addend addend) const
dceae3c1 1042{
624f8810
ILT
1043 gold_assert(this->local_sym_index_ != GSYM_CODE
1044 && this->local_sym_index_ != SECTION_CODE
e291e7b9 1045 && this->local_sym_index_ != TARGET_CODE
624f8810 1046 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1047 && this->local_sym_index_ != 0
624f8810 1048 && this->is_section_symbol_);
dceae3c1 1049 const unsigned int lsi = this->local_sym_index_;
ef9beddf 1050 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 1051 gold_assert(os != NULL);
ef9beddf 1052 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 1053 if (offset != invalid_address)
624f8810
ILT
1054 return offset + addend;
1055 // This is a merge section.
6fa2a40b
CC
1056 Sized_relobj_file<size, big_endian>* relobj =
1057 this->u1_.relobj->sized_relobj();
1058 gold_assert(relobj != NULL);
1059 offset = os->output_address(relobj, lsi, addend);
eff45813 1060 gold_assert(offset != invalid_address);
dceae3c1
ILT
1061 return offset;
1062}
1063
d98bc257 1064// Get the output address of a relocation.
c06b7b0b
ILT
1065
1066template<bool dynamic, int size, bool big_endian>
a984ee1d 1067typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 1068Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 1069{
a3ad94ed 1070 Address address = this->address_;
5a6f7e2d
ILT
1071 if (this->shndx_ != INVALID_CODE)
1072 {
ef9beddf 1073 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 1074 gold_assert(os != NULL);
ef9beddf 1075 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 1076 if (off != invalid_address)
730cdc88
ILT
1077 address += os->address() + off;
1078 else
1079 {
6fa2a40b
CC
1080 Sized_relobj_file<size, big_endian>* relobj =
1081 this->u2_.relobj->sized_relobj();
1082 gold_assert(relobj != NULL);
1083 address = os->output_address(relobj, this->shndx_, address);
eff45813 1084 gold_assert(address != invalid_address);
730cdc88 1085 }
5a6f7e2d
ILT
1086 }
1087 else if (this->u2_.od != NULL)
1088 address += this->u2_.od->address();
d98bc257
ILT
1089 return address;
1090}
1091
1092// Write out the offset and info fields of a Rel or Rela relocation
1093// entry.
1094
1095template<bool dynamic, int size, bool big_endian>
1096template<typename Write_rel>
1097void
1098Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1099 Write_rel* wr) const
1100{
1101 wr->put_r_offset(this->get_address());
0da6fa6c 1102 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1103 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1104}
1105
1106// Write out a Rel relocation.
1107
1108template<bool dynamic, int size, bool big_endian>
1109void
1110Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1111 unsigned char* pov) const
1112{
1113 elfcpp::Rel_write<size, big_endian> orel(pov);
1114 this->write_rel(&orel);
1115}
1116
e8c846c3
ILT
1117// Get the value of the symbol referred to by a Rel relocation.
1118
1119template<bool dynamic, int size, bool big_endian>
1120typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1121Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1122 Addend addend) const
e8c846c3
ILT
1123{
1124 if (this->local_sym_index_ == GSYM_CODE)
1125 {
1126 const Sized_symbol<size>* sym;
1127 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
13cf9988
DM
1128 if (this->use_plt_offset_ && sym->has_plt_offset())
1129 {
1130 uint64_t plt_address =
1131 parameters->target().plt_address_for_global(sym);
1132 return plt_address + sym->plt_offset();
1133 }
1134 else
1135 return sym->value() + addend;
e8c846c3
ILT
1136 }
1137 gold_assert(this->local_sym_index_ != SECTION_CODE
e291e7b9 1138 && this->local_sym_index_ != TARGET_CODE
d1f003c6 1139 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1140 && this->local_sym_index_ != 0
d1f003c6
ILT
1141 && !this->is_section_symbol_);
1142 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1143 Sized_relobj_file<size, big_endian>* relobj =
1144 this->u1_.relobj->sized_relobj();
1145 gold_assert(relobj != NULL);
397b129b
CC
1146 if (this->use_plt_offset_)
1147 {
1148 uint64_t plt_address =
1149 parameters->target().plt_address_for_local(relobj, lsi);
1150 return plt_address + relobj->local_plt_offset(lsi);
1151 }
6fa2a40b
CC
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
e8c846c3
ILT
1154}
1155
d98bc257
ILT
1156// Reloc comparison. This function sorts the dynamic relocs for the
1157// benefit of the dynamic linker. First we sort all relative relocs
1158// to the front. Among relative relocs, we sort by output address.
1159// Among non-relative relocs, we sort by symbol index, then by output
1160// address.
1161
1162template<bool dynamic, int size, bool big_endian>
1163int
1164Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167{
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205}
1206
c06b7b0b
ILT
1207// Write out a Rela relocation.
1208
1209template<bool dynamic, int size, bool big_endian>
1210void
1211Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213{
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
e8c846c3 1216 Addend addend = this->addend_;
e291e7b9
ILT
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
0da6fa6c 1220 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
624f8810 1223 addend = this->rel_.local_section_offset(addend);
e8c846c3 1224 orel.put_r_addend(addend);
c06b7b0b
ILT
1225}
1226
1227// Output_data_reloc_base methods.
1228
16649710
ILT
1229// Adjust the output section.
1230
1231template<int sh_type, bool dynamic, int size, bool big_endian>
1232void
1233Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235{
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
7223e9ca
ILT
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
16649710 1248 os->set_should_link_to_symtab();
7223e9ca
ILT
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
16649710
ILT
1253}
1254
c06b7b0b
ILT
1255// Write out relocation data.
1256
1257template<int sh_type, bool dynamic, int size, bool big_endian>
1258void
1259Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260 Output_file* of)
1261{
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1265
3a44184e 1266 if (this->sort_relocs())
d98bc257
ILT
1267 {
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1271 }
1272
c06b7b0b
ILT
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1276 ++p)
1277 {
1278 p->write(pov);
1279 pov += reloc_size;
1280 }
1281
a3ad94ed 1282 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1283
1284 of->write_output_view(off, oview_size, oview);
1285
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1288}
1289
6a74a719
ILT
1290// Class Output_relocatable_relocs.
1291
1292template<int sh_type, int size, bool big_endian>
1293void
1294Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295{
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298}
1299
1300// class Output_data_group.
1301
1302template<int size, bool big_endian>
1303Output_data_group<size, big_endian>::Output_data_group(
6fa2a40b 1304 Sized_relobj_file<size, big_endian>* relobj,
6a74a719 1305 section_size_type entry_count,
8825ac63
ILT
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1308 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1309 relobj_(relobj),
1310 flags_(flags)
6a74a719 1311{
8825ac63 1312 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1313}
1314
1315// Write out the section group, which means translating the section
1316// indexes to apply to the output file.
1317
1318template<int size, bool big_endian>
1319void
1320Output_data_group<size, big_endian>::do_write(Output_file* of)
1321{
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329 ++contents;
1330
1331 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
6a74a719
ILT
1334 ++p, ++contents)
1335 {
ef9beddf 1336 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1337
1338 unsigned int output_shndx;
1339 if (os != NULL)
1340 output_shndx = os->out_shndx();
1341 else
1342 {
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1345 output_shndx = 0;
1346 }
1347
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349 }
1350
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1353
1354 of->write_output_view(off, oview_size, oview);
1355
1356 // We no longer need this information.
8825ac63 1357 this->input_shndxes_.clear();
6a74a719
ILT
1358}
1359
dbe717ef 1360// Output_data_got::Got_entry methods.
ead1e424
ILT
1361
1362// Write out the entry.
1363
1364template<int size, bool big_endian>
1365void
7e1edb90 1366Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1367{
1368 Valtype val = 0;
1369
1370 switch (this->local_sym_index_)
1371 {
1372 case GSYM_CODE:
1373 {
e8c846c3
ILT
1374 // If the symbol is resolved locally, we need to write out the
1375 // link-time value, which will be relocated dynamically by a
1376 // RELATIVE relocation.
ead1e424 1377 Symbol* gsym = this->u_.gsym;
7223e9ca 1378 if (this->use_plt_offset_ && gsym->has_plt_offset())
67181c72 1379 val = (parameters->target().plt_address_for_global(gsym)
7223e9ca
ILT
1380 + gsym->plt_offset());
1381 else
1382 {
1383 Sized_symbol<size>* sgsym;
1384 // This cast is a bit ugly. We don't want to put a
1385 // virtual method in Symbol, because we want Symbol to be
1386 // as small as possible.
1387 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1388 val = sgsym->value();
1389 }
ead1e424
ILT
1390 }
1391 break;
1392
1393 case CONSTANT_CODE:
1394 val = this->u_.constant;
1395 break;
1396
4829d394
CC
1397 case RESERVED_CODE:
1398 // If we're doing an incremental update, don't touch this GOT entry.
1399 if (parameters->incremental_update())
1400 return;
1401 val = this->u_.constant;
1402 break;
1403
ead1e424 1404 default:
d1f003c6 1405 {
83896202 1406 const Relobj* object = this->u_.object;
d1f003c6 1407 const unsigned int lsi = this->local_sym_index_;
7223e9ca 1408 if (!this->use_plt_offset_)
83896202
ILT
1409 {
1410 uint64_t lval = object->local_symbol_value(lsi, 0);
1411 val = convert_types<Valtype, uint64_t>(lval);
1412 }
7223e9ca
ILT
1413 else
1414 {
67181c72
ILT
1415 uint64_t plt_address =
1416 parameters->target().plt_address_for_local(object, lsi);
1417 val = plt_address + object->local_plt_offset(lsi);
7223e9ca 1418 }
d1f003c6 1419 }
e727fa71 1420 break;
ead1e424
ILT
1421 }
1422
a3ad94ed 1423 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1424}
1425
dbe717ef 1426// Output_data_got methods.
ead1e424 1427
dbe717ef
ILT
1428// Add an entry for a global symbol to the GOT. This returns true if
1429// this is a new GOT entry, false if the symbol already had a GOT
1430// entry.
1431
1432template<int size, bool big_endian>
1433bool
0a65a3a7
CC
1434Output_data_got<size, big_endian>::add_global(
1435 Symbol* gsym,
1436 unsigned int got_type)
ead1e424 1437{
0a65a3a7 1438 if (gsym->has_got_offset(got_type))
dbe717ef 1439 return false;
ead1e424 1440
4829d394
CC
1441 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1442 gsym->set_got_offset(got_type, got_offset);
7223e9ca
ILT
1443 return true;
1444}
1445
1446// Like add_global, but use the PLT offset.
1447
1448template<int size, bool big_endian>
1449bool
1450Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1451 unsigned int got_type)
1452{
1453 if (gsym->has_got_offset(got_type))
1454 return false;
1455
4829d394
CC
1456 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1457 gsym->set_got_offset(got_type, got_offset);
dbe717ef
ILT
1458 return true;
1459}
ead1e424 1460
7bf1f802
ILT
1461// Add an entry for a global symbol to the GOT, and add a dynamic
1462// relocation of type R_TYPE for the GOT entry.
7223e9ca 1463
7bf1f802
ILT
1464template<int size, bool big_endian>
1465void
1466Output_data_got<size, big_endian>::add_global_with_rel(
1467 Symbol* gsym,
0a65a3a7 1468 unsigned int got_type,
83896202 1469 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1470 unsigned int r_type)
1471{
0a65a3a7 1472 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1473 return;
1474
4829d394 1475 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1476 gsym->set_got_offset(got_type, got_offset);
83896202 1477 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1478}
1479
0a65a3a7
CC
1480// Add a pair of entries for a global symbol to the GOT, and add
1481// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1482// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1483template<int size, bool big_endian>
1484void
0a65a3a7
CC
1485Output_data_got<size, big_endian>::add_global_pair_with_rel(
1486 Symbol* gsym,
1487 unsigned int got_type,
83896202 1488 Output_data_reloc_generic* rel_dyn,
0a65a3a7
CC
1489 unsigned int r_type_1,
1490 unsigned int r_type_2)
7bf1f802 1491{
0a65a3a7 1492 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1493 return;
1494
4829d394 1495 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941 1496 gsym->set_got_offset(got_type, got_offset);
83896202 1497 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
0a65a3a7 1498
0a65a3a7 1499 if (r_type_2 != 0)
83896202
ILT
1500 rel_dyn->add_global_generic(gsym, r_type_2, this,
1501 got_offset + size / 8, 0);
7bf1f802
ILT
1502}
1503
0a65a3a7
CC
1504// Add an entry for a local symbol to the GOT. This returns true if
1505// this is a new GOT entry, false if the symbol already has a GOT
1506// entry.
07f397ab
ILT
1507
1508template<int size, bool big_endian>
1509bool
0a65a3a7 1510Output_data_got<size, big_endian>::add_local(
83896202 1511 Relobj* object,
0a65a3a7
CC
1512 unsigned int symndx,
1513 unsigned int got_type)
07f397ab 1514{
0a65a3a7 1515 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1516 return false;
1517
4829d394
CC
1518 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1519 false));
1520 object->set_local_got_offset(symndx, got_type, got_offset);
7223e9ca
ILT
1521 return true;
1522}
1523
1524// Like add_local, but use the PLT offset.
1525
1526template<int size, bool big_endian>
1527bool
1528Output_data_got<size, big_endian>::add_local_plt(
83896202 1529 Relobj* object,
7223e9ca
ILT
1530 unsigned int symndx,
1531 unsigned int got_type)
1532{
1533 if (object->local_has_got_offset(symndx, got_type))
1534 return false;
1535
4829d394
CC
1536 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1537 true));
1538 object->set_local_got_offset(symndx, got_type, got_offset);
07f397ab
ILT
1539 return true;
1540}
1541
0a65a3a7
CC
1542// Add an entry for a local symbol to the GOT, and add a dynamic
1543// relocation of type R_TYPE for the GOT entry.
7223e9ca 1544
7bf1f802
ILT
1545template<int size, bool big_endian>
1546void
0a65a3a7 1547Output_data_got<size, big_endian>::add_local_with_rel(
83896202 1548 Relobj* object,
0a65a3a7
CC
1549 unsigned int symndx,
1550 unsigned int got_type,
83896202 1551 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1552 unsigned int r_type)
1553{
0a65a3a7 1554 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1555 return;
1556
4829d394 1557 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1558 object->set_local_got_offset(symndx, got_type, got_offset);
83896202 1559 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1560}
1561
0a65a3a7
CC
1562// Add a pair of entries for a local symbol to the GOT, and add
1563// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1564// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1565template<int size, bool big_endian>
1566void
0a65a3a7 1567Output_data_got<size, big_endian>::add_local_pair_with_rel(
83896202 1568 Relobj* object,
7bf1f802
ILT
1569 unsigned int symndx,
1570 unsigned int shndx,
0a65a3a7 1571 unsigned int got_type,
83896202 1572 Output_data_reloc_generic* rel_dyn,
0a65a3a7
CC
1573 unsigned int r_type_1,
1574 unsigned int r_type_2)
7bf1f802 1575{
0a65a3a7 1576 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1577 return;
1578
4829d394
CC
1579 unsigned int got_offset =
1580 this->add_got_entry_pair(Got_entry(),
1581 Got_entry(object, symndx, false));
2ea97941 1582 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1583 Output_section* os = object->output_section(shndx);
83896202 1584 rel_dyn->add_output_section_generic(os, r_type_1, this, got_offset, 0);
7bf1f802 1585
0a65a3a7 1586 if (r_type_2 != 0)
83896202
ILT
1587 rel_dyn->add_output_section_generic(os, r_type_2, this,
1588 got_offset + size / 8, 0);
4829d394
CC
1589}
1590
1591// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1592
1593template<int size, bool big_endian>
1594void
6fa2a40b
CC
1595Output_data_got<size, big_endian>::reserve_local(
1596 unsigned int i,
83896202 1597 Relobj* object,
6fa2a40b
CC
1598 unsigned int sym_index,
1599 unsigned int got_type)
4829d394 1600{
dd74ae06 1601 this->do_reserve_slot(i);
6fa2a40b 1602 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
4829d394 1603}
7bf1f802 1604
4829d394
CC
1605// Reserve a slot in the GOT for a global symbol.
1606
1607template<int size, bool big_endian>
1608void
6fa2a40b 1609Output_data_got<size, big_endian>::reserve_global(
4829d394
CC
1610 unsigned int i,
1611 Symbol* gsym,
1612 unsigned int got_type)
1613{
dd74ae06 1614 this->do_reserve_slot(i);
4829d394 1615 gsym->set_got_offset(got_type, this->got_offset(i));
7bf1f802
ILT
1616}
1617
ead1e424
ILT
1618// Write out the GOT.
1619
1620template<int size, bool big_endian>
1621void
dbe717ef 1622Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1623{
1624 const int add = size / 8;
1625
1626 const off_t off = this->offset();
c06b7b0b 1627 const off_t oview_size = this->data_size();
ead1e424
ILT
1628 unsigned char* const oview = of->get_output_view(off, oview_size);
1629
1630 unsigned char* pov = oview;
1631 for (typename Got_entries::const_iterator p = this->entries_.begin();
1632 p != this->entries_.end();
1633 ++p)
1634 {
7e1edb90 1635 p->write(pov);
ead1e424
ILT
1636 pov += add;
1637 }
1638
a3ad94ed 1639 gold_assert(pov - oview == oview_size);
c06b7b0b 1640
ead1e424
ILT
1641 of->write_output_view(off, oview_size, oview);
1642
1643 // We no longer need the GOT entries.
1644 this->entries_.clear();
1645}
1646
4829d394
CC
1647// Create a new GOT entry and return its offset.
1648
1649template<int size, bool big_endian>
1650unsigned int
1651Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1652{
1653 if (!this->is_data_size_valid())
1654 {
1655 this->entries_.push_back(got_entry);
1656 this->set_got_size();
1657 return this->last_got_offset();
1658 }
1659 else
1660 {
1661 // For an incremental update, find an available slot.
1662 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1663 if (got_offset == -1)
e6455dfb
CC
1664 gold_fallback(_("out of patch space (GOT);"
1665 " relink with --incremental-full"));
4829d394
CC
1666 unsigned int got_index = got_offset / (size / 8);
1667 gold_assert(got_index < this->entries_.size());
1668 this->entries_[got_index] = got_entry;
1669 return static_cast<unsigned int>(got_offset);
1670 }
1671}
1672
1673// Create a pair of new GOT entries and return the offset of the first.
1674
1675template<int size, bool big_endian>
1676unsigned int
1677Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1678 Got_entry got_entry_2)
1679{
1680 if (!this->is_data_size_valid())
1681 {
1682 unsigned int got_offset;
1683 this->entries_.push_back(got_entry_1);
1684 got_offset = this->last_got_offset();
1685 this->entries_.push_back(got_entry_2);
1686 this->set_got_size();
1687 return got_offset;
1688 }
1689 else
1690 {
1691 // For an incremental update, find an available pair of slots.
1692 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1693 if (got_offset == -1)
e6455dfb
CC
1694 gold_fallback(_("out of patch space (GOT);"
1695 " relink with --incremental-full"));
4829d394
CC
1696 unsigned int got_index = got_offset / (size / 8);
1697 gold_assert(got_index < this->entries_.size());
1698 this->entries_[got_index] = got_entry_1;
1699 this->entries_[got_index + 1] = got_entry_2;
1700 return static_cast<unsigned int>(got_offset);
1701 }
1702}
1703
a3ad94ed
ILT
1704// Output_data_dynamic::Dynamic_entry methods.
1705
1706// Write out the entry.
1707
1708template<int size, bool big_endian>
1709void
1710Output_data_dynamic::Dynamic_entry::write(
1711 unsigned char* pov,
7d1a9ebb 1712 const Stringpool* pool) const
a3ad94ed
ILT
1713{
1714 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1715 switch (this->offset_)
a3ad94ed
ILT
1716 {
1717 case DYNAMIC_NUMBER:
1718 val = this->u_.val;
1719 break;
1720
a3ad94ed 1721 case DYNAMIC_SECTION_SIZE:
16649710 1722 val = this->u_.od->data_size();
612a8d3d
DM
1723 if (this->od2 != NULL)
1724 val += this->od2->data_size();
a3ad94ed
ILT
1725 break;
1726
1727 case DYNAMIC_SYMBOL:
1728 {
16649710
ILT
1729 const Sized_symbol<size>* s =
1730 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1731 val = s->value();
1732 }
1733 break;
1734
1735 case DYNAMIC_STRING:
1736 val = pool->get_offset(this->u_.str);
1737 break;
1738
1739 default:
c2b45e22
CC
1740 val = this->u_.od->address() + this->offset_;
1741 break;
a3ad94ed
ILT
1742 }
1743
1744 elfcpp::Dyn_write<size, big_endian> dw(pov);
1745 dw.put_d_tag(this->tag_);
1746 dw.put_d_val(val);
1747}
1748
1749// Output_data_dynamic methods.
1750
16649710
ILT
1751// Adjust the output section to set the entry size.
1752
1753void
1754Output_data_dynamic::do_adjust_output_section(Output_section* os)
1755{
8851ecca 1756 if (parameters->target().get_size() == 32)
16649710 1757 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1758 else if (parameters->target().get_size() == 64)
16649710
ILT
1759 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1760 else
1761 gold_unreachable();
1762}
1763
a3ad94ed
ILT
1764// Set the final data size.
1765
1766void
27bc2bce 1767Output_data_dynamic::set_final_data_size()
a3ad94ed 1768{
20e6d0d6
DK
1769 // Add the terminating entry if it hasn't been added.
1770 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1771 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1772 {
1773 int extra = parameters->options().spare_dynamic_tags();
1774 for (int i = 0; i < extra; ++i)
1775 this->add_constant(elfcpp::DT_NULL, 0);
1776 this->add_constant(elfcpp::DT_NULL, 0);
1777 }
a3ad94ed
ILT
1778
1779 int dyn_size;
8851ecca 1780 if (parameters->target().get_size() == 32)
a3ad94ed 1781 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1782 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1783 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1784 else
1785 gold_unreachable();
1786 this->set_data_size(this->entries_.size() * dyn_size);
1787}
1788
1789// Write out the dynamic entries.
1790
1791void
1792Output_data_dynamic::do_write(Output_file* of)
1793{
8851ecca 1794 switch (parameters->size_and_endianness())
a3ad94ed 1795 {
9025d29d 1796#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1797 case Parameters::TARGET_32_LITTLE:
1798 this->sized_write<32, false>(of);
1799 break;
9025d29d 1800#endif
8851ecca
ILT
1801#ifdef HAVE_TARGET_32_BIG
1802 case Parameters::TARGET_32_BIG:
1803 this->sized_write<32, true>(of);
1804 break;
9025d29d 1805#endif
9025d29d 1806#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1807 case Parameters::TARGET_64_LITTLE:
1808 this->sized_write<64, false>(of);
1809 break;
9025d29d 1810#endif
8851ecca
ILT
1811#ifdef HAVE_TARGET_64_BIG
1812 case Parameters::TARGET_64_BIG:
1813 this->sized_write<64, true>(of);
1814 break;
1815#endif
1816 default:
1817 gold_unreachable();
a3ad94ed 1818 }
a3ad94ed
ILT
1819}
1820
1821template<int size, bool big_endian>
1822void
1823Output_data_dynamic::sized_write(Output_file* of)
1824{
1825 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1826
2ea97941 1827 const off_t offset = this->offset();
a3ad94ed 1828 const off_t oview_size = this->data_size();
2ea97941 1829 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1830
1831 unsigned char* pov = oview;
1832 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1833 p != this->entries_.end();
1834 ++p)
1835 {
7d1a9ebb 1836 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1837 pov += dyn_size;
1838 }
1839
1840 gold_assert(pov - oview == oview_size);
1841
2ea97941 1842 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1843
1844 // We no longer need the dynamic entries.
1845 this->entries_.clear();
1846}
1847
d491d34e
ILT
1848// Class Output_symtab_xindex.
1849
1850void
1851Output_symtab_xindex::do_write(Output_file* of)
1852{
2ea97941 1853 const off_t offset = this->offset();
d491d34e 1854 const off_t oview_size = this->data_size();
2ea97941 1855 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1856
1857 memset(oview, 0, oview_size);
1858
1859 if (parameters->target().is_big_endian())
1860 this->endian_do_write<true>(oview);
1861 else
1862 this->endian_do_write<false>(oview);
1863
2ea97941 1864 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1865
1866 // We no longer need the data.
1867 this->entries_.clear();
1868}
1869
1870template<bool big_endian>
1871void
1872Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1873{
1874 for (Xindex_entries::const_iterator p = this->entries_.begin();
1875 p != this->entries_.end();
1876 ++p)
20e6d0d6
DK
1877 {
1878 unsigned int symndx = p->first;
1879 gold_assert(symndx * 4 < this->data_size());
1880 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1881 }
d491d34e
ILT
1882}
1883
8ea8cd50
CC
1884// Output_fill_debug_info methods.
1885
1886// Return the minimum size needed for a dummy compilation unit header.
1887
1888size_t
1889Output_fill_debug_info::do_minimum_hole_size() const
1890{
1891 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1892 // address_size.
1893 const size_t len = 4 + 2 + 4 + 1;
1894 // For type units, add type_signature, type_offset.
1895 if (this->is_debug_types_)
1896 return len + 8 + 4;
1897 return len;
1898}
1899
1900// Write a dummy compilation unit header to fill a hole in the
1901// .debug_info or .debug_types section.
1902
1903void
1904Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1905{
66570254
CC
1906 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1907 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
1908
1909 gold_assert(len >= this->do_minimum_hole_size());
1910
1911 unsigned char* const oview = of->get_output_view(off, len);
1912 unsigned char* pov = oview;
1913
1914 // Write header fields: unit_length, version, debug_abbrev_offset,
1915 // address_size.
1916 if (this->is_big_endian())
1917 {
24c6c55a
DM
1918 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1919 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1920 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
8ea8cd50
CC
1921 }
1922 else
1923 {
24c6c55a
DM
1924 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1925 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1926 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
8ea8cd50
CC
1927 }
1928 pov += 4 + 2 + 4;
1929 *pov++ = 4;
1930
1931 // For type units, the additional header fields -- type_signature,
1932 // type_offset -- can be filled with zeroes.
1933
1934 // Fill the remainder of the free space with zeroes. The first
1935 // zero should tell the consumer there are no DIEs to read in this
1936 // compilation unit.
1937 if (pov < oview + len)
1938 memset(pov, 0, oview + len - pov);
1939
1940 of->write_output_view(off, len, oview);
1941}
1942
1943// Output_fill_debug_line methods.
1944
1945// Return the minimum size needed for a dummy line number program header.
1946
1947size_t
1948Output_fill_debug_line::do_minimum_hole_size() const
1949{
1950 // Line number program header fields: unit_length, version, header_length,
1951 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1952 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1953 const size_t len = 4 + 2 + 4 + this->header_length;
1954 return len;
1955}
1956
1957// Write a dummy line number program header to fill a hole in the
1958// .debug_line section.
1959
1960void
1961Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
1962{
66570254
CC
1963 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
1964 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
1965
1966 gold_assert(len >= this->do_minimum_hole_size());
1967
1968 unsigned char* const oview = of->get_output_view(off, len);
1969 unsigned char* pov = oview;
1970
1971 // Write header fields: unit_length, version, header_length,
1972 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1973 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1974 // We set the header_length field to cover the entire hole, so the
1975 // line number program is empty.
1976 if (this->is_big_endian())
1977 {
24c6c55a
DM
1978 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1979 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1980 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
1981 }
1982 else
1983 {
24c6c55a
DM
1984 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1985 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1986 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
1987 }
1988 pov += 4 + 2 + 4;
1989 *pov++ = 1; // minimum_instruction_length
1990 *pov++ = 0; // default_is_stmt
1991 *pov++ = 0; // line_base
1992 *pov++ = 5; // line_range
1993 *pov++ = 13; // opcode_base
1994 *pov++ = 0; // standard_opcode_lengths[1]
1995 *pov++ = 1; // standard_opcode_lengths[2]
1996 *pov++ = 1; // standard_opcode_lengths[3]
1997 *pov++ = 1; // standard_opcode_lengths[4]
1998 *pov++ = 1; // standard_opcode_lengths[5]
1999 *pov++ = 0; // standard_opcode_lengths[6]
2000 *pov++ = 0; // standard_opcode_lengths[7]
2001 *pov++ = 0; // standard_opcode_lengths[8]
2002 *pov++ = 1; // standard_opcode_lengths[9]
2003 *pov++ = 0; // standard_opcode_lengths[10]
2004 *pov++ = 0; // standard_opcode_lengths[11]
2005 *pov++ = 1; // standard_opcode_lengths[12]
2006 *pov++ = 0; // include_directories (empty)
2007 *pov++ = 0; // filenames (empty)
2008
2009 // Some consumers don't check the header_length field, and simply
2010 // start reading the line number program immediately following the
2011 // header. For those consumers, we fill the remainder of the free
2012 // space with DW_LNS_set_basic_block opcodes. These are effectively
2013 // no-ops: the resulting line table program will not create any rows.
2014 if (pov < oview + len)
2015 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2016
2017 of->write_output_view(off, len, oview);
2018}
2019
ead1e424
ILT
2020// Output_section::Input_section methods.
2021
cdc29364
CC
2022// Return the current data size. For an input section we store the size here.
2023// For an Output_section_data, we have to ask it for the size.
2024
2025off_t
2026Output_section::Input_section::current_data_size() const
2027{
2028 if (this->is_input_section())
2029 return this->u1_.data_size;
2030 else
2031 {
2032 this->u2_.posd->pre_finalize_data_size();
2033 return this->u2_.posd->current_data_size();
2034 }
2035}
2036
ead1e424
ILT
2037// Return the data size. For an input section we store the size here.
2038// For an Output_section_data, we have to ask it for the size.
2039
2040off_t
2041Output_section::Input_section::data_size() const
2042{
2043 if (this->is_input_section())
b8e6aad9 2044 return this->u1_.data_size;
ead1e424 2045 else
b8e6aad9 2046 return this->u2_.posd->data_size();
ead1e424
ILT
2047}
2048
0439c796
DK
2049// Return the object for an input section.
2050
2051Relobj*
2052Output_section::Input_section::relobj() const
2053{
2054 if (this->is_input_section())
2055 return this->u2_.object;
2056 else if (this->is_merge_section())
2057 {
2058 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2059 return this->u2_.pomb->first_relobj();
2060 }
2061 else if (this->is_relaxed_input_section())
2062 return this->u2_.poris->relobj();
2063 else
2064 gold_unreachable();
2065}
2066
2067// Return the input section index for an input section.
2068
2069unsigned int
2070Output_section::Input_section::shndx() const
2071{
2072 if (this->is_input_section())
2073 return this->shndx_;
2074 else if (this->is_merge_section())
2075 {
2076 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2077 return this->u2_.pomb->first_shndx();
2078 }
2079 else if (this->is_relaxed_input_section())
2080 return this->u2_.poris->shndx();
2081 else
2082 gold_unreachable();
2083}
2084
ead1e424
ILT
2085// Set the address and file offset.
2086
2087void
96803768
ILT
2088Output_section::Input_section::set_address_and_file_offset(
2089 uint64_t address,
2090 off_t file_offset,
2091 off_t section_file_offset)
ead1e424
ILT
2092{
2093 if (this->is_input_section())
96803768
ILT
2094 this->u2_.object->set_section_offset(this->shndx_,
2095 file_offset - section_file_offset);
ead1e424 2096 else
96803768
ILT
2097 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2098}
2099
a445fddf
ILT
2100// Reset the address and file offset.
2101
2102void
2103Output_section::Input_section::reset_address_and_file_offset()
2104{
2105 if (!this->is_input_section())
2106 this->u2_.posd->reset_address_and_file_offset();
2107}
2108
96803768
ILT
2109// Finalize the data size.
2110
2111void
2112Output_section::Input_section::finalize_data_size()
2113{
2114 if (!this->is_input_section())
2115 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
2116}
2117
1e983657
ILT
2118// Try to turn an input offset into an output offset. We want to
2119// return the output offset relative to the start of this
2120// Input_section in the output section.
b8e6aad9 2121
8f00aeb8 2122inline bool
8383303e
ILT
2123Output_section::Input_section::output_offset(
2124 const Relobj* object,
2ea97941
ILT
2125 unsigned int shndx,
2126 section_offset_type offset,
ca09d69a 2127 section_offset_type* poutput) const
b8e6aad9
ILT
2128{
2129 if (!this->is_input_section())
2ea97941 2130 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
2131 else
2132 {
2ea97941 2133 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 2134 return false;
2ea97941 2135 *poutput = offset;
b8e6aad9
ILT
2136 return true;
2137 }
ead1e424
ILT
2138}
2139
a9a60db6
ILT
2140// Return whether this is the merge section for the input section
2141// SHNDX in OBJECT.
2142
2143inline bool
2144Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 2145 unsigned int shndx) const
a9a60db6
ILT
2146{
2147 if (this->is_input_section())
2148 return false;
2ea97941 2149 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
2150}
2151
ead1e424
ILT
2152// Write out the data. We don't have to do anything for an input
2153// section--they are handled via Object::relocate--but this is where
2154// we write out the data for an Output_section_data.
2155
2156void
2157Output_section::Input_section::write(Output_file* of)
2158{
2159 if (!this->is_input_section())
b8e6aad9 2160 this->u2_.posd->write(of);
ead1e424
ILT
2161}
2162
96803768
ILT
2163// Write the data to a buffer. As for write(), we don't have to do
2164// anything for an input section.
2165
2166void
2167Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2168{
2169 if (!this->is_input_section())
2170 this->u2_.posd->write_to_buffer(buffer);
2171}
2172
7d9e3d98
ILT
2173// Print to a map file.
2174
2175void
2176Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2177{
2178 switch (this->shndx_)
2179 {
2180 case OUTPUT_SECTION_CODE:
2181 case MERGE_DATA_SECTION_CODE:
2182 case MERGE_STRING_SECTION_CODE:
2183 this->u2_.posd->print_to_mapfile(mapfile);
2184 break;
2185
20e6d0d6
DK
2186 case RELAXED_INPUT_SECTION_CODE:
2187 {
2188 Output_relaxed_input_section* relaxed_section =
2189 this->relaxed_input_section();
2190 mapfile->print_input_section(relaxed_section->relobj(),
2191 relaxed_section->shndx());
2192 }
2193 break;
7d9e3d98
ILT
2194 default:
2195 mapfile->print_input_section(this->u2_.object, this->shndx_);
2196 break;
2197 }
2198}
2199
a2fb1b05
ILT
2200// Output_section methods.
2201
2202// Construct an Output_section. NAME will point into a Stringpool.
2203
2ea97941
ILT
2204Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2205 elfcpp::Elf_Xword flags)
2206 : name_(name),
a2fb1b05
ILT
2207 addralign_(0),
2208 entsize_(0),
a445fddf 2209 load_address_(0),
16649710 2210 link_section_(NULL),
a2fb1b05 2211 link_(0),
16649710 2212 info_section_(NULL),
6a74a719 2213 info_symndx_(NULL),
a2fb1b05 2214 info_(0),
2ea97941
ILT
2215 type_(type),
2216 flags_(flags),
22f0da72 2217 order_(ORDER_INVALID),
91ea499d 2218 out_shndx_(-1U),
c06b7b0b
ILT
2219 symtab_index_(0),
2220 dynsym_index_(0),
ead1e424
ILT
2221 input_sections_(),
2222 first_input_offset_(0),
c51e6221 2223 fills_(),
96803768 2224 postprocessing_buffer_(NULL),
a3ad94ed 2225 needs_symtab_index_(false),
16649710
ILT
2226 needs_dynsym_index_(false),
2227 should_link_to_symtab_(false),
730cdc88 2228 should_link_to_dynsym_(false),
27bc2bce 2229 after_input_sections_(false),
7bf1f802 2230 requires_postprocessing_(false),
a445fddf
ILT
2231 found_in_sections_clause_(false),
2232 has_load_address_(false),
755ab8af 2233 info_uses_section_index_(false),
6e9ba2ca 2234 input_section_order_specified_(false),
2fd32231
ILT
2235 may_sort_attached_input_sections_(false),
2236 must_sort_attached_input_sections_(false),
2237 attached_input_sections_are_sorted_(false),
9f1d377b 2238 is_relro_(false),
8a5e3e08
ILT
2239 is_small_section_(false),
2240 is_large_section_(false),
f5c870d2 2241 generate_code_fills_at_write_(false),
e8cd95c7 2242 is_entsize_zero_(false),
8923b24c 2243 section_offsets_need_adjustment_(false),
1e5d2fb1 2244 is_noload_(false),
131687b4 2245 always_keeps_input_sections_(false),
cdc29364 2246 has_fixed_layout_(false),
9fbd3822 2247 is_patch_space_allowed_(false),
20e6d0d6 2248 tls_offset_(0),
c0a62865 2249 checkpoint_(NULL),
cdc29364 2250 lookup_maps_(new Output_section_lookup_maps),
9fbd3822 2251 free_list_(),
8ea8cd50 2252 free_space_fill_(NULL),
9fbd3822 2253 patch_space_(0)
a2fb1b05 2254{
27bc2bce
ILT
2255 // An unallocated section has no address. Forcing this means that
2256 // we don't need special treatment for symbols defined in debug
2257 // sections.
2ea97941 2258 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2259 this->set_address(0);
a2fb1b05
ILT
2260}
2261
54dc6425
ILT
2262Output_section::~Output_section()
2263{
20e6d0d6 2264 delete this->checkpoint_;
54dc6425
ILT
2265}
2266
16649710
ILT
2267// Set the entry size.
2268
2269void
2270Output_section::set_entsize(uint64_t v)
2271{
e8cd95c7
ILT
2272 if (this->is_entsize_zero_)
2273 ;
2274 else if (this->entsize_ == 0)
16649710 2275 this->entsize_ = v;
e8cd95c7
ILT
2276 else if (this->entsize_ != v)
2277 {
2278 this->entsize_ = 0;
2279 this->is_entsize_zero_ = 1;
2280 }
16649710
ILT
2281}
2282
ead1e424 2283// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2284// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2285// relocation section which applies to this section, or 0 if none, or
2286// -1U if more than one. Return the offset of the input section
2287// within the output section. Return -1 if the input section will
2288// receive special handling. In the normal case we don't always keep
2289// track of input sections for an Output_section. Instead, each
2290// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2291// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2292// track of input sections here; this is used when SECTIONS appears in
2293// a linker script.
a2fb1b05
ILT
2294
2295template<int size, bool big_endian>
2296off_t
6e9ba2ca 2297Output_section::add_input_section(Layout* layout,
6fa2a40b 2298 Sized_relobj_file<size, big_endian>* object,
2ea97941 2299 unsigned int shndx,
ead1e424 2300 const char* secname,
730cdc88 2301 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2302 unsigned int reloc_shndx,
2303 bool have_sections_script)
a2fb1b05 2304{
2ea97941
ILT
2305 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2306 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2307 {
75f2446e 2308 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2309 static_cast<unsigned long>(addralign), secname);
2310 addralign = 1;
a2fb1b05 2311 }
a2fb1b05 2312
2ea97941
ILT
2313 if (addralign > this->addralign_)
2314 this->addralign_ = addralign;
a2fb1b05 2315
44a43cf9 2316 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2317 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2318
2319 // .debug_str is a mergeable string section, but is not always so
2320 // marked by compilers. Mark manually here so we can optimize.
2321 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2322 {
2323 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2324 entsize = 1;
4f833eee 2325 }
44a43cf9 2326
e8cd95c7
ILT
2327 this->update_flags_for_input_section(sh_flags);
2328 this->set_entsize(entsize);
2329
b8e6aad9 2330 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2331 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2332 // a section. We don't try to handle empty merge sections--they
2333 // mess up the mappings, and are useless anyhow.
cdc29364 2334 // FIXME: Need to handle merge sections during incremental update.
44a43cf9 2335 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032 2336 && reloc_shndx == 0
cdc29364
CC
2337 && shdr.get_sh_size() > 0
2338 && !parameters->incremental())
b8e6aad9 2339 {
0439c796
DK
2340 // Keep information about merged input sections for rebuilding fast
2341 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2342 bool keeps_input_sections = (this->always_keeps_input_sections_
2343 || have_sections_script
2344 || parameters->target().may_relax());
2345
0439c796
DK
2346 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2347 addralign, keeps_input_sections))
b8e6aad9
ILT
2348 {
2349 // Tell the relocation routines that they need to call the
730cdc88 2350 // output_offset method to determine the final address.
b8e6aad9
ILT
2351 return -1;
2352 }
2353 }
2354
cdc29364
CC
2355 section_size_type input_section_size = shdr.get_sh_size();
2356 section_size_type uncompressed_size;
2357 if (object->section_is_compressed(shndx, &uncompressed_size))
2358 input_section_size = uncompressed_size;
2359
2360 off_t offset_in_section;
2361 off_t aligned_offset_in_section;
2362 if (this->has_fixed_layout())
2363 {
2364 // For incremental updates, find a chunk of unused space in the section.
2365 offset_in_section = this->free_list_.allocate(input_section_size,
2366 addralign, 0);
2367 if (offset_in_section == -1)
9fbd3822
CC
2368 gold_fallback(_("out of patch space in section %s; "
2369 "relink with --incremental-full"),
2370 this->name());
cdc29364
CC
2371 aligned_offset_in_section = offset_in_section;
2372 }
2373 else
2374 {
2375 offset_in_section = this->current_data_size_for_child();
2376 aligned_offset_in_section = align_address(offset_in_section,
2377 addralign);
2378 this->set_current_data_size_for_child(aligned_offset_in_section
2379 + input_section_size);
2380 }
c51e6221 2381
c0a62865
DK
2382 // Determine if we want to delay code-fill generation until the output
2383 // section is written. When the target is relaxing, we want to delay fill
4cf7a849
ST
2384 // generating to avoid adjusting them during relaxation. Also, if we are
2385 // sorting input sections we must delay fill generation.
c0a62865
DK
2386 if (!this->generate_code_fills_at_write_
2387 && !have_sections_script
2388 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2389 && parameters->target().has_code_fill()
4cf7a849 2390 && (parameters->target().may_relax()
e9552f7e 2391 || layout->is_section_ordering_specified()))
c0a62865
DK
2392 {
2393 gold_assert(this->fills_.empty());
2394 this->generate_code_fills_at_write_ = true;
2395 }
2396
c51e6221 2397 if (aligned_offset_in_section > offset_in_section
c0a62865 2398 && !this->generate_code_fills_at_write_
a445fddf 2399 && !have_sections_script
44a43cf9 2400 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2401 && parameters->target().has_code_fill())
c51e6221
ILT
2402 {
2403 // We need to add some fill data. Using fill_list_ when
2404 // possible is an optimization, since we will often have fill
2405 // sections without input sections.
2406 off_t fill_len = aligned_offset_in_section - offset_in_section;
2407 if (this->input_sections_.empty())
2408 this->fills_.push_back(Fill(offset_in_section, fill_len));
2409 else
2410 {
029ba973 2411 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2412 Output_data_const* odc = new Output_data_const(fill_data, 1);
2413 this->input_sections_.push_back(Input_section(odc));
2414 }
2415 }
2416
ead1e424 2417 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2418 // track of sections, or if we are relaxing. Also, if this is a
2419 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2420 // the future, we keep track of the sections. If the
2421 // --section-ordering-file option is used to specify the order of
2422 // sections, we need to keep track of sections.
131687b4
DK
2423 if (this->always_keeps_input_sections_
2424 || have_sections_script
2fd32231
ILT
2425 || !this->input_sections_.empty()
2426 || this->may_sort_attached_input_sections()
7d9e3d98 2427 || this->must_sort_attached_input_sections()
20e6d0d6 2428 || parameters->options().user_set_Map()
6e9ba2ca 2429 || parameters->target().may_relax()
e9552f7e 2430 || layout->is_section_ordering_specified())
6e9ba2ca 2431 {
6fc6ea19 2432 Input_section isecn(object, shndx, input_section_size, addralign);
f0558624
ST
2433 /* If section ordering is requested by specifying a ordering file,
2434 using --section-ordering-file, match the section name with
2435 a pattern. */
2436 if (parameters->options().section_ordering_file())
6e9ba2ca
ST
2437 {
2438 unsigned int section_order_index =
2439 layout->find_section_order_index(std::string(secname));
2440 if (section_order_index != 0)
2441 {
2442 isecn.set_section_order_index(section_order_index);
2443 this->set_input_section_order_specified();
2444 }
2445 }
cdc29364
CC
2446 if (this->has_fixed_layout())
2447 {
2448 // For incremental updates, finalize the address and offset now.
2449 uint64_t addr = this->address();
2450 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2451 aligned_offset_in_section,
2452 this->offset());
2453 }
6e9ba2ca
ST
2454 this->input_sections_.push_back(isecn);
2455 }
54dc6425 2456
c51e6221 2457 return aligned_offset_in_section;
61ba1cf9
ILT
2458}
2459
ead1e424
ILT
2460// Add arbitrary data to an output section.
2461
2462void
2463Output_section::add_output_section_data(Output_section_data* posd)
2464{
b8e6aad9
ILT
2465 Input_section inp(posd);
2466 this->add_output_section_data(&inp);
a445fddf
ILT
2467
2468 if (posd->is_data_size_valid())
2469 {
cdc29364
CC
2470 off_t offset_in_section;
2471 if (this->has_fixed_layout())
2472 {
2473 // For incremental updates, find a chunk of unused space.
2474 offset_in_section = this->free_list_.allocate(posd->data_size(),
2475 posd->addralign(), 0);
2476 if (offset_in_section == -1)
9fbd3822
CC
2477 gold_fallback(_("out of patch space in section %s; "
2478 "relink with --incremental-full"),
2479 this->name());
cdc29364
CC
2480 // Finalize the address and offset now.
2481 uint64_t addr = this->address();
2482 off_t offset = this->offset();
2483 posd->set_address_and_file_offset(addr + offset_in_section,
2484 offset + offset_in_section);
2485 }
2486 else
2487 {
2488 offset_in_section = this->current_data_size_for_child();
2489 off_t aligned_offset_in_section = align_address(offset_in_section,
2490 posd->addralign());
2491 this->set_current_data_size_for_child(aligned_offset_in_section
2492 + posd->data_size());
2493 }
2494 }
2495 else if (this->has_fixed_layout())
2496 {
2497 // For incremental updates, arrange for the data to have a fixed layout.
2498 // This will mean that additions to the data must be allocated from
2499 // free space within the containing output section.
2500 uint64_t addr = this->address();
2501 posd->set_address(addr);
2502 posd->set_file_offset(0);
4829d394
CC
2503 // FIXME: This should eventually be unreachable.
2504 // gold_unreachable();
a445fddf 2505 }
b8e6aad9
ILT
2506}
2507
c0a62865
DK
2508// Add a relaxed input section.
2509
2510void
d06fb4d1
DK
2511Output_section::add_relaxed_input_section(Layout* layout,
2512 Output_relaxed_input_section* poris,
2513 const std::string& name)
c0a62865
DK
2514{
2515 Input_section inp(poris);
d06fb4d1
DK
2516
2517 // If the --section-ordering-file option is used to specify the order of
2518 // sections, we need to keep track of sections.
e9552f7e 2519 if (layout->is_section_ordering_specified())
d06fb4d1
DK
2520 {
2521 unsigned int section_order_index =
2522 layout->find_section_order_index(name);
2523 if (section_order_index != 0)
2524 {
2525 inp.set_section_order_index(section_order_index);
2526 this->set_input_section_order_specified();
2527 }
2528 }
2529
c0a62865 2530 this->add_output_section_data(&inp);
0439c796
DK
2531 if (this->lookup_maps_->is_valid())
2532 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2533 poris->shndx(), poris);
c0a62865
DK
2534
2535 // For a relaxed section, we use the current data size. Linker scripts
2536 // get all the input sections, including relaxed one from an output
2537 // section and add them back to them same output section to compute the
2538 // output section size. If we do not account for sizes of relaxed input
2539 // sections, an output section would be incorrectly sized.
2540 off_t offset_in_section = this->current_data_size_for_child();
2541 off_t aligned_offset_in_section = align_address(offset_in_section,
2542 poris->addralign());
2543 this->set_current_data_size_for_child(aligned_offset_in_section
2544 + poris->current_data_size());
2545}
2546
b8e6aad9 2547// Add arbitrary data to an output section by Input_section.
c06b7b0b 2548
b8e6aad9
ILT
2549void
2550Output_section::add_output_section_data(Input_section* inp)
2551{
ead1e424 2552 if (this->input_sections_.empty())
27bc2bce 2553 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2554
b8e6aad9 2555 this->input_sections_.push_back(*inp);
c06b7b0b 2556
2ea97941
ILT
2557 uint64_t addralign = inp->addralign();
2558 if (addralign > this->addralign_)
2559 this->addralign_ = addralign;
c06b7b0b 2560
b8e6aad9
ILT
2561 inp->set_output_section(this);
2562}
2563
2564// Add a merge section to an output section.
2565
2566void
2567Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2568 bool is_string, uint64_t entsize)
b8e6aad9 2569{
2ea97941 2570 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2571 this->add_output_section_data(&inp);
2572}
2573
2574// Add an input section to a SHF_MERGE section.
2575
2576bool
2ea97941
ILT
2577Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2578 uint64_t flags, uint64_t entsize,
0439c796
DK
2579 uint64_t addralign,
2580 bool keeps_input_sections)
b8e6aad9 2581{
2ea97941 2582 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2583
2584 // We only merge strings if the alignment is not more than the
2585 // character size. This could be handled, but it's unusual.
2ea97941 2586 if (is_string && addralign > entsize)
b8e6aad9
ILT
2587 return false;
2588
20e6d0d6
DK
2589 // We cannot restore merged input section states.
2590 gold_assert(this->checkpoint_ == NULL);
2591
c0a62865 2592 // Look up merge sections by required properties.
0439c796
DK
2593 // Currently, we only invalidate the lookup maps in script processing
2594 // and relaxation. We should not have done either when we reach here.
2595 // So we assume that the lookup maps are valid to simply code.
2596 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2597 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2598 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2599 bool is_new = false;
2600 if (pomb != NULL)
c0a62865 2601 {
6bf924b0
DK
2602 gold_assert(pomb->is_string() == is_string
2603 && pomb->entsize() == entsize
2604 && pomb->addralign() == addralign);
c0a62865 2605 }
b8e6aad9
ILT
2606 else
2607 {
6bf924b0
DK
2608 // Create a new Output_merge_data or Output_merge_string_data.
2609 if (!is_string)
2610 pomb = new Output_merge_data(entsize, addralign);
2611 else
9a0910c3 2612 {
6bf924b0
DK
2613 switch (entsize)
2614 {
2615 case 1:
2616 pomb = new Output_merge_string<char>(addralign);
2617 break;
2618 case 2:
2619 pomb = new Output_merge_string<uint16_t>(addralign);
2620 break;
2621 case 4:
2622 pomb = new Output_merge_string<uint32_t>(addralign);
2623 break;
2624 default:
2625 return false;
2626 }
9a0910c3 2627 }
0439c796
DK
2628 // If we need to do script processing or relaxation, we need to keep
2629 // the original input sections to rebuild the fast lookup maps.
2630 if (keeps_input_sections)
2631 pomb->set_keeps_input_sections();
2632 is_new = true;
b8e6aad9
ILT
2633 }
2634
6bf924b0
DK
2635 if (pomb->add_input_section(object, shndx))
2636 {
0439c796
DK
2637 // Add new merge section to this output section and link merge
2638 // section properties to new merge section in map.
2639 if (is_new)
2640 {
2641 this->add_output_merge_section(pomb, is_string, entsize);
2642 this->lookup_maps_->add_merge_section(msp, pomb);
2643 }
2644
6bf924b0
DK
2645 // Add input section to new merge section and link input section to new
2646 // merge section in map.
0439c796 2647 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2648 return true;
2649 }
2650 else
0439c796
DK
2651 {
2652 // If add_input_section failed, delete new merge section to avoid
2653 // exporting empty merge sections in Output_section::get_input_section.
2654 if (is_new)
2655 delete pomb;
2656 return false;
2657 }
b8e6aad9
ILT
2658}
2659
c0a62865 2660// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2661// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2662
20e6d0d6 2663void
c0a62865 2664Output_section::build_relaxation_map(
2ea97941 2665 const Input_section_list& input_sections,
c0a62865
DK
2666 size_t limit,
2667 Relaxation_map* relaxation_map) const
20e6d0d6 2668{
c0a62865
DK
2669 for (size_t i = 0; i < limit; ++i)
2670 {
2ea97941 2671 const Input_section& is(input_sections[i]);
c0a62865
DK
2672 if (is.is_input_section() || is.is_relaxed_input_section())
2673 {
5ac169d4
DK
2674 Section_id sid(is.relobj(), is.shndx());
2675 (*relaxation_map)[sid] = i;
c0a62865
DK
2676 }
2677 }
2678}
2679
2680// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2681// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2682// indices of INPUT_SECTIONS.
20e6d0d6 2683
c0a62865
DK
2684void
2685Output_section::convert_input_sections_in_list_to_relaxed_sections(
2686 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2687 const Relaxation_map& map,
2ea97941 2688 Input_section_list* input_sections)
c0a62865
DK
2689{
2690 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2691 {
2692 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2693 Section_id sid(poris->relobj(), poris->shndx());
2694 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2695 gold_assert(p != map.end());
2ea97941 2696 gold_assert((*input_sections)[p->second].is_input_section());
d06fb4d1
DK
2697
2698 // Remember section order index of original input section
2699 // if it is set. Copy it to the relaxed input section.
2700 unsigned int soi =
2701 (*input_sections)[p->second].section_order_index();
2ea97941 2702 (*input_sections)[p->second] = Input_section(poris);
d06fb4d1 2703 (*input_sections)[p->second].set_section_order_index(soi);
c0a62865
DK
2704 }
2705}
2706
2707// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2708// is a vector of pointers to Output_relaxed_input_section or its derived
2709// classes. The relaxed sections must correspond to existing input sections.
2710
2711void
2712Output_section::convert_input_sections_to_relaxed_sections(
2713 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2714{
029ba973 2715 gold_assert(parameters->target().may_relax());
20e6d0d6 2716
c0a62865
DK
2717 // We want to make sure that restore_states does not undo the effect of
2718 // this. If there is no checkpoint active, just search the current
2719 // input section list and replace the sections there. If there is
2720 // a checkpoint, also replace the sections there.
2721
2722 // By default, we look at the whole list.
2723 size_t limit = this->input_sections_.size();
2724
2725 if (this->checkpoint_ != NULL)
20e6d0d6 2726 {
c0a62865
DK
2727 // Replace input sections with relaxed input section in the saved
2728 // copy of the input section list.
2729 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2730 {
c0a62865
DK
2731 Relaxation_map map;
2732 this->build_relaxation_map(
2733 *(this->checkpoint_->input_sections()),
2734 this->checkpoint_->input_sections()->size(),
2735 &map);
2736 this->convert_input_sections_in_list_to_relaxed_sections(
2737 relaxed_sections,
2738 map,
2739 this->checkpoint_->input_sections());
2740 }
2741 else
2742 {
2743 // We have not copied the input section list yet. Instead, just
2744 // look at the portion that would be saved.
2745 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2746 }
20e6d0d6 2747 }
c0a62865
DK
2748
2749 // Convert input sections in input_section_list.
2750 Relaxation_map map;
2751 this->build_relaxation_map(this->input_sections_, limit, &map);
2752 this->convert_input_sections_in_list_to_relaxed_sections(
2753 relaxed_sections,
2754 map,
2755 &this->input_sections_);
41263c05
DK
2756
2757 // Update fast look-up map.
0439c796 2758 if (this->lookup_maps_->is_valid())
41263c05
DK
2759 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2760 {
2761 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2762 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2763 poris->shndx(), poris);
41263c05 2764 }
20e6d0d6
DK
2765}
2766
9c547ec3
ILT
2767// Update the output section flags based on input section flags.
2768
2769void
2ea97941 2770Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2771{
2772 // If we created the section with SHF_ALLOC clear, we set the
2773 // address. If we are now setting the SHF_ALLOC flag, we need to
2774 // undo that.
2775 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2776 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2777 this->mark_address_invalid();
2778
2ea97941 2779 this->flags_ |= (flags
9c547ec3
ILT
2780 & (elfcpp::SHF_WRITE
2781 | elfcpp::SHF_ALLOC
2782 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2783
2784 if ((flags & elfcpp::SHF_MERGE) == 0)
2785 this->flags_ &=~ elfcpp::SHF_MERGE;
2786 else
2787 {
2788 if (this->current_data_size_for_child() == 0)
2789 this->flags_ |= elfcpp::SHF_MERGE;
2790 }
2791
2792 if ((flags & elfcpp::SHF_STRINGS) == 0)
2793 this->flags_ &=~ elfcpp::SHF_STRINGS;
2794 else
2795 {
2796 if (this->current_data_size_for_child() == 0)
2797 this->flags_ |= elfcpp::SHF_STRINGS;
2798 }
9c547ec3
ILT
2799}
2800
2ea97941 2801// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2802// OBJECT has been added. Return NULL if none found.
2803
2804Output_section_data*
2805Output_section::find_merge_section(const Relobj* object,
2ea97941 2806 unsigned int shndx) const
c0a62865 2807{
0439c796
DK
2808 if (!this->lookup_maps_->is_valid())
2809 this->build_lookup_maps();
2810 return this->lookup_maps_->find_merge_section(object, shndx);
2811}
2812
2813// Build the lookup maps for merge and relaxed sections. This is needs
2814// to be declared as a const methods so that it is callable with a const
2815// Output_section pointer. The method only updates states of the maps.
2816
2817void
2818Output_section::build_lookup_maps() const
2819{
2820 this->lookup_maps_->clear();
2821 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2822 p != this->input_sections_.end();
2823 ++p)
c0a62865 2824 {
0439c796
DK
2825 if (p->is_merge_section())
2826 {
2827 Output_merge_base* pomb = p->output_merge_base();
2828 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2829 pomb->addralign());
2830 this->lookup_maps_->add_merge_section(msp, pomb);
2831 for (Output_merge_base::Input_sections::const_iterator is =
2832 pomb->input_sections_begin();
2833 is != pomb->input_sections_end();
2834 ++is)
2835 {
2836 const Const_section_id& csid = *is;
2837 this->lookup_maps_->add_merge_input_section(csid.first,
2838 csid.second, pomb);
2839 }
2840
2841 }
2842 else if (p->is_relaxed_input_section())
2843 {
2844 Output_relaxed_input_section* poris = p->relaxed_input_section();
2845 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2846 poris->shndx(), poris);
2847 }
c0a62865 2848 }
c0a62865
DK
2849}
2850
2851// Find an relaxed input section corresponding to an input section
2ea97941 2852// in OBJECT with index SHNDX.
c0a62865 2853
d6344fb5 2854const Output_relaxed_input_section*
c0a62865 2855Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2856 unsigned int shndx) const
c0a62865 2857{
0439c796
DK
2858 if (!this->lookup_maps_->is_valid())
2859 this->build_lookup_maps();
2860 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2861}
2862
2ea97941
ILT
2863// Given an address OFFSET relative to the start of input section
2864// SHNDX in OBJECT, return whether this address is being included in
2865// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2866// a special mapping.
2867
2868bool
2869Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2870 unsigned int shndx,
2871 off_t offset) const
730cdc88 2872{
c0a62865 2873 // Look at the Output_section_data_maps first.
2ea97941 2874 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2875 if (posd == NULL)
2ea97941 2876 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2877
2878 if (posd != NULL)
2879 {
2ea97941
ILT
2880 section_offset_type output_offset;
2881 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2882 gold_assert(found);
2ea97941 2883 return output_offset != -1;
c0a62865
DK
2884 }
2885
2886 // Fall back to the slow look-up.
730cdc88
ILT
2887 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2888 p != this->input_sections_.end();
2889 ++p)
2890 {
2ea97941
ILT
2891 section_offset_type output_offset;
2892 if (p->output_offset(object, shndx, offset, &output_offset))
2893 return output_offset != -1;
730cdc88
ILT
2894 }
2895
2896 // By default we assume that the address is mapped. This should
2897 // only be called after we have passed all sections to Layout. At
2898 // that point we should know what we are discarding.
2899 return true;
2900}
2901
2ea97941
ILT
2902// Given an address OFFSET relative to the start of input section
2903// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2904// start of the input section in the output section. This should only
2ea97941 2905// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2906
8383303e 2907section_offset_type
2ea97941
ILT
2908Output_section::output_offset(const Relobj* object, unsigned int shndx,
2909 section_offset_type offset) const
730cdc88 2910{
c0a62865
DK
2911 // This can only be called meaningfully when we know the data size
2912 // of this.
2913 gold_assert(this->is_data_size_valid());
730cdc88 2914
c0a62865 2915 // Look at the Output_section_data_maps first.
2ea97941 2916 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2917 if (posd == NULL)
2ea97941 2918 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2919 if (posd != NULL)
2920 {
2ea97941
ILT
2921 section_offset_type output_offset;
2922 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2923 gold_assert(found);
2ea97941 2924 return output_offset;
c0a62865
DK
2925 }
2926
2927 // Fall back to the slow look-up.
730cdc88
ILT
2928 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2929 p != this->input_sections_.end();
2930 ++p)
2931 {
2ea97941
ILT
2932 section_offset_type output_offset;
2933 if (p->output_offset(object, shndx, offset, &output_offset))
2934 return output_offset;
730cdc88
ILT
2935 }
2936 gold_unreachable();
2937}
2938
2ea97941
ILT
2939// Return the output virtual address of OFFSET relative to the start
2940// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2941
2942uint64_t
2ea97941
ILT
2943Output_section::output_address(const Relobj* object, unsigned int shndx,
2944 off_t offset) const
b8e6aad9
ILT
2945{
2946 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2947
2948 // Look at the Output_section_data_maps first.
2ea97941 2949 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2950 if (posd == NULL)
2ea97941 2951 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2952 if (posd != NULL && posd->is_address_valid())
2953 {
2ea97941
ILT
2954 section_offset_type output_offset;
2955 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2956 gold_assert(found);
2ea97941 2957 return posd->address() + output_offset;
c0a62865
DK
2958 }
2959
2960 // Fall back to the slow look-up.
b8e6aad9
ILT
2961 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2962 p != this->input_sections_.end();
2963 ++p)
2964 {
2965 addr = align_address(addr, p->addralign());
2ea97941
ILT
2966 section_offset_type output_offset;
2967 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 2968 {
2ea97941 2969 if (output_offset == -1)
eff45813 2970 return -1ULL;
2ea97941 2971 return addr + output_offset;
730cdc88 2972 }
b8e6aad9
ILT
2973 addr += p->data_size();
2974 }
2975
2976 // If we get here, it means that we don't know the mapping for this
2977 // input section. This might happen in principle if
2978 // add_input_section were called before add_output_section_data.
2979 // But it should never actually happen.
2980
2981 gold_unreachable();
ead1e424
ILT
2982}
2983
e29e076a 2984// Find the output address of the start of the merged section for
2ea97941 2985// input section SHNDX in object OBJECT.
a9a60db6 2986
e29e076a
ILT
2987bool
2988Output_section::find_starting_output_address(const Relobj* object,
2ea97941 2989 unsigned int shndx,
e29e076a 2990 uint64_t* paddr) const
a9a60db6 2991{
c0a62865
DK
2992 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2993 // Looking up the merge section map does not always work as we sometimes
2994 // find a merge section without its address set.
a9a60db6
ILT
2995 uint64_t addr = this->address() + this->first_input_offset_;
2996 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2997 p != this->input_sections_.end();
2998 ++p)
2999 {
3000 addr = align_address(addr, p->addralign());
3001
3002 // It would be nice if we could use the existing output_offset
3003 // method to get the output offset of input offset 0.
3004 // Unfortunately we don't know for sure that input offset 0 is
3005 // mapped at all.
2ea97941 3006 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
3007 {
3008 *paddr = addr;
3009 return true;
3010 }
a9a60db6
ILT
3011
3012 addr += p->data_size();
3013 }
e29e076a
ILT
3014
3015 // We couldn't find a merge output section for this input section.
3016 return false;
a9a60db6
ILT
3017}
3018
cdc29364
CC
3019// Update the data size of an Output_section.
3020
3021void
3022Output_section::update_data_size()
3023{
3024 if (this->input_sections_.empty())
3025 return;
3026
3027 if (this->must_sort_attached_input_sections()
3028 || this->input_section_order_specified())
3029 this->sort_attached_input_sections();
3030
3031 off_t off = this->first_input_offset_;
3032 for (Input_section_list::iterator p = this->input_sections_.begin();
3033 p != this->input_sections_.end();
3034 ++p)
3035 {
3036 off = align_address(off, p->addralign());
3037 off += p->current_data_size();
3038 }
3039
3040 this->set_current_data_size_for_child(off);
3041}
3042
27bc2bce 3043// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
3044// setting the addresses of any Output_section_data objects.
3045
3046void
27bc2bce 3047Output_section::set_final_data_size()
ead1e424 3048{
9fbd3822
CC
3049 off_t data_size;
3050
ead1e424 3051 if (this->input_sections_.empty())
9fbd3822
CC
3052 data_size = this->current_data_size_for_child();
3053 else
27bc2bce 3054 {
9fbd3822
CC
3055 if (this->must_sort_attached_input_sections()
3056 || this->input_section_order_specified())
3057 this->sort_attached_input_sections();
ead1e424 3058
9fbd3822
CC
3059 uint64_t address = this->address();
3060 off_t startoff = this->offset();
3061 off_t off = startoff + this->first_input_offset_;
3062 for (Input_section_list::iterator p = this->input_sections_.begin();
3063 p != this->input_sections_.end();
3064 ++p)
3065 {
3066 off = align_address(off, p->addralign());
3067 p->set_address_and_file_offset(address + (off - startoff), off,
3068 startoff);
3069 off += p->data_size();
3070 }
3071 data_size = off - startoff;
3072 }
2fd32231 3073
9fbd3822
CC
3074 // For full incremental links, we want to allocate some patch space
3075 // in most sections for subsequent incremental updates.
3076 if (this->is_patch_space_allowed_ && parameters->incremental_full())
ead1e424 3077 {
9fbd3822 3078 double pct = parameters->options().incremental_patch();
8ea8cd50
CC
3079 size_t extra = static_cast<size_t>(data_size * pct);
3080 if (this->free_space_fill_ != NULL
3081 && this->free_space_fill_->minimum_hole_size() > extra)
3082 extra = this->free_space_fill_->minimum_hole_size();
9fbd3822
CC
3083 off_t new_size = align_address(data_size + extra, this->addralign());
3084 this->patch_space_ = new_size - data_size;
3085 gold_debug(DEBUG_INCREMENTAL,
3086 "set_final_data_size: %08lx + %08lx: section %s",
3087 static_cast<long>(data_size),
3088 static_cast<long>(this->patch_space_),
3089 this->name());
3090 data_size = new_size;
ead1e424
ILT
3091 }
3092
9fbd3822 3093 this->set_data_size(data_size);
ead1e424 3094}
9a0910c3 3095
a445fddf
ILT
3096// Reset the address and file offset.
3097
3098void
3099Output_section::do_reset_address_and_file_offset()
3100{
20e6d0d6
DK
3101 // An unallocated section has no address. Forcing this means that
3102 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
3103 // sections. We do the same in the constructor. This does not
3104 // apply to NOLOAD sections though.
3105 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
3106 this->set_address(0);
3107
a445fddf
ILT
3108 for (Input_section_list::iterator p = this->input_sections_.begin();
3109 p != this->input_sections_.end();
3110 ++p)
3111 p->reset_address_and_file_offset();
9fbd3822
CC
3112
3113 // Remove any patch space that was added in set_final_data_size.
3114 if (this->patch_space_ > 0)
3115 {
3116 this->set_current_data_size_for_child(this->current_data_size_for_child()
3117 - this->patch_space_);
3118 this->patch_space_ = 0;
3119 }
a445fddf 3120}
9fbd3822 3121
20e6d0d6
DK
3122// Return true if address and file offset have the values after reset.
3123
3124bool
3125Output_section::do_address_and_file_offset_have_reset_values() const
3126{
3127 if (this->is_offset_valid())
3128 return false;
3129
3130 // An unallocated section has address 0 after its construction or a reset.
3131 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3132 return this->is_address_valid() && this->address() == 0;
3133 else
3134 return !this->is_address_valid();
3135}
a445fddf 3136
7bf1f802
ILT
3137// Set the TLS offset. Called only for SHT_TLS sections.
3138
3139void
3140Output_section::do_set_tls_offset(uint64_t tls_base)
3141{
3142 this->tls_offset_ = this->address() - tls_base;
3143}
3144
2fd32231
ILT
3145// In a few cases we need to sort the input sections attached to an
3146// output section. This is used to implement the type of constructor
3147// priority ordering implemented by the GNU linker, in which the
3148// priority becomes part of the section name and the sections are
3149// sorted by name. We only do this for an output section if we see an
5393d741 3150// attached input section matching ".ctors.*", ".dtors.*",
2fd32231
ILT
3151// ".init_array.*" or ".fini_array.*".
3152
3153class Output_section::Input_section_sort_entry
3154{
3155 public:
3156 Input_section_sort_entry()
3157 : input_section_(), index_(-1U), section_has_name_(false),
3158 section_name_()
3159 { }
3160
2ea97941 3161 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
3162 unsigned int index,
3163 bool must_sort_attached_input_sections)
2ea97941
ILT
3164 : input_section_(input_section), index_(index),
3165 section_has_name_(input_section.is_input_section()
3166 || input_section.is_relaxed_input_section())
2fd32231 3167 {
6e9ba2ca
ST
3168 if (this->section_has_name_
3169 && must_sort_attached_input_sections)
2fd32231
ILT
3170 {
3171 // This is only called single-threaded from Layout::finalize,
3172 // so it is OK to lock. Unfortunately we have no way to pass
3173 // in a Task token.
3174 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
3175 Object* obj = (input_section.is_input_section()
3176 ? input_section.relobj()
3177 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
3178 Task_lock_obj<Object> tl(dummy_task, obj);
3179
3180 // This is a slow operation, which should be cached in
3181 // Layout::layout if this becomes a speed problem.
2ea97941 3182 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
3183 }
3184 }
3185
3186 // Return the Input_section.
3187 const Input_section&
3188 input_section() const
3189 {
3190 gold_assert(this->index_ != -1U);
3191 return this->input_section_;
3192 }
3193
3194 // The index of this entry in the original list. This is used to
3195 // make the sort stable.
3196 unsigned int
3197 index() const
3198 {
3199 gold_assert(this->index_ != -1U);
3200 return this->index_;
3201 }
3202
3203 // Whether there is a section name.
3204 bool
3205 section_has_name() const
3206 { return this->section_has_name_; }
3207
3208 // The section name.
3209 const std::string&
3210 section_name() const
3211 {
3212 gold_assert(this->section_has_name_);
3213 return this->section_name_;
3214 }
3215
ab794b6b
ILT
3216 // Return true if the section name has a priority. This is assumed
3217 // to be true if it has a dot after the initial dot.
2fd32231 3218 bool
ab794b6b 3219 has_priority() const
2fd32231
ILT
3220 {
3221 gold_assert(this->section_has_name_);
2a0ff005 3222 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
3223 }
3224
5393d741
ILT
3225 // Return the priority. Believe it or not, gcc encodes the priority
3226 // differently for .ctors/.dtors and .init_array/.fini_array
3227 // sections.
3228 unsigned int
3229 get_priority() const
3230 {
3231 gold_assert(this->section_has_name_);
3232 bool is_ctors;
3233 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3234 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3235 is_ctors = true;
3236 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3237 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3238 is_ctors = false;
3239 else
3240 return 0;
3241 char* end;
3242 unsigned long prio = strtoul((this->section_name_.c_str()
3243 + (is_ctors ? 7 : 12)),
3244 &end, 10);
3245 if (*end != '\0')
3246 return 0;
3247 else if (is_ctors)
3248 return 65535 - prio;
3249 else
3250 return prio;
3251 }
3252
ab794b6b
ILT
3253 // Return true if this an input file whose base name matches
3254 // FILE_NAME. The base name must have an extension of ".o", and
3255 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3256 // This is to match crtbegin.o as well as crtbeginS.o without
3257 // getting confused by other possibilities. Overall matching the
3258 // file name this way is a dreadful hack, but the GNU linker does it
3259 // in order to better support gcc, and we need to be compatible.
2fd32231 3260 bool
5393d741
ILT
3261 match_file_name(const char* file_name) const
3262 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
2fd32231 3263
8fe2a369
ST
3264 // Returns 1 if THIS should appear before S in section order, -1 if S
3265 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
3266 int
3267 compare_section_ordering(const Input_section_sort_entry& s) const
3268 {
8fe2a369
ST
3269 unsigned int this_secn_index = this->input_section_.section_order_index();
3270 unsigned int s_secn_index = s.input_section().section_order_index();
3271 if (this_secn_index > 0 && s_secn_index > 0)
3272 {
3273 if (this_secn_index < s_secn_index)
3274 return 1;
3275 else if (this_secn_index > s_secn_index)
3276 return -1;
3277 }
3278 return 0;
6e9ba2ca
ST
3279 }
3280
2fd32231
ILT
3281 private:
3282 // The Input_section we are sorting.
3283 Input_section input_section_;
3284 // The index of this Input_section in the original list.
3285 unsigned int index_;
3286 // Whether this Input_section has a section name--it won't if this
3287 // is some random Output_section_data.
3288 bool section_has_name_;
3289 // The section name if there is one.
3290 std::string section_name_;
3291};
3292
3293// Return true if S1 should come before S2 in the output section.
3294
3295bool
3296Output_section::Input_section_sort_compare::operator()(
3297 const Output_section::Input_section_sort_entry& s1,
3298 const Output_section::Input_section_sort_entry& s2) const
3299{
ab794b6b
ILT
3300 // crtbegin.o must come first.
3301 bool s1_begin = s1.match_file_name("crtbegin");
3302 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
3303 if (s1_begin || s2_begin)
3304 {
3305 if (!s1_begin)
3306 return false;
3307 if (!s2_begin)
3308 return true;
3309 return s1.index() < s2.index();
3310 }
3311
ab794b6b
ILT
3312 // crtend.o must come last.
3313 bool s1_end = s1.match_file_name("crtend");
3314 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
3315 if (s1_end || s2_end)
3316 {
3317 if (!s1_end)
3318 return true;
3319 if (!s2_end)
3320 return false;
3321 return s1.index() < s2.index();
3322 }
3323
ab794b6b
ILT
3324 // We sort all the sections with no names to the end.
3325 if (!s1.section_has_name() || !s2.section_has_name())
3326 {
3327 if (s1.section_has_name())
3328 return true;
3329 if (s2.section_has_name())
3330 return false;
3331 return s1.index() < s2.index();
3332 }
2fd32231 3333
ab794b6b 3334 // A section with a priority follows a section without a priority.
ab794b6b
ILT
3335 bool s1_has_priority = s1.has_priority();
3336 bool s2_has_priority = s2.has_priority();
3337 if (s1_has_priority && !s2_has_priority)
2fd32231 3338 return false;
ab794b6b 3339 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
3340 return true;
3341
6e9ba2ca
ST
3342 // Check if a section order exists for these sections through a section
3343 // ordering file. If sequence_num is 0, an order does not exist.
3344 int sequence_num = s1.compare_section_ordering(s2);
3345 if (sequence_num != 0)
3346 return sequence_num == 1;
3347
2fd32231
ILT
3348 // Otherwise we sort by name.
3349 int compare = s1.section_name().compare(s2.section_name());
3350 if (compare != 0)
3351 return compare < 0;
3352
3353 // Otherwise we keep the input order.
3354 return s1.index() < s2.index();
3355}
3356
2a0ff005
DK
3357// Return true if S1 should come before S2 in an .init_array or .fini_array
3358// output section.
3359
3360bool
3361Output_section::Input_section_sort_init_fini_compare::operator()(
3362 const Output_section::Input_section_sort_entry& s1,
3363 const Output_section::Input_section_sort_entry& s2) const
3364{
3365 // We sort all the sections with no names to the end.
3366 if (!s1.section_has_name() || !s2.section_has_name())
3367 {
3368 if (s1.section_has_name())
3369 return true;
3370 if (s2.section_has_name())
3371 return false;
3372 return s1.index() < s2.index();
3373 }
3374
3375 // A section without a priority follows a section with a priority.
3376 // This is the reverse of .ctors and .dtors sections.
3377 bool s1_has_priority = s1.has_priority();
3378 bool s2_has_priority = s2.has_priority();
3379 if (s1_has_priority && !s2_has_priority)
3380 return true;
3381 if (!s1_has_priority && s2_has_priority)
3382 return false;
3383
5393d741
ILT
3384 // .ctors and .dtors sections without priority come after
3385 // .init_array and .fini_array sections without priority.
3386 if (!s1_has_priority
3387 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3388 && s1.section_name() != s2.section_name())
3389 return false;
3390 if (!s2_has_priority
3391 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3392 && s2.section_name() != s1.section_name())
3393 return true;
3394
3395 // Sort by priority if we can.
3396 if (s1_has_priority)
3397 {
3398 unsigned int s1_prio = s1.get_priority();
3399 unsigned int s2_prio = s2.get_priority();
3400 if (s1_prio < s2_prio)
3401 return true;
3402 else if (s1_prio > s2_prio)
3403 return false;
3404 }
3405
6e9ba2ca
ST
3406 // Check if a section order exists for these sections through a section
3407 // ordering file. If sequence_num is 0, an order does not exist.
3408 int sequence_num = s1.compare_section_ordering(s2);
3409 if (sequence_num != 0)
3410 return sequence_num == 1;
3411
2a0ff005
DK
3412 // Otherwise we sort by name.
3413 int compare = s1.section_name().compare(s2.section_name());
3414 if (compare != 0)
3415 return compare < 0;
3416
3417 // Otherwise we keep the input order.
3418 return s1.index() < s2.index();
3419}
3420
8fe2a369
ST
3421// Return true if S1 should come before S2. Sections that do not match
3422// any pattern in the section ordering file are placed ahead of the sections
3423// that match some pattern.
3424
6e9ba2ca
ST
3425bool
3426Output_section::Input_section_sort_section_order_index_compare::operator()(
3427 const Output_section::Input_section_sort_entry& s1,
3428 const Output_section::Input_section_sort_entry& s2) const
3429{
8fe2a369
ST
3430 unsigned int s1_secn_index = s1.input_section().section_order_index();
3431 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3432
8fe2a369
ST
3433 // Keep input order if section ordering cannot determine order.
3434 if (s1_secn_index == s2_secn_index)
3435 return s1.index() < s2.index();
3436
3437 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
3438}
3439
e9552f7e
ST
3440// This updates the section order index of input sections according to the
3441// the order specified in the mapping from Section id to order index.
3442
3443void
3444Output_section::update_section_layout(
f0558624 3445 const Section_layout_order* order_map)
e9552f7e
ST
3446{
3447 for (Input_section_list::iterator p = this->input_sections_.begin();
3448 p != this->input_sections_.end();
3449 ++p)
3450 {
3451 if (p->is_input_section()
3452 || p->is_relaxed_input_section())
3453 {
3454 Object* obj = (p->is_input_section()
3455 ? p->relobj()
3456 : p->relaxed_input_section()->relobj());
3457 unsigned int shndx = p->shndx();
3458 Section_layout_order::const_iterator it
f0558624
ST
3459 = order_map->find(Section_id(obj, shndx));
3460 if (it == order_map->end())
e9552f7e
ST
3461 continue;
3462 unsigned int section_order_index = it->second;
3463 if (section_order_index != 0)
3464 {
3465 p->set_section_order_index(section_order_index);
3466 this->set_input_section_order_specified();
3467 }
3468 }
3469 }
3470}
3471
2fd32231
ILT
3472// Sort the input sections attached to an output section.
3473
3474void
3475Output_section::sort_attached_input_sections()
3476{
3477 if (this->attached_input_sections_are_sorted_)
3478 return;
3479
20e6d0d6
DK
3480 if (this->checkpoint_ != NULL
3481 && !this->checkpoint_->input_sections_saved())
3482 this->checkpoint_->save_input_sections();
3483
2fd32231
ILT
3484 // The only thing we know about an input section is the object and
3485 // the section index. We need the section name. Recomputing this
3486 // is slow but this is an unusual case. If this becomes a speed
3487 // problem we can cache the names as required in Layout::layout.
3488
3489 // We start by building a larger vector holding a copy of each
3490 // Input_section, plus its current index in the list and its name.
3491 std::vector<Input_section_sort_entry> sort_list;
3492
3493 unsigned int i = 0;
3494 for (Input_section_list::iterator p = this->input_sections_.begin();
3495 p != this->input_sections_.end();
3496 ++p, ++i)
6e9ba2ca
ST
3497 sort_list.push_back(Input_section_sort_entry(*p, i,
3498 this->must_sort_attached_input_sections()));
2fd32231
ILT
3499
3500 // Sort the input sections.
6e9ba2ca
ST
3501 if (this->must_sort_attached_input_sections())
3502 {
3503 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3504 || this->type() == elfcpp::SHT_INIT_ARRAY
3505 || this->type() == elfcpp::SHT_FINI_ARRAY)
3506 std::sort(sort_list.begin(), sort_list.end(),
3507 Input_section_sort_init_fini_compare());
3508 else
3509 std::sort(sort_list.begin(), sort_list.end(),
3510 Input_section_sort_compare());
3511 }
2a0ff005 3512 else
6e9ba2ca 3513 {
e9552f7e 3514 gold_assert(this->input_section_order_specified());
6e9ba2ca
ST
3515 std::sort(sort_list.begin(), sort_list.end(),
3516 Input_section_sort_section_order_index_compare());
3517 }
2fd32231
ILT
3518
3519 // Copy the sorted input sections back to our list.
3520 this->input_sections_.clear();
3521 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3522 p != sort_list.end();
3523 ++p)
3524 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3525 sort_list.clear();
2fd32231
ILT
3526
3527 // Remember that we sorted the input sections, since we might get
3528 // called again.
3529 this->attached_input_sections_are_sorted_ = true;
3530}
3531
61ba1cf9
ILT
3532// Write the section header to *OSHDR.
3533
3534template<int size, bool big_endian>
3535void
16649710
ILT
3536Output_section::write_header(const Layout* layout,
3537 const Stringpool* secnamepool,
61ba1cf9
ILT
3538 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3539{
3540 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3541 oshdr->put_sh_type(this->type_);
6a74a719 3542
2ea97941 3543 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3544 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3545 flags |= elfcpp::SHF_INFO_LINK;
3546 oshdr->put_sh_flags(flags);
6a74a719 3547
61ba1cf9
ILT
3548 oshdr->put_sh_addr(this->address());
3549 oshdr->put_sh_offset(this->offset());
3550 oshdr->put_sh_size(this->data_size());
16649710
ILT
3551 if (this->link_section_ != NULL)
3552 oshdr->put_sh_link(this->link_section_->out_shndx());
3553 else if (this->should_link_to_symtab_)
886f533a 3554 oshdr->put_sh_link(layout->symtab_section_shndx());
16649710
ILT
3555 else if (this->should_link_to_dynsym_)
3556 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3557 else
3558 oshdr->put_sh_link(this->link_);
755ab8af 3559
2ea97941 3560 elfcpp::Elf_Word info;
16649710 3561 if (this->info_section_ != NULL)
755ab8af
ILT
3562 {
3563 if (this->info_uses_section_index_)
2ea97941 3564 info = this->info_section_->out_shndx();
755ab8af 3565 else
2ea97941 3566 info = this->info_section_->symtab_index();
755ab8af 3567 }
6a74a719 3568 else if (this->info_symndx_ != NULL)
2ea97941 3569 info = this->info_symndx_->symtab_index();
16649710 3570 else
2ea97941
ILT
3571 info = this->info_;
3572 oshdr->put_sh_info(info);
755ab8af 3573
61ba1cf9
ILT
3574 oshdr->put_sh_addralign(this->addralign_);
3575 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3576}
3577
ead1e424
ILT
3578// Write out the data. For input sections the data is written out by
3579// Object::relocate, but we have to handle Output_section_data objects
3580// here.
3581
3582void
3583Output_section::do_write(Output_file* of)
3584{
96803768
ILT
3585 gold_assert(!this->requires_postprocessing());
3586
c0a62865
DK
3587 // If the target performs relaxation, we delay filler generation until now.
3588 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3589
c51e6221
ILT
3590 off_t output_section_file_offset = this->offset();
3591 for (Fill_list::iterator p = this->fills_.begin();
3592 p != this->fills_.end();
3593 ++p)
3594 {
8851ecca 3595 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3596 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3597 fill_data.data(), fill_data.size());
c51e6221
ILT
3598 }
3599
c0a62865 3600 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3601 for (Input_section_list::iterator p = this->input_sections_.begin();
3602 p != this->input_sections_.end();
3603 ++p)
c0a62865
DK
3604 {
3605 off_t aligned_off = align_address(off, p->addralign());
3606 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3607 {
3608 size_t fill_len = aligned_off - off;
3609 std::string fill_data(parameters->target().code_fill(fill_len));
3610 of->write(off, fill_data.data(), fill_data.size());
3611 }
3612
3613 p->write(of);
3614 off = aligned_off + p->data_size();
3615 }
8ea8cd50
CC
3616
3617 // For incremental links, fill in unused chunks in debug sections
3618 // with dummy compilation unit headers.
3619 if (this->free_space_fill_ != NULL)
3620 {
3621 for (Free_list::Const_iterator p = this->free_list_.begin();
3622 p != this->free_list_.end();
3623 ++p)
3624 {
3625 off_t off = p->start_;
3626 size_t len = p->end_ - off;
3627 this->free_space_fill_->write(of, this->offset() + off, len);
3628 }
3629 if (this->patch_space_ > 0)
3630 {
3631 off_t off = this->current_data_size_for_child() - this->patch_space_;
3632 this->free_space_fill_->write(of, this->offset() + off,
3633 this->patch_space_);
3634 }
3635 }
ead1e424
ILT
3636}
3637
96803768
ILT
3638// If a section requires postprocessing, create the buffer to use.
3639
3640void
3641Output_section::create_postprocessing_buffer()
3642{
3643 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3644
3645 if (this->postprocessing_buffer_ != NULL)
3646 return;
96803768
ILT
3647
3648 if (!this->input_sections_.empty())
3649 {
3650 off_t off = this->first_input_offset_;
3651 for (Input_section_list::iterator p = this->input_sections_.begin();
3652 p != this->input_sections_.end();
3653 ++p)
3654 {
3655 off = align_address(off, p->addralign());
3656 p->finalize_data_size();
3657 off += p->data_size();
3658 }
3659 this->set_current_data_size_for_child(off);
3660 }
3661
3662 off_t buffer_size = this->current_data_size_for_child();
3663 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3664}
3665
3666// Write all the data of an Output_section into the postprocessing
3667// buffer. This is used for sections which require postprocessing,
3668// such as compression. Input sections are handled by
3669// Object::Relocate.
3670
3671void
3672Output_section::write_to_postprocessing_buffer()
3673{
3674 gold_assert(this->requires_postprocessing());
3675
c0a62865
DK
3676 // If the target performs relaxation, we delay filler generation until now.
3677 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3678
96803768
ILT
3679 unsigned char* buffer = this->postprocessing_buffer();
3680 for (Fill_list::iterator p = this->fills_.begin();
3681 p != this->fills_.end();
3682 ++p)
3683 {
8851ecca 3684 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3685 memcpy(buffer + p->section_offset(), fill_data.data(),
3686 fill_data.size());
96803768
ILT
3687 }
3688
3689 off_t off = this->first_input_offset_;
3690 for (Input_section_list::iterator p = this->input_sections_.begin();
3691 p != this->input_sections_.end();
3692 ++p)
3693 {
c0a62865
DK
3694 off_t aligned_off = align_address(off, p->addralign());
3695 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3696 {
3697 size_t fill_len = aligned_off - off;
3698 std::string fill_data(parameters->target().code_fill(fill_len));
3699 memcpy(buffer + off, fill_data.data(), fill_data.size());
3700 }
3701
3702 p->write_to_buffer(buffer + aligned_off);
3703 off = aligned_off + p->data_size();
96803768
ILT
3704 }
3705}
3706
a445fddf
ILT
3707// Get the input sections for linker script processing. We leave
3708// behind the Output_section_data entries. Note that this may be
3709// slightly incorrect for merge sections. We will leave them behind,
3710// but it is possible that the script says that they should follow
3711// some other input sections, as in:
3712// .rodata { *(.rodata) *(.rodata.cst*) }
3713// For that matter, we don't handle this correctly:
3714// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3715// With luck this will never matter.
3716
3717uint64_t
3718Output_section::get_input_sections(
2ea97941 3719 uint64_t address,
a445fddf 3720 const std::string& fill,
6625d24e 3721 std::list<Input_section>* input_sections)
a445fddf 3722{
20e6d0d6
DK
3723 if (this->checkpoint_ != NULL
3724 && !this->checkpoint_->input_sections_saved())
3725 this->checkpoint_->save_input_sections();
3726
0439c796
DK
3727 // Invalidate fast look-up maps.
3728 this->lookup_maps_->invalidate();
c0a62865 3729
2ea97941 3730 uint64_t orig_address = address;
a445fddf 3731
2ea97941 3732 address = align_address(address, this->addralign());
a445fddf
ILT
3733
3734 Input_section_list remaining;
3735 for (Input_section_list::iterator p = this->input_sections_.begin();
3736 p != this->input_sections_.end();
3737 ++p)
3738 {
0439c796
DK
3739 if (p->is_input_section()
3740 || p->is_relaxed_input_section()
3741 || p->is_merge_section())
6625d24e 3742 input_sections->push_back(*p);
a445fddf
ILT
3743 else
3744 {
2ea97941
ILT
3745 uint64_t aligned_address = align_address(address, p->addralign());
3746 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3747 {
3748 section_size_type length =
2ea97941 3749 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3750 std::string this_fill;
3751 this_fill.reserve(length);
3752 while (this_fill.length() + fill.length() <= length)
3753 this_fill += fill;
3754 if (this_fill.length() < length)
3755 this_fill.append(fill, 0, length - this_fill.length());
3756
3757 Output_section_data* posd = new Output_data_const(this_fill, 0);
3758 remaining.push_back(Input_section(posd));
3759 }
2ea97941 3760 address = aligned_address;
a445fddf
ILT
3761
3762 remaining.push_back(*p);
3763
3764 p->finalize_data_size();
2ea97941 3765 address += p->data_size();
a445fddf
ILT
3766 }
3767 }
3768
3769 this->input_sections_.swap(remaining);
3770 this->first_input_offset_ = 0;
3771
2ea97941
ILT
3772 uint64_t data_size = address - orig_address;
3773 this->set_current_data_size_for_child(data_size);
3774 return data_size;
a445fddf
ILT
3775}
3776
6625d24e
DK
3777// Add a script input section. SIS is an Output_section::Input_section,
3778// which can be either a plain input section or a special input section like
3779// a relaxed input section. For a special input section, its size must be
3780// finalized.
a445fddf
ILT
3781
3782void
6625d24e 3783Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3784{
6625d24e
DK
3785 uint64_t data_size = sis.data_size();
3786 uint64_t addralign = sis.addralign();
2ea97941
ILT
3787 if (addralign > this->addralign_)
3788 this->addralign_ = addralign;
a445fddf
ILT
3789
3790 off_t offset_in_section = this->current_data_size_for_child();
3791 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3792 addralign);
a445fddf
ILT
3793
3794 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3795 + data_size);
a445fddf 3796
6625d24e 3797 this->input_sections_.push_back(sis);
0439c796
DK
3798
3799 // Update fast lookup maps if necessary.
3800 if (this->lookup_maps_->is_valid())
3801 {
3802 if (sis.is_merge_section())
3803 {
3804 Output_merge_base* pomb = sis.output_merge_base();
3805 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3806 pomb->addralign());
3807 this->lookup_maps_->add_merge_section(msp, pomb);
3808 for (Output_merge_base::Input_sections::const_iterator p =
3809 pomb->input_sections_begin();
3810 p != pomb->input_sections_end();
3811 ++p)
3812 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3813 pomb);
3814 }
3815 else if (sis.is_relaxed_input_section())
3816 {
3817 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3818 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3819 poris->shndx(), poris);
3820 }
3821 }
20e6d0d6
DK
3822}
3823
8923b24c 3824// Save states for relaxation.
20e6d0d6
DK
3825
3826void
3827Output_section::save_states()
3828{
3829 gold_assert(this->checkpoint_ == NULL);
3830 Checkpoint_output_section* checkpoint =
3831 new Checkpoint_output_section(this->addralign_, this->flags_,
3832 this->input_sections_,
3833 this->first_input_offset_,
3834 this->attached_input_sections_are_sorted_);
3835 this->checkpoint_ = checkpoint;
3836 gold_assert(this->fills_.empty());
3837}
3838
8923b24c
DK
3839void
3840Output_section::discard_states()
3841{
3842 gold_assert(this->checkpoint_ != NULL);
3843 delete this->checkpoint_;
3844 this->checkpoint_ = NULL;
3845 gold_assert(this->fills_.empty());
3846
0439c796
DK
3847 // Simply invalidate the fast lookup maps since we do not keep
3848 // track of them.
3849 this->lookup_maps_->invalidate();
8923b24c
DK
3850}
3851
20e6d0d6
DK
3852void
3853Output_section::restore_states()
3854{
3855 gold_assert(this->checkpoint_ != NULL);
3856 Checkpoint_output_section* checkpoint = this->checkpoint_;
3857
3858 this->addralign_ = checkpoint->addralign();
3859 this->flags_ = checkpoint->flags();
3860 this->first_input_offset_ = checkpoint->first_input_offset();
3861
3862 if (!checkpoint->input_sections_saved())
3863 {
3864 // If we have not copied the input sections, just resize it.
3865 size_t old_size = checkpoint->input_sections_size();
3866 gold_assert(this->input_sections_.size() >= old_size);
3867 this->input_sections_.resize(old_size);
3868 }
3869 else
3870 {
3871 // We need to copy the whole list. This is not efficient for
3872 // extremely large output with hundreads of thousands of input
3873 // objects. We may need to re-think how we should pass sections
3874 // to scripts.
c0a62865 3875 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3876 }
3877
3878 this->attached_input_sections_are_sorted_ =
3879 checkpoint->attached_input_sections_are_sorted();
c0a62865 3880
0439c796
DK
3881 // Simply invalidate the fast lookup maps since we do not keep
3882 // track of them.
3883 this->lookup_maps_->invalidate();
a445fddf
ILT
3884}
3885
8923b24c
DK
3886// Update the section offsets of input sections in this. This is required if
3887// relaxation causes some input sections to change sizes.
3888
3889void
3890Output_section::adjust_section_offsets()
3891{
3892 if (!this->section_offsets_need_adjustment_)
3893 return;
3894
3895 off_t off = 0;
3896 for (Input_section_list::iterator p = this->input_sections_.begin();
3897 p != this->input_sections_.end();
3898 ++p)
3899 {
3900 off = align_address(off, p->addralign());
3901 if (p->is_input_section())
3902 p->relobj()->set_section_offset(p->shndx(), off);
3903 off += p->data_size();
3904 }
3905
3906 this->section_offsets_need_adjustment_ = false;
3907}
3908
7d9e3d98
ILT
3909// Print to the map file.
3910
3911void
3912Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3913{
3914 mapfile->print_output_section(this);
3915
3916 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3917 p != this->input_sections_.end();
3918 ++p)
3919 p->print_to_mapfile(mapfile);
3920}
3921
38c5e8b4
ILT
3922// Print stats for merge sections to stderr.
3923
3924void
3925Output_section::print_merge_stats()
3926{
3927 Input_section_list::iterator p;
3928 for (p = this->input_sections_.begin();
3929 p != this->input_sections_.end();
3930 ++p)
3931 p->print_merge_stats(this->name_);
3932}
3933
cdc29364
CC
3934// Set a fixed layout for the section. Used for incremental update links.
3935
3936void
3937Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3938 off_t sh_size, uint64_t sh_addralign)
3939{
3940 this->addralign_ = sh_addralign;
3941 this->set_current_data_size(sh_size);
3942 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3943 this->set_address(sh_addr);
3944 this->set_file_offset(sh_offset);
3945 this->finalize_data_size();
3946 this->free_list_.init(sh_size, false);
3947 this->has_fixed_layout_ = true;
3948}
3949
3950// Reserve space within the fixed layout for the section. Used for
3951// incremental update links.
5146f448 3952
cdc29364
CC
3953void
3954Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3955{
3956 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3957}
3958
5146f448
CC
3959// Allocate space from the free list for the section. Used for
3960// incremental update links.
3961
3962off_t
3963Output_section::allocate(off_t len, uint64_t addralign)
3964{
3965 return this->free_list_.allocate(len, addralign, 0);
3966}
3967
a2fb1b05
ILT
3968// Output segment methods.
3969
2ea97941 3970Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 3971 : vaddr_(0),
a2fb1b05
ILT
3972 paddr_(0),
3973 memsz_(0),
a445fddf
ILT
3974 max_align_(0),
3975 min_p_align_(0),
a2fb1b05
ILT
3976 offset_(0),
3977 filesz_(0),
2ea97941
ILT
3978 type_(type),
3979 flags_(flags),
a445fddf 3980 is_max_align_known_(false),
8a5e3e08
ILT
3981 are_addresses_set_(false),
3982 is_large_data_segment_(false)
a2fb1b05 3983{
bb321bb1
ILT
3984 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3985 // the flags.
3986 if (type == elfcpp::PT_TLS)
3987 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
3988}
3989
22f0da72 3990// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
3991
3992void
22f0da72
ILT
3993Output_segment::add_output_section_to_load(Layout* layout,
3994 Output_section* os,
3995 elfcpp::Elf_Word seg_flags)
a2fb1b05 3996{
22f0da72 3997 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 3998 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 3999 gold_assert(!this->is_max_align_known_);
8a5e3e08 4000 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 4001
a192ba05 4002 this->update_flags_for_output_section(seg_flags);
75f65a3e 4003
22f0da72
ILT
4004 // We don't want to change the ordering if we have a linker script
4005 // with a SECTIONS clause.
4006 Output_section_order order = os->order();
4007 if (layout->script_options()->saw_sections_clause())
4008 order = static_cast<Output_section_order>(0);
75f65a3e 4009 else
22f0da72 4010 gold_assert(order != ORDER_INVALID);
54dc6425 4011
22f0da72
ILT
4012 this->output_lists_[order].push_back(os);
4013}
9f1d377b 4014
22f0da72 4015// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 4016
22f0da72
ILT
4017void
4018Output_segment::add_output_section_to_nonload(Output_section* os,
4019 elfcpp::Elf_Word seg_flags)
4020{
4021 gold_assert(this->type() != elfcpp::PT_LOAD);
4022 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4023 gold_assert(!this->is_max_align_known_);
1a2dff53 4024
22f0da72 4025 this->update_flags_for_output_section(seg_flags);
9f1d377b 4026
22f0da72
ILT
4027 this->output_lists_[0].push_back(os);
4028}
8a5e3e08 4029
22f0da72
ILT
4030// Remove an Output_section from this segment. It is an error if it
4031// is not present.
8a5e3e08 4032
22f0da72
ILT
4033void
4034Output_segment::remove_output_section(Output_section* os)
4035{
4036 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 4037 {
22f0da72
ILT
4038 Output_data_list* pdl = &this->output_lists_[i];
4039 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 4040 {
22f0da72 4041 if (*p == os)
8a5e3e08 4042 {
22f0da72 4043 pdl->erase(p);
8a5e3e08
ILT
4044 return;
4045 }
4046 }
f5c870d2 4047 }
1650c4ff
ILT
4048 gold_unreachable();
4049}
4050
a192ba05
ILT
4051// Add an Output_data (which need not be an Output_section) to the
4052// start of a segment.
75f65a3e
ILT
4053
4054void
4055Output_segment::add_initial_output_data(Output_data* od)
4056{
a445fddf 4057 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
4058 Output_data_list::iterator p = this->output_lists_[0].begin();
4059 this->output_lists_[0].insert(p, od);
4060}
4061
4062// Return true if this segment has any sections which hold actual
4063// data, rather than being a BSS section.
4064
4065bool
4066Output_segment::has_any_data_sections() const
4067{
4068 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4069 {
4070 const Output_data_list* pdl = &this->output_lists_[i];
4071 for (Output_data_list::const_iterator p = pdl->begin();
4072 p != pdl->end();
4073 ++p)
4074 {
4075 if (!(*p)->is_section())
4076 return true;
4077 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4078 return true;
4079 }
4080 }
4081 return false;
75f65a3e
ILT
4082}
4083
5bc2f5be
CC
4084// Return whether the first data section (not counting TLS sections)
4085// is a relro section.
9f1d377b
ILT
4086
4087bool
4088Output_segment::is_first_section_relro() const
4089{
22f0da72
ILT
4090 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4091 {
5bc2f5be
CC
4092 if (i == static_cast<int>(ORDER_TLS_DATA)
4093 || i == static_cast<int>(ORDER_TLS_BSS))
4094 continue;
22f0da72
ILT
4095 const Output_data_list* pdl = &this->output_lists_[i];
4096 if (!pdl->empty())
4097 {
4098 Output_data* p = pdl->front();
4099 return p->is_section() && p->output_section()->is_relro();
4100 }
4101 }
4102 return false;
9f1d377b
ILT
4103}
4104
75f65a3e 4105// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
4106
4107uint64_t
a445fddf 4108Output_segment::maximum_alignment()
75f65a3e 4109{
a445fddf 4110 if (!this->is_max_align_known_)
ead1e424 4111 {
22f0da72
ILT
4112 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4113 {
4114 const Output_data_list* pdl = &this->output_lists_[i];
4115 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4116 if (addralign > this->max_align_)
4117 this->max_align_ = addralign;
4118 }
a445fddf 4119 this->is_max_align_known_ = true;
ead1e424
ILT
4120 }
4121
a445fddf 4122 return this->max_align_;
75f65a3e
ILT
4123}
4124
ead1e424
ILT
4125// Return the maximum alignment of a list of Output_data.
4126
4127uint64_t
a445fddf 4128Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
4129{
4130 uint64_t ret = 0;
4131 for (Output_data_list::const_iterator p = pdl->begin();
4132 p != pdl->end();
4133 ++p)
4134 {
2ea97941
ILT
4135 uint64_t addralign = (*p)->addralign();
4136 if (addralign > ret)
4137 ret = addralign;
ead1e424
ILT
4138 }
4139 return ret;
4140}
4141
22f0da72 4142// Return whether this segment has any dynamic relocs.
4f4c5f80 4143
22f0da72
ILT
4144bool
4145Output_segment::has_dynamic_reloc() const
4f4c5f80 4146{
22f0da72
ILT
4147 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4148 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4149 return true;
4150 return false;
4f4c5f80
ILT
4151}
4152
22f0da72 4153// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 4154
22f0da72
ILT
4155bool
4156Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 4157{
4f4c5f80
ILT
4158 for (Output_data_list::const_iterator p = pdl->begin();
4159 p != pdl->end();
4160 ++p)
22f0da72
ILT
4161 if ((*p)->has_dynamic_reloc())
4162 return true;
4163 return false;
4f4c5f80
ILT
4164}
4165
a445fddf
ILT
4166// Set the section addresses for an Output_segment. If RESET is true,
4167// reset the addresses first. ADDR is the address and *POFF is the
4168// file offset. Set the section indexes starting with *PSHNDX.
5bc2f5be
CC
4169// INCREASE_RELRO is the size of the portion of the first non-relro
4170// section that should be included in the PT_GNU_RELRO segment.
4171// If this segment has relro sections, and has been aligned for
4172// that purpose, set *HAS_RELRO to TRUE. Return the address of
4173// the immediately following segment. Update *HAS_RELRO, *POFF,
4174// and *PSHNDX.
75f65a3e
ILT
4175
4176uint64_t
cdc29364 4177Output_segment::set_section_addresses(Layout* layout, bool reset,
1a2dff53 4178 uint64_t addr,
fd064a5b 4179 unsigned int* increase_relro,
fc497986 4180 bool* has_relro,
1a2dff53 4181 off_t* poff,
ead1e424 4182 unsigned int* pshndx)
75f65a3e 4183{
a3ad94ed 4184 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 4185
fc497986 4186 uint64_t last_relro_pad = 0;
1a2dff53
ILT
4187 off_t orig_off = *poff;
4188
5bc2f5be
CC
4189 bool in_tls = false;
4190
1a2dff53
ILT
4191 // If we have relro sections, we need to pad forward now so that the
4192 // relro sections plus INCREASE_RELRO end on a common page boundary.
4193 if (parameters->options().relro()
4194 && this->is_first_section_relro()
4195 && (!this->are_addresses_set_ || reset))
4196 {
4197 uint64_t relro_size = 0;
4198 off_t off = *poff;
fc497986 4199 uint64_t max_align = 0;
5bc2f5be 4200 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
1a2dff53 4201 {
22f0da72
ILT
4202 Output_data_list* pdl = &this->output_lists_[i];
4203 Output_data_list::iterator p;
4204 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 4205 {
22f0da72
ILT
4206 if (!(*p)->is_section())
4207 break;
fc497986
CC
4208 uint64_t align = (*p)->addralign();
4209 if (align > max_align)
4210 max_align = align;
5bc2f5be
CC
4211 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4212 in_tls = true;
4213 else if (in_tls)
4214 {
4215 // Align the first non-TLS section to the alignment
4216 // of the TLS segment.
4217 align = max_align;
4218 in_tls = false;
4219 }
fc497986 4220 relro_size = align_address(relro_size, align);
5bc2f5be
CC
4221 // Ignore the size of the .tbss section.
4222 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4223 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4224 continue;
22f0da72
ILT
4225 if ((*p)->is_address_valid())
4226 relro_size += (*p)->data_size();
4227 else
4228 {
4229 // FIXME: This could be faster.
4230 (*p)->set_address_and_file_offset(addr + relro_size,
4231 off + relro_size);
4232 relro_size += (*p)->data_size();
4233 (*p)->reset_address_and_file_offset();
4234 }
1a2dff53 4235 }
22f0da72
ILT
4236 if (p != pdl->end())
4237 break;
1a2dff53 4238 }
fd064a5b 4239 relro_size += *increase_relro;
fc497986
CC
4240 // Pad the total relro size to a multiple of the maximum
4241 // section alignment seen.
4242 uint64_t aligned_size = align_address(relro_size, max_align);
4243 // Note the amount of padding added after the last relro section.
4244 last_relro_pad = aligned_size - relro_size;
fc497986 4245 *has_relro = true;
1a2dff53
ILT
4246
4247 uint64_t page_align = parameters->target().common_pagesize();
4248
4249 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 4250 uint64_t desired_align = page_align - (aligned_size % page_align);
1a2dff53
ILT
4251 if (desired_align < *poff % page_align)
4252 *poff += page_align - *poff % page_align;
4253 *poff += desired_align - *poff % page_align;
4254 addr += *poff - orig_off;
4255 orig_off = *poff;
4256 }
4257
a445fddf
ILT
4258 if (!reset && this->are_addresses_set_)
4259 {
4260 gold_assert(this->paddr_ == addr);
4261 addr = this->vaddr_;
4262 }
4263 else
4264 {
4265 this->vaddr_ = addr;
4266 this->paddr_ = addr;
4267 this->are_addresses_set_ = true;
4268 }
75f65a3e 4269
5bc2f5be 4270 in_tls = false;
96a2b4e4 4271
75f65a3e
ILT
4272 this->offset_ = orig_off;
4273
22f0da72
ILT
4274 off_t off = 0;
4275 uint64_t ret;
4276 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4277 {
fc497986
CC
4278 if (i == static_cast<int>(ORDER_RELRO_LAST))
4279 {
4280 *poff += last_relro_pad;
4281 addr += last_relro_pad;
fd064a5b
CC
4282 if (this->output_lists_[i].empty())
4283 {
4284 // If there is nothing in the ORDER_RELRO_LAST list,
4285 // the padding will occur at the end of the relro
4286 // segment, and we need to add it to *INCREASE_RELRO.
4287 *increase_relro += last_relro_pad;
4288 }
fc497986 4289 }
5bc2f5be
CC
4290 addr = this->set_section_list_addresses(layout, reset,
4291 &this->output_lists_[i],
4292 addr, poff, pshndx, &in_tls);
22f0da72
ILT
4293 if (i < static_cast<int>(ORDER_SMALL_BSS))
4294 {
4295 this->filesz_ = *poff - orig_off;
4296 off = *poff;
4297 }
75f65a3e 4298
22f0da72
ILT
4299 ret = addr;
4300 }
96a2b4e4
ILT
4301
4302 // If the last section was a TLS section, align upward to the
4303 // alignment of the TLS segment, so that the overall size of the TLS
4304 // segment is aligned.
4305 if (in_tls)
4306 {
4307 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4308 *poff = align_address(*poff, segment_align);
4309 }
4310
75f65a3e
ILT
4311 this->memsz_ = *poff - orig_off;
4312
4313 // Ignore the file offset adjustments made by the BSS Output_data
4314 // objects.
4315 *poff = off;
61ba1cf9
ILT
4316
4317 return ret;
75f65a3e
ILT
4318}
4319
b8e6aad9
ILT
4320// Set the addresses and file offsets in a list of Output_data
4321// structures.
75f65a3e
ILT
4322
4323uint64_t
cdc29364 4324Output_segment::set_section_list_addresses(Layout* layout, bool reset,
96a2b4e4 4325 Output_data_list* pdl,
ead1e424 4326 uint64_t addr, off_t* poff,
96a2b4e4 4327 unsigned int* pshndx,
1a2dff53 4328 bool* in_tls)
75f65a3e 4329{
ead1e424 4330 off_t startoff = *poff;
cdc29364
CC
4331 // For incremental updates, we may allocate non-fixed sections from
4332 // free space in the file. This keeps track of the high-water mark.
4333 off_t maxoff = startoff;
75f65a3e 4334
ead1e424 4335 off_t off = startoff;
75f65a3e
ILT
4336 for (Output_data_list::iterator p = pdl->begin();
4337 p != pdl->end();
4338 ++p)
4339 {
a445fddf
ILT
4340 if (reset)
4341 (*p)->reset_address_and_file_offset();
4342
cdc29364
CC
4343 // When doing an incremental update or when using a linker script,
4344 // the section will most likely already have an address.
a445fddf 4345 if (!(*p)->is_address_valid())
3802b2dd 4346 {
96a2b4e4
ILT
4347 uint64_t align = (*p)->addralign();
4348
4349 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4350 {
4351 // Give the first TLS section the alignment of the
4352 // entire TLS segment. Otherwise the TLS segment as a
4353 // whole may be misaligned.
4354 if (!*in_tls)
4355 {
4356 Output_segment* tls_segment = layout->tls_segment();
4357 gold_assert(tls_segment != NULL);
4358 uint64_t segment_align = tls_segment->maximum_alignment();
4359 gold_assert(segment_align >= align);
4360 align = segment_align;
4361
4362 *in_tls = true;
4363 }
4364 }
4365 else
4366 {
4367 // If this is the first section after the TLS segment,
4368 // align it to at least the alignment of the TLS
4369 // segment, so that the size of the overall TLS segment
4370 // is aligned.
4371 if (*in_tls)
4372 {
4373 uint64_t segment_align =
4374 layout->tls_segment()->maximum_alignment();
4375 if (segment_align > align)
4376 align = segment_align;
4377
4378 *in_tls = false;
4379 }
4380 }
4381
fb0e076f 4382 if (!parameters->incremental_update())
cdc29364
CC
4383 {
4384 off = align_address(off, align);
4385 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4386 }
4387 else
4388 {
4389 // Incremental update: allocate file space from free list.
4390 (*p)->pre_finalize_data_size();
4391 off_t current_size = (*p)->current_data_size();
4392 off = layout->allocate(current_size, align, startoff);
4393 if (off == -1)
4394 {
4395 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4396 gold_fallback(_("out of patch space for section %s; "
4397 "relink with --incremental-full"),
4398 (*p)->output_section()->name());
cdc29364
CC
4399 }
4400 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4401 if ((*p)->data_size() > current_size)
4402 {
4403 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4404 gold_fallback(_("%s: section changed size; "
4405 "relink with --incremental-full"),
4406 (*p)->output_section()->name());
cdc29364
CC
4407 }
4408 }
3802b2dd 4409 }
cdc29364
CC
4410 else if (parameters->incremental_update())
4411 {
4412 // For incremental updates, use the fixed offset for the
4413 // high-water mark computation.
4414 off = (*p)->offset();
4415 }
a445fddf
ILT
4416 else
4417 {
4418 // The script may have inserted a skip forward, but it
4419 // better not have moved backward.
661be1e2
ILT
4420 if ((*p)->address() >= addr + (off - startoff))
4421 off += (*p)->address() - (addr + (off - startoff));
4422 else
4423 {
4424 if (!layout->script_options()->saw_sections_clause())
4425 gold_unreachable();
4426 else
4427 {
4428 Output_section* os = (*p)->output_section();
64b1ae37
DK
4429
4430 // Cast to unsigned long long to avoid format warnings.
4431 unsigned long long previous_dot =
4432 static_cast<unsigned long long>(addr + (off - startoff));
4433 unsigned long long dot =
4434 static_cast<unsigned long long>((*p)->address());
4435
661be1e2
ILT
4436 if (os == NULL)
4437 gold_error(_("dot moves backward in linker script "
64b1ae37 4438 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
4439 else
4440 gold_error(_("address of section '%s' moves backward "
4441 "from 0x%llx to 0x%llx"),
64b1ae37 4442 os->name(), previous_dot, dot);
661be1e2
ILT
4443 }
4444 }
a445fddf
ILT
4445 (*p)->set_file_offset(off);
4446 (*p)->finalize_data_size();
4447 }
ead1e424 4448
9fbd3822
CC
4449 if (parameters->incremental_update())
4450 gold_debug(DEBUG_INCREMENTAL,
4451 "set_section_list_addresses: %08lx %08lx %s",
4452 static_cast<long>(off),
4453 static_cast<long>((*p)->data_size()),
4454 ((*p)->output_section() != NULL
4455 ? (*p)->output_section()->name() : "(special)"));
4456
4457 // We want to ignore the size of a SHF_TLS SHT_NOBITS
96a2b4e4
ILT
4458 // section. Such a section does not affect the size of a
4459 // PT_LOAD segment.
4460 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
4461 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4462 off += (*p)->data_size();
75f65a3e 4463
cdc29364
CC
4464 if (off > maxoff)
4465 maxoff = off;
4466
ead1e424
ILT
4467 if ((*p)->is_section())
4468 {
4469 (*p)->set_out_shndx(*pshndx);
4470 ++*pshndx;
4471 }
75f65a3e
ILT
4472 }
4473
cdc29364
CC
4474 *poff = maxoff;
4475 return addr + (maxoff - startoff);
75f65a3e
ILT
4476}
4477
4478// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 4479// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
4480
4481void
1a2dff53 4482Output_segment::set_offset(unsigned int increase)
75f65a3e 4483{
a3ad94ed 4484 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 4485
a445fddf
ILT
4486 gold_assert(!this->are_addresses_set_);
4487
22f0da72
ILT
4488 // A non-load section only uses output_lists_[0].
4489
4490 Output_data_list* pdl = &this->output_lists_[0];
4491
4492 if (pdl->empty())
75f65a3e 4493 {
1a2dff53 4494 gold_assert(increase == 0);
75f65a3e
ILT
4495 this->vaddr_ = 0;
4496 this->paddr_ = 0;
a445fddf 4497 this->are_addresses_set_ = true;
75f65a3e 4498 this->memsz_ = 0;
a445fddf 4499 this->min_p_align_ = 0;
75f65a3e
ILT
4500 this->offset_ = 0;
4501 this->filesz_ = 0;
4502 return;
4503 }
4504
22f0da72 4505 // Find the first and last section by address.
5f1ab67a
ILT
4506 const Output_data* first = NULL;
4507 const Output_data* last_data = NULL;
4508 const Output_data* last_bss = NULL;
22f0da72
ILT
4509 for (Output_data_list::const_iterator p = pdl->begin();
4510 p != pdl->end();
4511 ++p)
4512 {
4513 if (first == NULL
4514 || (*p)->address() < first->address()
4515 || ((*p)->address() == first->address()
4516 && (*p)->data_size() < first->data_size()))
4517 first = *p;
4518 const Output_data** plast;
4519 if ((*p)->is_section()
4520 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4521 plast = &last_bss;
4522 else
4523 plast = &last_data;
4524 if (*plast == NULL
4525 || (*p)->address() > (*plast)->address()
4526 || ((*p)->address() == (*plast)->address()
4527 && (*p)->data_size() > (*plast)->data_size()))
4528 *plast = *p;
4529 }
5f1ab67a 4530
75f65a3e 4531 this->vaddr_ = first->address();
a445fddf
ILT
4532 this->paddr_ = (first->has_load_address()
4533 ? first->load_address()
4534 : this->vaddr_);
4535 this->are_addresses_set_ = true;
75f65a3e
ILT
4536 this->offset_ = first->offset();
4537
22f0da72 4538 if (last_data == NULL)
75f65a3e
ILT
4539 this->filesz_ = 0;
4540 else
5f1ab67a
ILT
4541 this->filesz_ = (last_data->address()
4542 + last_data->data_size()
4543 - this->vaddr_);
75f65a3e 4544
5f1ab67a 4545 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
4546 this->memsz_ = (last->address()
4547 + last->data_size()
4548 - this->vaddr_);
96a2b4e4 4549
1a2dff53
ILT
4550 this->filesz_ += increase;
4551 this->memsz_ += increase;
4552
fd064a5b
CC
4553 // If this is a RELRO segment, verify that the segment ends at a
4554 // page boundary.
4555 if (this->type_ == elfcpp::PT_GNU_RELRO)
4556 {
4557 uint64_t page_align = parameters->target().common_pagesize();
4558 uint64_t segment_end = this->vaddr_ + this->memsz_;
cdc29364
CC
4559 if (parameters->incremental_update())
4560 {
4561 // The INCREASE_RELRO calculation is bypassed for an incremental
4562 // update, so we need to adjust the segment size manually here.
4563 segment_end = align_address(segment_end, page_align);
4564 this->memsz_ = segment_end - this->vaddr_;
4565 }
4566 else
4567 gold_assert(segment_end == align_address(segment_end, page_align));
fd064a5b
CC
4568 }
4569
96a2b4e4
ILT
4570 // If this is a TLS segment, align the memory size. The code in
4571 // set_section_list ensures that the section after the TLS segment
4572 // is aligned to give us room.
4573 if (this->type_ == elfcpp::PT_TLS)
4574 {
4575 uint64_t segment_align = this->maximum_alignment();
4576 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4577 this->memsz_ = align_address(this->memsz_, segment_align);
4578 }
75f65a3e
ILT
4579}
4580
7bf1f802
ILT
4581// Set the TLS offsets of the sections in the PT_TLS segment.
4582
4583void
4584Output_segment::set_tls_offsets()
4585{
4586 gold_assert(this->type_ == elfcpp::PT_TLS);
4587
22f0da72
ILT
4588 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4589 p != this->output_lists_[0].end();
7bf1f802
ILT
4590 ++p)
4591 (*p)->set_tls_offset(this->vaddr_);
4592}
4593
22f0da72 4594// Return the load address of the first section.
a445fddf
ILT
4595
4596uint64_t
4597Output_segment::first_section_load_address() const
4598{
22f0da72
ILT
4599 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4600 {
4601 const Output_data_list* pdl = &this->output_lists_[i];
4602 for (Output_data_list::const_iterator p = pdl->begin();
4603 p != pdl->end();
4604 ++p)
4605 {
4606 if ((*p)->is_section())
4607 return ((*p)->has_load_address()
4608 ? (*p)->load_address()
4609 : (*p)->address());
4610 }
4611 }
a445fddf
ILT
4612 gold_unreachable();
4613}
4614
75f65a3e
ILT
4615// Return the number of Output_sections in an Output_segment.
4616
4617unsigned int
4618Output_segment::output_section_count() const
4619{
22f0da72
ILT
4620 unsigned int ret = 0;
4621 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4622 ret += this->output_section_count_list(&this->output_lists_[i]);
4623 return ret;
75f65a3e
ILT
4624}
4625
4626// Return the number of Output_sections in an Output_data_list.
4627
4628unsigned int
4629Output_segment::output_section_count_list(const Output_data_list* pdl) const
4630{
4631 unsigned int count = 0;
4632 for (Output_data_list::const_iterator p = pdl->begin();
4633 p != pdl->end();
4634 ++p)
4635 {
4636 if ((*p)->is_section())
4637 ++count;
4638 }
4639 return count;
a2fb1b05
ILT
4640}
4641
1c4f3631
ILT
4642// Return the section attached to the list segment with the lowest
4643// load address. This is used when handling a PHDRS clause in a
4644// linker script.
4645
4646Output_section*
4647Output_segment::section_with_lowest_load_address() const
4648{
4649 Output_section* found = NULL;
4650 uint64_t found_lma = 0;
22f0da72
ILT
4651 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4652 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4653 &found_lma);
1c4f3631
ILT
4654 return found;
4655}
4656
4657// Look through a list for a section with a lower load address.
4658
4659void
4660Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4661 Output_section** found,
4662 uint64_t* found_lma) const
4663{
4664 for (Output_data_list::const_iterator p = pdl->begin();
4665 p != pdl->end();
4666 ++p)
4667 {
4668 if (!(*p)->is_section())
4669 continue;
4670 Output_section* os = static_cast<Output_section*>(*p);
4671 uint64_t lma = (os->has_load_address()
4672 ? os->load_address()
4673 : os->address());
4674 if (*found == NULL || lma < *found_lma)
4675 {
4676 *found = os;
4677 *found_lma = lma;
4678 }
4679 }
4680}
4681
61ba1cf9
ILT
4682// Write the segment data into *OPHDR.
4683
4684template<int size, bool big_endian>
4685void
ead1e424 4686Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4687{
4688 ophdr->put_p_type(this->type_);
4689 ophdr->put_p_offset(this->offset_);
4690 ophdr->put_p_vaddr(this->vaddr_);
4691 ophdr->put_p_paddr(this->paddr_);
4692 ophdr->put_p_filesz(this->filesz_);
4693 ophdr->put_p_memsz(this->memsz_);
4694 ophdr->put_p_flags(this->flags_);
a445fddf 4695 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4696}
4697
4698// Write the section headers into V.
4699
4700template<int size, bool big_endian>
4701unsigned char*
16649710
ILT
4702Output_segment::write_section_headers(const Layout* layout,
4703 const Stringpool* secnamepool,
ead1e424 4704 unsigned char* v,
ca09d69a 4705 unsigned int* pshndx) const
5482377d 4706{
ead1e424
ILT
4707 // Every section that is attached to a segment must be attached to a
4708 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4709 // segments.
4710 if (this->type_ != elfcpp::PT_LOAD)
4711 return v;
4712
22f0da72
ILT
4713 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4714 {
4715 const Output_data_list* pdl = &this->output_lists_[i];
4716 v = this->write_section_headers_list<size, big_endian>(layout,
4717 secnamepool,
4718 pdl,
4719 v, pshndx);
4720 }
4721
61ba1cf9
ILT
4722 return v;
4723}
4724
4725template<int size, bool big_endian>
4726unsigned char*
16649710
ILT
4727Output_segment::write_section_headers_list(const Layout* layout,
4728 const Stringpool* secnamepool,
61ba1cf9 4729 const Output_data_list* pdl,
ead1e424 4730 unsigned char* v,
7d1a9ebb 4731 unsigned int* pshndx) const
61ba1cf9
ILT
4732{
4733 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4734 for (Output_data_list::const_iterator p = pdl->begin();
4735 p != pdl->end();
4736 ++p)
4737 {
4738 if ((*p)->is_section())
4739 {
5482377d 4740 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4741 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4742 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4743 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4744 v += shdr_size;
ead1e424 4745 ++*pshndx;
61ba1cf9
ILT
4746 }
4747 }
4748 return v;
4749}
4750
7d9e3d98
ILT
4751// Print the output sections to the map file.
4752
4753void
4754Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4755{
4756 if (this->type() != elfcpp::PT_LOAD)
4757 return;
22f0da72
ILT
4758 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4759 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4760}
4761
4762// Print an output section list to the map file.
4763
4764void
4765Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4766 const Output_data_list* pdl) const
4767{
4768 for (Output_data_list::const_iterator p = pdl->begin();
4769 p != pdl->end();
4770 ++p)
4771 (*p)->print_to_mapfile(mapfile);
4772}
4773
a2fb1b05
ILT
4774// Output_file methods.
4775
14144f39
ILT
4776Output_file::Output_file(const char* name)
4777 : name_(name),
61ba1cf9
ILT
4778 o_(-1),
4779 file_size_(0),
c420411f 4780 base_(NULL),
516cb3d0 4781 map_is_anonymous_(false),
88597d34 4782 map_is_allocated_(false),
516cb3d0 4783 is_temporary_(false)
61ba1cf9
ILT
4784{
4785}
4786
404c2abb 4787// Try to open an existing file. Returns false if the file doesn't
aa92d6ed
CC
4788// exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4789// NULL, open that file as the base for incremental linking, and
4790// copy its contents to the new output file. This routine can
4791// be called for incremental updates, in which case WRITABLE should
4792// be true, or by the incremental-dump utility, in which case
4793// WRITABLE should be false.
404c2abb
ILT
4794
4795bool
aa92d6ed 4796Output_file::open_base_file(const char* base_name, bool writable)
404c2abb
ILT
4797{
4798 // The name "-" means "stdout".
4799 if (strcmp(this->name_, "-") == 0)
4800 return false;
4801
aa92d6ed
CC
4802 bool use_base_file = base_name != NULL;
4803 if (!use_base_file)
4804 base_name = this->name_;
4805 else if (strcmp(base_name, this->name_) == 0)
4806 gold_fatal(_("%s: incremental base and output file name are the same"),
4807 base_name);
4808
404c2abb
ILT
4809 // Don't bother opening files with a size of zero.
4810 struct stat s;
aa92d6ed
CC
4811 if (::stat(base_name, &s) != 0)
4812 {
4813 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4814 return false;
4815 }
4816 if (s.st_size == 0)
4817 {
4818 gold_info(_("%s: incremental base file is empty"), base_name);
4819 return false;
4820 }
4821
4822 // If we're using a base file, we want to open it read-only.
4823 if (use_base_file)
4824 writable = false;
404c2abb 4825
aa92d6ed
CC
4826 int oflags = writable ? O_RDWR : O_RDONLY;
4827 int o = open_descriptor(-1, base_name, oflags, 0);
404c2abb 4828 if (o < 0)
aa92d6ed
CC
4829 {
4830 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4831 return false;
4832 }
4833
4834 // If the base file and the output file are different, open a
4835 // new output file and read the contents from the base file into
4836 // the newly-mapped region.
4837 if (use_base_file)
4838 {
4839 this->open(s.st_size);
dfb45471
CC
4840 ssize_t bytes_to_read = s.st_size;
4841 unsigned char* p = this->base_;
4842 while (bytes_to_read > 0)
4843 {
4844 ssize_t len = ::read(o, p, bytes_to_read);
4845 if (len < 0)
4846 {
4847 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4848 return false;
4849 }
4850 if (len == 0)
4851 {
4852 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4853 base_name,
4854 static_cast<long long>(s.st_size - bytes_to_read),
4855 static_cast<long long>(s.st_size));
4856 return false;
4857 }
4858 p += len;
4859 bytes_to_read -= len;
4860 }
aa92d6ed
CC
4861 ::close(o);
4862 return true;
4863 }
4864
404c2abb
ILT
4865 this->o_ = o;
4866 this->file_size_ = s.st_size;
4867
aa92d6ed 4868 if (!this->map_no_anonymous(writable))
404c2abb
ILT
4869 {
4870 release_descriptor(o, true);
4871 this->o_ = -1;
4872 this->file_size_ = 0;
4873 return false;
4874 }
4875
4876 return true;
4877}
4878
61ba1cf9
ILT
4879// Open the output file.
4880
a2fb1b05 4881void
61ba1cf9 4882Output_file::open(off_t file_size)
a2fb1b05 4883{
61ba1cf9
ILT
4884 this->file_size_ = file_size;
4885
4e9d8586
ILT
4886 // Unlink the file first; otherwise the open() may fail if the file
4887 // is busy (e.g. it's an executable that's currently being executed).
4888 //
4889 // However, the linker may be part of a system where a zero-length
4890 // file is created for it to write to, with tight permissions (gcc
4891 // 2.95 did something like this). Unlinking the file would work
4892 // around those permission controls, so we only unlink if the file
4893 // has a non-zero size. We also unlink only regular files to avoid
4894 // trouble with directories/etc.
4895 //
4896 // If we fail, continue; this command is merely a best-effort attempt
4897 // to improve the odds for open().
4898
42a1b686 4899 // We let the name "-" mean "stdout"
516cb3d0 4900 if (!this->is_temporary_)
42a1b686 4901 {
516cb3d0
ILT
4902 if (strcmp(this->name_, "-") == 0)
4903 this->o_ = STDOUT_FILENO;
4904 else
4905 {
4906 struct stat s;
6a89f575
CC
4907 if (::stat(this->name_, &s) == 0
4908 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4909 {
4910 if (s.st_size != 0)
4911 ::unlink(this->name_);
4912 else if (!parameters->options().relocatable())
4913 {
4914 // If we don't unlink the existing file, add execute
4915 // permission where read permissions already exist
4916 // and where the umask permits.
4917 int mask = ::umask(0);
4918 ::umask(mask);
4919 s.st_mode |= (s.st_mode & 0444) >> 2;
4920 ::chmod(this->name_, s.st_mode & ~mask);
4921 }
4922 }
516cb3d0 4923
8851ecca 4924 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4925 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4926 mode);
516cb3d0
ILT
4927 if (o < 0)
4928 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4929 this->o_ = o;
4930 }
42a1b686 4931 }
61ba1cf9 4932
27bc2bce
ILT
4933 this->map();
4934}
4935
4936// Resize the output file.
4937
4938void
4939Output_file::resize(off_t file_size)
4940{
c420411f
ILT
4941 // If the mmap is mapping an anonymous memory buffer, this is easy:
4942 // just mremap to the new size. If it's mapping to a file, we want
4943 // to unmap to flush to the file, then remap after growing the file.
4944 if (this->map_is_anonymous_)
4945 {
88597d34
ILT
4946 void* base;
4947 if (!this->map_is_allocated_)
4948 {
4949 base = ::mremap(this->base_, this->file_size_, file_size,
4950 MREMAP_MAYMOVE);
4951 if (base == MAP_FAILED)
4952 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4953 }
4954 else
4955 {
4956 base = realloc(this->base_, file_size);
4957 if (base == NULL)
4958 gold_nomem();
4959 if (file_size > this->file_size_)
4960 memset(static_cast<char*>(base) + this->file_size_, 0,
4961 file_size - this->file_size_);
4962 }
c420411f
ILT
4963 this->base_ = static_cast<unsigned char*>(base);
4964 this->file_size_ = file_size;
4965 }
4966 else
4967 {
4968 this->unmap();
4969 this->file_size_ = file_size;
aa92d6ed 4970 if (!this->map_no_anonymous(true))
fdcac5af 4971 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 4972 }
27bc2bce
ILT
4973}
4974
404c2abb
ILT
4975// Map an anonymous block of memory which will later be written to the
4976// file. Return whether the map succeeded.
26736d8e 4977
404c2abb 4978bool
26736d8e
ILT
4979Output_file::map_anonymous()
4980{
404c2abb
ILT
4981 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4982 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
88597d34 4983 if (base == MAP_FAILED)
404c2abb 4984 {
88597d34
ILT
4985 base = malloc(this->file_size_);
4986 if (base == NULL)
4987 return false;
4988 memset(base, 0, this->file_size_);
4989 this->map_is_allocated_ = true;
404c2abb 4990 }
88597d34
ILT
4991 this->base_ = static_cast<unsigned char*>(base);
4992 this->map_is_anonymous_ = true;
4993 return true;
26736d8e
ILT
4994}
4995
404c2abb 4996// Map the file into memory. Return whether the mapping succeeded.
aa92d6ed 4997// If WRITABLE is true, map with write access.
27bc2bce 4998
404c2abb 4999bool
aa92d6ed 5000Output_file::map_no_anonymous(bool writable)
27bc2bce 5001{
c420411f 5002 const int o = this->o_;
61ba1cf9 5003
c420411f
ILT
5004 // If the output file is not a regular file, don't try to mmap it;
5005 // instead, we'll mmap a block of memory (an anonymous buffer), and
5006 // then later write the buffer to the file.
5007 void* base;
5008 struct stat statbuf;
42a1b686
ILT
5009 if (o == STDOUT_FILENO || o == STDERR_FILENO
5010 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
5011 || !S_ISREG(statbuf.st_mode)
5012 || this->is_temporary_)
404c2abb
ILT
5013 return false;
5014
5015 // Ensure that we have disk space available for the file. If we
5016 // don't do this, it is possible that we will call munmap, close,
5017 // and exit with dirty buffers still in the cache with no assigned
5018 // disk blocks. If the disk is out of space at that point, the
5019 // output file will wind up incomplete, but we will have already
5020 // exited. The alternative to fallocate would be to use fdatasync,
5021 // but that would be a more significant performance hit.
bab9090f
CC
5022 if (writable)
5023 {
7c0640fa 5024 int err = gold_fallocate(o, 0, this->file_size_);
bab9090f
CC
5025 if (err != 0)
5026 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5027 }
404c2abb
ILT
5028
5029 // Map the file into memory.
aa92d6ed
CC
5030 int prot = PROT_READ;
5031 if (writable)
5032 prot |= PROT_WRITE;
5033 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
404c2abb
ILT
5034
5035 // The mmap call might fail because of file system issues: the file
5036 // system might not support mmap at all, or it might not support
5037 // mmap with PROT_WRITE.
61ba1cf9 5038 if (base == MAP_FAILED)
404c2abb
ILT
5039 return false;
5040
5041 this->map_is_anonymous_ = false;
61ba1cf9 5042 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
5043 return true;
5044}
5045
5046// Map the file into memory.
5047
5048void
5049Output_file::map()
5050{
7c0640fa
CC
5051 if (parameters->options().mmap_output_file()
5052 && this->map_no_anonymous(true))
404c2abb
ILT
5053 return;
5054
5055 // The mmap call might fail because of file system issues: the file
5056 // system might not support mmap at all, or it might not support
5057 // mmap with PROT_WRITE. I'm not sure which errno values we will
5058 // see in all cases, so if the mmap fails for any reason and we
5059 // don't care about file contents, try for an anonymous map.
5060 if (this->map_anonymous())
5061 return;
5062
5063 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5064 this->name_, static_cast<unsigned long>(this->file_size_),
5065 strerror(errno));
61ba1cf9
ILT
5066}
5067
c420411f 5068// Unmap the file from memory.
61ba1cf9
ILT
5069
5070void
c420411f 5071Output_file::unmap()
61ba1cf9 5072{
88597d34
ILT
5073 if (this->map_is_anonymous_)
5074 {
5075 // We've already written out the data, so there is no reason to
5076 // waste time unmapping or freeing the memory.
5077 }
5078 else
5079 {
5080 if (::munmap(this->base_, this->file_size_) < 0)
5081 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5082 }
61ba1cf9 5083 this->base_ = NULL;
c420411f
ILT
5084}
5085
5086// Close the output file.
5087
5088void
5089Output_file::close()
5090{
5091 // If the map isn't file-backed, we need to write it now.
516cb3d0 5092 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
5093 {
5094 size_t bytes_to_write = this->file_size_;
6d1e3092 5095 size_t offset = 0;
c420411f
ILT
5096 while (bytes_to_write > 0)
5097 {
6d1e3092
CD
5098 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5099 bytes_to_write);
c420411f
ILT
5100 if (bytes_written == 0)
5101 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5102 else if (bytes_written < 0)
5103 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5104 else
6d1e3092
CD
5105 {
5106 bytes_to_write -= bytes_written;
5107 offset += bytes_written;
5108 }
c420411f
ILT
5109 }
5110 }
5111 this->unmap();
61ba1cf9 5112
42a1b686 5113 // We don't close stdout or stderr
516cb3d0
ILT
5114 if (this->o_ != STDOUT_FILENO
5115 && this->o_ != STDERR_FILENO
5116 && !this->is_temporary_)
42a1b686
ILT
5117 if (::close(this->o_) < 0)
5118 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 5119 this->o_ = -1;
a2fb1b05
ILT
5120}
5121
5122// Instantiate the templates we need. We could use the configure
5123// script to restrict this to only the ones for implemented targets.
5124
193a53d9 5125#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
5126template
5127off_t
5128Output_section::add_input_section<32, false>(
6e9ba2ca 5129 Layout* layout,
6fa2a40b 5130 Sized_relobj_file<32, false>* object,
2ea97941 5131 unsigned int shndx,
a2fb1b05 5132 const char* secname,
730cdc88 5133 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
5134 unsigned int reloc_shndx,
5135 bool have_sections_script);
193a53d9 5136#endif
a2fb1b05 5137
193a53d9 5138#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
5139template
5140off_t
5141Output_section::add_input_section<32, true>(
6e9ba2ca 5142 Layout* layout,
6fa2a40b 5143 Sized_relobj_file<32, true>* object,
2ea97941 5144 unsigned int shndx,
a2fb1b05 5145 const char* secname,
730cdc88 5146 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
5147 unsigned int reloc_shndx,
5148 bool have_sections_script);
193a53d9 5149#endif
a2fb1b05 5150
193a53d9 5151#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
5152template
5153off_t
5154Output_section::add_input_section<64, false>(
6e9ba2ca 5155 Layout* layout,
6fa2a40b 5156 Sized_relobj_file<64, false>* object,
2ea97941 5157 unsigned int shndx,
a2fb1b05 5158 const char* secname,
730cdc88 5159 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
5160 unsigned int reloc_shndx,
5161 bool have_sections_script);
193a53d9 5162#endif
a2fb1b05 5163
193a53d9 5164#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
5165template
5166off_t
5167Output_section::add_input_section<64, true>(
6e9ba2ca 5168 Layout* layout,
6fa2a40b 5169 Sized_relobj_file<64, true>* object,
2ea97941 5170 unsigned int shndx,
a2fb1b05 5171 const char* secname,
730cdc88 5172 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
5173 unsigned int reloc_shndx,
5174 bool have_sections_script);
193a53d9 5175#endif
a2fb1b05 5176
bbbfea06
CC
5177#ifdef HAVE_TARGET_32_LITTLE
5178template
5179class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5180#endif
5181
5182#ifdef HAVE_TARGET_32_BIG
5183template
5184class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5185#endif
5186
5187#ifdef HAVE_TARGET_64_LITTLE
5188template
5189class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5190#endif
5191
5192#ifdef HAVE_TARGET_64_BIG
5193template
5194class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5195#endif
5196
5197#ifdef HAVE_TARGET_32_LITTLE
5198template
5199class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5200#endif
5201
5202#ifdef HAVE_TARGET_32_BIG
5203template
5204class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5205#endif
5206
5207#ifdef HAVE_TARGET_64_LITTLE
5208template
5209class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5210#endif
5211
5212#ifdef HAVE_TARGET_64_BIG
5213template
5214class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5215#endif
5216
5217#ifdef HAVE_TARGET_32_LITTLE
5218template
5219class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5220#endif
5221
5222#ifdef HAVE_TARGET_32_BIG
5223template
5224class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5225#endif
5226
5227#ifdef HAVE_TARGET_64_LITTLE
5228template
5229class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5230#endif
5231
5232#ifdef HAVE_TARGET_64_BIG
5233template
5234class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5235#endif
5236
5237#ifdef HAVE_TARGET_32_LITTLE
5238template
5239class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5240#endif
5241
5242#ifdef HAVE_TARGET_32_BIG
5243template
5244class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5245#endif
5246
5247#ifdef HAVE_TARGET_64_LITTLE
5248template
5249class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5250#endif
5251
5252#ifdef HAVE_TARGET_64_BIG
5253template
5254class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5255#endif
5256
193a53d9 5257#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5258template
5259class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 5260#endif
c06b7b0b 5261
193a53d9 5262#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5263template
5264class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 5265#endif
c06b7b0b 5266
193a53d9 5267#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5268template
5269class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 5270#endif
c06b7b0b 5271
193a53d9 5272#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5273template
5274class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 5275#endif
c06b7b0b 5276
193a53d9 5277#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5278template
5279class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 5280#endif
c06b7b0b 5281
193a53d9 5282#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5283template
5284class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 5285#endif
c06b7b0b 5286
193a53d9 5287#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5288template
5289class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 5290#endif
c06b7b0b 5291
193a53d9 5292#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5293template
5294class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 5295#endif
c06b7b0b 5296
193a53d9 5297#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5298template
5299class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 5300#endif
c06b7b0b 5301
193a53d9 5302#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5303template
5304class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 5305#endif
c06b7b0b 5306
193a53d9 5307#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5308template
5309class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 5310#endif
c06b7b0b 5311
193a53d9 5312#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5313template
5314class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 5315#endif
c06b7b0b 5316
193a53d9 5317#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5318template
5319class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 5320#endif
c06b7b0b 5321
193a53d9 5322#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5323template
5324class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 5325#endif
c06b7b0b 5326
193a53d9 5327#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5328template
5329class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 5330#endif
c06b7b0b 5331
193a53d9 5332#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5333template
5334class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 5335#endif
c06b7b0b 5336
6a74a719
ILT
5337#ifdef HAVE_TARGET_32_LITTLE
5338template
5339class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5340#endif
5341
5342#ifdef HAVE_TARGET_32_BIG
5343template
5344class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5345#endif
5346
5347#ifdef HAVE_TARGET_64_LITTLE
5348template
5349class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5350#endif
5351
5352#ifdef HAVE_TARGET_64_BIG
5353template
5354class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5355#endif
5356
5357#ifdef HAVE_TARGET_32_LITTLE
5358template
5359class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5360#endif
5361
5362#ifdef HAVE_TARGET_32_BIG
5363template
5364class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5365#endif
5366
5367#ifdef HAVE_TARGET_64_LITTLE
5368template
5369class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5370#endif
5371
5372#ifdef HAVE_TARGET_64_BIG
5373template
5374class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5375#endif
5376
5377#ifdef HAVE_TARGET_32_LITTLE
5378template
5379class Output_data_group<32, false>;
5380#endif
5381
5382#ifdef HAVE_TARGET_32_BIG
5383template
5384class Output_data_group<32, true>;
5385#endif
5386
5387#ifdef HAVE_TARGET_64_LITTLE
5388template
5389class Output_data_group<64, false>;
5390#endif
5391
5392#ifdef HAVE_TARGET_64_BIG
5393template
5394class Output_data_group<64, true>;
5395#endif
5396
193a53d9 5397#ifdef HAVE_TARGET_32_LITTLE
ead1e424 5398template
dbe717ef 5399class Output_data_got<32, false>;
193a53d9 5400#endif
ead1e424 5401
193a53d9 5402#ifdef HAVE_TARGET_32_BIG
ead1e424 5403template
dbe717ef 5404class Output_data_got<32, true>;
193a53d9 5405#endif
ead1e424 5406
193a53d9 5407#ifdef HAVE_TARGET_64_LITTLE
ead1e424 5408template
dbe717ef 5409class Output_data_got<64, false>;
193a53d9 5410#endif
ead1e424 5411
193a53d9 5412#ifdef HAVE_TARGET_64_BIG
ead1e424 5413template
dbe717ef 5414class Output_data_got<64, true>;
193a53d9 5415#endif
ead1e424 5416
a2fb1b05 5417} // End namespace gold.
This page took 0.749565 seconds and 4 git commands to generate.