From Craig Silverstein: Clean up DWARF line reader code.
[deliverable/binutils-gdb.git] / gold / x86_64.cc
CommitLineData
2e30d253
ILT
1// x86_64.cc -- x86_64 target support for gold.
2
3// Copyright 2006, 2007, Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or
9// modify it under the terms of the GNU Library General Public License
10// as published by the Free Software Foundation; either version 2, or
11// (at your option) any later version.
12
13// In addition to the permissions in the GNU Library General Public
14// License, the Free Software Foundation gives you unlimited
15// permission to link the compiled version of this file into
16// combinations with other programs, and to distribute those
17// combinations without any restriction coming from the use of this
18// file. (The Library Public License restrictions do apply in other
19// respects; for example, they cover modification of the file, and
20/// distribution when not linked into a combined executable.)
21
22// This program is distributed in the hope that it will be useful, but
23// WITHOUT ANY WARRANTY; without even the implied warranty of
24// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25// Library General Public License for more details.
26
27// You should have received a copy of the GNU Library General Public
28// License along with this program; if not, write to the Free Software
29// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30// 02110-1301, USA.
31
32#include "gold.h"
33
34#include <cstring>
35
36#include "elfcpp.h"
37#include "parameters.h"
38#include "reloc.h"
39#include "x86_64.h"
40#include "object.h"
41#include "symtab.h"
42#include "layout.h"
43#include "output.h"
44#include "target.h"
45#include "target-reloc.h"
46#include "target-select.h"
e041f13d 47#include "tls.h"
2e30d253
ILT
48
49namespace
50{
51
52using namespace gold;
53
54class Output_data_plt_x86_64;
55
56// The x86_64 target class.
d61c17ea
ILT
57// See the ABI at
58// http://www.x86-64.org/documentation/abi.pdf
59// TLS info comes from
60// http://people.redhat.com/drepper/tls.pdf
0ffd9845 61// http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
2e30d253
ILT
62
63class Target_x86_64 : public Sized_target<64, false>
64{
65 public:
e822f2b1
ILT
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
2e30d253
ILT
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70 Target_x86_64()
71 : Sized_target<64, false>(&x86_64_info),
0ffd9845 72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
2e30d253
ILT
73 copy_relocs_(NULL), dynbss_(NULL)
74 { }
75
76 // Scan the relocations to look for symbol adjustments.
77 void
78 scan_relocs(const General_options& options,
79 Symbol_table* symtab,
80 Layout* layout,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
83 unsigned int sh_type,
84 const unsigned char* prelocs,
85 size_t reloc_count,
730cdc88
ILT
86 Output_section* output_section,
87 bool needs_special_offset_handling,
2e30d253 88 size_t local_symbol_count,
730cdc88 89 const unsigned char* plocal_symbols);
2e30d253
ILT
90
91 // Finalize the sections.
92 void
93 do_finalize_sections(Layout*);
94
4fb6c25d
ILT
95 // Return the value to use for a dynamic which requires special
96 // treatment.
97 uint64_t
98 do_dynsym_value(const Symbol*) const;
99
2e30d253
ILT
100 // Relocate a section.
101 void
102 relocate_section(const Relocate_info<64, false>*,
103 unsigned int sh_type,
104 const unsigned char* prelocs,
105 size_t reloc_count,
730cdc88
ILT
106 Output_section* output_section,
107 bool needs_special_offset_handling,
2e30d253
ILT
108 unsigned char* view,
109 elfcpp::Elf_types<64>::Elf_Addr view_address,
110 off_t view_size);
111
112 // Return a string used to fill a code section with nops.
113 std::string
114 do_code_fill(off_t length);
115
9a2d6984
ILT
116 // Return whether SYM is defined by the ABI.
117 bool
118 do_is_defined_by_abi(Symbol* sym) const
119 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
120
96f2030e
ILT
121 // Return the size of the GOT section.
122 off_t
123 got_size()
124 {
125 gold_assert(this->got_ != NULL);
126 return this->got_->data_size();
127 }
128
2e30d253
ILT
129 private:
130 // The class which scans relocations.
131 struct Scan
132 {
133 inline void
134 local(const General_options& options, Symbol_table* symtab,
135 Layout* layout, Target_x86_64* target,
136 Sized_relobj<64, false>* object,
137 unsigned int data_shndx,
138 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
139 const elfcpp::Sym<64, false>& lsym);
140
141 inline void
142 global(const General_options& options, Symbol_table* symtab,
143 Layout* layout, Target_x86_64* target,
144 Sized_relobj<64, false>* object,
145 unsigned int data_shndx,
146 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
147 Symbol* gsym);
e041f13d
ILT
148
149 static void
150 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
151
152 static void
153 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
154 Symbol*);
2e30d253
ILT
155 };
156
157 // The class which implements relocation.
158 class Relocate
159 {
160 public:
161 Relocate()
162 : skip_call_tls_get_addr_(false)
163 { }
164
165 ~Relocate()
166 {
167 if (this->skip_call_tls_get_addr_)
168 {
169 // FIXME: This needs to specify the location somehow.
a0c4fb0a 170 gold_error(_("missing expected TLS relocation"));
2e30d253
ILT
171 }
172 }
173
174 // Do a relocation. Return false if the caller should not issue
175 // any warnings about this relocation.
176 inline bool
177 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
178 const elfcpp::Rela<64, false>&,
179 unsigned int r_type, const Sized_symbol<64>*,
180 const Symbol_value<64>*,
181 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
182 off_t);
183
184 private:
185 // Do a TLS relocation.
186 inline void
187 relocate_tls(const Relocate_info<64, false>*, size_t relnum,
188 const elfcpp::Rela<64, false>&,
189 unsigned int r_type, const Sized_symbol<64>*,
190 const Symbol_value<64>*,
191 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
192
56622147
ILT
193 // Do a TLS General-Dynamic to Local-Exec transition.
194 inline void
195 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
2e30d253
ILT
196 Output_segment* tls_segment,
197 const elfcpp::Rela<64, false>&, unsigned int r_type,
198 elfcpp::Elf_types<64>::Elf_Addr value,
199 unsigned char* view,
200 off_t view_size);
201
56622147 202 // Do a TLS Local-Dynamic to Local-Exec transition.
2e30d253 203 inline void
56622147 204 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
2e30d253
ILT
205 Output_segment* tls_segment,
206 const elfcpp::Rela<64, false>&, unsigned int r_type,
207 elfcpp::Elf_types<64>::Elf_Addr value,
208 unsigned char* view,
209 off_t view_size);
210
56622147
ILT
211 // Do a TLS Initial-Exec to Local-Exec transition.
212 static inline void
213 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
72ec2876
ILT
214 Output_segment* tls_segment,
215 const elfcpp::Rela<64, false>&, unsigned int r_type,
216 elfcpp::Elf_types<64>::Elf_Addr value,
217 unsigned char* view,
218 off_t view_size);
2e30d253
ILT
219
220 // This is set if we should skip the next reloc, which should be a
221 // PLT32 reloc against ___tls_get_addr.
222 bool skip_call_tls_get_addr_;
223 };
224
225 // Adjust TLS relocation type based on the options and whether this
226 // is a local symbol.
e041f13d 227 static tls::Tls_optimization
2e30d253
ILT
228 optimize_tls_reloc(bool is_final, int r_type);
229
230 // Get the GOT section, creating it if necessary.
231 Output_data_got<64, false>*
232 got_section(Symbol_table*, Layout*);
233
96f2030e
ILT
234 // Get the GOT PLT section.
235 Output_data_space*
236 got_plt_section() const
237 {
238 gold_assert(this->got_plt_ != NULL);
239 return this->got_plt_;
240 }
241
2e30d253
ILT
242 // Create a PLT entry for a global symbol.
243 void
244 make_plt_entry(Symbol_table*, Layout*, Symbol*);
245
246 // Get the PLT section.
247 Output_data_plt_x86_64*
248 plt_section() const
249 {
250 gold_assert(this->plt_ != NULL);
251 return this->plt_;
252 }
253
254 // Get the dynamic reloc section, creating it if necessary.
255 Reloc_section*
0ffd9845 256 rela_dyn_section(Layout*);
2e30d253 257
d61c6bd4
ILT
258 // Return true if the symbol may need a COPY relocation.
259 // References from an executable object to non-function symbols
260 // defined in a dynamic object may need a COPY relocation.
261 bool
262 may_need_copy_reloc(Symbol* gsym)
263 {
264 return (!parameters->output_is_shared()
265 && gsym->is_from_dynobj()
266 && gsym->type() != elfcpp::STT_FUNC);
267 }
268
2e30d253
ILT
269 // Copy a relocation against a global symbol.
270 void
271 copy_reloc(const General_options*, Symbol_table*, Layout*,
272 Sized_relobj<64, false>*, unsigned int,
273 Symbol*, const elfcpp::Rela<64, false>&);
274
275 // Information about this specific target which we pass to the
276 // general Target structure.
277 static const Target::Target_info x86_64_info;
278
279 // The GOT section.
280 Output_data_got<64, false>* got_;
281 // The PLT section.
282 Output_data_plt_x86_64* plt_;
283 // The GOT PLT section.
284 Output_data_space* got_plt_;
285 // The dynamic reloc section.
0ffd9845 286 Reloc_section* rela_dyn_;
2e30d253
ILT
287 // Relocs saved to avoid a COPY reloc.
288 Copy_relocs<64, false>* copy_relocs_;
289 // Space for variables copied with a COPY reloc.
290 Output_data_space* dynbss_;
291};
292
293const Target::Target_info Target_x86_64::x86_64_info =
294{
295 64, // size
296 false, // is_big_endian
297 elfcpp::EM_X86_64, // machine_code
298 false, // has_make_symbol
299 false, // has_resolve
300 true, // has_code_fill
35cdfc9a 301 true, // is_default_stack_executable
2e30d253 302 "/lib/ld64.so.1", // program interpreter
0c5e9c22 303 0x400000, // default_text_segment_address
2e30d253
ILT
304 0x1000, // abi_pagesize
305 0x1000 // common_pagesize
306};
307
308// Get the GOT section, creating it if necessary.
309
310Output_data_got<64, false>*
311Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
312{
313 if (this->got_ == NULL)
314 {
315 gold_assert(symtab != NULL && layout != NULL);
316
317 this->got_ = new Output_data_got<64, false>();
318
319 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
320 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
321 this->got_);
322
323 // The old GNU linker creates a .got.plt section. We just
324 // create another set of data in the .got section. Note that we
325 // always create a PLT if we create a GOT, although the PLT
326 // might be empty.
2e30d253
ILT
327 this->got_plt_ = new Output_data_space(8);
328 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
329 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
330 this->got_plt_);
331
332 // The first three entries are reserved.
333 this->got_plt_->set_space_size(3 * 8);
334
335 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
336 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
337 this->got_plt_,
338 0, 0, elfcpp::STT_OBJECT,
339 elfcpp::STB_LOCAL,
340 elfcpp::STV_HIDDEN, 0,
341 false, false);
342 }
343
344 return this->got_;
345}
346
347// Get the dynamic reloc section, creating it if necessary.
348
349Target_x86_64::Reloc_section*
0ffd9845 350Target_x86_64::rela_dyn_section(Layout* layout)
2e30d253 351{
0ffd9845 352 if (this->rela_dyn_ == NULL)
2e30d253
ILT
353 {
354 gold_assert(layout != NULL);
0ffd9845 355 this->rela_dyn_ = new Reloc_section();
2e30d253 356 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
0ffd9845 357 elfcpp::SHF_ALLOC, this->rela_dyn_);
2e30d253 358 }
0ffd9845 359 return this->rela_dyn_;
2e30d253
ILT
360}
361
362// A class to handle the PLT data.
363
364class Output_data_plt_x86_64 : public Output_section_data
365{
366 public:
367 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
368
369 Output_data_plt_x86_64(Layout*, Output_data_space*);
370
371 // Add an entry to the PLT.
372 void
373 add_entry(Symbol* gsym);
374
375 // Return the .rel.plt section data.
376 const Reloc_section*
377 rel_plt() const
378 { return this->rel_; }
379
380 protected:
381 void
382 do_adjust_output_section(Output_section* os);
383
384 private:
385 // The size of an entry in the PLT.
386 static const int plt_entry_size = 16;
387
388 // The first entry in the PLT.
389 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
390 // procedure linkage table for both programs and shared objects."
391 static unsigned char first_plt_entry[plt_entry_size];
392
393 // Other entries in the PLT for an executable.
394 static unsigned char plt_entry[plt_entry_size];
395
396 // Set the final size.
397 void
398 do_set_address(uint64_t, off_t)
399 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
400
401 // Write out the PLT data.
402 void
403 do_write(Output_file*);
404
405 // The reloc section.
406 Reloc_section* rel_;
407 // The .got.plt section.
408 Output_data_space* got_plt_;
409 // The number of PLT entries.
410 unsigned int count_;
411};
412
413// Create the PLT section. The ordinary .got section is an argument,
414// since we need to refer to the start. We also create our own .got
415// section just for PLT entries.
416
417Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
418 Output_data_space* got_plt)
2e30d253
ILT
419 : Output_section_data(8), got_plt_(got_plt), count_(0)
420{
421 this->rel_ = new Reloc_section();
422 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
423 elfcpp::SHF_ALLOC, this->rel_);
424}
425
426void
427Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
428{
429 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
430 // linker, and so do we.
431 os->set_entsize(4);
432}
433
434// Add an entry to the PLT.
435
436void
437Output_data_plt_x86_64::add_entry(Symbol* gsym)
438{
439 gold_assert(!gsym->has_plt_offset());
440
441 // Note that when setting the PLT offset we skip the initial
442 // reserved PLT entry.
443 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
444
445 ++this->count_;
446
447 off_t got_offset = this->got_plt_->data_size();
448
449 // Every PLT entry needs a GOT entry which points back to the PLT
450 // entry (this will be changed by the dynamic linker, normally
451 // lazily when the function is called).
452 this->got_plt_->set_space_size(got_offset + 8);
453
454 // Every PLT entry needs a reloc.
455 gsym->set_needs_dynsym_entry();
456 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
457 got_offset, 0);
458
459 // Note that we don't need to save the symbol. The contents of the
460 // PLT are independent of which symbols are used. The symbols only
461 // appear in the relocations.
462}
463
464// The first entry in the PLT for an executable.
465
466unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
467{
468 // From AMD64 ABI Draft 0.98, page 76
469 0xff, 0x35, // pushq contents of memory address
470 0, 0, 0, 0, // replaced with address of .got + 4
471 0xff, 0x25, // jmp indirect
472 0, 0, 0, 0, // replaced with address of .got + 8
473 0x90, 0x90, 0x90, 0x90 // noop (x4)
474};
475
476// Subsequent entries in the PLT for an executable.
477
478unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
479{
480 // From AMD64 ABI Draft 0.98, page 76
481 0xff, 0x25, // jmpq indirect
482 0, 0, 0, 0, // replaced with address of symbol in .got
483 0x68, // pushq immediate
484 0, 0, 0, 0, // replaced with offset into relocation table
485 0xe9, // jmpq relative
486 0, 0, 0, 0 // replaced with offset to start of .plt
487};
488
489// Write out the PLT. This uses the hand-coded instructions above,
490// and adjusts them as needed. This is specified by the AMD64 ABI.
491
492void
493Output_data_plt_x86_64::do_write(Output_file* of)
494{
495 const off_t offset = this->offset();
496 const off_t oview_size = this->data_size();
497 unsigned char* const oview = of->get_output_view(offset, oview_size);
498
499 const off_t got_file_offset = this->got_plt_->offset();
500 const off_t got_size = this->got_plt_->data_size();
501 unsigned char* const got_view = of->get_output_view(got_file_offset,
502 got_size);
503
504 unsigned char* pov = oview;
505
506 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
507 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
508
509 memcpy(pov, first_plt_entry, plt_entry_size);
510 if (!parameters->output_is_shared())
511 {
512 // We do a jmp relative to the PC at the end of this instruction.
513 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
514 - (plt_address + 6));
515 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
516 - (plt_address + 12));
517 }
518 pov += plt_entry_size;
519
520 unsigned char* got_pov = got_view;
521
522 memset(got_pov, 0, 24);
523 got_pov += 24;
524
525 unsigned int plt_offset = plt_entry_size;
526 unsigned int got_offset = 24;
527 const unsigned int count = this->count_;
528 for (unsigned int plt_index = 0;
529 plt_index < count;
530 ++plt_index,
531 pov += plt_entry_size,
532 got_pov += 8,
533 plt_offset += plt_entry_size,
534 got_offset += 8)
535 {
536 // Set and adjust the PLT entry itself.
537 memcpy(pov, plt_entry, plt_entry_size);
538 if (parameters->output_is_shared())
539 // FIXME(csilvers): what's the right thing to write here?
540 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
541 else
542 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
543 (got_address + got_offset
544 - (plt_address + plt_offset
545 + 6)));
546
547 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
548 elfcpp::Swap<32, false>::writeval(pov + 12,
549 - (plt_offset + plt_entry_size));
550
551 // Set the entry in the GOT.
552 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
553 }
554
555 gold_assert(pov - oview == oview_size);
556 gold_assert(got_pov - got_view == got_size);
557
558 of->write_output_view(offset, oview_size, oview);
559 of->write_output_view(got_file_offset, got_size, got_view);
560}
561
562// Create a PLT entry for a global symbol.
563
564void
565Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
566 Symbol* gsym)
567{
568 if (gsym->has_plt_offset())
569 return;
570
571 if (this->plt_ == NULL)
572 {
573 // Create the GOT sections first.
574 this->got_section(symtab, layout);
575
576 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
577 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
578 (elfcpp::SHF_ALLOC
579 | elfcpp::SHF_EXECINSTR),
580 this->plt_);
581 }
582
583 this->plt_->add_entry(gsym);
584}
585
586// Handle a relocation against a non-function symbol defined in a
587// dynamic object. The traditional way to handle this is to generate
588// a COPY relocation to copy the variable at runtime from the shared
589// object into the executable's data segment. However, this is
590// undesirable in general, as if the size of the object changes in the
591// dynamic object, the executable will no longer work correctly. If
592// this relocation is in a writable section, then we can create a
593// dynamic reloc and the dynamic linker will resolve it to the correct
594// address at runtime. However, we do not want do that if the
595// relocation is in a read-only section, as it would prevent the
596// readonly segment from being shared. And if we have to eventually
597// generate a COPY reloc, then any dynamic relocations will be
598// useless. So this means that if this is a writable section, we need
599// to save the relocation until we see whether we have to create a
600// COPY relocation for this symbol for any other relocation.
601
602void
603Target_x86_64::copy_reloc(const General_options* options,
d61c17ea
ILT
604 Symbol_table* symtab,
605 Layout* layout,
606 Sized_relobj<64, false>* object,
607 unsigned int data_shndx, Symbol* gsym,
72ec2876 608 const elfcpp::Rela<64, false>& rela)
2e30d253
ILT
609{
610 Sized_symbol<64>* ssym;
611 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
612 SELECT_SIZE(64));
613
614 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
615 data_shndx, ssym))
616 {
617 // So far we do not need a COPY reloc. Save this relocation.
618 // If it turns out that we never need a COPY reloc for this
619 // symbol, then we will emit the relocation.
620 if (this->copy_relocs_ == NULL)
621 this->copy_relocs_ = new Copy_relocs<64, false>();
72ec2876 622 this->copy_relocs_->save(ssym, object, data_shndx, rela);
2e30d253
ILT
623 }
624 else
625 {
626 // Allocate space for this symbol in the .bss section.
627
628 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
629
630 // There is no defined way to determine the required alignment
631 // of the symbol. We pick the alignment based on the size. We
632 // set an arbitrary maximum of 256.
633 unsigned int align;
634 for (align = 1; align < 512; align <<= 1)
635 if ((symsize & align) != 0)
636 break;
637
638 if (this->dynbss_ == NULL)
639 {
640 this->dynbss_ = new Output_data_space(align);
641 layout->add_output_section_data(".bss",
642 elfcpp::SHT_NOBITS,
643 (elfcpp::SHF_ALLOC
644 | elfcpp::SHF_WRITE),
645 this->dynbss_);
646 }
647
648 Output_data_space* dynbss = this->dynbss_;
649
650 if (align > dynbss->addralign())
651 dynbss->set_space_alignment(align);
652
653 off_t dynbss_size = dynbss->data_size();
654 dynbss_size = align_address(dynbss_size, align);
655 off_t offset = dynbss_size;
656 dynbss->set_space_size(dynbss_size + symsize);
657
46fe1623 658 symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
2e30d253
ILT
659
660 // Add the COPY reloc.
0ffd9845
ILT
661 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
662 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
2e30d253
ILT
663 }
664}
665
666
667// Optimize the TLS relocation type based on what we know about the
668// symbol. IS_FINAL is true if the final address of this symbol is
669// known at link time.
670
e041f13d 671tls::Tls_optimization
2e30d253
ILT
672Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
673{
2e30d253
ILT
674 // If we are generating a shared library, then we can't do anything
675 // in the linker.
676 if (parameters->output_is_shared())
e041f13d 677 return tls::TLSOPT_NONE;
2e30d253
ILT
678
679 switch (r_type)
680 {
681 case elfcpp::R_X86_64_TLSGD:
e041f13d
ILT
682 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
683 case elfcpp::R_X86_64_TLSDESC_CALL:
684 // These are General-Dynamic which permits fully general TLS
2e30d253
ILT
685 // access. Since we know that we are generating an executable,
686 // we can convert this to Initial-Exec. If we also know that
687 // this is a local symbol, we can further switch to Local-Exec.
688 if (is_final)
e041f13d
ILT
689 return tls::TLSOPT_TO_LE;
690 return tls::TLSOPT_TO_IE;
2e30d253 691
d61c17ea 692 case elfcpp::R_X86_64_TLSLD:
2e30d253
ILT
693 // This is Local-Dynamic, which refers to a local symbol in the
694 // dynamic TLS block. Since we know that we generating an
695 // executable, we can switch to Local-Exec.
e041f13d 696 return tls::TLSOPT_TO_LE;
2e30d253 697
0ffd9845 698 case elfcpp::R_X86_64_DTPOFF32:
0ffd9845
ILT
699 case elfcpp::R_X86_64_DTPOFF64:
700 // Another Local-Dynamic reloc.
e041f13d 701 return tls::TLSOPT_TO_LE;
0ffd9845 702
d61c17ea 703 case elfcpp::R_X86_64_GOTTPOFF:
2e30d253
ILT
704 // These are Initial-Exec relocs which get the thread offset
705 // from the GOT. If we know that we are linking against the
706 // local symbol, we can switch to Local-Exec, which links the
707 // thread offset into the instruction.
708 if (is_final)
e041f13d
ILT
709 return tls::TLSOPT_TO_LE;
710 return tls::TLSOPT_NONE;
2e30d253 711
d61c17ea 712 case elfcpp::R_X86_64_TPOFF32:
2e30d253
ILT
713 // When we already have Local-Exec, there is nothing further we
714 // can do.
e041f13d 715 return tls::TLSOPT_NONE;
2e30d253
ILT
716
717 default:
718 gold_unreachable();
719 }
2e30d253
ILT
720}
721
e041f13d
ILT
722// Report an unsupported relocation against a local symbol.
723
724void
725Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
726 unsigned int r_type)
727{
75f2446e
ILT
728 gold_error(_("%s: unsupported reloc %u against local symbol"),
729 object->name().c_str(), r_type);
e041f13d
ILT
730}
731
2e30d253
ILT
732// Scan a relocation for a local symbol.
733
734inline void
735Target_x86_64::Scan::local(const General_options&,
d61c17ea
ILT
736 Symbol_table* symtab,
737 Layout* layout,
738 Target_x86_64* target,
739 Sized_relobj<64, false>* object,
0ffd9845
ILT
740 unsigned int data_shndx,
741 const elfcpp::Rela<64, false>& reloc,
d61c17ea
ILT
742 unsigned int r_type,
743 const elfcpp::Sym<64, false>&)
2e30d253
ILT
744{
745 switch (r_type)
746 {
747 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
748 case elfcpp::R_386_GNU_VTINHERIT:
749 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
750 break;
751
752 case elfcpp::R_X86_64_64:
d61c6bd4
ILT
753 // If building a shared library (or a position-independent
754 // executable), we need to create a dynamic relocation for
755 // this location. The relocation applied at link time will
756 // apply the link-time value, so we flag the location with
757 // an R_386_RELATIVE relocation so the dynamic loader can
758 // relocate it easily.
759 if (parameters->output_is_position_independent())
760 {
761 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
762 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
763 data_shndx, reloc.get_r_offset(), 0);
764 }
765 break;
766
2e30d253
ILT
767 case elfcpp::R_X86_64_32:
768 case elfcpp::R_X86_64_32S:
769 case elfcpp::R_X86_64_16:
770 case elfcpp::R_X86_64_8:
96f2030e
ILT
771 // If building a shared library (or a position-independent
772 // executable), we need to create a dynamic relocation for
773 // this location. The relocation applied at link time will
774 // apply the link-time value, so we flag the location with
775 // an R_386_RELATIVE relocation so the dynamic loader can
776 // relocate it easily.
777 if (parameters->output_is_position_independent())
778 {
96f2030e 779 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
d61c6bd4
ILT
780 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
781 rela_dyn->add_local(object, r_sym, r_type, data_shndx,
782 reloc.get_r_offset(),
783 reloc.get_r_addend());
96f2030e 784 }
2e30d253
ILT
785 break;
786
787 case elfcpp::R_X86_64_PC64:
788 case elfcpp::R_X86_64_PC32:
789 case elfcpp::R_X86_64_PC16:
790 case elfcpp::R_X86_64_PC8:
791 break;
792
f389a824
ILT
793 case elfcpp::R_X86_64_PLT32:
794 // Since we know this is a local symbol, we can handle this as a
795 // PC32 reloc.
796 break;
797
fdc2f80f 798 case elfcpp::R_X86_64_GOTPC32:
e822f2b1 799 case elfcpp::R_X86_64_GOTOFF64:
fdc2f80f
ILT
800 case elfcpp::R_X86_64_GOTPC64:
801 case elfcpp::R_X86_64_PLTOFF64:
2e30d253
ILT
802 // We need a GOT section.
803 target->got_section(symtab, layout);
ee9e9e86
ILT
804 // For PLTOFF64, we'd normally want a PLT section, but since we
805 // know this is a local symbol, no PLT is needed.
2e30d253
ILT
806 break;
807
0ffd9845
ILT
808 case elfcpp::R_X86_64_GOT64:
809 case elfcpp::R_X86_64_GOT32:
810 case elfcpp::R_X86_64_GOTPCREL64:
811 case elfcpp::R_X86_64_GOTPCREL:
ee9e9e86 812 case elfcpp::R_X86_64_GOTPLT64:
0ffd9845
ILT
813 {
814 // The symbol requires a GOT entry.
815 Output_data_got<64, false>* got = target->got_section(symtab, layout);
816 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
817 if (got->add_local(object, r_sym))
818 {
819 // If we are generating a shared object, we need to add a
820 // dynamic RELATIVE relocation for this symbol.
96f2030e 821 if (parameters->output_is_position_independent())
0ffd9845 822 {
96f2030e
ILT
823 // FIXME: R_X86_64_RELATIVE assumes a 64-bit relocation.
824 gold_assert(r_type != elfcpp::R_X86_64_GOT32);
825
0ffd9845
ILT
826 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
827 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
828 data_shndx, reloc.get_r_offset(), 0);
829 }
830 }
ee9e9e86
ILT
831 // For GOTPLT64, we'd normally want a PLT section, but since
832 // we know this is a local symbol, no PLT is needed.
0ffd9845
ILT
833 }
834 break;
835
2e30d253
ILT
836 case elfcpp::R_X86_64_COPY:
837 case elfcpp::R_X86_64_GLOB_DAT:
838 case elfcpp::R_X86_64_JUMP_SLOT:
839 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 840 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 841 case elfcpp::R_X86_64_TPOFF64:
2e30d253 842 case elfcpp::R_X86_64_DTPMOD64:
2e30d253 843 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
844 gold_error(_("%s: unexpected reloc %u in object file"),
845 object->name().c_str(), r_type);
2e30d253
ILT
846 break;
847
d61c17ea 848 // These are initial tls relocs, which are expected when linking
56622147
ILT
849 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
850 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 851 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 852 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
853 case elfcpp::R_X86_64_DTPOFF32:
854 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
855 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
856 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
857 {
858 bool output_is_shared = parameters->output_is_shared();
e041f13d
ILT
859 const tls::Tls_optimization optimized_type
860 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
2e30d253
ILT
861 switch (r_type)
862 {
56622147
ILT
863 case elfcpp::R_X86_64_TLSGD: // General-dynamic
864 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
865 case elfcpp::R_X86_64_TLSDESC_CALL:
866 // FIXME: If not relaxing to LE, we need to generate
867 // DTPMOD64 and DTPOFF64 relocs.
868 if (optimized_type != tls::TLSOPT_TO_LE)
869 unsupported_reloc_local(object, r_type);
2e30d253
ILT
870 break;
871
e041f13d 872 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
873 case elfcpp::R_X86_64_DTPOFF32:
874 case elfcpp::R_X86_64_DTPOFF64:
e041f13d
ILT
875 // FIXME: If not relaxing to LE, we need to generate a
876 // DTPMOD64 reloc.
877 if (optimized_type != tls::TLSOPT_TO_LE)
878 unsupported_reloc_local(object, r_type);
879 break;
880
56622147
ILT
881 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
882 // FIXME: If not relaxing to LE, we need to generate a
883 // TPOFF64 reloc.
884 if (optimized_type != tls::TLSOPT_TO_LE)
885 unsupported_reloc_local(object, r_type);
886 break;
0ffd9845 887
56622147
ILT
888 case elfcpp::R_X86_64_TPOFF32: // Local-exec
889 // FIXME: If generating a shared object, we need to copy
890 // this relocation into the object.
891 gold_assert(!output_is_shared);
2e30d253 892 break;
e041f13d
ILT
893
894 default:
895 gold_unreachable();
2e30d253
ILT
896 }
897 }
898 break;
2e30d253 899
fdc2f80f
ILT
900 case elfcpp::R_X86_64_SIZE32:
901 case elfcpp::R_X86_64_SIZE64:
2e30d253 902 default:
75f2446e
ILT
903 gold_error(_("%s: unsupported reloc %u against local symbol"),
904 object->name().c_str(), r_type);
2e30d253
ILT
905 break;
906 }
907}
908
909
e041f13d
ILT
910// Report an unsupported relocation against a global symbol.
911
912void
913Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
914 unsigned int r_type,
915 Symbol* gsym)
916{
75f2446e
ILT
917 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
918 object->name().c_str(), r_type, gsym->name());
e041f13d
ILT
919}
920
2e30d253
ILT
921// Scan a relocation for a global symbol.
922
923inline void
924Target_x86_64::Scan::global(const General_options& options,
d61c17ea
ILT
925 Symbol_table* symtab,
926 Layout* layout,
927 Target_x86_64* target,
928 Sized_relobj<64, false>* object,
929 unsigned int data_shndx,
930 const elfcpp::Rela<64, false>& reloc,
931 unsigned int r_type,
932 Symbol* gsym)
2e30d253
ILT
933{
934 switch (r_type)
935 {
936 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
937 case elfcpp::R_386_GNU_VTINHERIT:
938 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
939 break;
940
941 case elfcpp::R_X86_64_64:
2e30d253
ILT
942 case elfcpp::R_X86_64_32:
943 case elfcpp::R_X86_64_32S:
2e30d253 944 case elfcpp::R_X86_64_16:
2e30d253 945 case elfcpp::R_X86_64_8:
96f2030e 946 {
d61c6bd4
ILT
947 // Make a PLT entry if necessary.
948 if (gsym->needs_plt_entry())
949 {
950 target->make_plt_entry(symtab, layout, gsym);
951 // Since this is not a PC-relative relocation, we may be
952 // taking the address of a function. In that case we need to
953 // set the entry in the dynamic symbol table to the address of
954 // the PLT entry.
955 if (gsym->is_from_dynobj())
956 gsym->set_needs_dynsym_value();
957 }
958 // Make a dynamic relocation if necessary.
959 if (gsym->needs_dynamic_reloc(true, false))
960 {
961 if (target->may_need_copy_reloc(gsym))
962 {
963 target->copy_reloc(&options, symtab, layout, object, data_shndx,
964 gsym, reloc);
965 }
966 else if (r_type == elfcpp::R_X86_64_64
967 && gsym->can_use_relative_reloc(false))
968 {
969 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
970 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
971 data_shndx,
972 reloc.get_r_offset(), 0);
973 }
974 else
975 {
96f2030e
ILT
976 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
977 rela_dyn->add_global(gsym, r_type, object, data_shndx,
978 reloc.get_r_offset(),
979 reloc.get_r_addend());
d61c6bd4
ILT
980 }
981 }
982 }
983 break;
984
985 case elfcpp::R_X86_64_PC64:
986 case elfcpp::R_X86_64_PC32:
987 case elfcpp::R_X86_64_PC16:
988 case elfcpp::R_X86_64_PC8:
989 {
990 // Make a PLT entry if necessary.
991 if (gsym->needs_plt_entry())
992 target->make_plt_entry(symtab, layout, gsym);
993 // Make a dynamic relocation if necessary.
994 bool is_function_call = (gsym->type() == elfcpp::STT_FUNC);
995 if (gsym->needs_dynamic_reloc(true, is_function_call))
86849f1f 996 {
d61c6bd4
ILT
997 if (target->may_need_copy_reloc(gsym))
998 {
999 target->copy_reloc(&options, symtab, layout, object, data_shndx,
1000 gsym, reloc);
1001 }
86849f1f 1002 else
d61c6bd4
ILT
1003 {
1004 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1005 rela_dyn->add_global(gsym, r_type, object, data_shndx,
1006 reloc.get_r_offset(),
1007 reloc.get_r_addend());
1008 }
86849f1f 1009 }
d61c6bd4 1010 }
2e30d253
ILT
1011 break;
1012
ff006520 1013 case elfcpp::R_X86_64_GOT64:
2e30d253 1014 case elfcpp::R_X86_64_GOT32:
ff006520
ILT
1015 case elfcpp::R_X86_64_GOTPCREL64:
1016 case elfcpp::R_X86_64_GOTPCREL:
1017 case elfcpp::R_X86_64_GOTPLT64:
2e30d253
ILT
1018 {
1019 // The symbol requires a GOT entry.
1020 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1021 if (got->add_global(gsym))
1022 {
1023 // If this symbol is not fully resolved, we need to add a
1024 // dynamic relocation for it.
1025 if (!gsym->final_value_is_known())
1026 {
0ffd9845 1027 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
386c048c
ILT
1028 if (gsym->is_from_dynobj()
1029 || gsym->is_preemptible())
d61c6bd4
ILT
1030 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
1031 gsym->got_offset(), 0);
1032 else
1033 {
1034 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
1035 got, gsym->got_offset(), 0);
1036 // Make sure we write the link-time value to the GOT.
1037 gsym->set_needs_value_in_got();
1038 }
2e30d253
ILT
1039 }
1040 }
ee9e9e86
ILT
1041 // For GOTPLT64, we also need a PLT entry (but only if the
1042 // symbol is not fully resolved).
1043 if (r_type == elfcpp::R_X86_64_GOTPLT64
1044 && !gsym->final_value_is_known())
1045 target->make_plt_entry(symtab, layout, gsym);
2e30d253
ILT
1046 }
1047 break;
1048
1049 case elfcpp::R_X86_64_PLT32:
1050 // If the symbol is fully resolved, this is just a PC32 reloc.
1051 // Otherwise we need a PLT entry.
1052 if (gsym->final_value_is_known())
1053 break;
96f2030e
ILT
1054 // If building a shared library, we can also skip the PLT entry
1055 // if the symbol is defined in the output file and is protected
1056 // or hidden.
1057 if (gsym->is_defined()
1058 && !gsym->is_from_dynobj()
1059 && !gsym->is_preemptible())
1060 break;
2e30d253
ILT
1061 target->make_plt_entry(symtab, layout, gsym);
1062 break;
1063
fdc2f80f 1064 case elfcpp::R_X86_64_GOTPC32:
e822f2b1 1065 case elfcpp::R_X86_64_GOTOFF64:
fdc2f80f
ILT
1066 case elfcpp::R_X86_64_GOTPC64:
1067 case elfcpp::R_X86_64_PLTOFF64:
2e30d253
ILT
1068 // We need a GOT section.
1069 target->got_section(symtab, layout);
ee9e9e86
ILT
1070 // For PLTOFF64, we also need a PLT entry (but only if the
1071 // symbol is not fully resolved).
1072 if (r_type == elfcpp::R_X86_64_PLTOFF64
1073 && !gsym->final_value_is_known())
1074 target->make_plt_entry(symtab, layout, gsym);
2e30d253
ILT
1075 break;
1076
2e30d253
ILT
1077 case elfcpp::R_X86_64_COPY:
1078 case elfcpp::R_X86_64_GLOB_DAT:
1079 case elfcpp::R_X86_64_JUMP_SLOT:
1080 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 1081 // These are outstanding tls relocs, which are unexpected when linking
e822f2b1 1082 case elfcpp::R_X86_64_TPOFF64:
2e30d253 1083 case elfcpp::R_X86_64_DTPMOD64:
e822f2b1 1084 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
1085 gold_error(_("%s: unexpected reloc %u in object file"),
1086 object->name().c_str(), r_type);
2e30d253 1087 break;
2e30d253 1088
d61c17ea 1089 // These are initial tls relocs, which are expected for global()
56622147
ILT
1090 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1091 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 1092 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 1093 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
1094 case elfcpp::R_X86_64_DTPOFF32:
1095 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
1096 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1097 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
1098 {
1099 const bool is_final = gsym->final_value_is_known();
e041f13d
ILT
1100 const tls::Tls_optimization optimized_type
1101 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2e30d253
ILT
1102 switch (r_type)
1103 {
56622147
ILT
1104 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1105 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1106 case elfcpp::R_X86_64_TLSDESC_CALL:
1107 // FIXME: If not relaxing to LE, we need to generate
1108 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1109 if (optimized_type != tls::TLSOPT_TO_LE)
1110 unsupported_reloc_global(object, r_type, gsym);
2e30d253
ILT
1111 break;
1112
e041f13d 1113 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
1114 case elfcpp::R_X86_64_DTPOFF32:
1115 case elfcpp::R_X86_64_DTPOFF64:
e041f13d
ILT
1116 // FIXME: If not relaxing to LE, we need to generate a
1117 // DTPMOD64 reloc.
1118 if (optimized_type != tls::TLSOPT_TO_LE)
1119 unsupported_reloc_global(object, r_type, gsym);
1120 break;
1121
56622147
ILT
1122 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1123 // FIXME: If not relaxing to LE, we need to generate a
1124 // TPOFF64 reloc.
1125 if (optimized_type != tls::TLSOPT_TO_LE)
1126 unsupported_reloc_global(object, r_type, gsym);
1127 break;
0ffd9845 1128
56622147
ILT
1129 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1130 // FIXME: If generating a shared object, we need to copy
1131 // this relocation into the object.
1132 gold_assert(is_final);
2e30d253 1133 break;
e041f13d
ILT
1134
1135 default:
1136 gold_unreachable();
2e30d253
ILT
1137 }
1138 }
1139 break;
fdc2f80f
ILT
1140
1141 case elfcpp::R_X86_64_SIZE32:
1142 case elfcpp::R_X86_64_SIZE64:
2e30d253 1143 default:
75f2446e
ILT
1144 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1145 object->name().c_str(), r_type, gsym->name());
2e30d253
ILT
1146 break;
1147 }
1148}
1149
1150// Scan relocations for a section.
1151
1152void
1153Target_x86_64::scan_relocs(const General_options& options,
d61c17ea
ILT
1154 Symbol_table* symtab,
1155 Layout* layout,
1156 Sized_relobj<64, false>* object,
1157 unsigned int data_shndx,
1158 unsigned int sh_type,
1159 const unsigned char* prelocs,
1160 size_t reloc_count,
730cdc88
ILT
1161 Output_section* output_section,
1162 bool needs_special_offset_handling,
d61c17ea 1163 size_t local_symbol_count,
730cdc88 1164 const unsigned char* plocal_symbols)
2e30d253
ILT
1165{
1166 if (sh_type == elfcpp::SHT_REL)
1167 {
75f2446e
ILT
1168 gold_error(_("%s: unsupported REL reloc section"),
1169 object->name().c_str());
1170 return;
2e30d253
ILT
1171 }
1172
1173 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1174 Target_x86_64::Scan>(
1175 options,
1176 symtab,
1177 layout,
1178 this,
1179 object,
1180 data_shndx,
1181 prelocs,
1182 reloc_count,
730cdc88
ILT
1183 output_section,
1184 needs_special_offset_handling,
2e30d253 1185 local_symbol_count,
730cdc88 1186 plocal_symbols);
2e30d253
ILT
1187}
1188
1189// Finalize the sections.
1190
1191void
1192Target_x86_64::do_finalize_sections(Layout* layout)
1193{
1194 // Fill in some more dynamic tags.
1195 Output_data_dynamic* const odyn = layout->dynamic_data();
1196 if (odyn != NULL)
1197 {
1198 if (this->got_plt_ != NULL)
1199 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1200
1201 if (this->plt_ != NULL)
1202 {
1203 const Output_data* od = this->plt_->rel_plt();
1204 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1205 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1206 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1207 }
1208
0ffd9845 1209 if (this->rela_dyn_ != NULL)
2e30d253 1210 {
0ffd9845 1211 const Output_data* od = this->rela_dyn_;
2e30d253 1212 odyn->add_section_address(elfcpp::DT_RELA, od);
e84992bb 1213 odyn->add_section_size(elfcpp::DT_RELASZ, od);
2e30d253 1214 odyn->add_constant(elfcpp::DT_RELAENT,
e84992bb 1215 elfcpp::Elf_sizes<64>::rela_size);
2e30d253
ILT
1216 }
1217
1218 if (!parameters->output_is_shared())
1219 {
1220 // The value of the DT_DEBUG tag is filled in by the dynamic
1221 // linker at run time, and used by the debugger.
1222 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1223 }
1224 }
1225
1226 // Emit any relocs we saved in an attempt to avoid generating COPY
1227 // relocs.
1228 if (this->copy_relocs_ == NULL)
1229 return;
1230 if (this->copy_relocs_->any_to_emit())
1231 {
0ffd9845
ILT
1232 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1233 this->copy_relocs_->emit(rela_dyn);
2e30d253
ILT
1234 }
1235 delete this->copy_relocs_;
1236 this->copy_relocs_ = NULL;
1237}
1238
1239// Perform a relocation.
1240
1241inline bool
1242Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1243 Target_x86_64* target,
1244 size_t relnum,
0ffd9845 1245 const elfcpp::Rela<64, false>& rela,
2e30d253
ILT
1246 unsigned int r_type,
1247 const Sized_symbol<64>* gsym,
1248 const Symbol_value<64>* psymval,
1249 unsigned char* view,
1250 elfcpp::Elf_types<64>::Elf_Addr address,
1251 off_t view_size)
1252{
1253 if (this->skip_call_tls_get_addr_)
1254 {
1255 if (r_type != elfcpp::R_X86_64_PLT32
1256 || gsym == NULL
0ffd9845 1257 || strcmp(gsym->name(), "__tls_get_addr") != 0)
2e30d253 1258 {
75f2446e
ILT
1259 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1260 _("missing expected TLS relocation"));
1261 }
1262 else
1263 {
1264 this->skip_call_tls_get_addr_ = false;
1265 return false;
2e30d253 1266 }
2e30d253
ILT
1267 }
1268
1269 // Pick the value to use for symbols defined in shared objects.
1270 Symbol_value<64> symval;
96f2030e
ILT
1271 if (gsym != NULL
1272 && (gsym->is_from_dynobj()
1273 || (parameters->output_is_shared()
1274 && gsym->is_preemptible()))
1275 && gsym->has_plt_offset())
2e30d253
ILT
1276 {
1277 symval.set_output_value(target->plt_section()->address()
1278 + gsym->plt_offset());
1279 psymval = &symval;
1280 }
1281
1282 const Sized_relobj<64, false>* object = relinfo->object;
0ffd9845
ILT
1283 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1284
1285 // Get the GOT offset if needed.
96f2030e
ILT
1286 // The GOT pointer points to the end of the GOT section.
1287 // We need to subtract the size of the GOT section to get
1288 // the actual offset to use in the relocation.
0ffd9845
ILT
1289 bool have_got_offset = false;
1290 unsigned int got_offset = 0;
1291 switch (r_type)
1292 {
1293 case elfcpp::R_X86_64_GOT32:
1294 case elfcpp::R_X86_64_GOT64:
1295 case elfcpp::R_X86_64_GOTPLT64:
1296 case elfcpp::R_X86_64_GOTPCREL:
1297 case elfcpp::R_X86_64_GOTPCREL64:
1298 if (gsym != NULL)
1299 {
1300 gold_assert(gsym->has_got_offset());
96f2030e 1301 got_offset = gsym->got_offset() - target->got_size();
0ffd9845
ILT
1302 }
1303 else
1304 {
1305 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
96f2030e 1306 got_offset = object->local_got_offset(r_sym) - target->got_size();
0ffd9845
ILT
1307 }
1308 have_got_offset = true;
1309 break;
1310
1311 default:
1312 break;
1313 }
2e30d253
ILT
1314
1315 switch (r_type)
1316 {
1317 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
1318 case elfcpp::R_386_GNU_VTINHERIT:
1319 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
1320 break;
1321
1322 case elfcpp::R_X86_64_64:
1323 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1324 break;
1325
1326 case elfcpp::R_X86_64_PC64:
1327 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1328 address);
1329 break;
1330
1331 case elfcpp::R_X86_64_32:
7bb3655e
ILT
1332 // FIXME: we need to verify that value + addend fits into 32 bits:
1333 // uint64_t x = value + addend;
1334 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1335 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
2e30d253
ILT
1336 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1337 break;
1338
1339 case elfcpp::R_X86_64_32S:
7bb3655e
ILT
1340 // FIXME: we need to verify that value + addend fits into 32 bits:
1341 // int64_t x = value + addend; // note this quantity is signed!
1342 // x == static_cast<int64_t>(static_cast<int32_t>(x))
2e30d253
ILT
1343 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1344 break;
1345
1346 case elfcpp::R_X86_64_PC32:
1347 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1348 address);
1349 break;
1350
1351 case elfcpp::R_X86_64_16:
1352 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1353 break;
1354
1355 case elfcpp::R_X86_64_PC16:
1356 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1357 address);
1358 break;
1359
1360 case elfcpp::R_X86_64_8:
1361 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1362 break;
1363
1364 case elfcpp::R_X86_64_PC8:
1365 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1366 address);
1367 break;
1368
1369 case elfcpp::R_X86_64_PLT32:
f389a824
ILT
1370 gold_assert(gsym == NULL
1371 || gsym->has_plt_offset()
2e30d253 1372 || gsym->final_value_is_known());
ee9e9e86
ILT
1373 // Note: while this code looks the same as for R_X86_64_PC32, it
1374 // behaves differently because psymval was set to point to
1375 // the PLT entry, rather than the symbol, in Scan::global().
2e30d253
ILT
1376 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1377 address);
1378 break;
1379
ee9e9e86
ILT
1380 case elfcpp::R_X86_64_PLTOFF64:
1381 {
1382 gold_assert(gsym);
1383 gold_assert(gsym->has_plt_offset()
1384 || gsym->final_value_is_known());
1385 elfcpp::Elf_types<64>::Elf_Addr got_address;
1386 got_address = target->got_section(NULL, NULL)->address();
c1866bd5
ILT
1387 Relocate_functions<64, false>::rela64(view, object, psymval,
1388 addend - got_address);
ee9e9e86
ILT
1389 }
1390
2e30d253 1391 case elfcpp::R_X86_64_GOT32:
0ffd9845
ILT
1392 gold_assert(have_got_offset);
1393 Relocate_functions<64, false>::rela32(view, got_offset, addend);
2e30d253
ILT
1394 break;
1395
e822f2b1
ILT
1396 case elfcpp::R_X86_64_GOTPC32:
1397 {
1398 gold_assert(gsym);
1399 elfcpp::Elf_types<64>::Elf_Addr value;
96f2030e 1400 value = target->got_plt_section()->address();
e822f2b1
ILT
1401 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1402 }
1403 break;
1404
1405 case elfcpp::R_X86_64_GOT64:
1406 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1407 // Since we always add a PLT entry, this is equivalent.
fdc2f80f 1408 case elfcpp::R_X86_64_GOTPLT64:
0ffd9845
ILT
1409 gold_assert(have_got_offset);
1410 Relocate_functions<64, false>::rela64(view, got_offset, addend);
e822f2b1
ILT
1411 break;
1412
1413 case elfcpp::R_X86_64_GOTPC64:
1414 {
1415 gold_assert(gsym);
1416 elfcpp::Elf_types<64>::Elf_Addr value;
96f2030e 1417 value = target->got_plt_section()->address();
e822f2b1
ILT
1418 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1419 }
1420 break;
1421
2e30d253
ILT
1422 case elfcpp::R_X86_64_GOTOFF64:
1423 {
1424 elfcpp::Elf_types<64>::Elf_Addr value;
1425 value = (psymval->value(object, 0)
96f2030e 1426 - target->got_plt_section()->address());
2e30d253
ILT
1427 Relocate_functions<64, false>::rela64(view, value, addend);
1428 }
1429 break;
1430
1431 case elfcpp::R_X86_64_GOTPCREL:
1432 {
0ffd9845
ILT
1433 gold_assert(have_got_offset);
1434 elfcpp::Elf_types<64>::Elf_Addr value;
96f2030e 1435 value = target->got_plt_section()->address() + got_offset;
0ffd9845 1436 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2e30d253
ILT
1437 }
1438 break;
1439
e822f2b1
ILT
1440 case elfcpp::R_X86_64_GOTPCREL64:
1441 {
0ffd9845
ILT
1442 gold_assert(have_got_offset);
1443 elfcpp::Elf_types<64>::Elf_Addr value;
96f2030e 1444 value = target->got_plt_section()->address() + got_offset;
0ffd9845 1445 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
e822f2b1
ILT
1446 }
1447 break;
1448
2e30d253
ILT
1449 case elfcpp::R_X86_64_COPY:
1450 case elfcpp::R_X86_64_GLOB_DAT:
1451 case elfcpp::R_X86_64_JUMP_SLOT:
1452 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 1453 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 1454 case elfcpp::R_X86_64_TPOFF64:
2e30d253 1455 case elfcpp::R_X86_64_DTPMOD64:
2e30d253 1456 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
1457 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1458 _("unexpected reloc %u in object file"),
1459 r_type);
2e30d253
ILT
1460 break;
1461
d61c17ea 1462 // These are initial tls relocs, which are expected when linking
56622147
ILT
1463 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1464 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 1465 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 1466 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
1467 case elfcpp::R_X86_64_DTPOFF32:
1468 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
1469 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1470 case elfcpp::R_X86_64_TPOFF32: // Local-exec
0ffd9845 1471 this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
2e30d253
ILT
1472 address, view_size);
1473 break;
2e30d253 1474
fdc2f80f
ILT
1475 case elfcpp::R_X86_64_SIZE32:
1476 case elfcpp::R_X86_64_SIZE64:
2e30d253 1477 default:
75f2446e
ILT
1478 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1479 _("unsupported reloc %u"),
1480 r_type);
2e30d253
ILT
1481 break;
1482 }
1483
1484 return true;
1485}
1486
1487// Perform a TLS relocation.
1488
1489inline void
d61c17ea
ILT
1490Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1491 size_t relnum,
72ec2876 1492 const elfcpp::Rela<64, false>& rela,
d61c17ea
ILT
1493 unsigned int r_type,
1494 const Sized_symbol<64>* gsym,
1495 const Symbol_value<64>* psymval,
1496 unsigned char* view,
2e30d253 1497 elfcpp::Elf_types<64>::Elf_Addr,
d61c17ea 1498 off_t view_size)
2e30d253 1499{
2e30d253
ILT
1500 Output_segment* tls_segment = relinfo->layout->tls_segment();
1501 if (tls_segment == NULL)
1502 {
72ec2876 1503 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e
ILT
1504 _("TLS reloc but no TLS segment"));
1505 return;
2e30d253
ILT
1506 }
1507
1508 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1509
1510 const bool is_final = (gsym == NULL
96f2030e 1511 ? !parameters->output_is_position_independent()
2e30d253 1512 : gsym->final_value_is_known());
e041f13d
ILT
1513 const tls::Tls_optimization optimized_type
1514 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2e30d253
ILT
1515 switch (r_type)
1516 {
56622147
ILT
1517 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1518 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d
ILT
1519 case elfcpp::R_X86_64_TLSDESC_CALL:
1520 if (optimized_type == tls::TLSOPT_TO_LE)
2e30d253
ILT
1521 {
1522 this->tls_gd_to_le(relinfo, relnum, tls_segment,
72ec2876 1523 rela, r_type, value, view,
2e30d253
ILT
1524 view_size);
1525 break;
1526 }
72ec2876 1527 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e 1528 _("unsupported reloc %u"), r_type);
2e30d253
ILT
1529 break;
1530
56622147 1531 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
e041f13d
ILT
1532 if (optimized_type == tls::TLSOPT_TO_LE)
1533 {
72ec2876
ILT
1534 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1535 value, view, view_size);
1536 break;
e041f13d 1537 }
72ec2876 1538 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e 1539 _("unsupported reloc %u"), r_type);
2e30d253 1540 break;
0ffd9845
ILT
1541
1542 case elfcpp::R_X86_64_DTPOFF32:
e041f13d 1543 if (optimized_type == tls::TLSOPT_TO_LE)
0ffd9845
ILT
1544 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1545 else
1546 value = value - tls_segment->vaddr();
1547 Relocate_functions<64, false>::rel32(view, value);
1548 break;
1549
1550 case elfcpp::R_X86_64_DTPOFF64:
e041f13d 1551 if (optimized_type == tls::TLSOPT_TO_LE)
0ffd9845
ILT
1552 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1553 else
1554 value = value - tls_segment->vaddr();
1555 Relocate_functions<64, false>::rel64(view, value);
1556 break;
2e30d253 1557
56622147
ILT
1558 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1559 if (optimized_type == tls::TLSOPT_TO_LE)
1560 {
1561 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1562 rela, r_type, value, view,
1563 view_size);
1564 break;
1565 }
1566 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1567 _("unsupported reloc type %u"),
1568 r_type);
1569 break;
0ffd9845 1570
56622147
ILT
1571 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1572 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1573 Relocate_functions<64, false>::rel32(view, value);
1574 break;
2e30d253 1575 }
2e30d253
ILT
1576}
1577
e041f13d 1578// Do a relocation in which we convert a TLS General-Dynamic to a
2e30d253
ILT
1579// Local-Exec.
1580
1581inline void
d61c17ea
ILT
1582Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1583 size_t relnum,
1584 Output_segment* tls_segment,
72ec2876 1585 const elfcpp::Rela<64, false>& rela,
d61c17ea
ILT
1586 unsigned int,
1587 elfcpp::Elf_types<64>::Elf_Addr value,
1588 unsigned char* view,
1589 off_t view_size)
2e30d253 1590{
0ffd9845
ILT
1591 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1592 // .word 0x6666; rex64; call __tls_get_addr
1593 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2e30d253 1594
72ec2876
ILT
1595 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1596 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2e30d253 1597
72ec2876
ILT
1598 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1599 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1600 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1601 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2e30d253 1602
0ffd9845 1603 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2e30d253 1604
0ffd9845
ILT
1605 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1606 Relocate_functions<64, false>::rela32(view + 8, value, 0);
2e30d253
ILT
1607
1608 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1609 // We can skip it.
1610 this->skip_call_tls_get_addr_ = true;
2e30d253
ILT
1611}
1612
2e30d253 1613inline void
72ec2876
ILT
1614Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1615 size_t relnum,
1616 Output_segment*,
1617 const elfcpp::Rela<64, false>& rela,
1618 unsigned int,
1619 elfcpp::Elf_types<64>::Elf_Addr,
1620 unsigned char* view,
1621 off_t view_size)
2e30d253 1622{
72ec2876
ILT
1623 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1624 // ... leq foo@dtpoff(%rax),%reg
1625 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2e30d253 1626
72ec2876
ILT
1627 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1628 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2e30d253 1629
72ec2876
ILT
1630 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1631 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1632
1633 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1634
1635 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1636
1637 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1638 // We can skip it.
1639 this->skip_call_tls_get_addr_ = true;
2e30d253
ILT
1640}
1641
56622147
ILT
1642// Do a relocation in which we convert a TLS Initial-Exec to a
1643// Local-Exec.
1644
1645inline void
1646Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1647 size_t relnum,
1648 Output_segment* tls_segment,
1649 const elfcpp::Rela<64, false>& rela,
1650 unsigned int,
1651 elfcpp::Elf_types<64>::Elf_Addr value,
1652 unsigned char* view,
1653 off_t view_size)
1654{
1655 // We need to examine the opcodes to figure out which instruction we
1656 // are looking at.
1657
1658 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1659 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1660
1661 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1662 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1663
1664 unsigned char op1 = view[-3];
1665 unsigned char op2 = view[-2];
1666 unsigned char op3 = view[-1];
1667 unsigned char reg = op3 >> 3;
1668
1669 if (op2 == 0x8b)
1670 {
1671 // movq
1672 if (op1 == 0x4c)
1673 view[-3] = 0x49;
1674 view[-2] = 0xc7;
1675 view[-1] = 0xc0 | reg;
1676 }
1677 else if (reg == 4)
1678 {
1679 // Special handling for %rsp.
1680 if (op1 == 0x4c)
1681 view[-3] = 0x49;
1682 view[-2] = 0x81;
1683 view[-1] = 0xc0 | reg;
1684 }
1685 else
1686 {
1687 // addq
1688 if (op1 == 0x4c)
1689 view[-3] = 0x4d;
1690 view[-2] = 0x8d;
1691 view[-1] = 0x80 | reg | (reg << 3);
1692 }
1693
1694 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1695 Relocate_functions<64, false>::rela32(view, value, 0);
1696}
1697
2e30d253
ILT
1698// Relocate section data.
1699
1700void
1701Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
d61c17ea
ILT
1702 unsigned int sh_type,
1703 const unsigned char* prelocs,
1704 size_t reloc_count,
730cdc88
ILT
1705 Output_section* output_section,
1706 bool needs_special_offset_handling,
d61c17ea
ILT
1707 unsigned char* view,
1708 elfcpp::Elf_types<64>::Elf_Addr address,
1709 off_t view_size)
2e30d253
ILT
1710{
1711 gold_assert(sh_type == elfcpp::SHT_RELA);
1712
1713 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1714 Target_x86_64::Relocate>(
1715 relinfo,
1716 this,
1717 prelocs,
1718 reloc_count,
730cdc88
ILT
1719 output_section,
1720 needs_special_offset_handling,
2e30d253
ILT
1721 view,
1722 address,
1723 view_size);
1724}
1725
4fb6c25d
ILT
1726// Return the value to use for a dynamic which requires special
1727// treatment. This is how we support equality comparisons of function
1728// pointers across shared library boundaries, as described in the
1729// processor specific ABI supplement.
1730
1731uint64_t
1732Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1733{
1734 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1735 return this->plt_section()->address() + gsym->plt_offset();
1736}
1737
2e30d253
ILT
1738// Return a string used to fill a code section with nops to take up
1739// the specified length.
1740
1741std::string
1742Target_x86_64::do_code_fill(off_t length)
1743{
1744 if (length >= 16)
1745 {
1746 // Build a jmpq instruction to skip over the bytes.
1747 unsigned char jmp[5];
1748 jmp[0] = 0xe9;
1749 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1750 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1751 + std::string(length - 5, '\0'));
1752 }
1753
1754 // Nop sequences of various lengths.
1755 const char nop1[1] = { 0x90 }; // nop
1756 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1757 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1758 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1759 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1760 0x00 }; // leal 0(%esi,1),%esi
1761 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1762 0x00, 0x00 };
1763 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1764 0x00, 0x00, 0x00 };
1765 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1766 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1767 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1768 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1769 0x00 };
1770 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1771 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1772 0x00, 0x00 };
1773 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1774 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1775 0x00, 0x00, 0x00 };
1776 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1777 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1778 0x00, 0x00, 0x00, 0x00 };
1779 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1780 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1781 0x27, 0x00, 0x00, 0x00,
1782 0x00 };
1783 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1784 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1785 0xbc, 0x27, 0x00, 0x00,
1786 0x00, 0x00 };
1787 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1788 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1789 0x90, 0x90, 0x90, 0x90,
1790 0x90, 0x90, 0x90 };
1791
1792 const char* nops[16] = {
1793 NULL,
1794 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1795 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1796 };
1797
1798 return std::string(nops[length], length);
1799}
1800
1801// The selector for x86_64 object files.
1802
1803class Target_selector_x86_64 : public Target_selector
1804{
1805public:
1806 Target_selector_x86_64()
1807 : Target_selector(elfcpp::EM_X86_64, 64, false)
1808 { }
1809
1810 Target*
1811 recognize(int machine, int osabi, int abiversion);
1812
1813 private:
1814 Target_x86_64* target_;
1815};
1816
1817// Recognize an x86_64 object file when we already know that the machine
1818// number is EM_X86_64.
1819
1820Target*
1821Target_selector_x86_64::recognize(int, int, int)
1822{
1823 if (this->target_ == NULL)
1824 this->target_ = new Target_x86_64();
1825 return this->target_;
1826}
1827
1828Target_selector_x86_64 target_selector_x86_64;
1829
1830} // End anonymous namespace.
This page took 0.112298 seconds and 4 git commands to generate.