Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* |
5ec4a8f3 NC |
2 | * Copyright (c) 1983, 1993, 2001 |
3 | * The Regents of the University of California. All rights reserved. | |
252b5132 | 4 | * |
5ec4a8f3 NC |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions | |
7 | * are met: | |
8 | * 1. Redistributions of source code must retain the above copyright | |
9 | * notice, this list of conditions and the following disclaimer. | |
10 | * 2. Redistributions in binary form must reproduce the above copyright | |
11 | * notice, this list of conditions and the following disclaimer in the | |
12 | * documentation and/or other materials provided with the distribution. | |
13 | * 3. Neither the name of the University nor the names of its contributors | |
14 | * may be used to endorse or promote products derived from this software | |
15 | * without specific prior written permission. | |
16 | * | |
17 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
18 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
19 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
20 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
21 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
22 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
23 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
24 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
25 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
26 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
27 | * SUCH DAMAGE. | |
252b5132 | 28 | */ |
252b5132 | 29 | #include "gprof.h" |
ecba005f | 30 | #include "libiberty.h" |
6d9c411a AM |
31 | #include "search_list.h" |
32 | #include "source.h" | |
33 | #include "symtab.h" | |
252b5132 RH |
34 | #include "call_graph.h" |
35 | #include "cg_arcs.h" | |
36 | #include "cg_dfn.h" | |
37 | #include "cg_print.h" | |
38 | #include "utils.h" | |
39 | #include "sym_ids.h" | |
40 | ||
3e8f6abf BE |
41 | static int cmp_topo (const PTR, const PTR); |
42 | static void propagate_time (Sym *); | |
43 | static void cycle_time (void); | |
44 | static void cycle_link (void); | |
45 | static void inherit_flags (Sym *); | |
46 | static void propagate_flags (Sym **); | |
47 | static int cmp_total (const PTR, const PTR); | |
1355568a | 48 | |
252b5132 RH |
49 | Sym *cycle_header; |
50 | unsigned int num_cycles; | |
51 | Arc **arcs; | |
52 | unsigned int numarcs; | |
53 | ||
54 | /* | |
55 | * Return TRUE iff PARENT has an arc to covers the address | |
56 | * range covered by CHILD. | |
57 | */ | |
58 | Arc * | |
3e8f6abf | 59 | arc_lookup (Sym *parent, Sym *child) |
252b5132 RH |
60 | { |
61 | Arc *arc; | |
62 | ||
63 | if (!parent || !child) | |
64 | { | |
65 | printf ("[arc_lookup] parent == 0 || child == 0\n"); | |
66 | return 0; | |
67 | } | |
68 | DBG (LOOKUPDEBUG, printf ("[arc_lookup] parent %s child %s\n", | |
69 | parent->name, child->name)); | |
70 | for (arc = parent->cg.children; arc; arc = arc->next_child) | |
71 | { | |
72 | DBG (LOOKUPDEBUG, printf ("[arc_lookup]\t parent %s child %s\n", | |
73 | arc->parent->name, arc->child->name)); | |
74 | if (child->addr >= arc->child->addr | |
75 | && child->end_addr <= arc->child->end_addr) | |
76 | { | |
77 | return arc; | |
78 | } | |
79 | } | |
80 | return 0; | |
81 | } | |
82 | ||
83 | ||
84 | /* | |
85 | * Add (or just increment) an arc: | |
86 | */ | |
87 | void | |
3e8f6abf | 88 | arc_add (Sym *parent, Sym *child, unsigned long count) |
252b5132 RH |
89 | { |
90 | static unsigned int maxarcs = 0; | |
91 | Arc *arc, **newarcs; | |
92 | ||
93 | DBG (TALLYDEBUG, printf ("[arc_add] %lu arcs from %s to %s\n", | |
94 | count, parent->name, child->name)); | |
95 | arc = arc_lookup (parent, child); | |
96 | if (arc) | |
97 | { | |
98 | /* | |
99 | * A hit: just increment the count. | |
100 | */ | |
101 | DBG (TALLYDEBUG, printf ("[tally] hit %lu += %lu\n", | |
102 | arc->count, count)); | |
103 | arc->count += count; | |
104 | return; | |
105 | } | |
106 | arc = (Arc *) xmalloc (sizeof (*arc)); | |
107 | memset (arc, 0, sizeof (*arc)); | |
108 | arc->parent = parent; | |
109 | arc->child = child; | |
110 | arc->count = count; | |
111 | ||
112 | /* If this isn't an arc for a recursive call to parent, then add it | |
113 | to the array of arcs. */ | |
114 | if (parent != child) | |
115 | { | |
116 | /* If we've exhausted space in our current array, get a new one | |
117 | and copy the contents. We might want to throttle the doubling | |
118 | factor one day. */ | |
119 | if (numarcs == maxarcs) | |
120 | { | |
121 | /* Determine how much space we want to allocate. */ | |
122 | if (maxarcs == 0) | |
123 | maxarcs = 1; | |
124 | maxarcs *= 2; | |
0eee5820 | 125 | |
252b5132 RH |
126 | /* Allocate the new array. */ |
127 | newarcs = (Arc **)xmalloc(sizeof (Arc *) * maxarcs); | |
128 | ||
129 | /* Copy the old array's contents into the new array. */ | |
130 | memcpy (newarcs, arcs, numarcs * sizeof (Arc *)); | |
131 | ||
132 | /* Free up the old array. */ | |
133 | free (arcs); | |
134 | ||
135 | /* And make the new array be the current array. */ | |
136 | arcs = newarcs; | |
137 | } | |
138 | ||
139 | /* Place this arc in the arc array. */ | |
140 | arcs[numarcs++] = arc; | |
141 | } | |
142 | ||
143 | /* prepend this child to the children of this parent: */ | |
144 | arc->next_child = parent->cg.children; | |
145 | parent->cg.children = arc; | |
146 | ||
147 | /* prepend this parent to the parents of this child: */ | |
148 | arc->next_parent = child->cg.parents; | |
149 | child->cg.parents = arc; | |
150 | } | |
151 | ||
152 | ||
153 | static int | |
3e8f6abf | 154 | cmp_topo (const PTR lp, const PTR rp) |
252b5132 RH |
155 | { |
156 | const Sym *left = *(const Sym **) lp; | |
157 | const Sym *right = *(const Sym **) rp; | |
158 | ||
159 | return left->cg.top_order - right->cg.top_order; | |
160 | } | |
161 | ||
162 | ||
163 | static void | |
3e8f6abf | 164 | propagate_time (Sym *parent) |
252b5132 RH |
165 | { |
166 | Arc *arc; | |
167 | Sym *child; | |
168 | double share, prop_share; | |
169 | ||
170 | if (parent->cg.prop.fract == 0.0) | |
171 | { | |
172 | return; | |
173 | } | |
174 | ||
175 | /* gather time from children of this parent: */ | |
176 | ||
177 | for (arc = parent->cg.children; arc; arc = arc->next_child) | |
178 | { | |
179 | child = arc->child; | |
180 | if (arc->count == 0 || child == parent || child->cg.prop.fract == 0) | |
181 | { | |
182 | continue; | |
183 | } | |
184 | if (child->cg.cyc.head != child) | |
185 | { | |
186 | if (parent->cg.cyc.num == child->cg.cyc.num) | |
187 | { | |
188 | continue; | |
189 | } | |
190 | if (parent->cg.top_order <= child->cg.top_order) | |
191 | { | |
192 | fprintf (stderr, "[propagate] toporder botches\n"); | |
193 | } | |
194 | child = child->cg.cyc.head; | |
195 | } | |
196 | else | |
197 | { | |
198 | if (parent->cg.top_order <= child->cg.top_order) | |
199 | { | |
200 | fprintf (stderr, "[propagate] toporder botches\n"); | |
201 | continue; | |
202 | } | |
203 | } | |
204 | if (child->ncalls == 0) | |
205 | { | |
206 | continue; | |
207 | } | |
208 | ||
209 | /* distribute time for this arc: */ | |
210 | arc->time = child->hist.time * (((double) arc->count) | |
211 | / ((double) child->ncalls)); | |
212 | arc->child_time = child->cg.child_time | |
213 | * (((double) arc->count) / ((double) child->ncalls)); | |
214 | share = arc->time + arc->child_time; | |
215 | parent->cg.child_time += share; | |
216 | ||
217 | /* (1 - cg.prop.fract) gets lost along the way: */ | |
218 | prop_share = parent->cg.prop.fract * share; | |
219 | ||
220 | /* fix things for printing: */ | |
221 | parent->cg.prop.child += prop_share; | |
222 | arc->time *= parent->cg.prop.fract; | |
223 | arc->child_time *= parent->cg.prop.fract; | |
224 | ||
225 | /* add this share to the parent's cycle header, if any: */ | |
226 | if (parent->cg.cyc.head != parent) | |
227 | { | |
228 | parent->cg.cyc.head->cg.child_time += share; | |
229 | parent->cg.cyc.head->cg.prop.child += prop_share; | |
230 | } | |
231 | DBG (PROPDEBUG, | |
232 | printf ("[prop_time] child \t"); | |
233 | print_name (child); | |
234 | printf (" with %f %f %lu/%lu\n", child->hist.time, | |
235 | child->cg.child_time, arc->count, child->ncalls); | |
236 | printf ("[prop_time] parent\t"); | |
237 | print_name (parent); | |
238 | printf ("\n[prop_time] share %f\n", share)); | |
239 | } | |
240 | } | |
241 | ||
242 | ||
243 | /* | |
244 | * Compute the time of a cycle as the sum of the times of all | |
245 | * its members. | |
246 | */ | |
247 | static void | |
1355568a | 248 | cycle_time () |
252b5132 RH |
249 | { |
250 | Sym *member, *cyc; | |
251 | ||
252 | for (cyc = &cycle_header[1]; cyc <= &cycle_header[num_cycles]; ++cyc) | |
253 | { | |
254 | for (member = cyc->cg.cyc.next; member; member = member->cg.cyc.next) | |
255 | { | |
256 | if (member->cg.prop.fract == 0.0) | |
257 | { | |
258 | /* | |
259 | * All members have the same propfraction except those | |
260 | * that were excluded with -E. | |
261 | */ | |
262 | continue; | |
263 | } | |
264 | cyc->hist.time += member->hist.time; | |
265 | } | |
266 | cyc->cg.prop.self = cyc->cg.prop.fract * cyc->hist.time; | |
267 | } | |
268 | } | |
269 | ||
270 | ||
271 | static void | |
1355568a | 272 | cycle_link () |
252b5132 RH |
273 | { |
274 | Sym *sym, *cyc, *member; | |
275 | Arc *arc; | |
276 | int num; | |
277 | ||
278 | /* count the number of cycles, and initialize the cycle lists: */ | |
279 | ||
280 | num_cycles = 0; | |
281 | for (sym = symtab.base; sym < symtab.limit; ++sym) | |
282 | { | |
283 | /* this is how you find unattached cycles: */ | |
284 | if (sym->cg.cyc.head == sym && sym->cg.cyc.next) | |
285 | { | |
286 | ++num_cycles; | |
287 | } | |
288 | } | |
289 | ||
290 | /* | |
291 | * cycle_header is indexed by cycle number: i.e. it is origin 1, | |
292 | * not origin 0. | |
293 | */ | |
294 | cycle_header = (Sym *) xmalloc ((num_cycles + 1) * sizeof (Sym)); | |
295 | ||
296 | /* | |
297 | * Now link cycles to true cycle-heads, number them, accumulate | |
298 | * the data for the cycle. | |
299 | */ | |
300 | num = 0; | |
301 | cyc = cycle_header; | |
302 | for (sym = symtab.base; sym < symtab.limit; ++sym) | |
303 | { | |
304 | if (!(sym->cg.cyc.head == sym && sym->cg.cyc.next != 0)) | |
305 | { | |
306 | continue; | |
307 | } | |
308 | ++num; | |
309 | ++cyc; | |
310 | sym_init (cyc); | |
b34976b6 | 311 | cyc->cg.print_flag = TRUE; /* should this be printed? */ |
252b5132 RH |
312 | cyc->cg.top_order = DFN_NAN; /* graph call chain top-sort order */ |
313 | cyc->cg.cyc.num = num; /* internal number of cycle on */ | |
314 | cyc->cg.cyc.head = cyc; /* pointer to head of cycle */ | |
315 | cyc->cg.cyc.next = sym; /* pointer to next member of cycle */ | |
316 | DBG (CYCLEDEBUG, printf ("[cycle_link] "); | |
317 | print_name (sym); | |
318 | printf (" is the head of cycle %d\n", num)); | |
319 | ||
320 | /* link members to cycle header: */ | |
321 | for (member = sym; member; member = member->cg.cyc.next) | |
322 | { | |
323 | member->cg.cyc.num = num; | |
324 | member->cg.cyc.head = cyc; | |
325 | } | |
326 | ||
327 | /* | |
328 | * Count calls from outside the cycle and those among cycle | |
329 | * members: | |
330 | */ | |
331 | for (member = sym; member; member = member->cg.cyc.next) | |
332 | { | |
333 | for (arc = member->cg.parents; arc; arc = arc->next_parent) | |
334 | { | |
335 | if (arc->parent == member) | |
336 | { | |
337 | continue; | |
338 | } | |
339 | if (arc->parent->cg.cyc.num == num) | |
340 | { | |
341 | cyc->cg.self_calls += arc->count; | |
342 | } | |
343 | else | |
344 | { | |
345 | cyc->ncalls += arc->count; | |
346 | } | |
347 | } | |
348 | } | |
349 | } | |
350 | } | |
351 | ||
352 | ||
353 | /* | |
354 | * Check if any parent of this child (or outside parents of this | |
355 | * cycle) have their print flags on and set the print flag of the | |
356 | * child (cycle) appropriately. Similarly, deal with propagation | |
357 | * fractions from parents. | |
358 | */ | |
359 | static void | |
3e8f6abf | 360 | inherit_flags (Sym *child) |
252b5132 RH |
361 | { |
362 | Sym *head, *parent, *member; | |
363 | Arc *arc; | |
364 | ||
365 | head = child->cg.cyc.head; | |
366 | if (child == head) | |
367 | { | |
368 | /* just a regular child, check its parents: */ | |
b34976b6 | 369 | child->cg.print_flag = FALSE; |
252b5132 RH |
370 | child->cg.prop.fract = 0.0; |
371 | for (arc = child->cg.parents; arc; arc = arc->next_parent) | |
372 | { | |
373 | parent = arc->parent; | |
374 | if (child == parent) | |
375 | { | |
376 | continue; | |
377 | } | |
378 | child->cg.print_flag |= parent->cg.print_flag; | |
379 | /* | |
380 | * If the child was never actually called (e.g., this arc | |
381 | * is static (and all others are, too)) no time propagates | |
382 | * along this arc. | |
383 | */ | |
384 | if (child->ncalls != 0) | |
385 | { | |
386 | child->cg.prop.fract += parent->cg.prop.fract | |
387 | * (((double) arc->count) / ((double) child->ncalls)); | |
388 | } | |
389 | } | |
390 | } | |
391 | else | |
392 | { | |
393 | /* | |
394 | * Its a member of a cycle, look at all parents from outside | |
395 | * the cycle. | |
396 | */ | |
b34976b6 | 397 | head->cg.print_flag = FALSE; |
252b5132 RH |
398 | head->cg.prop.fract = 0.0; |
399 | for (member = head->cg.cyc.next; member; member = member->cg.cyc.next) | |
400 | { | |
401 | for (arc = member->cg.parents; arc; arc = arc->next_parent) | |
402 | { | |
403 | if (arc->parent->cg.cyc.head == head) | |
404 | { | |
405 | continue; | |
406 | } | |
407 | parent = arc->parent; | |
408 | head->cg.print_flag |= parent->cg.print_flag; | |
409 | /* | |
410 | * If the cycle was never actually called (e.g. this | |
411 | * arc is static (and all others are, too)) no time | |
412 | * propagates along this arc. | |
413 | */ | |
414 | if (head->ncalls != 0) | |
415 | { | |
416 | head->cg.prop.fract += parent->cg.prop.fract | |
417 | * (((double) arc->count) / ((double) head->ncalls)); | |
418 | } | |
419 | } | |
420 | } | |
421 | for (member = head; member; member = member->cg.cyc.next) | |
422 | { | |
423 | member->cg.print_flag = head->cg.print_flag; | |
424 | member->cg.prop.fract = head->cg.prop.fract; | |
425 | } | |
426 | } | |
427 | } | |
428 | ||
429 | ||
430 | /* | |
431 | * In one top-to-bottom pass over the topologically sorted symbols | |
432 | * propagate: | |
433 | * cg.print_flag as the union of parents' print_flags | |
434 | * propfraction as the sum of fractional parents' propfractions | |
435 | * and while we're here, sum time for functions. | |
436 | */ | |
437 | static void | |
3e8f6abf | 438 | propagate_flags (Sym **symbols) |
252b5132 RH |
439 | { |
440 | int index; | |
441 | Sym *old_head, *child; | |
442 | ||
443 | old_head = 0; | |
444 | for (index = symtab.len - 1; index >= 0; --index) | |
445 | { | |
446 | child = symbols[index]; | |
447 | /* | |
448 | * If we haven't done this function or cycle, inherit things | |
449 | * from parent. This way, we are linear in the number of arcs | |
450 | * since we do all members of a cycle (and the cycle itself) | |
451 | * as we hit the first member of the cycle. | |
452 | */ | |
453 | if (child->cg.cyc.head != old_head) | |
454 | { | |
455 | old_head = child->cg.cyc.head; | |
456 | inherit_flags (child); | |
457 | } | |
458 | DBG (PROPDEBUG, | |
459 | printf ("[prop_flags] "); | |
460 | print_name (child); | |
461 | printf ("inherits print-flag %d and prop-fract %f\n", | |
462 | child->cg.print_flag, child->cg.prop.fract)); | |
463 | if (!child->cg.print_flag) | |
464 | { | |
465 | /* | |
466 | * Printflag is off. It gets turned on by being in the | |
467 | * INCL_GRAPH table, or there being an empty INCL_GRAPH | |
468 | * table and not being in the EXCL_GRAPH table. | |
469 | */ | |
470 | if (sym_lookup (&syms[INCL_GRAPH], child->addr) | |
471 | || (syms[INCL_GRAPH].len == 0 | |
472 | && !sym_lookup (&syms[EXCL_GRAPH], child->addr))) | |
473 | { | |
b34976b6 | 474 | child->cg.print_flag = TRUE; |
252b5132 RH |
475 | } |
476 | } | |
477 | else | |
478 | { | |
479 | /* | |
480 | * This function has printing parents: maybe someone wants | |
481 | * to shut it up by putting it in the EXCL_GRAPH table. | |
482 | * (But favor INCL_GRAPH over EXCL_GRAPH.) | |
483 | */ | |
484 | if (!sym_lookup (&syms[INCL_GRAPH], child->addr) | |
485 | && sym_lookup (&syms[EXCL_GRAPH], child->addr)) | |
486 | { | |
b34976b6 | 487 | child->cg.print_flag = FALSE; |
252b5132 RH |
488 | } |
489 | } | |
490 | if (child->cg.prop.fract == 0.0) | |
491 | { | |
492 | /* | |
493 | * No parents to pass time to. Collect time from children | |
494 | * if its in the INCL_TIME table, or there is an empty | |
495 | * INCL_TIME table and its not in the EXCL_TIME table. | |
496 | */ | |
497 | if (sym_lookup (&syms[INCL_TIME], child->addr) | |
498 | || (syms[INCL_TIME].len == 0 | |
499 | && !sym_lookup (&syms[EXCL_TIME], child->addr))) | |
500 | { | |
501 | child->cg.prop.fract = 1.0; | |
502 | } | |
503 | } | |
504 | else | |
505 | { | |
506 | /* | |
507 | * It has parents to pass time to, but maybe someone wants | |
508 | * to shut it up by puttting it in the EXCL_TIME table. | |
509 | * (But favor being in INCL_TIME tabe over being in | |
510 | * EXCL_TIME table.) | |
511 | */ | |
512 | if (!sym_lookup (&syms[INCL_TIME], child->addr) | |
513 | && sym_lookup (&syms[EXCL_TIME], child->addr)) | |
514 | { | |
515 | child->cg.prop.fract = 0.0; | |
516 | } | |
517 | } | |
518 | child->cg.prop.self = child->hist.time * child->cg.prop.fract; | |
519 | print_time += child->cg.prop.self; | |
520 | DBG (PROPDEBUG, | |
521 | printf ("[prop_flags] "); | |
522 | print_name (child); | |
523 | printf (" ends up with printflag %d and prop-fract %f\n", | |
524 | child->cg.print_flag, child->cg.prop.fract); | |
525 | printf ("[prop_flags] time %f propself %f print_time %f\n", | |
526 | child->hist.time, child->cg.prop.self, print_time)); | |
527 | } | |
528 | } | |
529 | ||
530 | ||
531 | /* | |
532 | * Compare by decreasing propagated time. If times are equal, but one | |
533 | * is a cycle header, say that's first (e.g. less, i.e. -1). If one's | |
534 | * name doesn't have an underscore and the other does, say that one is | |
535 | * first. All else being equal, compare by names. | |
536 | */ | |
537 | static int | |
3e8f6abf | 538 | cmp_total (const PTR lp, const PTR rp) |
252b5132 RH |
539 | { |
540 | const Sym *left = *(const Sym **) lp; | |
541 | const Sym *right = *(const Sym **) rp; | |
542 | double diff; | |
543 | ||
544 | diff = (left->cg.prop.self + left->cg.prop.child) | |
545 | - (right->cg.prop.self + right->cg.prop.child); | |
546 | if (diff < 0.0) | |
547 | { | |
548 | return 1; | |
549 | } | |
550 | if (diff > 0.0) | |
551 | { | |
552 | return -1; | |
553 | } | |
554 | if (!left->name && left->cg.cyc.num != 0) | |
555 | { | |
556 | return -1; | |
557 | } | |
558 | if (!right->name && right->cg.cyc.num != 0) | |
559 | { | |
560 | return 1; | |
561 | } | |
562 | if (!left->name) | |
563 | { | |
564 | return -1; | |
565 | } | |
566 | if (!right->name) | |
567 | { | |
568 | return 1; | |
569 | } | |
570 | if (left->name[0] != '_' && right->name[0] == '_') | |
571 | { | |
572 | return -1; | |
573 | } | |
574 | if (left->name[0] == '_' && right->name[0] != '_') | |
575 | { | |
576 | return 1; | |
577 | } | |
578 | if (left->ncalls > right->ncalls) | |
579 | { | |
580 | return -1; | |
581 | } | |
582 | if (left->ncalls < right->ncalls) | |
583 | { | |
584 | return 1; | |
585 | } | |
586 | return strcmp (left->name, right->name); | |
587 | } | |
588 | ||
589 | ||
590 | /* | |
591 | * Topologically sort the graph (collapsing cycles), and propagates | |
592 | * time bottom up and flags top down. | |
593 | */ | |
594 | Sym ** | |
1355568a | 595 | cg_assemble () |
252b5132 RH |
596 | { |
597 | Sym *parent, **time_sorted_syms, **top_sorted_syms; | |
598 | unsigned int index; | |
599 | Arc *arc; | |
600 | ||
601 | /* | |
602 | * initialize various things: | |
603 | * zero out child times. | |
604 | * count self-recursive calls. | |
605 | * indicate that nothing is on cycles. | |
606 | */ | |
607 | for (parent = symtab.base; parent < symtab.limit; parent++) | |
608 | { | |
609 | parent->cg.child_time = 0.0; | |
610 | arc = arc_lookup (parent, parent); | |
611 | if (arc && parent == arc->child) | |
612 | { | |
613 | parent->ncalls -= arc->count; | |
614 | parent->cg.self_calls = arc->count; | |
615 | } | |
616 | else | |
617 | { | |
618 | parent->cg.self_calls = 0; | |
619 | } | |
620 | parent->cg.prop.fract = 0.0; | |
621 | parent->cg.prop.self = 0.0; | |
622 | parent->cg.prop.child = 0.0; | |
b34976b6 | 623 | parent->cg.print_flag = FALSE; |
252b5132 RH |
624 | parent->cg.top_order = DFN_NAN; |
625 | parent->cg.cyc.num = 0; | |
626 | parent->cg.cyc.head = parent; | |
627 | parent->cg.cyc.next = 0; | |
628 | if (ignore_direct_calls) | |
629 | { | |
630 | find_call (parent, parent->addr, (parent + 1)->addr); | |
631 | } | |
632 | } | |
633 | /* | |
634 | * Topologically order things. If any node is unnumbered, number | |
635 | * it and any of its descendents. | |
636 | */ | |
637 | for (parent = symtab.base; parent < symtab.limit; parent++) | |
638 | { | |
639 | if (parent->cg.top_order == DFN_NAN) | |
640 | { | |
641 | cg_dfn (parent); | |
642 | } | |
643 | } | |
644 | ||
645 | /* link together nodes on the same cycle: */ | |
646 | cycle_link (); | |
647 | ||
648 | /* sort the symbol table in reverse topological order: */ | |
649 | top_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *)); | |
650 | for (index = 0; index < symtab.len; ++index) | |
651 | { | |
652 | top_sorted_syms[index] = &symtab.base[index]; | |
653 | } | |
654 | qsort (top_sorted_syms, symtab.len, sizeof (Sym *), cmp_topo); | |
655 | DBG (DFNDEBUG, | |
656 | printf ("[cg_assemble] topological sort listing\n"); | |
657 | for (index = 0; index < symtab.len; ++index) | |
658 | { | |
659 | printf ("[cg_assemble] "); | |
660 | printf ("%d:", top_sorted_syms[index]->cg.top_order); | |
661 | print_name (top_sorted_syms[index]); | |
662 | printf ("\n"); | |
663 | } | |
664 | ); | |
665 | /* | |
666 | * Starting from the topological top, propagate print flags to | |
667 | * children. also, calculate propagation fractions. this happens | |
668 | * before time propagation since time propagation uses the | |
669 | * fractions. | |
670 | */ | |
671 | propagate_flags (top_sorted_syms); | |
672 | ||
673 | /* | |
674 | * Starting from the topological bottom, propogate children times | |
675 | * up to parents. | |
676 | */ | |
677 | cycle_time (); | |
678 | for (index = 0; index < symtab.len; ++index) | |
679 | { | |
680 | propagate_time (top_sorted_syms[index]); | |
681 | } | |
682 | ||
683 | free (top_sorted_syms); | |
684 | ||
685 | /* | |
686 | * Now, sort by CG.PROP.SELF + CG.PROP.CHILD. Sorting both the regular | |
687 | * function names and cycle headers. | |
688 | */ | |
689 | time_sorted_syms = (Sym **) xmalloc ((symtab.len + num_cycles) * sizeof (Sym *)); | |
690 | for (index = 0; index < symtab.len; index++) | |
691 | { | |
692 | time_sorted_syms[index] = &symtab.base[index]; | |
693 | } | |
694 | for (index = 1; index <= num_cycles; index++) | |
695 | { | |
696 | time_sorted_syms[symtab.len + index - 1] = &cycle_header[index]; | |
697 | } | |
698 | qsort (time_sorted_syms, symtab.len + num_cycles, sizeof (Sym *), | |
699 | cmp_total); | |
700 | for (index = 0; index < symtab.len + num_cycles; index++) | |
701 | { | |
702 | time_sorted_syms[index]->cg.index = index + 1; | |
703 | } | |
704 | return time_sorted_syms; | |
705 | } |