Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* |
5ec4a8f3 NC |
2 | * Copyright (c) 1983, 1993, 2001 |
3 | * The Regents of the University of California. All rights reserved. | |
252b5132 | 4 | * |
5ec4a8f3 NC |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions | |
7 | * are met: | |
8 | * 1. Redistributions of source code must retain the above copyright | |
9 | * notice, this list of conditions and the following disclaimer. | |
10 | * 2. Redistributions in binary form must reproduce the above copyright | |
11 | * notice, this list of conditions and the following disclaimer in the | |
12 | * documentation and/or other materials provided with the distribution. | |
13 | * 3. Neither the name of the University nor the names of its contributors | |
14 | * may be used to endorse or promote products derived from this software | |
15 | * without specific prior written permission. | |
16 | * | |
17 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
18 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
19 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
20 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
21 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
22 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
23 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
24 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
25 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
26 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
27 | * SUCH DAMAGE. | |
252b5132 RH |
28 | */ |
29 | #include "libiberty.h" | |
30 | #include "gprof.h" | |
6d9c411a AM |
31 | #include "search_list.h" |
32 | #include "source.h" | |
33 | #include "symtab.h" | |
252b5132 RH |
34 | #include "call_graph.h" |
35 | #include "cg_arcs.h" | |
36 | #include "cg_dfn.h" | |
37 | #include "cg_print.h" | |
38 | #include "utils.h" | |
39 | #include "sym_ids.h" | |
40 | ||
1355568a AM |
41 | static int cmp_topo PARAMS ((const PTR, const PTR)); |
42 | static void propagate_time PARAMS ((Sym *)); | |
43 | static void cycle_time PARAMS ((void)); | |
44 | static void cycle_link PARAMS ((void)); | |
45 | static void inherit_flags PARAMS ((Sym *)); | |
46 | static void propagate_flags PARAMS ((Sym **)); | |
47 | static int cmp_total PARAMS ((const PTR, const PTR)); | |
48 | ||
252b5132 RH |
49 | Sym *cycle_header; |
50 | unsigned int num_cycles; | |
51 | Arc **arcs; | |
52 | unsigned int numarcs; | |
53 | ||
54 | /* | |
55 | * Return TRUE iff PARENT has an arc to covers the address | |
56 | * range covered by CHILD. | |
57 | */ | |
58 | Arc * | |
1355568a AM |
59 | arc_lookup (parent, child) |
60 | Sym *parent; | |
61 | Sym *child; | |
252b5132 RH |
62 | { |
63 | Arc *arc; | |
64 | ||
65 | if (!parent || !child) | |
66 | { | |
67 | printf ("[arc_lookup] parent == 0 || child == 0\n"); | |
68 | return 0; | |
69 | } | |
70 | DBG (LOOKUPDEBUG, printf ("[arc_lookup] parent %s child %s\n", | |
71 | parent->name, child->name)); | |
72 | for (arc = parent->cg.children; arc; arc = arc->next_child) | |
73 | { | |
74 | DBG (LOOKUPDEBUG, printf ("[arc_lookup]\t parent %s child %s\n", | |
75 | arc->parent->name, arc->child->name)); | |
76 | if (child->addr >= arc->child->addr | |
77 | && child->end_addr <= arc->child->end_addr) | |
78 | { | |
79 | return arc; | |
80 | } | |
81 | } | |
82 | return 0; | |
83 | } | |
84 | ||
85 | ||
86 | /* | |
87 | * Add (or just increment) an arc: | |
88 | */ | |
89 | void | |
1355568a AM |
90 | arc_add (parent, child, count) |
91 | Sym *parent; | |
92 | Sym *child; | |
93 | unsigned long count; | |
252b5132 RH |
94 | { |
95 | static unsigned int maxarcs = 0; | |
96 | Arc *arc, **newarcs; | |
97 | ||
98 | DBG (TALLYDEBUG, printf ("[arc_add] %lu arcs from %s to %s\n", | |
99 | count, parent->name, child->name)); | |
100 | arc = arc_lookup (parent, child); | |
101 | if (arc) | |
102 | { | |
103 | /* | |
104 | * A hit: just increment the count. | |
105 | */ | |
106 | DBG (TALLYDEBUG, printf ("[tally] hit %lu += %lu\n", | |
107 | arc->count, count)); | |
108 | arc->count += count; | |
109 | return; | |
110 | } | |
111 | arc = (Arc *) xmalloc (sizeof (*arc)); | |
112 | memset (arc, 0, sizeof (*arc)); | |
113 | arc->parent = parent; | |
114 | arc->child = child; | |
115 | arc->count = count; | |
116 | ||
117 | /* If this isn't an arc for a recursive call to parent, then add it | |
118 | to the array of arcs. */ | |
119 | if (parent != child) | |
120 | { | |
121 | /* If we've exhausted space in our current array, get a new one | |
122 | and copy the contents. We might want to throttle the doubling | |
123 | factor one day. */ | |
124 | if (numarcs == maxarcs) | |
125 | { | |
126 | /* Determine how much space we want to allocate. */ | |
127 | if (maxarcs == 0) | |
128 | maxarcs = 1; | |
129 | maxarcs *= 2; | |
0eee5820 | 130 | |
252b5132 RH |
131 | /* Allocate the new array. */ |
132 | newarcs = (Arc **)xmalloc(sizeof (Arc *) * maxarcs); | |
133 | ||
134 | /* Copy the old array's contents into the new array. */ | |
135 | memcpy (newarcs, arcs, numarcs * sizeof (Arc *)); | |
136 | ||
137 | /* Free up the old array. */ | |
138 | free (arcs); | |
139 | ||
140 | /* And make the new array be the current array. */ | |
141 | arcs = newarcs; | |
142 | } | |
143 | ||
144 | /* Place this arc in the arc array. */ | |
145 | arcs[numarcs++] = arc; | |
146 | } | |
147 | ||
148 | /* prepend this child to the children of this parent: */ | |
149 | arc->next_child = parent->cg.children; | |
150 | parent->cg.children = arc; | |
151 | ||
152 | /* prepend this parent to the parents of this child: */ | |
153 | arc->next_parent = child->cg.parents; | |
154 | child->cg.parents = arc; | |
155 | } | |
156 | ||
157 | ||
158 | static int | |
1355568a AM |
159 | cmp_topo (lp, rp) |
160 | const PTR lp; | |
161 | const PTR rp; | |
252b5132 RH |
162 | { |
163 | const Sym *left = *(const Sym **) lp; | |
164 | const Sym *right = *(const Sym **) rp; | |
165 | ||
166 | return left->cg.top_order - right->cg.top_order; | |
167 | } | |
168 | ||
169 | ||
170 | static void | |
1355568a AM |
171 | propagate_time (parent) |
172 | Sym *parent; | |
252b5132 RH |
173 | { |
174 | Arc *arc; | |
175 | Sym *child; | |
176 | double share, prop_share; | |
177 | ||
178 | if (parent->cg.prop.fract == 0.0) | |
179 | { | |
180 | return; | |
181 | } | |
182 | ||
183 | /* gather time from children of this parent: */ | |
184 | ||
185 | for (arc = parent->cg.children; arc; arc = arc->next_child) | |
186 | { | |
187 | child = arc->child; | |
188 | if (arc->count == 0 || child == parent || child->cg.prop.fract == 0) | |
189 | { | |
190 | continue; | |
191 | } | |
192 | if (child->cg.cyc.head != child) | |
193 | { | |
194 | if (parent->cg.cyc.num == child->cg.cyc.num) | |
195 | { | |
196 | continue; | |
197 | } | |
198 | if (parent->cg.top_order <= child->cg.top_order) | |
199 | { | |
200 | fprintf (stderr, "[propagate] toporder botches\n"); | |
201 | } | |
202 | child = child->cg.cyc.head; | |
203 | } | |
204 | else | |
205 | { | |
206 | if (parent->cg.top_order <= child->cg.top_order) | |
207 | { | |
208 | fprintf (stderr, "[propagate] toporder botches\n"); | |
209 | continue; | |
210 | } | |
211 | } | |
212 | if (child->ncalls == 0) | |
213 | { | |
214 | continue; | |
215 | } | |
216 | ||
217 | /* distribute time for this arc: */ | |
218 | arc->time = child->hist.time * (((double) arc->count) | |
219 | / ((double) child->ncalls)); | |
220 | arc->child_time = child->cg.child_time | |
221 | * (((double) arc->count) / ((double) child->ncalls)); | |
222 | share = arc->time + arc->child_time; | |
223 | parent->cg.child_time += share; | |
224 | ||
225 | /* (1 - cg.prop.fract) gets lost along the way: */ | |
226 | prop_share = parent->cg.prop.fract * share; | |
227 | ||
228 | /* fix things for printing: */ | |
229 | parent->cg.prop.child += prop_share; | |
230 | arc->time *= parent->cg.prop.fract; | |
231 | arc->child_time *= parent->cg.prop.fract; | |
232 | ||
233 | /* add this share to the parent's cycle header, if any: */ | |
234 | if (parent->cg.cyc.head != parent) | |
235 | { | |
236 | parent->cg.cyc.head->cg.child_time += share; | |
237 | parent->cg.cyc.head->cg.prop.child += prop_share; | |
238 | } | |
239 | DBG (PROPDEBUG, | |
240 | printf ("[prop_time] child \t"); | |
241 | print_name (child); | |
242 | printf (" with %f %f %lu/%lu\n", child->hist.time, | |
243 | child->cg.child_time, arc->count, child->ncalls); | |
244 | printf ("[prop_time] parent\t"); | |
245 | print_name (parent); | |
246 | printf ("\n[prop_time] share %f\n", share)); | |
247 | } | |
248 | } | |
249 | ||
250 | ||
251 | /* | |
252 | * Compute the time of a cycle as the sum of the times of all | |
253 | * its members. | |
254 | */ | |
255 | static void | |
1355568a | 256 | cycle_time () |
252b5132 RH |
257 | { |
258 | Sym *member, *cyc; | |
259 | ||
260 | for (cyc = &cycle_header[1]; cyc <= &cycle_header[num_cycles]; ++cyc) | |
261 | { | |
262 | for (member = cyc->cg.cyc.next; member; member = member->cg.cyc.next) | |
263 | { | |
264 | if (member->cg.prop.fract == 0.0) | |
265 | { | |
266 | /* | |
267 | * All members have the same propfraction except those | |
268 | * that were excluded with -E. | |
269 | */ | |
270 | continue; | |
271 | } | |
272 | cyc->hist.time += member->hist.time; | |
273 | } | |
274 | cyc->cg.prop.self = cyc->cg.prop.fract * cyc->hist.time; | |
275 | } | |
276 | } | |
277 | ||
278 | ||
279 | static void | |
1355568a | 280 | cycle_link () |
252b5132 RH |
281 | { |
282 | Sym *sym, *cyc, *member; | |
283 | Arc *arc; | |
284 | int num; | |
285 | ||
286 | /* count the number of cycles, and initialize the cycle lists: */ | |
287 | ||
288 | num_cycles = 0; | |
289 | for (sym = symtab.base; sym < symtab.limit; ++sym) | |
290 | { | |
291 | /* this is how you find unattached cycles: */ | |
292 | if (sym->cg.cyc.head == sym && sym->cg.cyc.next) | |
293 | { | |
294 | ++num_cycles; | |
295 | } | |
296 | } | |
297 | ||
298 | /* | |
299 | * cycle_header is indexed by cycle number: i.e. it is origin 1, | |
300 | * not origin 0. | |
301 | */ | |
302 | cycle_header = (Sym *) xmalloc ((num_cycles + 1) * sizeof (Sym)); | |
303 | ||
304 | /* | |
305 | * Now link cycles to true cycle-heads, number them, accumulate | |
306 | * the data for the cycle. | |
307 | */ | |
308 | num = 0; | |
309 | cyc = cycle_header; | |
310 | for (sym = symtab.base; sym < symtab.limit; ++sym) | |
311 | { | |
312 | if (!(sym->cg.cyc.head == sym && sym->cg.cyc.next != 0)) | |
313 | { | |
314 | continue; | |
315 | } | |
316 | ++num; | |
317 | ++cyc; | |
318 | sym_init (cyc); | |
b34976b6 | 319 | cyc->cg.print_flag = TRUE; /* should this be printed? */ |
252b5132 RH |
320 | cyc->cg.top_order = DFN_NAN; /* graph call chain top-sort order */ |
321 | cyc->cg.cyc.num = num; /* internal number of cycle on */ | |
322 | cyc->cg.cyc.head = cyc; /* pointer to head of cycle */ | |
323 | cyc->cg.cyc.next = sym; /* pointer to next member of cycle */ | |
324 | DBG (CYCLEDEBUG, printf ("[cycle_link] "); | |
325 | print_name (sym); | |
326 | printf (" is the head of cycle %d\n", num)); | |
327 | ||
328 | /* link members to cycle header: */ | |
329 | for (member = sym; member; member = member->cg.cyc.next) | |
330 | { | |
331 | member->cg.cyc.num = num; | |
332 | member->cg.cyc.head = cyc; | |
333 | } | |
334 | ||
335 | /* | |
336 | * Count calls from outside the cycle and those among cycle | |
337 | * members: | |
338 | */ | |
339 | for (member = sym; member; member = member->cg.cyc.next) | |
340 | { | |
341 | for (arc = member->cg.parents; arc; arc = arc->next_parent) | |
342 | { | |
343 | if (arc->parent == member) | |
344 | { | |
345 | continue; | |
346 | } | |
347 | if (arc->parent->cg.cyc.num == num) | |
348 | { | |
349 | cyc->cg.self_calls += arc->count; | |
350 | } | |
351 | else | |
352 | { | |
353 | cyc->ncalls += arc->count; | |
354 | } | |
355 | } | |
356 | } | |
357 | } | |
358 | } | |
359 | ||
360 | ||
361 | /* | |
362 | * Check if any parent of this child (or outside parents of this | |
363 | * cycle) have their print flags on and set the print flag of the | |
364 | * child (cycle) appropriately. Similarly, deal with propagation | |
365 | * fractions from parents. | |
366 | */ | |
367 | static void | |
1355568a AM |
368 | inherit_flags (child) |
369 | Sym *child; | |
252b5132 RH |
370 | { |
371 | Sym *head, *parent, *member; | |
372 | Arc *arc; | |
373 | ||
374 | head = child->cg.cyc.head; | |
375 | if (child == head) | |
376 | { | |
377 | /* just a regular child, check its parents: */ | |
b34976b6 | 378 | child->cg.print_flag = FALSE; |
252b5132 RH |
379 | child->cg.prop.fract = 0.0; |
380 | for (arc = child->cg.parents; arc; arc = arc->next_parent) | |
381 | { | |
382 | parent = arc->parent; | |
383 | if (child == parent) | |
384 | { | |
385 | continue; | |
386 | } | |
387 | child->cg.print_flag |= parent->cg.print_flag; | |
388 | /* | |
389 | * If the child was never actually called (e.g., this arc | |
390 | * is static (and all others are, too)) no time propagates | |
391 | * along this arc. | |
392 | */ | |
393 | if (child->ncalls != 0) | |
394 | { | |
395 | child->cg.prop.fract += parent->cg.prop.fract | |
396 | * (((double) arc->count) / ((double) child->ncalls)); | |
397 | } | |
398 | } | |
399 | } | |
400 | else | |
401 | { | |
402 | /* | |
403 | * Its a member of a cycle, look at all parents from outside | |
404 | * the cycle. | |
405 | */ | |
b34976b6 | 406 | head->cg.print_flag = FALSE; |
252b5132 RH |
407 | head->cg.prop.fract = 0.0; |
408 | for (member = head->cg.cyc.next; member; member = member->cg.cyc.next) | |
409 | { | |
410 | for (arc = member->cg.parents; arc; arc = arc->next_parent) | |
411 | { | |
412 | if (arc->parent->cg.cyc.head == head) | |
413 | { | |
414 | continue; | |
415 | } | |
416 | parent = arc->parent; | |
417 | head->cg.print_flag |= parent->cg.print_flag; | |
418 | /* | |
419 | * If the cycle was never actually called (e.g. this | |
420 | * arc is static (and all others are, too)) no time | |
421 | * propagates along this arc. | |
422 | */ | |
423 | if (head->ncalls != 0) | |
424 | { | |
425 | head->cg.prop.fract += parent->cg.prop.fract | |
426 | * (((double) arc->count) / ((double) head->ncalls)); | |
427 | } | |
428 | } | |
429 | } | |
430 | for (member = head; member; member = member->cg.cyc.next) | |
431 | { | |
432 | member->cg.print_flag = head->cg.print_flag; | |
433 | member->cg.prop.fract = head->cg.prop.fract; | |
434 | } | |
435 | } | |
436 | } | |
437 | ||
438 | ||
439 | /* | |
440 | * In one top-to-bottom pass over the topologically sorted symbols | |
441 | * propagate: | |
442 | * cg.print_flag as the union of parents' print_flags | |
443 | * propfraction as the sum of fractional parents' propfractions | |
444 | * and while we're here, sum time for functions. | |
445 | */ | |
446 | static void | |
1355568a AM |
447 | propagate_flags (symbols) |
448 | Sym **symbols; | |
252b5132 RH |
449 | { |
450 | int index; | |
451 | Sym *old_head, *child; | |
452 | ||
453 | old_head = 0; | |
454 | for (index = symtab.len - 1; index >= 0; --index) | |
455 | { | |
456 | child = symbols[index]; | |
457 | /* | |
458 | * If we haven't done this function or cycle, inherit things | |
459 | * from parent. This way, we are linear in the number of arcs | |
460 | * since we do all members of a cycle (and the cycle itself) | |
461 | * as we hit the first member of the cycle. | |
462 | */ | |
463 | if (child->cg.cyc.head != old_head) | |
464 | { | |
465 | old_head = child->cg.cyc.head; | |
466 | inherit_flags (child); | |
467 | } | |
468 | DBG (PROPDEBUG, | |
469 | printf ("[prop_flags] "); | |
470 | print_name (child); | |
471 | printf ("inherits print-flag %d and prop-fract %f\n", | |
472 | child->cg.print_flag, child->cg.prop.fract)); | |
473 | if (!child->cg.print_flag) | |
474 | { | |
475 | /* | |
476 | * Printflag is off. It gets turned on by being in the | |
477 | * INCL_GRAPH table, or there being an empty INCL_GRAPH | |
478 | * table and not being in the EXCL_GRAPH table. | |
479 | */ | |
480 | if (sym_lookup (&syms[INCL_GRAPH], child->addr) | |
481 | || (syms[INCL_GRAPH].len == 0 | |
482 | && !sym_lookup (&syms[EXCL_GRAPH], child->addr))) | |
483 | { | |
b34976b6 | 484 | child->cg.print_flag = TRUE; |
252b5132 RH |
485 | } |
486 | } | |
487 | else | |
488 | { | |
489 | /* | |
490 | * This function has printing parents: maybe someone wants | |
491 | * to shut it up by putting it in the EXCL_GRAPH table. | |
492 | * (But favor INCL_GRAPH over EXCL_GRAPH.) | |
493 | */ | |
494 | if (!sym_lookup (&syms[INCL_GRAPH], child->addr) | |
495 | && sym_lookup (&syms[EXCL_GRAPH], child->addr)) | |
496 | { | |
b34976b6 | 497 | child->cg.print_flag = FALSE; |
252b5132 RH |
498 | } |
499 | } | |
500 | if (child->cg.prop.fract == 0.0) | |
501 | { | |
502 | /* | |
503 | * No parents to pass time to. Collect time from children | |
504 | * if its in the INCL_TIME table, or there is an empty | |
505 | * INCL_TIME table and its not in the EXCL_TIME table. | |
506 | */ | |
507 | if (sym_lookup (&syms[INCL_TIME], child->addr) | |
508 | || (syms[INCL_TIME].len == 0 | |
509 | && !sym_lookup (&syms[EXCL_TIME], child->addr))) | |
510 | { | |
511 | child->cg.prop.fract = 1.0; | |
512 | } | |
513 | } | |
514 | else | |
515 | { | |
516 | /* | |
517 | * It has parents to pass time to, but maybe someone wants | |
518 | * to shut it up by puttting it in the EXCL_TIME table. | |
519 | * (But favor being in INCL_TIME tabe over being in | |
520 | * EXCL_TIME table.) | |
521 | */ | |
522 | if (!sym_lookup (&syms[INCL_TIME], child->addr) | |
523 | && sym_lookup (&syms[EXCL_TIME], child->addr)) | |
524 | { | |
525 | child->cg.prop.fract = 0.0; | |
526 | } | |
527 | } | |
528 | child->cg.prop.self = child->hist.time * child->cg.prop.fract; | |
529 | print_time += child->cg.prop.self; | |
530 | DBG (PROPDEBUG, | |
531 | printf ("[prop_flags] "); | |
532 | print_name (child); | |
533 | printf (" ends up with printflag %d and prop-fract %f\n", | |
534 | child->cg.print_flag, child->cg.prop.fract); | |
535 | printf ("[prop_flags] time %f propself %f print_time %f\n", | |
536 | child->hist.time, child->cg.prop.self, print_time)); | |
537 | } | |
538 | } | |
539 | ||
540 | ||
541 | /* | |
542 | * Compare by decreasing propagated time. If times are equal, but one | |
543 | * is a cycle header, say that's first (e.g. less, i.e. -1). If one's | |
544 | * name doesn't have an underscore and the other does, say that one is | |
545 | * first. All else being equal, compare by names. | |
546 | */ | |
547 | static int | |
1355568a AM |
548 | cmp_total (lp, rp) |
549 | const PTR lp; | |
550 | const PTR rp; | |
252b5132 RH |
551 | { |
552 | const Sym *left = *(const Sym **) lp; | |
553 | const Sym *right = *(const Sym **) rp; | |
554 | double diff; | |
555 | ||
556 | diff = (left->cg.prop.self + left->cg.prop.child) | |
557 | - (right->cg.prop.self + right->cg.prop.child); | |
558 | if (diff < 0.0) | |
559 | { | |
560 | return 1; | |
561 | } | |
562 | if (diff > 0.0) | |
563 | { | |
564 | return -1; | |
565 | } | |
566 | if (!left->name && left->cg.cyc.num != 0) | |
567 | { | |
568 | return -1; | |
569 | } | |
570 | if (!right->name && right->cg.cyc.num != 0) | |
571 | { | |
572 | return 1; | |
573 | } | |
574 | if (!left->name) | |
575 | { | |
576 | return -1; | |
577 | } | |
578 | if (!right->name) | |
579 | { | |
580 | return 1; | |
581 | } | |
582 | if (left->name[0] != '_' && right->name[0] == '_') | |
583 | { | |
584 | return -1; | |
585 | } | |
586 | if (left->name[0] == '_' && right->name[0] != '_') | |
587 | { | |
588 | return 1; | |
589 | } | |
590 | if (left->ncalls > right->ncalls) | |
591 | { | |
592 | return -1; | |
593 | } | |
594 | if (left->ncalls < right->ncalls) | |
595 | { | |
596 | return 1; | |
597 | } | |
598 | return strcmp (left->name, right->name); | |
599 | } | |
600 | ||
601 | ||
602 | /* | |
603 | * Topologically sort the graph (collapsing cycles), and propagates | |
604 | * time bottom up and flags top down. | |
605 | */ | |
606 | Sym ** | |
1355568a | 607 | cg_assemble () |
252b5132 RH |
608 | { |
609 | Sym *parent, **time_sorted_syms, **top_sorted_syms; | |
610 | unsigned int index; | |
611 | Arc *arc; | |
612 | ||
613 | /* | |
614 | * initialize various things: | |
615 | * zero out child times. | |
616 | * count self-recursive calls. | |
617 | * indicate that nothing is on cycles. | |
618 | */ | |
619 | for (parent = symtab.base; parent < symtab.limit; parent++) | |
620 | { | |
621 | parent->cg.child_time = 0.0; | |
622 | arc = arc_lookup (parent, parent); | |
623 | if (arc && parent == arc->child) | |
624 | { | |
625 | parent->ncalls -= arc->count; | |
626 | parent->cg.self_calls = arc->count; | |
627 | } | |
628 | else | |
629 | { | |
630 | parent->cg.self_calls = 0; | |
631 | } | |
632 | parent->cg.prop.fract = 0.0; | |
633 | parent->cg.prop.self = 0.0; | |
634 | parent->cg.prop.child = 0.0; | |
b34976b6 | 635 | parent->cg.print_flag = FALSE; |
252b5132 RH |
636 | parent->cg.top_order = DFN_NAN; |
637 | parent->cg.cyc.num = 0; | |
638 | parent->cg.cyc.head = parent; | |
639 | parent->cg.cyc.next = 0; | |
640 | if (ignore_direct_calls) | |
641 | { | |
642 | find_call (parent, parent->addr, (parent + 1)->addr); | |
643 | } | |
644 | } | |
645 | /* | |
646 | * Topologically order things. If any node is unnumbered, number | |
647 | * it and any of its descendents. | |
648 | */ | |
649 | for (parent = symtab.base; parent < symtab.limit; parent++) | |
650 | { | |
651 | if (parent->cg.top_order == DFN_NAN) | |
652 | { | |
653 | cg_dfn (parent); | |
654 | } | |
655 | } | |
656 | ||
657 | /* link together nodes on the same cycle: */ | |
658 | cycle_link (); | |
659 | ||
660 | /* sort the symbol table in reverse topological order: */ | |
661 | top_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *)); | |
662 | for (index = 0; index < symtab.len; ++index) | |
663 | { | |
664 | top_sorted_syms[index] = &symtab.base[index]; | |
665 | } | |
666 | qsort (top_sorted_syms, symtab.len, sizeof (Sym *), cmp_topo); | |
667 | DBG (DFNDEBUG, | |
668 | printf ("[cg_assemble] topological sort listing\n"); | |
669 | for (index = 0; index < symtab.len; ++index) | |
670 | { | |
671 | printf ("[cg_assemble] "); | |
672 | printf ("%d:", top_sorted_syms[index]->cg.top_order); | |
673 | print_name (top_sorted_syms[index]); | |
674 | printf ("\n"); | |
675 | } | |
676 | ); | |
677 | /* | |
678 | * Starting from the topological top, propagate print flags to | |
679 | * children. also, calculate propagation fractions. this happens | |
680 | * before time propagation since time propagation uses the | |
681 | * fractions. | |
682 | */ | |
683 | propagate_flags (top_sorted_syms); | |
684 | ||
685 | /* | |
686 | * Starting from the topological bottom, propogate children times | |
687 | * up to parents. | |
688 | */ | |
689 | cycle_time (); | |
690 | for (index = 0; index < symtab.len; ++index) | |
691 | { | |
692 | propagate_time (top_sorted_syms[index]); | |
693 | } | |
694 | ||
695 | free (top_sorted_syms); | |
696 | ||
697 | /* | |
698 | * Now, sort by CG.PROP.SELF + CG.PROP.CHILD. Sorting both the regular | |
699 | * function names and cycle headers. | |
700 | */ | |
701 | time_sorted_syms = (Sym **) xmalloc ((symtab.len + num_cycles) * sizeof (Sym *)); | |
702 | for (index = 0; index < symtab.len; index++) | |
703 | { | |
704 | time_sorted_syms[index] = &symtab.base[index]; | |
705 | } | |
706 | for (index = 1; index <= num_cycles; index++) | |
707 | { | |
708 | time_sorted_syms[symtab.len + index - 1] = &cycle_header[index]; | |
709 | } | |
710 | qsort (time_sorted_syms, symtab.len + num_cycles, sizeof (Sym *), | |
711 | cmp_total); | |
712 | for (index = 0; index < symtab.len + num_cycles; index++) | |
713 | { | |
714 | time_sorted_syms[index]->cg.index = index + 1; | |
715 | } | |
716 | return time_sorted_syms; | |
717 | } |