drm: Replace fb_helper->atomic with mode_config->atomic_commit
[deliverable/linux.git] / include / asm-generic / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
f25748e3
DW
4#include <linux/pfn.h>
5
673eae82 6#ifndef __ASSEMBLY__
9535239f 7#ifdef CONFIG_MMU
673eae82 8
fbd71844 9#include <linux/mm_types.h>
187f1882 10#include <linux/bug.h>
e61ce6ad 11#include <linux/errno.h>
fbd71844 12
235a8f02
KS
13#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
14 CONFIG_PGTABLE_LEVELS
15#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
16#endif
17
6ee8630e
HD
18/*
19 * On almost all architectures and configurations, 0 can be used as the
20 * upper ceiling to free_pgtables(): on many architectures it has the same
21 * effect as using TASK_SIZE. However, there is one configuration which
22 * must impose a more careful limit, to avoid freeing kernel pgtables.
23 */
24#ifndef USER_PGTABLES_CEILING
25#define USER_PGTABLES_CEILING 0UL
26#endif
27
1da177e4 28#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
e2cda322
AA
29extern int ptep_set_access_flags(struct vm_area_struct *vma,
30 unsigned long address, pte_t *ptep,
31 pte_t entry, int dirty);
32#endif
33
34#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
bd5e88ad 35#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e2cda322
AA
36extern int pmdp_set_access_flags(struct vm_area_struct *vma,
37 unsigned long address, pmd_t *pmdp,
38 pmd_t entry, int dirty);
bd5e88ad
VG
39#else
40static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
41 unsigned long address, pmd_t *pmdp,
42 pmd_t entry, int dirty)
43{
44 BUILD_BUG();
45 return 0;
46}
47#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
48#endif
49
50#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
e2cda322
AA
51static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
52 unsigned long address,
53 pte_t *ptep)
54{
55 pte_t pte = *ptep;
56 int r = 1;
57 if (!pte_young(pte))
58 r = 0;
59 else
60 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
61 return r;
62}
63#endif
64
65#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
66#ifdef CONFIG_TRANSPARENT_HUGEPAGE
67static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
68 unsigned long address,
69 pmd_t *pmdp)
70{
71 pmd_t pmd = *pmdp;
72 int r = 1;
73 if (!pmd_young(pmd))
74 r = 0;
75 else
76 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
77 return r;
78}
bd5e88ad 79#else
e2cda322
AA
80static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
81 unsigned long address,
82 pmd_t *pmdp)
83{
bd5e88ad 84 BUILD_BUG();
e2cda322
AA
85 return 0;
86}
87#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
88#endif
89
90#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
e2cda322
AA
91int ptep_clear_flush_young(struct vm_area_struct *vma,
92 unsigned long address, pte_t *ptep);
93#endif
94
95#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
bd5e88ad
VG
96#ifdef CONFIG_TRANSPARENT_HUGEPAGE
97extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
98 unsigned long address, pmd_t *pmdp);
99#else
100/*
101 * Despite relevant to THP only, this API is called from generic rmap code
102 * under PageTransHuge(), hence needs a dummy implementation for !THP
103 */
104static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
105 unsigned long address, pmd_t *pmdp)
106{
107 BUILD_BUG();
108 return 0;
109}
110#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
111#endif
112
1da177e4 113#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
e2cda322
AA
114static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
115 unsigned long address,
116 pte_t *ptep)
117{
118 pte_t pte = *ptep;
119 pte_clear(mm, address, ptep);
120 return pte;
121}
122#endif
123
8809aa2d 124#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
e2cda322 125#ifdef CONFIG_TRANSPARENT_HUGEPAGE
8809aa2d
AK
126static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
127 unsigned long address,
128 pmd_t *pmdp)
e2cda322
AA
129{
130 pmd_t pmd = *pmdp;
2d28a227 131 pmd_clear(pmdp);
e2cda322 132 return pmd;
49b24d6b 133}
e2cda322 134#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
135#endif
136
8809aa2d 137#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
fcbe08d6 138#ifdef CONFIG_TRANSPARENT_HUGEPAGE
8809aa2d 139static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
fcbe08d6
MS
140 unsigned long address, pmd_t *pmdp,
141 int full)
142{
8809aa2d 143 return pmdp_huge_get_and_clear(mm, address, pmdp);
fcbe08d6
MS
144}
145#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
146#endif
147
a600388d 148#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
e2cda322
AA
149static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
150 unsigned long address, pte_t *ptep,
151 int full)
152{
153 pte_t pte;
154 pte = ptep_get_and_clear(mm, address, ptep);
155 return pte;
156}
a600388d
ZA
157#endif
158
9888a1ca
ZA
159/*
160 * Some architectures may be able to avoid expensive synchronization
161 * primitives when modifications are made to PTE's which are already
162 * not present, or in the process of an address space destruction.
163 */
164#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
e2cda322
AA
165static inline void pte_clear_not_present_full(struct mm_struct *mm,
166 unsigned long address,
167 pte_t *ptep,
168 int full)
169{
170 pte_clear(mm, address, ptep);
171}
a600388d
ZA
172#endif
173
1da177e4 174#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
e2cda322
AA
175extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
176 unsigned long address,
177 pte_t *ptep);
178#endif
179
8809aa2d
AK
180#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
181extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
e2cda322
AA
182 unsigned long address,
183 pmd_t *pmdp);
1da177e4
LT
184#endif
185
186#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 187struct mm_struct;
1da177e4
LT
188static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
189{
190 pte_t old_pte = *ptep;
191 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
192}
193#endif
194
e2cda322
AA
195#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
197static inline void pmdp_set_wrprotect(struct mm_struct *mm,
198 unsigned long address, pmd_t *pmdp)
199{
200 pmd_t old_pmd = *pmdp;
201 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
202}
bd5e88ad 203#else
e2cda322
AA
204static inline void pmdp_set_wrprotect(struct mm_struct *mm,
205 unsigned long address, pmd_t *pmdp)
206{
bd5e88ad 207 BUILD_BUG();
e2cda322
AA
208}
209#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
210#endif
211
15a25b2e
AK
212#ifndef pmdp_collapse_flush
213#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f28b6ff8
AK
214extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
215 unsigned long address, pmd_t *pmdp);
15a25b2e
AK
216#else
217static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
218 unsigned long address,
219 pmd_t *pmdp)
220{
221 BUILD_BUG();
222 return *pmdp;
223}
224#define pmdp_collapse_flush pmdp_collapse_flush
225#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
226#endif
227
e3ebcf64 228#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
6b0b50b0
AK
229extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
230 pgtable_t pgtable);
e3ebcf64
GS
231#endif
232
233#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
6b0b50b0 234extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
e3ebcf64
GS
235#endif
236
46dcde73
GS
237#ifndef __HAVE_ARCH_PMDP_INVALIDATE
238extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
239 pmd_t *pmdp);
240#endif
241
c777e2a8
AK
242#ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
243static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
244 unsigned long address, pmd_t *pmdp)
245{
246
247}
248#endif
249
1da177e4 250#ifndef __HAVE_ARCH_PTE_SAME
e2cda322
AA
251static inline int pte_same(pte_t pte_a, pte_t pte_b)
252{
253 return pte_val(pte_a) == pte_val(pte_b);
254}
255#endif
256
45961722
KW
257#ifndef __HAVE_ARCH_PTE_UNUSED
258/*
259 * Some architectures provide facilities to virtualization guests
260 * so that they can flag allocated pages as unused. This allows the
261 * host to transparently reclaim unused pages. This function returns
262 * whether the pte's page is unused.
263 */
264static inline int pte_unused(pte_t pte)
265{
266 return 0;
267}
268#endif
269
e2cda322
AA
270#ifndef __HAVE_ARCH_PMD_SAME
271#ifdef CONFIG_TRANSPARENT_HUGEPAGE
272static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
273{
274 return pmd_val(pmd_a) == pmd_val(pmd_b);
275}
276#else /* CONFIG_TRANSPARENT_HUGEPAGE */
277static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
278{
bd5e88ad 279 BUILD_BUG();
e2cda322
AA
280 return 0;
281}
282#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
283#endif
284
1da177e4
LT
285#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
286#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
287#endif
288
0b0968a3 289#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 290#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
291#endif
292
2c3cf556 293#ifndef pte_accessible
20841405 294# define pte_accessible(mm, pte) ((void)(pte), 1)
2c3cf556
RR
295#endif
296
61c77326
SL
297#ifndef flush_tlb_fix_spurious_fault
298#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
299#endif
300
0634a632
PM
301#ifndef pgprot_noncached
302#define pgprot_noncached(prot) (prot)
303#endif
304
2520bd31 305#ifndef pgprot_writecombine
306#define pgprot_writecombine pgprot_noncached
307#endif
308
d1b4bfbf
TK
309#ifndef pgprot_writethrough
310#define pgprot_writethrough pgprot_noncached
311#endif
312
8b921acf
LD
313#ifndef pgprot_device
314#define pgprot_device pgprot_noncached
315#endif
316
64e45507
PF
317#ifndef pgprot_modify
318#define pgprot_modify pgprot_modify
319static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
320{
321 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
322 newprot = pgprot_noncached(newprot);
323 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
324 newprot = pgprot_writecombine(newprot);
325 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
326 newprot = pgprot_device(newprot);
327 return newprot;
328}
329#endif
330
1da177e4 331/*
8f6c99c1
HD
332 * When walking page tables, get the address of the next boundary,
333 * or the end address of the range if that comes earlier. Although no
334 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
335 */
336
1da177e4
LT
337#define pgd_addr_end(addr, end) \
338({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
339 (__boundary - 1 < (end) - 1)? __boundary: (end); \
340})
1da177e4
LT
341
342#ifndef pud_addr_end
343#define pud_addr_end(addr, end) \
344({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
345 (__boundary - 1 < (end) - 1)? __boundary: (end); \
346})
347#endif
348
349#ifndef pmd_addr_end
350#define pmd_addr_end(addr, end) \
351({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
352 (__boundary - 1 < (end) - 1)? __boundary: (end); \
353})
354#endif
355
1da177e4
LT
356/*
357 * When walking page tables, we usually want to skip any p?d_none entries;
358 * and any p?d_bad entries - reporting the error before resetting to none.
359 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
360 */
361void pgd_clear_bad(pgd_t *);
362void pud_clear_bad(pud_t *);
363void pmd_clear_bad(pmd_t *);
364
365static inline int pgd_none_or_clear_bad(pgd_t *pgd)
366{
367 if (pgd_none(*pgd))
368 return 1;
369 if (unlikely(pgd_bad(*pgd))) {
370 pgd_clear_bad(pgd);
371 return 1;
372 }
373 return 0;
374}
375
376static inline int pud_none_or_clear_bad(pud_t *pud)
377{
378 if (pud_none(*pud))
379 return 1;
380 if (unlikely(pud_bad(*pud))) {
381 pud_clear_bad(pud);
382 return 1;
383 }
384 return 0;
385}
386
387static inline int pmd_none_or_clear_bad(pmd_t *pmd)
388{
389 if (pmd_none(*pmd))
390 return 1;
391 if (unlikely(pmd_bad(*pmd))) {
392 pmd_clear_bad(pmd);
393 return 1;
394 }
395 return 0;
396}
9535239f 397
1ea0704e
JF
398static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
399 unsigned long addr,
400 pte_t *ptep)
401{
402 /*
403 * Get the current pte state, but zero it out to make it
404 * non-present, preventing the hardware from asynchronously
405 * updating it.
406 */
407 return ptep_get_and_clear(mm, addr, ptep);
408}
409
410static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
411 unsigned long addr,
412 pte_t *ptep, pte_t pte)
413{
414 /*
415 * The pte is non-present, so there's no hardware state to
416 * preserve.
417 */
418 set_pte_at(mm, addr, ptep, pte);
419}
420
421#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
422/*
423 * Start a pte protection read-modify-write transaction, which
424 * protects against asynchronous hardware modifications to the pte.
425 * The intention is not to prevent the hardware from making pte
426 * updates, but to prevent any updates it may make from being lost.
427 *
428 * This does not protect against other software modifications of the
429 * pte; the appropriate pte lock must be held over the transation.
430 *
431 * Note that this interface is intended to be batchable, meaning that
432 * ptep_modify_prot_commit may not actually update the pte, but merely
433 * queue the update to be done at some later time. The update must be
434 * actually committed before the pte lock is released, however.
435 */
436static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
437 unsigned long addr,
438 pte_t *ptep)
439{
440 return __ptep_modify_prot_start(mm, addr, ptep);
441}
442
443/*
444 * Commit an update to a pte, leaving any hardware-controlled bits in
445 * the PTE unmodified.
446 */
447static inline void ptep_modify_prot_commit(struct mm_struct *mm,
448 unsigned long addr,
449 pte_t *ptep, pte_t pte)
450{
451 __ptep_modify_prot_commit(mm, addr, ptep, pte);
452}
453#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 454#endif /* CONFIG_MMU */
1ea0704e 455
9535239f
GU
456/*
457 * A facility to provide lazy MMU batching. This allows PTE updates and
458 * page invalidations to be delayed until a call to leave lazy MMU mode
459 * is issued. Some architectures may benefit from doing this, and it is
460 * beneficial for both shadow and direct mode hypervisors, which may batch
461 * the PTE updates which happen during this window. Note that using this
462 * interface requires that read hazards be removed from the code. A read
463 * hazard could result in the direct mode hypervisor case, since the actual
464 * write to the page tables may not yet have taken place, so reads though
465 * a raw PTE pointer after it has been modified are not guaranteed to be
466 * up to date. This mode can only be entered and left under the protection of
467 * the page table locks for all page tables which may be modified. In the UP
468 * case, this is required so that preemption is disabled, and in the SMP case,
469 * it must synchronize the delayed page table writes properly on other CPUs.
470 */
471#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
472#define arch_enter_lazy_mmu_mode() do {} while (0)
473#define arch_leave_lazy_mmu_mode() do {} while (0)
474#define arch_flush_lazy_mmu_mode() do {} while (0)
475#endif
476
477/*
7fd7d83d
JF
478 * A facility to provide batching of the reload of page tables and
479 * other process state with the actual context switch code for
480 * paravirtualized guests. By convention, only one of the batched
481 * update (lazy) modes (CPU, MMU) should be active at any given time,
482 * entry should never be nested, and entry and exits should always be
483 * paired. This is for sanity of maintaining and reasoning about the
484 * kernel code. In this case, the exit (end of the context switch) is
485 * in architecture-specific code, and so doesn't need a generic
486 * definition.
9535239f 487 */
7fd7d83d 488#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
224101ed 489#define arch_start_context_switch(prev) do {} while (0)
9535239f
GU
490#endif
491
0f8975ec
PE
492#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
493static inline int pte_soft_dirty(pte_t pte)
494{
495 return 0;
496}
497
498static inline int pmd_soft_dirty(pmd_t pmd)
499{
500 return 0;
501}
502
503static inline pte_t pte_mksoft_dirty(pte_t pte)
504{
505 return pte;
506}
507
508static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
509{
510 return pmd;
511}
179ef71c 512
a7b76174
MS
513static inline pte_t pte_clear_soft_dirty(pte_t pte)
514{
515 return pte;
516}
517
518static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
519{
520 return pmd;
521}
522
179ef71c
CG
523static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
524{
525 return pte;
526}
527
528static inline int pte_swp_soft_dirty(pte_t pte)
529{
530 return 0;
531}
532
533static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
534{
535 return pte;
536}
0f8975ec
PE
537#endif
538
34801ba9 539#ifndef __HAVE_PFNMAP_TRACKING
540/*
5180da41
SS
541 * Interfaces that can be used by architecture code to keep track of
542 * memory type of pfn mappings specified by the remap_pfn_range,
543 * vm_insert_pfn.
544 */
545
546/*
547 * track_pfn_remap is called when a _new_ pfn mapping is being established
548 * by remap_pfn_range() for physical range indicated by pfn and size.
34801ba9 549 */
5180da41 550static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
551 unsigned long pfn, unsigned long addr,
552 unsigned long size)
34801ba9 553{
554 return 0;
555}
556
557/*
5180da41
SS
558 * track_pfn_insert is called when a _new_ single pfn is established
559 * by vm_insert_pfn().
560 */
561static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
f25748e3 562 pfn_t pfn)
5180da41
SS
563{
564 return 0;
565}
566
567/*
568 * track_pfn_copy is called when vma that is covering the pfnmap gets
34801ba9 569 * copied through copy_page_range().
570 */
5180da41 571static inline int track_pfn_copy(struct vm_area_struct *vma)
34801ba9 572{
573 return 0;
574}
575
576/*
d9fe4fab 577 * untrack_pfn is called while unmapping a pfnmap for a region.
34801ba9 578 * untrack can be called for a specific region indicated by pfn and size or
5180da41 579 * can be for the entire vma (in which case pfn, size are zero).
34801ba9 580 */
5180da41
SS
581static inline void untrack_pfn(struct vm_area_struct *vma,
582 unsigned long pfn, unsigned long size)
34801ba9 583{
584}
d9fe4fab
TK
585
586/*
587 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
588 */
589static inline void untrack_pfn_moved(struct vm_area_struct *vma)
590{
591}
34801ba9 592#else
5180da41 593extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
594 unsigned long pfn, unsigned long addr,
595 unsigned long size);
5180da41 596extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
f25748e3 597 pfn_t pfn);
5180da41
SS
598extern int track_pfn_copy(struct vm_area_struct *vma);
599extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
600 unsigned long size);
d9fe4fab 601extern void untrack_pfn_moved(struct vm_area_struct *vma);
34801ba9 602#endif
603
816422ad
KS
604#ifdef __HAVE_COLOR_ZERO_PAGE
605static inline int is_zero_pfn(unsigned long pfn)
606{
607 extern unsigned long zero_pfn;
608 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
609 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
610}
611
2f91ec8c
KS
612#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
613
816422ad
KS
614#else
615static inline int is_zero_pfn(unsigned long pfn)
616{
617 extern unsigned long zero_pfn;
618 return pfn == zero_pfn;
619}
620
621static inline unsigned long my_zero_pfn(unsigned long addr)
622{
623 extern unsigned long zero_pfn;
624 return zero_pfn;
625}
626#endif
627
1a5a9906
AA
628#ifdef CONFIG_MMU
629
5f6e8da7
AA
630#ifndef CONFIG_TRANSPARENT_HUGEPAGE
631static inline int pmd_trans_huge(pmd_t pmd)
632{
633 return 0;
634}
e2cda322
AA
635#ifndef __HAVE_ARCH_PMD_WRITE
636static inline int pmd_write(pmd_t pmd)
637{
638 BUG();
639 return 0;
640}
641#endif /* __HAVE_ARCH_PMD_WRITE */
1a5a9906
AA
642#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
643
26c19178
AA
644#ifndef pmd_read_atomic
645static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
646{
647 /*
648 * Depend on compiler for an atomic pmd read. NOTE: this is
649 * only going to work, if the pmdval_t isn't larger than
650 * an unsigned long.
651 */
652 return *pmdp;
653}
654#endif
655
b3084f4d
AK
656#ifndef pmd_move_must_withdraw
657static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
658 spinlock_t *old_pmd_ptl)
659{
660 /*
661 * With split pmd lock we also need to move preallocated
662 * PTE page table if new_pmd is on different PMD page table.
663 */
664 return new_pmd_ptl != old_pmd_ptl;
665}
666#endif
667
1a5a9906
AA
668/*
669 * This function is meant to be used by sites walking pagetables with
670 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
671 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
672 * into a null pmd and the transhuge page fault can convert a null pmd
673 * into an hugepmd or into a regular pmd (if the hugepage allocation
674 * fails). While holding the mmap_sem in read mode the pmd becomes
675 * stable and stops changing under us only if it's not null and not a
676 * transhuge pmd. When those races occurs and this function makes a
677 * difference vs the standard pmd_none_or_clear_bad, the result is
678 * undefined so behaving like if the pmd was none is safe (because it
679 * can return none anyway). The compiler level barrier() is critically
680 * important to compute the two checks atomically on the same pmdval.
26c19178
AA
681 *
682 * For 32bit kernels with a 64bit large pmd_t this automatically takes
683 * care of reading the pmd atomically to avoid SMP race conditions
684 * against pmd_populate() when the mmap_sem is hold for reading by the
685 * caller (a special atomic read not done by "gcc" as in the generic
686 * version above, is also needed when THP is disabled because the page
687 * fault can populate the pmd from under us).
1a5a9906
AA
688 */
689static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
690{
26c19178 691 pmd_t pmdval = pmd_read_atomic(pmd);
1a5a9906
AA
692 /*
693 * The barrier will stabilize the pmdval in a register or on
694 * the stack so that it will stop changing under the code.
e4eed03f
AA
695 *
696 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
697 * pmd_read_atomic is allowed to return a not atomic pmdval
698 * (for example pointing to an hugepage that has never been
699 * mapped in the pmd). The below checks will only care about
700 * the low part of the pmd with 32bit PAE x86 anyway, with the
701 * exception of pmd_none(). So the important thing is that if
702 * the low part of the pmd is found null, the high part will
703 * be also null or the pmd_none() check below would be
704 * confused.
1a5a9906
AA
705 */
706#ifdef CONFIG_TRANSPARENT_HUGEPAGE
707 barrier();
708#endif
ee53664b 709 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
1a5a9906
AA
710 return 1;
711 if (unlikely(pmd_bad(pmdval))) {
ee53664b 712 pmd_clear_bad(pmd);
1a5a9906
AA
713 return 1;
714 }
715 return 0;
716}
717
718/*
719 * This is a noop if Transparent Hugepage Support is not built into
720 * the kernel. Otherwise it is equivalent to
721 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
722 * places that already verified the pmd is not none and they want to
723 * walk ptes while holding the mmap sem in read mode (write mode don't
724 * need this). If THP is not enabled, the pmd can't go away under the
725 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
726 * run a pmd_trans_unstable before walking the ptes after
727 * split_huge_page_pmd returns (because it may have run when the pmd
728 * become null, but then a page fault can map in a THP and not a
729 * regular page).
730 */
731static inline int pmd_trans_unstable(pmd_t *pmd)
732{
733#ifdef CONFIG_TRANSPARENT_HUGEPAGE
734 return pmd_none_or_trans_huge_or_clear_bad(pmd);
735#else
736 return 0;
5f6e8da7 737#endif
1a5a9906
AA
738}
739
e7bb4b6d
MG
740#ifndef CONFIG_NUMA_BALANCING
741/*
742 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
743 * the only case the kernel cares is for NUMA balancing and is only ever set
744 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
745 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
746 * is the responsibility of the caller to distinguish between PROT_NONE
747 * protections and NUMA hinting fault protections.
748 */
749static inline int pte_protnone(pte_t pte)
750{
751 return 0;
752}
753
754static inline int pmd_protnone(pmd_t pmd)
755{
756 return 0;
757}
758#endif /* CONFIG_NUMA_BALANCING */
759
1a5a9906 760#endif /* CONFIG_MMU */
5f6e8da7 761
e61ce6ad
TK
762#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
763int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
764int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
b9820d8f
TK
765int pud_clear_huge(pud_t *pud);
766int pmd_clear_huge(pmd_t *pmd);
e61ce6ad
TK
767#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
768static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
769{
770 return 0;
771}
772static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
773{
774 return 0;
775}
b9820d8f
TK
776static inline int pud_clear_huge(pud_t *pud)
777{
778 return 0;
779}
780static inline int pmd_clear_huge(pmd_t *pmd)
781{
782 return 0;
783}
e61ce6ad
TK
784#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
785
458aa76d
AK
786#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
787#ifdef CONFIG_TRANSPARENT_HUGEPAGE
788/*
789 * ARCHes with special requirements for evicting THP backing TLB entries can
790 * implement this. Otherwise also, it can help optimize normal TLB flush in
791 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
792 * entire TLB TLB if flush span is greater than a threshold, which will
793 * likely be true for a single huge page. Thus a single thp flush will
794 * invalidate the entire TLB which is not desitable.
795 * e.g. see arch/arc: flush_pmd_tlb_range
796 */
797#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
798#else
799#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
800#endif
801#endif
802
1da177e4
LT
803#endif /* !__ASSEMBLY__ */
804
40d158e6
AV
805#ifndef io_remap_pfn_range
806#define io_remap_pfn_range remap_pfn_range
807#endif
808
fd8cfd30
HD
809#ifndef has_transparent_hugepage
810#ifdef CONFIG_TRANSPARENT_HUGEPAGE
811#define has_transparent_hugepage() 1
812#else
813#define has_transparent_hugepage() 0
814#endif
815#endif
816
1da177e4 817#endif /* _ASM_GENERIC_PGTABLE_H */
This page took 0.817984 seconds and 5 git commands to generate.