[PATCH] paravirt: Preparatory mmu header movement
[deliverable/linux.git] / include / asm-i386 / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef _I386_PGTABLE_H
2#define _I386_PGTABLE_H
3
1da177e4
LT
4
5/*
6 * The Linux memory management assumes a three-level page table setup. On
7 * the i386, we use that, but "fold" the mid level into the top-level page
8 * table, so that we physically have the same two-level page table as the
9 * i386 mmu expects.
10 *
11 * This file contains the functions and defines necessary to modify and use
12 * the i386 page table tree.
13 */
14#ifndef __ASSEMBLY__
15#include <asm/processor.h>
16#include <asm/fixmap.h>
17#include <linux/threads.h>
da181a8b 18#include <asm/paravirt.h>
1da177e4
LT
19
20#ifndef _I386_BITOPS_H
21#include <asm/bitops.h>
22#endif
23
24#include <linux/slab.h>
25#include <linux/list.h>
26#include <linux/spinlock.h>
27
8c65b4a6
TS
28struct mm_struct;
29struct vm_area_struct;
30
1da177e4
LT
31/*
32 * ZERO_PAGE is a global shared page that is always zero: used
33 * for zero-mapped memory areas etc..
34 */
35#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
36extern unsigned long empty_zero_page[1024];
37extern pgd_t swapper_pg_dir[1024];
38extern kmem_cache_t *pgd_cache;
39extern kmem_cache_t *pmd_cache;
40extern spinlock_t pgd_lock;
41extern struct page *pgd_list;
42
43void pmd_ctor(void *, kmem_cache_t *, unsigned long);
44void pgd_ctor(void *, kmem_cache_t *, unsigned long);
45void pgd_dtor(void *, kmem_cache_t *, unsigned long);
46void pgtable_cache_init(void);
47void paging_init(void);
48
49/*
50 * The Linux x86 paging architecture is 'compile-time dual-mode', it
51 * implements both the traditional 2-level x86 page tables and the
52 * newer 3-level PAE-mode page tables.
53 */
54#ifdef CONFIG_X86_PAE
55# include <asm/pgtable-3level-defs.h>
56# define PMD_SIZE (1UL << PMD_SHIFT)
57# define PMD_MASK (~(PMD_SIZE-1))
58#else
59# include <asm/pgtable-2level-defs.h>
60#endif
61
62#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
63#define PGDIR_MASK (~(PGDIR_SIZE-1))
64
65#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
d455a369 66#define FIRST_USER_ADDRESS 0
1da177e4
LT
67
68#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
69#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
70
71#define TWOLEVEL_PGDIR_SHIFT 22
72#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
73#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
74
75/* Just any arbitrary offset to the start of the vmalloc VM area: the
76 * current 8MB value just means that there will be a 8MB "hole" after the
77 * physical memory until the kernel virtual memory starts. That means that
78 * any out-of-bounds memory accesses will hopefully be caught.
79 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
80 * area for the same reason. ;)
81 */
82#define VMALLOC_OFFSET (8*1024*1024)
83#define VMALLOC_START (((unsigned long) high_memory + vmalloc_earlyreserve + \
84 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
85#ifdef CONFIG_HIGHMEM
86# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
87#else
88# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
89#endif
90
91/*
9b4ee40e 92 * _PAGE_PSE set in the page directory entry just means that
1da177e4
LT
93 * the page directory entry points directly to a 4MB-aligned block of
94 * memory.
95 */
96#define _PAGE_BIT_PRESENT 0
97#define _PAGE_BIT_RW 1
98#define _PAGE_BIT_USER 2
99#define _PAGE_BIT_PWT 3
100#define _PAGE_BIT_PCD 4
101#define _PAGE_BIT_ACCESSED 5
102#define _PAGE_BIT_DIRTY 6
103#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */
104#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
105#define _PAGE_BIT_UNUSED1 9 /* available for programmer */
106#define _PAGE_BIT_UNUSED2 10
107#define _PAGE_BIT_UNUSED3 11
108#define _PAGE_BIT_NX 63
109
110#define _PAGE_PRESENT 0x001
111#define _PAGE_RW 0x002
112#define _PAGE_USER 0x004
113#define _PAGE_PWT 0x008
114#define _PAGE_PCD 0x010
115#define _PAGE_ACCESSED 0x020
116#define _PAGE_DIRTY 0x040
117#define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */
118#define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
119#define _PAGE_UNUSED1 0x200 /* available for programmer */
120#define _PAGE_UNUSED2 0x400
121#define _PAGE_UNUSED3 0x800
122
9b4ee40e
PBG
123/* If _PAGE_PRESENT is clear, we use these: */
124#define _PAGE_FILE 0x040 /* nonlinear file mapping, saved PTE; unset:swap */
125#define _PAGE_PROTNONE 0x080 /* if the user mapped it with PROT_NONE;
126 pte_present gives true */
1da177e4
LT
127#ifdef CONFIG_X86_PAE
128#define _PAGE_NX (1ULL<<_PAGE_BIT_NX)
129#else
130#define _PAGE_NX 0
131#endif
132
133#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
134#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
135#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
136
137#define PAGE_NONE \
138 __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
139#define PAGE_SHARED \
140 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
141
142#define PAGE_SHARED_EXEC \
143 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
144#define PAGE_COPY_NOEXEC \
145 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
146#define PAGE_COPY_EXEC \
147 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
148#define PAGE_COPY \
149 PAGE_COPY_NOEXEC
150#define PAGE_READONLY \
151 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
152#define PAGE_READONLY_EXEC \
153 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
154
155#define _PAGE_KERNEL \
156 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
157#define _PAGE_KERNEL_EXEC \
158 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
159
160extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
161#define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
162#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD)
163#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
164#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
165
166#define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
167#define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
168#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
169#define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
170#define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
171#define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
172
173/*
174 * The i386 can't do page protection for execute, and considers that
175 * the same are read. Also, write permissions imply read permissions.
176 * This is the closest we can get..
177 */
178#define __P000 PAGE_NONE
179#define __P001 PAGE_READONLY
180#define __P010 PAGE_COPY
181#define __P011 PAGE_COPY
182#define __P100 PAGE_READONLY_EXEC
183#define __P101 PAGE_READONLY_EXEC
184#define __P110 PAGE_COPY_EXEC
185#define __P111 PAGE_COPY_EXEC
186
187#define __S000 PAGE_NONE
188#define __S001 PAGE_READONLY
189#define __S010 PAGE_SHARED
190#define __S011 PAGE_SHARED
191#define __S100 PAGE_READONLY_EXEC
192#define __S101 PAGE_READONLY_EXEC
193#define __S110 PAGE_SHARED_EXEC
194#define __S111 PAGE_SHARED_EXEC
195
196/*
197 * Define this if things work differently on an i386 and an i486:
198 * it will (on an i486) warn about kernel memory accesses that are
e49332bd 199 * done without a 'access_ok(VERIFY_WRITE,..)'
1da177e4 200 */
e49332bd 201#undef TEST_ACCESS_OK
1da177e4
LT
202
203/* The boot page tables (all created as a single array) */
204extern unsigned long pg0[];
205
206#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
1da177e4 207
705e87c0
HD
208/* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
209#define pmd_none(x) (!(unsigned long)pmd_val(x))
1da177e4 210#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
1da177e4
LT
211#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
212
213
214#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
215
216/*
217 * The following only work if pte_present() is true.
218 * Undefined behaviour if not..
219 */
220static inline int pte_user(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
221static inline int pte_read(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
222static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }
223static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }
224static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }
8f860591 225static inline int pte_huge(pte_t pte) { return (pte).pte_low & _PAGE_PSE; }
1da177e4
LT
226
227/*
228 * The following only works if pte_present() is not true.
229 */
230static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; }
231
232static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
233static inline pte_t pte_exprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
234static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; }
235static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }
236static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }
237static inline pte_t pte_mkread(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
238static inline pte_t pte_mkexec(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
239static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; }
240static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; }
241static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; }
8f860591 242static inline pte_t pte_mkhuge(pte_t pte) { (pte).pte_low |= _PAGE_PSE; return pte; }
1da177e4
LT
243
244#ifdef CONFIG_X86_PAE
245# include <asm/pgtable-3level.h>
246#else
247# include <asm/pgtable-2level.h>
248#endif
249
da181a8b 250#ifndef CONFIG_PARAVIRT
789e6ac0
ZA
251/*
252 * Rules for using pte_update - it must be called after any PTE update which
253 * has not been done using the set_pte / clear_pte interfaces. It is used by
254 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
255 * updates should either be sets, clears, or set_pte_atomic for P->P
256 * transitions, which means this hook should only be called for user PTEs.
257 * This hook implies a P->P protection or access change has taken place, which
258 * requires a subsequent TLB flush. The notification can optionally be delayed
259 * until the TLB flush event by using the pte_update_defer form of the
260 * interface, but care must be taken to assure that the flush happens while
261 * still holding the same page table lock so that the shadow and primary pages
262 * do not become out of sync on SMP.
263 */
264#define pte_update(mm, addr, ptep) do { } while (0)
265#define pte_update_defer(mm, addr, ptep) do { } while (0)
da181a8b 266#endif
789e6ac0 267
2965a0e6
RR
268/*
269 * We only update the dirty/accessed state if we set
270 * the dirty bit by hand in the kernel, since the hardware
271 * will do the accessed bit for us, and we don't want to
272 * race with other CPU's that might be updating the dirty
273 * bit at the same time.
274 */
275#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
276#define ptep_set_access_flags(vma, address, ptep, entry, dirty) \
277do { \
278 if (dirty) { \
279 (ptep)->pte_low = (entry).pte_low; \
789e6ac0 280 pte_update_defer((vma)->vm_mm, (addr), (ptep)); \
2965a0e6
RR
281 flush_tlb_page(vma, address); \
282 } \
283} while (0)
284
25e4df5b
ZA
285/*
286 * We don't actually have these, but we want to advertise them so that
287 * we can encompass the flush here.
288 */
6049742d 289#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
6049742d 290#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
25e4df5b 291
d6d861e3
ZA
292/*
293 * Rules for using ptep_establish: the pte MUST be a user pte, and
294 * must be a present->present transition.
295 */
296#define __HAVE_ARCH_PTEP_ESTABLISH
297#define ptep_establish(vma, address, ptep, pteval) \
298do { \
299 set_pte_present((vma)->vm_mm, address, ptep, pteval); \
300 flush_tlb_page(vma, address); \
301} while (0)
302
25e4df5b
ZA
303#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
304#define ptep_clear_flush_dirty(vma, address, ptep) \
305({ \
306 int __dirty; \
307 __dirty = pte_dirty(*(ptep)); \
308 if (__dirty) { \
309 clear_bit(_PAGE_BIT_DIRTY, &(ptep)->pte_low); \
789e6ac0 310 pte_update_defer((vma)->vm_mm, (addr), (ptep)); \
25e4df5b
ZA
311 flush_tlb_page(vma, address); \
312 } \
313 __dirty; \
314})
315
316#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
317#define ptep_clear_flush_young(vma, address, ptep) \
318({ \
319 int __young; \
320 __young = pte_young(*(ptep)); \
321 if (__young) { \
322 clear_bit(_PAGE_BIT_ACCESSED, &(ptep)->pte_low); \
789e6ac0 323 pte_update_defer((vma)->vm_mm, (addr), (ptep)); \
25e4df5b
ZA
324 flush_tlb_page(vma, address); \
325 } \
326 __young; \
327})
1da177e4 328
6049742d 329#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
a600388d
ZA
330static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
331{
332 pte_t pte;
333 if (full) {
334 pte = *ptep;
6e5882cf 335 pte_clear(mm, addr, ptep);
a600388d
ZA
336 } else {
337 pte = ptep_get_and_clear(mm, addr, ptep);
338 }
339 return pte;
340}
341
6049742d 342#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1da177e4
LT
343static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
344{
345 clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
789e6ac0 346 pte_update(mm, addr, ptep);
1da177e4
LT
347}
348
d7271b14
ZA
349/*
350 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
351 *
352 * dst - pointer to pgd range anwhere on a pgd page
353 * src - ""
354 * count - the number of pgds to copy.
355 *
356 * dst and src can be on the same page, but the range must not overlap,
357 * and must not cross a page boundary.
358 */
359static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
360{
361 memcpy(dst, src, count * sizeof(pgd_t));
362}
363
1da177e4
LT
364/*
365 * Macro to mark a page protection value as "uncacheable". On processors which do not support
366 * it, this is a no-op.
367 */
368#define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
369 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
370
371/*
372 * Conversion functions: convert a page and protection to a page entry,
373 * and a page entry and page directory to the page they refer to.
374 */
375
376#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
1da177e4
LT
377
378static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
379{
380 pte.pte_low &= _PAGE_CHG_MASK;
381 pte.pte_low |= pgprot_val(newprot);
382#ifdef CONFIG_X86_PAE
383 /*
384 * Chop off the NX bit (if present), and add the NX portion of
385 * the newprot (if present):
386 */
387 pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
388 pte.pte_high |= (pgprot_val(newprot) >> 32) & \
389 (__supported_pte_mask >> 32);
390#endif
391 return pte;
392}
393
1da177e4
LT
394#define pmd_large(pmd) \
395((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))
396
397/*
398 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
399 *
400 * this macro returns the index of the entry in the pgd page which would
401 * control the given virtual address
402 */
403#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
404#define pgd_index_k(addr) pgd_index(addr)
405
406/*
407 * pgd_offset() returns a (pgd_t *)
408 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
409 */
410#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
411
412/*
413 * a shortcut which implies the use of the kernel's pgd, instead
414 * of a process's
415 */
416#define pgd_offset_k(address) pgd_offset(&init_mm, address)
417
418/*
419 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
420 *
421 * this macro returns the index of the entry in the pmd page which would
422 * control the given virtual address
423 */
424#define pmd_index(address) \
425 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
426
427/*
428 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
429 *
430 * this macro returns the index of the entry in the pte page which would
431 * control the given virtual address
432 */
433#define pte_index(address) \
434 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
435#define pte_offset_kernel(dir, address) \
46a82b2d 436 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
1da177e4 437
ca140fda
PBG
438#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
439
46a82b2d 440#define pmd_page_vaddr(pmd) \
ca140fda
PBG
441 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
442
1da177e4
LT
443/*
444 * Helper function that returns the kernel pagetable entry controlling
445 * the virtual address 'address'. NULL means no pagetable entry present.
446 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
447 * as a pte too.
448 */
449extern pte_t *lookup_address(unsigned long address);
450
451/*
452 * Make a given kernel text page executable/non-executable.
453 * Returns the previous executability setting of that page (which
454 * is used to restore the previous state). Used by the SMP bootup code.
455 * NOTE: this is an __init function for security reasons.
456 */
457#ifdef CONFIG_X86_PAE
458 extern int set_kernel_exec(unsigned long vaddr, int enable);
459#else
460 static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
461#endif
462
1da177e4
LT
463#if defined(CONFIG_HIGHPTE)
464#define pte_offset_map(dir, address) \
465 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
466#define pte_offset_map_nested(dir, address) \
467 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
468#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
469#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
470#else
471#define pte_offset_map(dir, address) \
472 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
473#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
474#define pte_unmap(pte) do { } while (0)
475#define pte_unmap_nested(pte) do { } while (0)
476#endif
477
23002d88
ZA
478/* Clear a kernel PTE and flush it from the TLB */
479#define kpte_clear_flush(ptep, vaddr) \
480do { \
481 pte_clear(&init_mm, vaddr, ptep); \
482 __flush_tlb_one(vaddr); \
483} while (0)
484
1da177e4
LT
485/*
486 * The i386 doesn't have any external MMU info: the kernel page
487 * tables contain all the necessary information.
1da177e4
LT
488 */
489#define update_mmu_cache(vma,address,pte) do { } while (0)
1da177e4
LT
490#endif /* !__ASSEMBLY__ */
491
05b79bdc 492#ifdef CONFIG_FLATMEM
1da177e4 493#define kern_addr_valid(addr) (1)
05b79bdc 494#endif /* CONFIG_FLATMEM */
1da177e4 495
1da177e4
LT
496#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
497 remap_pfn_range(vma, vaddr, pfn, size, prot)
498
499#define MK_IOSPACE_PFN(space, pfn) (pfn)
500#define GET_IOSPACE(pfn) 0
501#define GET_PFN(pfn) (pfn)
502
1da177e4
LT
503#include <asm-generic/pgtable.h>
504
505#endif /* _I386_PGTABLE_H */
This page took 0.228902 seconds and 5 git commands to generate.