[PATCH] i386: pte clear optimization
[deliverable/linux.git] / include / asm-i386 / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef _I386_PGTABLE_H
2#define _I386_PGTABLE_H
3
1da177e4
LT
4
5/*
6 * The Linux memory management assumes a three-level page table setup. On
7 * the i386, we use that, but "fold" the mid level into the top-level page
8 * table, so that we physically have the same two-level page table as the
9 * i386 mmu expects.
10 *
11 * This file contains the functions and defines necessary to modify and use
12 * the i386 page table tree.
13 */
14#ifndef __ASSEMBLY__
15#include <asm/processor.h>
16#include <asm/fixmap.h>
17#include <linux/threads.h>
da181a8b 18#include <asm/paravirt.h>
1da177e4
LT
19
20#ifndef _I386_BITOPS_H
21#include <asm/bitops.h>
22#endif
23
24#include <linux/slab.h>
25#include <linux/list.h>
26#include <linux/spinlock.h>
27
8c65b4a6
TS
28struct mm_struct;
29struct vm_area_struct;
30
1da177e4
LT
31/*
32 * ZERO_PAGE is a global shared page that is always zero: used
33 * for zero-mapped memory areas etc..
34 */
35#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
36extern unsigned long empty_zero_page[1024];
37extern pgd_t swapper_pg_dir[1024];
e18b890b
CL
38extern struct kmem_cache *pgd_cache;
39extern struct kmem_cache *pmd_cache;
1da177e4
LT
40extern spinlock_t pgd_lock;
41extern struct page *pgd_list;
42
e18b890b
CL
43void pmd_ctor(void *, struct kmem_cache *, unsigned long);
44void pgd_ctor(void *, struct kmem_cache *, unsigned long);
45void pgd_dtor(void *, struct kmem_cache *, unsigned long);
1da177e4
LT
46void pgtable_cache_init(void);
47void paging_init(void);
48
49/*
50 * The Linux x86 paging architecture is 'compile-time dual-mode', it
51 * implements both the traditional 2-level x86 page tables and the
52 * newer 3-level PAE-mode page tables.
53 */
54#ifdef CONFIG_X86_PAE
55# include <asm/pgtable-3level-defs.h>
56# define PMD_SIZE (1UL << PMD_SHIFT)
57# define PMD_MASK (~(PMD_SIZE-1))
58#else
59# include <asm/pgtable-2level-defs.h>
60#endif
61
62#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
63#define PGDIR_MASK (~(PGDIR_SIZE-1))
64
65#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
d455a369 66#define FIRST_USER_ADDRESS 0
1da177e4
LT
67
68#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
69#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
70
71#define TWOLEVEL_PGDIR_SHIFT 22
72#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
73#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
74
75/* Just any arbitrary offset to the start of the vmalloc VM area: the
76 * current 8MB value just means that there will be a 8MB "hole" after the
77 * physical memory until the kernel virtual memory starts. That means that
78 * any out-of-bounds memory accesses will hopefully be caught.
79 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
80 * area for the same reason. ;)
81 */
82#define VMALLOC_OFFSET (8*1024*1024)
83#define VMALLOC_START (((unsigned long) high_memory + vmalloc_earlyreserve + \
84 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
85#ifdef CONFIG_HIGHMEM
86# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
87#else
88# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
89#endif
90
91/*
9b4ee40e 92 * _PAGE_PSE set in the page directory entry just means that
1da177e4
LT
93 * the page directory entry points directly to a 4MB-aligned block of
94 * memory.
95 */
96#define _PAGE_BIT_PRESENT 0
97#define _PAGE_BIT_RW 1
98#define _PAGE_BIT_USER 2
99#define _PAGE_BIT_PWT 3
100#define _PAGE_BIT_PCD 4
101#define _PAGE_BIT_ACCESSED 5
102#define _PAGE_BIT_DIRTY 6
103#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */
104#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
105#define _PAGE_BIT_UNUSED1 9 /* available for programmer */
106#define _PAGE_BIT_UNUSED2 10
107#define _PAGE_BIT_UNUSED3 11
108#define _PAGE_BIT_NX 63
109
110#define _PAGE_PRESENT 0x001
111#define _PAGE_RW 0x002
112#define _PAGE_USER 0x004
113#define _PAGE_PWT 0x008
114#define _PAGE_PCD 0x010
115#define _PAGE_ACCESSED 0x020
116#define _PAGE_DIRTY 0x040
117#define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */
118#define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
119#define _PAGE_UNUSED1 0x200 /* available for programmer */
120#define _PAGE_UNUSED2 0x400
121#define _PAGE_UNUSED3 0x800
122
9b4ee40e
PBG
123/* If _PAGE_PRESENT is clear, we use these: */
124#define _PAGE_FILE 0x040 /* nonlinear file mapping, saved PTE; unset:swap */
125#define _PAGE_PROTNONE 0x080 /* if the user mapped it with PROT_NONE;
126 pte_present gives true */
1da177e4
LT
127#ifdef CONFIG_X86_PAE
128#define _PAGE_NX (1ULL<<_PAGE_BIT_NX)
129#else
130#define _PAGE_NX 0
131#endif
132
133#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
134#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
135#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
136
137#define PAGE_NONE \
138 __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
139#define PAGE_SHARED \
140 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
141
142#define PAGE_SHARED_EXEC \
143 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
144#define PAGE_COPY_NOEXEC \
145 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
146#define PAGE_COPY_EXEC \
147 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
148#define PAGE_COPY \
149 PAGE_COPY_NOEXEC
150#define PAGE_READONLY \
151 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
152#define PAGE_READONLY_EXEC \
153 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
154
155#define _PAGE_KERNEL \
156 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
157#define _PAGE_KERNEL_EXEC \
158 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
159
160extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
161#define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
d01ad8dd 162#define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW)
1da177e4
LT
163#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD)
164#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
165#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
166
167#define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
168#define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
169#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
d01ad8dd 170#define PAGE_KERNEL_RX __pgprot(__PAGE_KERNEL_RX)
1da177e4
LT
171#define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
172#define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
173#define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
174
175/*
176 * The i386 can't do page protection for execute, and considers that
177 * the same are read. Also, write permissions imply read permissions.
178 * This is the closest we can get..
179 */
180#define __P000 PAGE_NONE
181#define __P001 PAGE_READONLY
182#define __P010 PAGE_COPY
183#define __P011 PAGE_COPY
184#define __P100 PAGE_READONLY_EXEC
185#define __P101 PAGE_READONLY_EXEC
186#define __P110 PAGE_COPY_EXEC
187#define __P111 PAGE_COPY_EXEC
188
189#define __S000 PAGE_NONE
190#define __S001 PAGE_READONLY
191#define __S010 PAGE_SHARED
192#define __S011 PAGE_SHARED
193#define __S100 PAGE_READONLY_EXEC
194#define __S101 PAGE_READONLY_EXEC
195#define __S110 PAGE_SHARED_EXEC
196#define __S111 PAGE_SHARED_EXEC
197
198/*
199 * Define this if things work differently on an i386 and an i486:
200 * it will (on an i486) warn about kernel memory accesses that are
e49332bd 201 * done without a 'access_ok(VERIFY_WRITE,..)'
1da177e4 202 */
e49332bd 203#undef TEST_ACCESS_OK
1da177e4
LT
204
205/* The boot page tables (all created as a single array) */
206extern unsigned long pg0[];
207
208#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
1da177e4 209
705e87c0
HD
210/* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
211#define pmd_none(x) (!(unsigned long)pmd_val(x))
1da177e4 212#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
1da177e4
LT
213#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
214
215
216#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
217
218/*
219 * The following only work if pte_present() is true.
220 * Undefined behaviour if not..
221 */
222static inline int pte_user(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
223static inline int pte_read(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
224static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }
225static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }
226static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }
8f860591 227static inline int pte_huge(pte_t pte) { return (pte).pte_low & _PAGE_PSE; }
1da177e4
LT
228
229/*
230 * The following only works if pte_present() is not true.
231 */
232static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; }
233
234static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
235static inline pte_t pte_exprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
236static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; }
237static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }
238static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }
239static inline pte_t pte_mkread(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
240static inline pte_t pte_mkexec(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
241static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; }
242static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; }
243static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; }
8f860591 244static inline pte_t pte_mkhuge(pte_t pte) { (pte).pte_low |= _PAGE_PSE; return pte; }
1da177e4 245
5311ab62
JF
246extern void vmalloc_sync_all(void);
247
1da177e4
LT
248#ifdef CONFIG_X86_PAE
249# include <asm/pgtable-3level.h>
250#else
251# include <asm/pgtable-2level.h>
252#endif
253
da181a8b 254#ifndef CONFIG_PARAVIRT
789e6ac0
ZA
255/*
256 * Rules for using pte_update - it must be called after any PTE update which
257 * has not been done using the set_pte / clear_pte interfaces. It is used by
258 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
259 * updates should either be sets, clears, or set_pte_atomic for P->P
260 * transitions, which means this hook should only be called for user PTEs.
261 * This hook implies a P->P protection or access change has taken place, which
262 * requires a subsequent TLB flush. The notification can optionally be delayed
263 * until the TLB flush event by using the pte_update_defer form of the
264 * interface, but care must be taken to assure that the flush happens while
265 * still holding the same page table lock so that the shadow and primary pages
266 * do not become out of sync on SMP.
267 */
268#define pte_update(mm, addr, ptep) do { } while (0)
269#define pte_update_defer(mm, addr, ptep) do { } while (0)
da181a8b 270#endif
789e6ac0 271
2965a0e6
RR
272/*
273 * We only update the dirty/accessed state if we set
274 * the dirty bit by hand in the kernel, since the hardware
275 * will do the accessed bit for us, and we don't want to
276 * race with other CPU's that might be updating the dirty
277 * bit at the same time.
278 */
279#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
280#define ptep_set_access_flags(vma, address, ptep, entry, dirty) \
281do { \
282 if (dirty) { \
283 (ptep)->pte_low = (entry).pte_low; \
dfbea0ad 284 pte_update_defer((vma)->vm_mm, (address), (ptep)); \
2965a0e6
RR
285 flush_tlb_page(vma, address); \
286 } \
287} while (0)
288
25e4df5b
ZA
289/*
290 * We don't actually have these, but we want to advertise them so that
291 * we can encompass the flush here.
292 */
6049742d 293#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
6049742d 294#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
25e4df5b 295
d6d861e3
ZA
296/*
297 * Rules for using ptep_establish: the pte MUST be a user pte, and
298 * must be a present->present transition.
299 */
300#define __HAVE_ARCH_PTEP_ESTABLISH
301#define ptep_establish(vma, address, ptep, pteval) \
302do { \
303 set_pte_present((vma)->vm_mm, address, ptep, pteval); \
304 flush_tlb_page(vma, address); \
305} while (0)
306
25e4df5b
ZA
307#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
308#define ptep_clear_flush_dirty(vma, address, ptep) \
309({ \
310 int __dirty; \
311 __dirty = pte_dirty(*(ptep)); \
312 if (__dirty) { \
313 clear_bit(_PAGE_BIT_DIRTY, &(ptep)->pte_low); \
dfbea0ad 314 pte_update_defer((vma)->vm_mm, (address), (ptep)); \
25e4df5b
ZA
315 flush_tlb_page(vma, address); \
316 } \
317 __dirty; \
318})
319
320#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
321#define ptep_clear_flush_young(vma, address, ptep) \
322({ \
323 int __young; \
324 __young = pte_young(*(ptep)); \
325 if (__young) { \
326 clear_bit(_PAGE_BIT_ACCESSED, &(ptep)->pte_low); \
dfbea0ad 327 pte_update_defer((vma)->vm_mm, (address), (ptep)); \
25e4df5b
ZA
328 flush_tlb_page(vma, address); \
329 } \
330 __young; \
331})
1da177e4 332
8ecb8950
ZA
333#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
334static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
335{
4cdd9c89 336 pte_t pte = native_ptep_get_and_clear(ptep);
8ecb8950
ZA
337 pte_update(mm, addr, ptep);
338 return pte;
339}
340
6049742d 341#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
a600388d
ZA
342static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
343{
344 pte_t pte;
345 if (full) {
346 pte = *ptep;
c2c1accd 347 native_pte_clear(mm, addr, ptep);
a600388d
ZA
348 } else {
349 pte = ptep_get_and_clear(mm, addr, ptep);
350 }
351 return pte;
352}
353
6049742d 354#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1da177e4
LT
355static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
356{
357 clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
789e6ac0 358 pte_update(mm, addr, ptep);
1da177e4
LT
359}
360
d7271b14
ZA
361/*
362 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
363 *
364 * dst - pointer to pgd range anwhere on a pgd page
365 * src - ""
366 * count - the number of pgds to copy.
367 *
368 * dst and src can be on the same page, but the range must not overlap,
369 * and must not cross a page boundary.
370 */
371static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
372{
373 memcpy(dst, src, count * sizeof(pgd_t));
374}
375
1da177e4
LT
376/*
377 * Macro to mark a page protection value as "uncacheable". On processors which do not support
378 * it, this is a no-op.
379 */
380#define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
381 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
382
383/*
384 * Conversion functions: convert a page and protection to a page entry,
385 * and a page entry and page directory to the page they refer to.
386 */
387
388#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
1da177e4
LT
389
390static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
391{
392 pte.pte_low &= _PAGE_CHG_MASK;
393 pte.pte_low |= pgprot_val(newprot);
394#ifdef CONFIG_X86_PAE
395 /*
396 * Chop off the NX bit (if present), and add the NX portion of
397 * the newprot (if present):
398 */
399 pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
400 pte.pte_high |= (pgprot_val(newprot) >> 32) & \
401 (__supported_pte_mask >> 32);
402#endif
403 return pte;
404}
405
1da177e4
LT
406#define pmd_large(pmd) \
407((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))
408
409/*
410 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
411 *
412 * this macro returns the index of the entry in the pgd page which would
413 * control the given virtual address
414 */
415#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
416#define pgd_index_k(addr) pgd_index(addr)
417
418/*
419 * pgd_offset() returns a (pgd_t *)
420 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
421 */
422#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
423
424/*
425 * a shortcut which implies the use of the kernel's pgd, instead
426 * of a process's
427 */
428#define pgd_offset_k(address) pgd_offset(&init_mm, address)
429
430/*
431 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
432 *
433 * this macro returns the index of the entry in the pmd page which would
434 * control the given virtual address
435 */
436#define pmd_index(address) \
437 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
438
439/*
440 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
441 *
442 * this macro returns the index of the entry in the pte page which would
443 * control the given virtual address
444 */
445#define pte_index(address) \
446 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
447#define pte_offset_kernel(dir, address) \
46a82b2d 448 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
1da177e4 449
ca140fda
PBG
450#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
451
46a82b2d 452#define pmd_page_vaddr(pmd) \
ca140fda
PBG
453 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
454
1da177e4
LT
455/*
456 * Helper function that returns the kernel pagetable entry controlling
457 * the virtual address 'address'. NULL means no pagetable entry present.
458 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
459 * as a pte too.
460 */
461extern pte_t *lookup_address(unsigned long address);
462
463/*
464 * Make a given kernel text page executable/non-executable.
465 * Returns the previous executability setting of that page (which
466 * is used to restore the previous state). Used by the SMP bootup code.
467 * NOTE: this is an __init function for security reasons.
468 */
469#ifdef CONFIG_X86_PAE
470 extern int set_kernel_exec(unsigned long vaddr, int enable);
471#else
472 static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
473#endif
474
1da177e4 475#if defined(CONFIG_HIGHPTE)
a27fe809 476#define pte_offset_map(dir, address) \
ce6234b5 477 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
a27fe809 478#define pte_offset_map_nested(dir, address) \
ce6234b5 479 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
1da177e4
LT
480#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
481#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
482#else
483#define pte_offset_map(dir, address) \
484 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
485#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
486#define pte_unmap(pte) do { } while (0)
487#define pte_unmap_nested(pte) do { } while (0)
488#endif
489
23002d88
ZA
490/* Clear a kernel PTE and flush it from the TLB */
491#define kpte_clear_flush(ptep, vaddr) \
492do { \
493 pte_clear(&init_mm, vaddr, ptep); \
494 __flush_tlb_one(vaddr); \
495} while (0)
496
1da177e4
LT
497/*
498 * The i386 doesn't have any external MMU info: the kernel page
499 * tables contain all the necessary information.
1da177e4
LT
500 */
501#define update_mmu_cache(vma,address,pte) do { } while (0)
b239fb25
JF
502
503void native_pagetable_setup_start(pgd_t *base);
504void native_pagetable_setup_done(pgd_t *base);
505
506#ifndef CONFIG_PARAVIRT
507static inline void paravirt_pagetable_setup_start(pgd_t *base)
508{
509 native_pagetable_setup_start(base);
510}
511
512static inline void paravirt_pagetable_setup_done(pgd_t *base)
513{
514 native_pagetable_setup_done(base);
515}
516#endif /* !CONFIG_PARAVIRT */
517
1da177e4
LT
518#endif /* !__ASSEMBLY__ */
519
05b79bdc 520#ifdef CONFIG_FLATMEM
1da177e4 521#define kern_addr_valid(addr) (1)
05b79bdc 522#endif /* CONFIG_FLATMEM */
1da177e4 523
1da177e4
LT
524#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
525 remap_pfn_range(vma, vaddr, pfn, size, prot)
526
527#define MK_IOSPACE_PFN(space, pfn) (pfn)
528#define GET_IOSPACE(pfn) 0
529#define GET_PFN(pfn) (pfn)
530
1da177e4
LT
531#include <asm-generic/pgtable.h>
532
533#endif /* _I386_PGTABLE_H */
This page took 0.254732 seconds and 5 git commands to generate.