[PATCH] bitops: m68knommu: use generic bitops
[deliverable/linux.git] / include / asm-mips / bitops.h
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org)
7 * Copyright (c) 1999, 2000 Silicon Graphics, Inc.
8 */
9#ifndef _ASM_BITOPS_H
10#define _ASM_BITOPS_H
11
12#include <linux/config.h>
13#include <linux/compiler.h>
14#include <linux/types.h>
ec917c2c 15#include <asm/bug.h>
1da177e4
LT
16#include <asm/byteorder.h> /* sigh ... */
17#include <asm/cpu-features.h>
18
19#if (_MIPS_SZLONG == 32)
20#define SZLONG_LOG 5
21#define SZLONG_MASK 31UL
aac8aa77
MR
22#define __LL "ll "
23#define __SC "sc "
42a3b4f2 24#define cpu_to_lelongp(x) cpu_to_le32p((__u32 *) (x))
1da177e4
LT
25#elif (_MIPS_SZLONG == 64)
26#define SZLONG_LOG 6
27#define SZLONG_MASK 63UL
aac8aa77
MR
28#define __LL "lld "
29#define __SC "scd "
42a3b4f2 30#define cpu_to_lelongp(x) cpu_to_le64p((__u64 *) (x))
1da177e4
LT
31#endif
32
33#ifdef __KERNEL__
34
35#include <asm/interrupt.h>
36#include <asm/sgidefs.h>
37#include <asm/war.h>
38
39/*
40 * clear_bit() doesn't provide any barrier for the compiler.
41 */
42#define smp_mb__before_clear_bit() smp_mb()
43#define smp_mb__after_clear_bit() smp_mb()
44
45/*
46 * Only disable interrupt for kernel mode stuff to keep usermode stuff
47 * that dares to use kernel include files alive.
48 */
49
50#define __bi_flags unsigned long flags
51#define __bi_local_irq_save(x) local_irq_save(x)
52#define __bi_local_irq_restore(x) local_irq_restore(x)
53#else
54#define __bi_flags
55#define __bi_local_irq_save(x)
56#define __bi_local_irq_restore(x)
57#endif /* __KERNEL__ */
58
59/*
60 * set_bit - Atomically set a bit in memory
61 * @nr: the bit to set
62 * @addr: the address to start counting from
63 *
64 * This function is atomic and may not be reordered. See __set_bit()
65 * if you do not require the atomic guarantees.
66 * Note that @nr may be almost arbitrarily large; this function is not
67 * restricted to acting on a single-word quantity.
68 */
69static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
70{
71 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
72 unsigned long temp;
73
74 if (cpu_has_llsc && R10000_LLSC_WAR) {
75 __asm__ __volatile__(
c4559f67 76 " .set mips3 \n"
1da177e4
LT
77 "1: " __LL "%0, %1 # set_bit \n"
78 " or %0, %2 \n"
aac8aa77 79 " " __SC "%0, %1 \n"
1da177e4 80 " beqzl %0, 1b \n"
aac8aa77 81 " .set mips0 \n"
1da177e4
LT
82 : "=&r" (temp), "=m" (*m)
83 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m));
84 } else if (cpu_has_llsc) {
85 __asm__ __volatile__(
c4559f67 86 " .set mips3 \n"
1da177e4
LT
87 "1: " __LL "%0, %1 # set_bit \n"
88 " or %0, %2 \n"
aac8aa77 89 " " __SC "%0, %1 \n"
1da177e4 90 " beqz %0, 1b \n"
aac8aa77 91 " .set mips0 \n"
1da177e4
LT
92 : "=&r" (temp), "=m" (*m)
93 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m));
94 } else {
95 volatile unsigned long *a = addr;
96 unsigned long mask;
97 __bi_flags;
98
99 a += nr >> SZLONG_LOG;
100 mask = 1UL << (nr & SZLONG_MASK);
101 __bi_local_irq_save(flags);
102 *a |= mask;
103 __bi_local_irq_restore(flags);
104 }
105}
106
107/*
108 * __set_bit - Set a bit in memory
109 * @nr: the bit to set
110 * @addr: the address to start counting from
111 *
112 * Unlike set_bit(), this function is non-atomic and may be reordered.
113 * If it's called on the same region of memory simultaneously, the effect
114 * may be that only one operation succeeds.
115 */
116static inline void __set_bit(unsigned long nr, volatile unsigned long * addr)
117{
118 unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
119
120 *m |= 1UL << (nr & SZLONG_MASK);
121}
122
123/*
124 * clear_bit - Clears a bit in memory
125 * @nr: Bit to clear
126 * @addr: Address to start counting from
127 *
128 * clear_bit() is atomic and may not be reordered. However, it does
129 * not contain a memory barrier, so if it is used for locking purposes,
130 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
131 * in order to ensure changes are visible on other processors.
132 */
133static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
134{
135 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
136 unsigned long temp;
137
138 if (cpu_has_llsc && R10000_LLSC_WAR) {
139 __asm__ __volatile__(
c4559f67 140 " .set mips3 \n"
1da177e4
LT
141 "1: " __LL "%0, %1 # clear_bit \n"
142 " and %0, %2 \n"
143 " " __SC "%0, %1 \n"
144 " beqzl %0, 1b \n"
aac8aa77 145 " .set mips0 \n"
1da177e4
LT
146 : "=&r" (temp), "=m" (*m)
147 : "ir" (~(1UL << (nr & SZLONG_MASK))), "m" (*m));
148 } else if (cpu_has_llsc) {
149 __asm__ __volatile__(
c4559f67 150 " .set mips3 \n"
1da177e4
LT
151 "1: " __LL "%0, %1 # clear_bit \n"
152 " and %0, %2 \n"
153 " " __SC "%0, %1 \n"
154 " beqz %0, 1b \n"
aac8aa77 155 " .set mips0 \n"
1da177e4
LT
156 : "=&r" (temp), "=m" (*m)
157 : "ir" (~(1UL << (nr & SZLONG_MASK))), "m" (*m));
158 } else {
159 volatile unsigned long *a = addr;
160 unsigned long mask;
161 __bi_flags;
162
163 a += nr >> SZLONG_LOG;
164 mask = 1UL << (nr & SZLONG_MASK);
165 __bi_local_irq_save(flags);
166 *a &= ~mask;
167 __bi_local_irq_restore(flags);
168 }
169}
170
171/*
172 * __clear_bit - Clears a bit in memory
173 * @nr: Bit to clear
174 * @addr: Address to start counting from
175 *
176 * Unlike clear_bit(), this function is non-atomic and may be reordered.
177 * If it's called on the same region of memory simultaneously, the effect
178 * may be that only one operation succeeds.
179 */
180static inline void __clear_bit(unsigned long nr, volatile unsigned long * addr)
181{
182 unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
183
184 *m &= ~(1UL << (nr & SZLONG_MASK));
185}
186
187/*
188 * change_bit - Toggle a bit in memory
189 * @nr: Bit to change
190 * @addr: Address to start counting from
191 *
192 * change_bit() is atomic and may not be reordered.
193 * Note that @nr may be almost arbitrarily large; this function is not
194 * restricted to acting on a single-word quantity.
195 */
196static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
197{
198 if (cpu_has_llsc && R10000_LLSC_WAR) {
199 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
200 unsigned long temp;
201
202 __asm__ __volatile__(
c4559f67 203 " .set mips3 \n"
1da177e4
LT
204 "1: " __LL "%0, %1 # change_bit \n"
205 " xor %0, %2 \n"
aac8aa77 206 " " __SC "%0, %1 \n"
1da177e4 207 " beqzl %0, 1b \n"
aac8aa77 208 " .set mips0 \n"
1da177e4
LT
209 : "=&r" (temp), "=m" (*m)
210 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m));
211 } else if (cpu_has_llsc) {
212 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
213 unsigned long temp;
214
215 __asm__ __volatile__(
c4559f67 216 " .set mips3 \n"
1da177e4
LT
217 "1: " __LL "%0, %1 # change_bit \n"
218 " xor %0, %2 \n"
aac8aa77 219 " " __SC "%0, %1 \n"
1da177e4 220 " beqz %0, 1b \n"
aac8aa77 221 " .set mips0 \n"
1da177e4
LT
222 : "=&r" (temp), "=m" (*m)
223 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m));
224 } else {
225 volatile unsigned long *a = addr;
226 unsigned long mask;
227 __bi_flags;
228
229 a += nr >> SZLONG_LOG;
230 mask = 1UL << (nr & SZLONG_MASK);
231 __bi_local_irq_save(flags);
232 *a ^= mask;
233 __bi_local_irq_restore(flags);
234 }
235}
236
237/*
238 * __change_bit - Toggle a bit in memory
239 * @nr: the bit to change
240 * @addr: the address to start counting from
241 *
242 * Unlike change_bit(), this function is non-atomic and may be reordered.
243 * If it's called on the same region of memory simultaneously, the effect
244 * may be that only one operation succeeds.
245 */
246static inline void __change_bit(unsigned long nr, volatile unsigned long * addr)
247{
248 unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
249
250 *m ^= 1UL << (nr & SZLONG_MASK);
251}
252
253/*
254 * test_and_set_bit - Set a bit and return its old value
255 * @nr: Bit to set
256 * @addr: Address to count from
257 *
258 * This operation is atomic and cannot be reordered.
259 * It also implies a memory barrier.
260 */
261static inline int test_and_set_bit(unsigned long nr,
262 volatile unsigned long *addr)
263{
264 if (cpu_has_llsc && R10000_LLSC_WAR) {
265 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
266 unsigned long temp, res;
267
268 __asm__ __volatile__(
c4559f67 269 " .set mips3 \n"
1da177e4
LT
270 "1: " __LL "%0, %1 # test_and_set_bit \n"
271 " or %2, %0, %3 \n"
272 " " __SC "%2, %1 \n"
273 " beqzl %2, 1b \n"
274 " and %2, %0, %3 \n"
275#ifdef CONFIG_SMP
aac8aa77 276 " sync \n"
1da177e4 277#endif
aac8aa77 278 " .set mips0 \n"
1da177e4
LT
279 : "=&r" (temp), "=m" (*m), "=&r" (res)
280 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
281 : "memory");
282
283 return res != 0;
284 } else if (cpu_has_llsc) {
285 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
286 unsigned long temp, res;
287
288 __asm__ __volatile__(
aac8aa77
MR
289 " .set push \n"
290 " .set noreorder \n"
c4559f67 291 " .set mips3 \n"
aac8aa77 292 "1: " __LL "%0, %1 # test_and_set_bit \n"
1da177e4
LT
293 " or %2, %0, %3 \n"
294 " " __SC "%2, %1 \n"
295 " beqz %2, 1b \n"
296 " and %2, %0, %3 \n"
297#ifdef CONFIG_SMP
aac8aa77 298 " sync \n"
1da177e4 299#endif
aac8aa77 300 " .set pop \n"
1da177e4
LT
301 : "=&r" (temp), "=m" (*m), "=&r" (res)
302 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
303 : "memory");
304
305 return res != 0;
306 } else {
307 volatile unsigned long *a = addr;
308 unsigned long mask;
309 int retval;
310 __bi_flags;
311
312 a += nr >> SZLONG_LOG;
313 mask = 1UL << (nr & SZLONG_MASK);
314 __bi_local_irq_save(flags);
315 retval = (mask & *a) != 0;
316 *a |= mask;
317 __bi_local_irq_restore(flags);
318
319 return retval;
320 }
321}
322
323/*
324 * __test_and_set_bit - Set a bit and return its old value
325 * @nr: Bit to set
326 * @addr: Address to count from
327 *
328 * This operation is non-atomic and can be reordered.
329 * If two examples of this operation race, one can appear to succeed
330 * but actually fail. You must protect multiple accesses with a lock.
331 */
332static inline int __test_and_set_bit(unsigned long nr,
333 volatile unsigned long *addr)
334{
335 volatile unsigned long *a = addr;
336 unsigned long mask;
337 int retval;
338
339 a += nr >> SZLONG_LOG;
340 mask = 1UL << (nr & SZLONG_MASK);
341 retval = (mask & *a) != 0;
342 *a |= mask;
343
344 return retval;
345}
346
347/*
348 * test_and_clear_bit - Clear a bit and return its old value
349 * @nr: Bit to clear
350 * @addr: Address to count from
351 *
352 * This operation is atomic and cannot be reordered.
353 * It also implies a memory barrier.
354 */
355static inline int test_and_clear_bit(unsigned long nr,
356 volatile unsigned long *addr)
357{
358 if (cpu_has_llsc && R10000_LLSC_WAR) {
359 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
360 unsigned long temp, res;
361
362 __asm__ __volatile__(
c4559f67 363 " .set mips3 \n"
1da177e4
LT
364 "1: " __LL "%0, %1 # test_and_clear_bit \n"
365 " or %2, %0, %3 \n"
366 " xor %2, %3 \n"
aac8aa77 367 " " __SC "%2, %1 \n"
1da177e4
LT
368 " beqzl %2, 1b \n"
369 " and %2, %0, %3 \n"
370#ifdef CONFIG_SMP
371 " sync \n"
372#endif
aac8aa77 373 " .set mips0 \n"
1da177e4
LT
374 : "=&r" (temp), "=m" (*m), "=&r" (res)
375 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
376 : "memory");
377
378 return res != 0;
379 } else if (cpu_has_llsc) {
380 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
381 unsigned long temp, res;
382
383 __asm__ __volatile__(
aac8aa77
MR
384 " .set push \n"
385 " .set noreorder \n"
c4559f67 386 " .set mips3 \n"
aac8aa77 387 "1: " __LL "%0, %1 # test_and_clear_bit \n"
1da177e4
LT
388 " or %2, %0, %3 \n"
389 " xor %2, %3 \n"
aac8aa77 390 " " __SC "%2, %1 \n"
1da177e4
LT
391 " beqz %2, 1b \n"
392 " and %2, %0, %3 \n"
393#ifdef CONFIG_SMP
394 " sync \n"
395#endif
aac8aa77 396 " .set pop \n"
1da177e4
LT
397 : "=&r" (temp), "=m" (*m), "=&r" (res)
398 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
399 : "memory");
400
401 return res != 0;
402 } else {
403 volatile unsigned long *a = addr;
404 unsigned long mask;
405 int retval;
406 __bi_flags;
407
408 a += nr >> SZLONG_LOG;
409 mask = 1UL << (nr & SZLONG_MASK);
410 __bi_local_irq_save(flags);
411 retval = (mask & *a) != 0;
412 *a &= ~mask;
413 __bi_local_irq_restore(flags);
414
415 return retval;
416 }
417}
418
419/*
420 * __test_and_clear_bit - Clear a bit and return its old value
421 * @nr: Bit to clear
422 * @addr: Address to count from
423 *
424 * This operation is non-atomic and can be reordered.
425 * If two examples of this operation race, one can appear to succeed
426 * but actually fail. You must protect multiple accesses with a lock.
427 */
428static inline int __test_and_clear_bit(unsigned long nr,
429 volatile unsigned long * addr)
430{
431 volatile unsigned long *a = addr;
432 unsigned long mask;
433 int retval;
434
435 a += (nr >> SZLONG_LOG);
436 mask = 1UL << (nr & SZLONG_MASK);
437 retval = ((mask & *a) != 0);
438 *a &= ~mask;
439
440 return retval;
441}
442
443/*
444 * test_and_change_bit - Change a bit and return its old value
445 * @nr: Bit to change
446 * @addr: Address to count from
447 *
448 * This operation is atomic and cannot be reordered.
449 * It also implies a memory barrier.
450 */
451static inline int test_and_change_bit(unsigned long nr,
452 volatile unsigned long *addr)
453{
454 if (cpu_has_llsc && R10000_LLSC_WAR) {
455 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
456 unsigned long temp, res;
457
458 __asm__ __volatile__(
c4559f67 459 " .set mips3 \n"
aac8aa77 460 "1: " __LL "%0, %1 # test_and_change_bit \n"
1da177e4 461 " xor %2, %0, %3 \n"
aac8aa77 462 " " __SC "%2, %1 \n"
1da177e4
LT
463 " beqzl %2, 1b \n"
464 " and %2, %0, %3 \n"
465#ifdef CONFIG_SMP
466 " sync \n"
467#endif
aac8aa77 468 " .set mips0 \n"
1da177e4
LT
469 : "=&r" (temp), "=m" (*m), "=&r" (res)
470 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
471 : "memory");
472
473 return res != 0;
474 } else if (cpu_has_llsc) {
475 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
476 unsigned long temp, res;
477
478 __asm__ __volatile__(
aac8aa77
MR
479 " .set push \n"
480 " .set noreorder \n"
c4559f67 481 " .set mips3 \n"
aac8aa77 482 "1: " __LL "%0, %1 # test_and_change_bit \n"
1da177e4 483 " xor %2, %0, %3 \n"
aac8aa77 484 " " __SC "\t%2, %1 \n"
1da177e4
LT
485 " beqz %2, 1b \n"
486 " and %2, %0, %3 \n"
487#ifdef CONFIG_SMP
488 " sync \n"
489#endif
aac8aa77 490 " .set pop \n"
1da177e4
LT
491 : "=&r" (temp), "=m" (*m), "=&r" (res)
492 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
493 : "memory");
494
495 return res != 0;
496 } else {
497 volatile unsigned long *a = addr;
498 unsigned long mask, retval;
499 __bi_flags;
500
501 a += nr >> SZLONG_LOG;
502 mask = 1UL << (nr & SZLONG_MASK);
503 __bi_local_irq_save(flags);
504 retval = (mask & *a) != 0;
505 *a ^= mask;
506 __bi_local_irq_restore(flags);
507
508 return retval;
509 }
510}
511
512/*
513 * __test_and_change_bit - Change a bit and return its old value
514 * @nr: Bit to change
515 * @addr: Address to count from
516 *
517 * This operation is non-atomic and can be reordered.
518 * If two examples of this operation race, one can appear to succeed
519 * but actually fail. You must protect multiple accesses with a lock.
520 */
521static inline int __test_and_change_bit(unsigned long nr,
522 volatile unsigned long *addr)
523{
524 volatile unsigned long *a = addr;
525 unsigned long mask;
526 int retval;
527
528 a += (nr >> SZLONG_LOG);
529 mask = 1UL << (nr & SZLONG_MASK);
530 retval = ((mask & *a) != 0);
531 *a ^= mask;
532
533 return retval;
534}
535
536#undef __bi_flags
537#undef __bi_local_irq_save
538#undef __bi_local_irq_restore
539
540/*
541 * test_bit - Determine whether a bit is set
542 * @nr: bit number to test
543 * @addr: Address to start counting from
544 */
545static inline int test_bit(unsigned long nr, const volatile unsigned long *addr)
546{
547 return 1UL & (addr[nr >> SZLONG_LOG] >> (nr & SZLONG_MASK));
548}
549
550/*
ec917c2c 551 * Return the bit position (0..63) of the most significant 1 bit in a word
65903265
RB
552 * Returns -1 if no 1 bit exists
553 */
ec917c2c 554static inline int __ilog2(unsigned long x)
65903265
RB
555{
556 int lz;
557
ec917c2c
RB
558 if (sizeof(x) == 4) {
559 __asm__ (
560 " .set push \n"
561 " .set mips32 \n"
562 " clz %0, %1 \n"
563 " .set pop \n"
564 : "=r" (lz)
565 : "r" (x));
65903265 566
ec917c2c
RB
567 return 31 - lz;
568 }
569
570 BUG_ON(sizeof(x) != 8);
65903265
RB
571
572 __asm__ (
573 " .set push \n"
574 " .set mips64 \n"
575 " dclz %0, %1 \n"
576 " .set pop \n"
577 : "=r" (lz)
578 : "r" (x));
579
580 return 63 - lz;
581}
65903265
RB
582
583/*
584 * __ffs - find first bit in word.
1da177e4
LT
585 * @word: The word to search
586 *
65903265
RB
587 * Returns 0..SZLONG-1
588 * Undefined if no bit exists, so code should check against 0 first.
1da177e4 589 */
65903265 590static inline unsigned long __ffs(unsigned long word)
1da177e4 591{
ec917c2c 592#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
65903265
RB
593 return __ilog2(word & -word);
594#else
1da177e4
LT
595 int b = 0, s;
596
875d43e7 597#ifdef CONFIG_32BIT
1da177e4
LT
598 s = 16; if (word << 16 != 0) s = 0; b += s; word >>= s;
599 s = 8; if (word << 24 != 0) s = 0; b += s; word >>= s;
600 s = 4; if (word << 28 != 0) s = 0; b += s; word >>= s;
601 s = 2; if (word << 30 != 0) s = 0; b += s; word >>= s;
602 s = 1; if (word << 31 != 0) s = 0; b += s;
ec917c2c
RB
603
604 return b;
1da177e4 605#endif
875d43e7 606#ifdef CONFIG_64BIT
1da177e4
LT
607 s = 32; if (word << 32 != 0) s = 0; b += s; word >>= s;
608 s = 16; if (word << 48 != 0) s = 0; b += s; word >>= s;
609 s = 8; if (word << 56 != 0) s = 0; b += s; word >>= s;
610 s = 4; if (word << 60 != 0) s = 0; b += s; word >>= s;
611 s = 2; if (word << 62 != 0) s = 0; b += s; word >>= s;
612 s = 1; if (word << 63 != 0) s = 0; b += s;
ec917c2c 613
1da177e4 614 return b;
65903265 615#endif
ec917c2c 616#endif
1da177e4
LT
617}
618
619/*
65903265 620 * ffs - find first bit set.
1da177e4
LT
621 * @word: The word to search
622 *
65903265
RB
623 * Returns 1..SZLONG
624 * Returns 0 if no bit exists
1da177e4 625 */
65903265
RB
626
627static inline unsigned long ffs(unsigned long word)
1da177e4 628{
65903265
RB
629 if (!word)
630 return 0;
631
632 return __ffs(word) + 1;
1da177e4
LT
633}
634
635/*
65903265
RB
636 * ffz - find first zero in word.
637 * @word: The word to search
638 *
639 * Undefined if no zero exists, so code should check against ~0UL first.
1da177e4 640 */
65903265
RB
641static inline unsigned long ffz(unsigned long word)
642{
643 return __ffs (~word);
644}
645
646/*
2caf1900 647 * fls - find last bit set.
65903265
RB
648 * @word: The word to search
649 *
2caf1900
RB
650 * Returns 1..SZLONG
651 * Returns 0 if no bit exists
65903265 652 */
2caf1900 653static inline unsigned long fls(unsigned long word)
65903265 654{
ec917c2c 655#ifdef CONFIG_32BIT
2caf1900
RB
656#ifdef CONFIG_CPU_MIPS32
657 __asm__ ("clz %0, %1" : "=r" (word) : "r" (word));
658
659 return 32 - word;
660#else
661 {
662 int r = 32, s;
663
664 if (word == 0)
665 return 0;
666
65903265
RB
667 s = 16; if ((word & 0xffff0000)) s = 0; r -= s; word <<= s;
668 s = 8; if ((word & 0xff000000)) s = 0; r -= s; word <<= s;
669 s = 4; if ((word & 0xf0000000)) s = 0; r -= s; word <<= s;
670 s = 2; if ((word & 0xc0000000)) s = 0; r -= s; word <<= s;
671 s = 1; if ((word & 0x80000000)) s = 0; r -= s;
ec917c2c
RB
672
673 return r;
2caf1900 674 }
65903265 675#endif
2caf1900
RB
676#endif /* CONFIG_32BIT */
677
ec917c2c 678#ifdef CONFIG_64BIT
2caf1900
RB
679#ifdef CONFIG_CPU_MIPS64
680
681 __asm__ ("dclz %0, %1" : "=r" (word) : "r" (word));
682
683 return 64 - word;
684#else
685 {
686 int r = 64, s;
687
688 if (word == 0)
689 return 0;
690
65903265
RB
691 s = 32; if ((word & 0xffffffff00000000UL)) s = 0; r -= s; word <<= s;
692 s = 16; if ((word & 0xffff000000000000UL)) s = 0; r -= s; word <<= s;
693 s = 8; if ((word & 0xff00000000000000UL)) s = 0; r -= s; word <<= s;
694 s = 4; if ((word & 0xf000000000000000UL)) s = 0; r -= s; word <<= s;
695 s = 2; if ((word & 0xc000000000000000UL)) s = 0; r -= s; word <<= s;
696 s = 1; if ((word & 0x8000000000000000UL)) s = 0; r -= s;
ec917c2c 697
65903265 698 return r;
2caf1900 699 }
65903265 700#endif
2caf1900 701#endif /* CONFIG_64BIT */
65903265
RB
702}
703
3821af2f 704#define fls64(x) generic_fls64(x)
1da177e4
LT
705
706/*
707 * find_next_zero_bit - find the first zero bit in a memory region
708 * @addr: The address to base the search on
709 * @offset: The bitnumber to start searching at
710 * @size: The maximum size to search
711 */
712static inline unsigned long find_next_zero_bit(const unsigned long *addr,
713 unsigned long size, unsigned long offset)
714{
715 const unsigned long *p = addr + (offset >> SZLONG_LOG);
716 unsigned long result = offset & ~SZLONG_MASK;
717 unsigned long tmp;
718
719 if (offset >= size)
720 return size;
721 size -= result;
722 offset &= SZLONG_MASK;
723 if (offset) {
724 tmp = *(p++);
725 tmp |= ~0UL >> (_MIPS_SZLONG-offset);
726 if (size < _MIPS_SZLONG)
727 goto found_first;
728 if (~tmp)
729 goto found_middle;
730 size -= _MIPS_SZLONG;
731 result += _MIPS_SZLONG;
732 }
733 while (size & ~SZLONG_MASK) {
734 if (~(tmp = *(p++)))
735 goto found_middle;
736 result += _MIPS_SZLONG;
737 size -= _MIPS_SZLONG;
738 }
739 if (!size)
740 return result;
741 tmp = *p;
742
743found_first:
744 tmp |= ~0UL << size;
745 if (tmp == ~0UL) /* Are any bits zero? */
746 return result + size; /* Nope. */
747found_middle:
748 return result + ffz(tmp);
749}
750
751#define find_first_zero_bit(addr, size) \
752 find_next_zero_bit((addr), (size), 0)
753
754/*
755 * find_next_bit - find the next set bit in a memory region
756 * @addr: The address to base the search on
757 * @offset: The bitnumber to start searching at
758 * @size: The maximum size to search
759 */
760static inline unsigned long find_next_bit(const unsigned long *addr,
761 unsigned long size, unsigned long offset)
762{
763 const unsigned long *p = addr + (offset >> SZLONG_LOG);
764 unsigned long result = offset & ~SZLONG_MASK;
765 unsigned long tmp;
766
767 if (offset >= size)
768 return size;
769 size -= result;
770 offset &= SZLONG_MASK;
771 if (offset) {
772 tmp = *(p++);
773 tmp &= ~0UL << offset;
774 if (size < _MIPS_SZLONG)
775 goto found_first;
776 if (tmp)
777 goto found_middle;
778 size -= _MIPS_SZLONG;
779 result += _MIPS_SZLONG;
780 }
781 while (size & ~SZLONG_MASK) {
782 if ((tmp = *(p++)))
783 goto found_middle;
784 result += _MIPS_SZLONG;
785 size -= _MIPS_SZLONG;
786 }
787 if (!size)
788 return result;
789 tmp = *p;
790
791found_first:
792 tmp &= ~0UL >> (_MIPS_SZLONG - size);
793 if (tmp == 0UL) /* Are any bits set? */
794 return result + size; /* Nope. */
795found_middle:
796 return result + __ffs(tmp);
797}
798
799/*
800 * find_first_bit - find the first set bit in a memory region
801 * @addr: The address to start the search at
802 * @size: The maximum size to search
803 *
804 * Returns the bit-number of the first set bit, not the number of the byte
805 * containing a bit.
806 */
807#define find_first_bit(addr, size) \
808 find_next_bit((addr), (size), 0)
809
810#ifdef __KERNEL__
811
812/*
813 * Every architecture must define this function. It's the fastest
814 * way of searching a 140-bit bitmap where the first 100 bits are
815 * unlikely to be set. It's guaranteed that at least one of the 140
816 * bits is cleared.
817 */
818static inline int sched_find_first_bit(const unsigned long *b)
819{
875d43e7 820#ifdef CONFIG_32BIT
1da177e4
LT
821 if (unlikely(b[0]))
822 return __ffs(b[0]);
823 if (unlikely(b[1]))
824 return __ffs(b[1]) + 32;
825 if (unlikely(b[2]))
826 return __ffs(b[2]) + 64;
827 if (b[3])
828 return __ffs(b[3]) + 96;
829 return __ffs(b[4]) + 128;
830#endif
875d43e7 831#ifdef CONFIG_64BIT
1da177e4
LT
832 if (unlikely(b[0]))
833 return __ffs(b[0]);
834 if (unlikely(b[1]))
835 return __ffs(b[1]) + 64;
836 return __ffs(b[2]) + 128;
837#endif
838}
839
1da177e4
LT
840/*
841 * hweightN - returns the hamming weight of a N-bit word
842 * @x: the word to weigh
843 *
844 * The Hamming Weight of a number is the total number of bits set in it.
845 */
846
847#define hweight64(x) generic_hweight64(x)
848#define hweight32(x) generic_hweight32(x)
849#define hweight16(x) generic_hweight16(x)
850#define hweight8(x) generic_hweight8(x)
851
852static inline int __test_and_set_le_bit(unsigned long nr, unsigned long *addr)
853{
854 unsigned char *ADDR = (unsigned char *) addr;
855 int mask, retval;
856
857 ADDR += nr >> 3;
858 mask = 1 << (nr & 0x07);
859 retval = (mask & *ADDR) != 0;
860 *ADDR |= mask;
861
862 return retval;
863}
864
865static inline int __test_and_clear_le_bit(unsigned long nr, unsigned long *addr)
866{
867 unsigned char *ADDR = (unsigned char *) addr;
868 int mask, retval;
869
870 ADDR += nr >> 3;
871 mask = 1 << (nr & 0x07);
872 retval = (mask & *ADDR) != 0;
873 *ADDR &= ~mask;
874
875 return retval;
876}
877
878static inline int test_le_bit(unsigned long nr, const unsigned long * addr)
879{
880 const unsigned char *ADDR = (const unsigned char *) addr;
881 int mask;
882
883 ADDR += nr >> 3;
884 mask = 1 << (nr & 0x07);
885
886 return ((mask & *ADDR) != 0);
887}
888
889static inline unsigned long find_next_zero_le_bit(unsigned long *addr,
890 unsigned long size, unsigned long offset)
891{
892 unsigned long *p = ((unsigned long *) addr) + (offset >> SZLONG_LOG);
893 unsigned long result = offset & ~SZLONG_MASK;
894 unsigned long tmp;
895
896 if (offset >= size)
897 return size;
898 size -= result;
899 offset &= SZLONG_MASK;
900 if (offset) {
901 tmp = cpu_to_lelongp(p++);
902 tmp |= ~0UL >> (_MIPS_SZLONG-offset); /* bug or feature ? */
903 if (size < _MIPS_SZLONG)
904 goto found_first;
905 if (~tmp)
906 goto found_middle;
907 size -= _MIPS_SZLONG;
908 result += _MIPS_SZLONG;
909 }
910 while (size & ~SZLONG_MASK) {
911 if (~(tmp = cpu_to_lelongp(p++)))
912 goto found_middle;
913 result += _MIPS_SZLONG;
914 size -= _MIPS_SZLONG;
915 }
916 if (!size)
917 return result;
918 tmp = cpu_to_lelongp(p);
919
920found_first:
921 tmp |= ~0UL << size;
922 if (tmp == ~0UL) /* Are any bits zero? */
923 return result + size; /* Nope. */
924
925found_middle:
926 return result + ffz(tmp);
927}
928
929#define find_first_zero_le_bit(addr, size) \
930 find_next_zero_le_bit((addr), (size), 0)
931
932#define ext2_set_bit(nr,addr) \
933 __test_and_set_le_bit((nr),(unsigned long*)addr)
934#define ext2_clear_bit(nr, addr) \
935 __test_and_clear_le_bit((nr),(unsigned long*)addr)
936 #define ext2_set_bit_atomic(lock, nr, addr) \
937({ \
938 int ret; \
939 spin_lock(lock); \
940 ret = ext2_set_bit((nr), (addr)); \
941 spin_unlock(lock); \
942 ret; \
943})
944
945#define ext2_clear_bit_atomic(lock, nr, addr) \
946({ \
947 int ret; \
948 spin_lock(lock); \
949 ret = ext2_clear_bit((nr), (addr)); \
950 spin_unlock(lock); \
951 ret; \
952})
953#define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
954#define ext2_find_first_zero_bit(addr, size) \
955 find_first_zero_le_bit((unsigned long*)addr, size)
956#define ext2_find_next_zero_bit(addr, size, off) \
957 find_next_zero_le_bit((unsigned long*)addr, size, off)
958
959/*
960 * Bitmap functions for the minix filesystem.
961 *
962 * FIXME: These assume that Minix uses the native byte/bitorder.
963 * This limits the Minix filesystem's value for data exchange very much.
964 */
67b0ad57
AM
965#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
966#define minix_set_bit(nr,addr) __set_bit(nr,addr)
967#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
1da177e4
LT
968#define minix_test_bit(nr,addr) test_bit(nr,addr)
969#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
970
971#endif /* __KERNEL__ */
972
973#endif /* _ASM_BITOPS_H */
This page took 0.163874 seconds and 5 git commands to generate.