HUB interrupts are allocated per node, not per slice. Make
[deliverable/linux.git] / include / asm-mips / pgtable-64.h
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle
7 * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc.
8 */
9#ifndef _ASM_PGTABLE_64_H
10#define _ASM_PGTABLE_64_H
11
12#include <linux/config.h>
13#include <linux/linkage.h>
14
15#include <asm/addrspace.h>
16#include <asm/page.h>
17#include <asm/cachectl.h>
18
c6e8b587
RB
19#include <asm-generic/pgtable-nopud.h>
20
1da177e4
LT
21/*
22 * Each address space has 2 4K pages as its page directory, giving 1024
23 * (== PTRS_PER_PGD) 8 byte pointers to pmd tables. Each pmd table is a
c6e8b587
RB
24 * single 4K page, giving 512 (== PTRS_PER_PMD) 8 byte pointers to page
25 * tables. Each page table is also a single 4K page, giving 512 (==
26 * PTRS_PER_PTE) 8 byte ptes. Each pud entry is initialized to point to
27 * invalid_pmd_table, each pmd entry is initialized to point to
1da177e4
LT
28 * invalid_pte_table, each pte is initialized to 0. When memory is low,
29 * and a pmd table or a page table allocation fails, empty_bad_pmd_table
30 * and empty_bad_page_table is returned back to higher layer code, so
31 * that the failure is recognized later on. Linux does not seem to
32 * handle these failures very well though. The empty_bad_page_table has
33 * invalid pte entries in it, to force page faults.
34 *
35 * Kernel mappings: kernel mappings are held in the swapper_pg_table.
36 * The layout is identical to userspace except it's indexed with the
37 * fault address - VMALLOC_START.
38 */
39
40/* PMD_SHIFT determines the size of the area a second-level page table can map */
c6e8b587 41#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT + PTE_ORDER - 3))
1da177e4
LT
42#define PMD_SIZE (1UL << PMD_SHIFT)
43#define PMD_MASK (~(PMD_SIZE-1))
44
45/* PGDIR_SHIFT determines what a third-level page table entry can map */
c6e8b587 46#define PGDIR_SHIFT (PMD_SHIFT + (PAGE_SHIFT + PMD_ORDER - 3))
1da177e4
LT
47#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
48#define PGDIR_MASK (~(PGDIR_SIZE-1))
49
50/*
c6e8b587 51 * For 4kB page size we use a 3 level page tree and an 8kB pud, which
1da177e4
LT
52 * permits us mapping 40 bits of virtual address space.
53 *
54 * We used to implement 41 bits by having an order 1 pmd level but that seemed
55 * rather pointless.
56 *
57 * For 8kB page size we use a 3 level page tree which permits a total of
58 * 8TB of address space. Alternatively a 33-bit / 8GB organization using
59 * two levels would be easy to implement.
60 *
61 * For 16kB page size we use a 2 level page tree which permits a total of
f29244a5 62 * 36 bits of virtual address space. We could add a third level but it seems
1da177e4
LT
63 * like at the moment there's no need for this.
64 *
65 * For 64kB page size we use a 2 level page table tree for a total of 42 bits
66 * of virtual address space.
67 */
68#ifdef CONFIG_PAGE_SIZE_4KB
69#define PGD_ORDER 1
c6e8b587 70#define PUD_ORDER aieeee_attempt_to_allocate_pud
1da177e4
LT
71#define PMD_ORDER 0
72#define PTE_ORDER 0
73#endif
74#ifdef CONFIG_PAGE_SIZE_8KB
75#define PGD_ORDER 0
c6e8b587 76#define PUD_ORDER aieeee_attempt_to_allocate_pud
1da177e4
LT
77#define PMD_ORDER 0
78#define PTE_ORDER 0
79#endif
80#ifdef CONFIG_PAGE_SIZE_16KB
81#define PGD_ORDER 0
c6e8b587 82#define PUD_ORDER aieeee_attempt_to_allocate_pud
1da177e4
LT
83#define PMD_ORDER 0
84#define PTE_ORDER 0
85#endif
86#ifdef CONFIG_PAGE_SIZE_64KB
87#define PGD_ORDER 0
c6e8b587 88#define PUD_ORDER aieeee_attempt_to_allocate_pud
1da177e4
LT
89#define PMD_ORDER 0
90#define PTE_ORDER 0
91#endif
92
93#define PTRS_PER_PGD ((PAGE_SIZE << PGD_ORDER) / sizeof(pgd_t))
94#define PTRS_PER_PMD ((PAGE_SIZE << PMD_ORDER) / sizeof(pmd_t))
95#define PTRS_PER_PTE ((PAGE_SIZE << PTE_ORDER) / sizeof(pte_t))
96
97#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
d455a369 98#define FIRST_USER_ADDRESS 0
1da177e4 99
f29244a5 100#define VMALLOC_START MAP_BASE
1da177e4
LT
101#define VMALLOC_END \
102 (VMALLOC_START + PTRS_PER_PGD * PTRS_PER_PMD * PTRS_PER_PTE * PAGE_SIZE)
103
104#define pte_ERROR(e) \
105 printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
106#define pmd_ERROR(e) \
107 printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
108#define pgd_ERROR(e) \
109 printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
110
c6e8b587
RB
111extern pte_t invalid_pte_table[PTRS_PER_PTE];
112extern pte_t empty_bad_page_table[PTRS_PER_PTE];
113extern pmd_t invalid_pmd_table[PTRS_PER_PMD];
114extern pmd_t empty_bad_pmd_table[PTRS_PER_PMD];
1da177e4
LT
115
116/*
117 * Empty pmd entries point to the invalid_pte_table.
118 */
119static inline int pmd_none(pmd_t pmd)
120{
121 return pmd_val(pmd) == (unsigned long) invalid_pte_table;
122}
123
124#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
125
126static inline int pmd_present(pmd_t pmd)
127{
128 return pmd_val(pmd) != (unsigned long) invalid_pte_table;
129}
130
131static inline void pmd_clear(pmd_t *pmdp)
132{
133 pmd_val(*pmdp) = ((unsigned long) invalid_pte_table);
134}
135
136/*
f29244a5 137 * Empty pud entries point to the invalid_pmd_table.
1da177e4 138 */
c6e8b587 139static inline int pud_none(pud_t pud)
1da177e4 140{
c6e8b587 141 return pud_val(pud) == (unsigned long) invalid_pmd_table;
1da177e4
LT
142}
143
c6e8b587
RB
144static inline int pud_bad(pud_t pud)
145{
146 return pud_val(pud) & ~PAGE_MASK;
147}
1da177e4 148
c6e8b587 149static inline int pud_present(pud_t pud)
1da177e4 150{
c6e8b587 151 return pud_val(pud) != (unsigned long) invalid_pmd_table;
1da177e4
LT
152}
153
c6e8b587 154static inline void pud_clear(pud_t *pudp)
1da177e4 155{
c6e8b587 156 pud_val(*pudp) = ((unsigned long) invalid_pmd_table);
1da177e4
LT
157}
158
159#define pte_page(x) pfn_to_page((unsigned long)((pte_val(x) >> PAGE_SHIFT)))
160#ifdef CONFIG_CPU_VR41XX
161#define pte_pfn(x) ((unsigned long)((x).pte >> (PAGE_SHIFT + 2)))
162#define pfn_pte(pfn, prot) __pte(((pfn) << (PAGE_SHIFT + 2)) | pgprot_val(prot))
163#else
164#define pte_pfn(x) ((unsigned long)((x).pte >> PAGE_SHIFT))
165#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
166#endif
167
168#define __pgd_offset(address) pgd_index(address)
f29244a5 169#define __pud_offset(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1da177e4
LT
170#define page_pte(page) page_pte_prot(page, __pgprot(0))
171
172/* to find an entry in a kernel page-table-directory */
173#define pgd_offset_k(address) pgd_offset(&init_mm, 0)
174
f29244a5 175#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1da177e4
LT
176
177/* to find an entry in a page-table-directory */
178#define pgd_offset(mm,addr) ((mm)->pgd + pgd_index(addr))
179
c6e8b587 180static inline unsigned long pud_page(pud_t pud)
1da177e4 181{
c6e8b587 182 return pud_val(pud);
1da177e4
LT
183}
184
185/* Find an entry in the second-level page table.. */
c6e8b587 186static inline pmd_t *pmd_offset(pud_t * pud, unsigned long address)
1da177e4 187{
c6e8b587 188 return (pmd_t *) pud_page(*pud) +
1da177e4
LT
189 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
190}
191
192/* Find an entry in the third-level page table.. */
193#define __pte_offset(address) \
194 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
195#define pte_offset(dir, address) \
196 ((pte_t *) (pmd_page_kernel(*dir)) + __pte_offset(address))
197#define pte_offset_kernel(dir, address) \
198 ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address))
199#define pte_offset_map(dir, address) \
200 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
201#define pte_offset_map_nested(dir, address) \
202 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
203#define pte_unmap(pte) ((void)(pte))
204#define pte_unmap_nested(pte) ((void)(pte))
205
206/*
207 * Initialize a new pgd / pmd table with invalid pointers.
208 */
209extern void pgd_init(unsigned long page);
210extern void pmd_init(unsigned long page, unsigned long pagetable);
211
212/*
213 * Non-present pages: high 24 bits are offset, next 8 bits type,
214 * low 32 bits zero.
215 */
216static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
217{ pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }
218
219#define __swp_type(x) (((x).val >> 32) & 0xff)
220#define __swp_offset(x) ((x).val >> 40)
221#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
222#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
223#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
224
225/*
226 * Bits 0, 1, 2, 7 and 8 are taken, split up the 32 bits of offset
227 * into this range:
228 */
229#define PTE_FILE_MAX_BITS 32
230
231#define pte_to_pgoff(_pte) \
232 ((((_pte).pte >> 3) & 0x1f ) + (((_pte).pte >> 9) << 6 ))
233
234#define pgoff_to_pte(off) \
235 ((pte_t) { (((off) & 0x1f) << 3) + (((off) >> 6) << 9) + _PAGE_FILE })
236
237#endif /* _ASM_PGTABLE_64_H */
This page took 0.117142 seconds and 5 git commands to generate.