mm: remove ptep_test_and_clear_dirty and ptep_clear_flush_dirty
[deliverable/linux.git] / include / asm-xtensa / pgtable.h
CommitLineData
9a8fd558 1/*
f30c2269 2 * linux/include/asm-xtensa/pgtable.h
9a8fd558
CZ
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version2 as
6 * published by the Free Software Foundation.
7 *
8 * Copyright (C) 2001 - 2005 Tensilica Inc.
9 */
10
11#ifndef _XTENSA_PGTABLE_H
12#define _XTENSA_PGTABLE_H
13
14#include <asm-generic/pgtable-nopmd.h>
15#include <asm/page.h>
16
9a8fd558
CZ
17/*
18 * We only use two ring levels, user and kernel space.
19 */
20
21#define USER_RING 1 /* user ring level */
22#define KERNEL_RING 0 /* kernel ring level */
23
24/*
25 * The Xtensa architecture port of Linux has a two-level page table system,
26 * i.e. the logical three-level Linux page table layout are folded.
27 * Each task has the following memory page tables:
28 *
29 * PGD table (page directory), ie. 3rd-level page table:
30 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
31 * (Architectures that don't have the PMD folded point to the PMD tables)
32 *
33 * The pointer to the PGD table for a given task can be retrieved from
34 * the task structure (struct task_struct*) t, e.g. current():
35 * (t->mm ? t->mm : t->active_mm)->pgd
36 *
37 * PMD tables (page middle-directory), ie. 2nd-level page tables:
38 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
39 *
40 * PTE tables (page table entry), ie. 1st-level page tables:
41 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
42 * invalid_pte_table for absent mappings.
43 *
44 * The individual pages are 4 kB big with special pages for the empty_zero_page.
45 */
46#define PGDIR_SHIFT 22
47#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
48#define PGDIR_MASK (~(PGDIR_SIZE-1))
49
50/*
51 * Entries per page directory level: we use two-level, so
52 * we don't really have any PMD directory physically.
53 */
54#define PTRS_PER_PTE 1024
55#define PTRS_PER_PTE_SHIFT 10
56#define PTRS_PER_PMD 1
57#define PTRS_PER_PGD 1024
58#define PGD_ORDER 0
59#define PMD_ORDER 0
60#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
173d6681 61#define FIRST_USER_ADDRESS 0
9a8fd558
CZ
62#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
63
64/* virtual memory area. We keep a distance to other memory regions to be
65 * on the safe side. We also use this area for cache aliasing.
66 */
67
68// FIXME: virtual memory area must be configuration-dependent
69
70#define VMALLOC_START 0xC0000000
71#define VMALLOC_END 0xC7FF0000
72
73/* Xtensa Linux config PTE layout (when present):
74 * 31-12: PPN
75 * 11-6: Software
76 * 5-4: RING
77 * 3-0: CA
78 *
79 * Similar to the Alpha and MIPS ports, we need to keep track of the ref
80 * and mod bits in software. We have a software "you can read
81 * from this page" bit, and a hardware one which actually lets the
82 * process read from the page. On the same token we have a software
83 * writable bit and the real hardware one which actually lets the
84 * process write to the page.
85 *
86 * See further below for PTE layout for swapped-out pages.
87 */
88
89#define _PAGE_VALID (1<<0) /* hardware: page is accessible */
90#define _PAGE_WRENABLE (1<<1) /* hardware: page is writable */
91
92/* None of these cache modes include MP coherency: */
93#define _PAGE_NO_CACHE (0<<2) /* bypass, non-speculative */
94#if XCHAL_DCACHE_IS_WRITEBACK
95# define _PAGE_WRITEBACK (1<<2) /* write back */
96# define _PAGE_WRITETHRU (2<<2) /* write through */
97#else
98# define _PAGE_WRITEBACK (1<<2) /* assume write through */
99# define _PAGE_WRITETHRU (1<<2)
100#endif
101#define _PAGE_NOALLOC (3<<2) /* don't allocate cache,if not cached */
102#define _CACHE_MASK (3<<2)
103
104#define _PAGE_USER (1<<4) /* user access (ring=1) */
105#define _PAGE_KERNEL (0<<4) /* kernel access (ring=0) */
106
107/* Software */
108#define _PAGE_RW (1<<6) /* software: page writable */
109#define _PAGE_DIRTY (1<<7) /* software: page dirty */
110#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
111#define _PAGE_FILE (1<<9) /* nonlinear file mapping*/
112
113#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _CACHE_MASK | _PAGE_DIRTY)
114#define _PAGE_PRESENT ( _PAGE_VALID | _PAGE_WRITEBACK | _PAGE_ACCESSED)
115
116#ifdef CONFIG_MMU
117
118# define PAGE_NONE __pgprot(_PAGE_PRESENT)
119# define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_RW)
120# define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
121# define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
122# define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_KERNEL | _PAGE_WRENABLE)
123# define PAGE_INVALID __pgprot(_PAGE_USER)
124
125# if (DCACHE_WAY_SIZE > PAGE_SIZE)
126# define PAGE_DIRECTORY __pgprot(_PAGE_VALID | _PAGE_ACCESSED | _PAGE_KERNEL)
127# else
128# define PAGE_DIRECTORY __pgprot(_PAGE_PRESENT | _PAGE_KERNEL)
129# endif
130
131#else /* no mmu */
132
133# define PAGE_NONE __pgprot(0)
134# define PAGE_SHARED __pgprot(0)
135# define PAGE_COPY __pgprot(0)
136# define PAGE_READONLY __pgprot(0)
137# define PAGE_KERNEL __pgprot(0)
138
139#endif
140
141/*
142 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
143 * the MMU can't do page protection for execute, and considers that the same as
144 * read. Also, write permissions may imply read permissions.
145 * What follows is the closest we can get by reasonable means..
146 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
147 */
148#define __P000 PAGE_NONE /* private --- */
149#define __P001 PAGE_READONLY /* private --r */
150#define __P010 PAGE_COPY /* private -w- */
151#define __P011 PAGE_COPY /* private -wr */
152#define __P100 PAGE_READONLY /* private x-- */
153#define __P101 PAGE_READONLY /* private x-r */
154#define __P110 PAGE_COPY /* private xw- */
155#define __P111 PAGE_COPY /* private xwr */
156
157#define __S000 PAGE_NONE /* shared --- */
158#define __S001 PAGE_READONLY /* shared --r */
159#define __S010 PAGE_SHARED /* shared -w- */
160#define __S011 PAGE_SHARED /* shared -wr */
161#define __S100 PAGE_READONLY /* shared x-- */
162#define __S101 PAGE_READONLY /* shared x-r */
163#define __S110 PAGE_SHARED /* shared xw- */
164#define __S111 PAGE_SHARED /* shared xwr */
165
166#ifndef __ASSEMBLY__
167
168#define pte_ERROR(e) \
169 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
170#define pgd_ERROR(e) \
171 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
172
173extern unsigned long empty_zero_page[1024];
174
175#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
176
177extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
178
179/*
180 * The pmd contains the kernel virtual address of the pte page.
181 */
46a82b2d 182#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
9a8fd558
CZ
183#define pmd_page(pmd) virt_to_page(pmd_val(pmd))
184
185/*
186 * The following only work if pte_present() is true.
187 */
188#define pte_none(pte) (!(pte_val(pte) ^ _PAGE_USER))
189#define pte_present(pte) (pte_val(pte) & _PAGE_VALID)
190#define pte_clear(mm,addr,ptep) \
191 do { update_pte(ptep, __pte(_PAGE_USER)); } while(0)
192
193#define pmd_none(pmd) (!pmd_val(pmd))
194#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
195#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
196#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
197
198/* Note: We use the _PAGE_USER bit to indicate write-protect kernel memory */
199
9a8fd558
CZ
200static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
201static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
202static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
203static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
204static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW | _PAGE_WRENABLE); return pte; }
9a8fd558
CZ
205static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
206static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
9a8fd558
CZ
207static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
208static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
209static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
210
211/*
212 * Conversion functions: convert a page and protection to a page entry,
213 * and a page entry and page directory to the page they refer to.
214 */
215#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
216#define pte_same(a,b) (pte_val(a) == pte_val(b))
217#define pte_page(x) pfn_to_page(pte_pfn(x))
218#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
219#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
220
d99cf715 221static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
9a8fd558
CZ
222{
223 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
224}
225
226/*
227 * Certain architectures need to do special things when pte's
228 * within a page table are directly modified. Thus, the following
229 * hook is made available.
230 */
231static inline void update_pte(pte_t *ptep, pte_t pteval)
232{
233 *ptep = pteval;
234#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
235 __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (ptep));
236#endif
237}
238
8c65b4a6
TS
239struct mm_struct;
240
d99cf715 241static inline void
9a8fd558
CZ
242set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
243{
244 update_pte(ptep, pteval);
245}
246
247
d99cf715 248static inline void
9a8fd558
CZ
249set_pmd(pmd_t *pmdp, pmd_t pmdval)
250{
251 *pmdp = pmdval;
252#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
253 __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (pmdp));
254#endif
255}
256
8c65b4a6 257struct vm_area_struct;
9a8fd558
CZ
258
259static inline int
260ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
261 pte_t *ptep)
262{
263 pte_t pte = *ptep;
264 if (!pte_young(pte))
265 return 0;
266 update_pte(ptep, pte_mkold(pte));
267 return 1;
268}
269
9a8fd558
CZ
270static inline pte_t
271ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
272{
273 pte_t pte = *ptep;
274 pte_clear(mm, addr, ptep);
275 return pte;
276}
277
278static inline void
279ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
280{
281 pte_t pte = *ptep;
282 update_pte(ptep, pte_wrprotect(pte));
283}
284
285/* to find an entry in a kernel page-table-directory */
286#define pgd_offset_k(address) pgd_offset(&init_mm, address)
287
288/* to find an entry in a page-table-directory */
289#define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
290
291#define pgd_index(address) ((address) >> PGDIR_SHIFT)
292
293/* Find an entry in the second-level page table.. */
294#define pmd_offset(dir,address) ((pmd_t*)(dir))
295
296/* Find an entry in the third-level page table.. */
297#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
298#define pte_offset_kernel(dir,addr) \
46a82b2d 299 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
9a8fd558
CZ
300#define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
301#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr))
302
303#define pte_unmap(pte) do { } while (0)
304#define pte_unmap_nested(pte) do { } while (0)
305
306
307/*
308 * Encode and decode a swap entry.
309 * Each PTE in a process VM's page table is either:
310 * "present" -- valid and not swapped out, protection bits are meaningful;
311 * "not present" -- which further subdivides in these two cases:
312 * "none" -- no mapping at all; identified by pte_none(), set by pte_clear(
313 * "swapped out" -- the page is swapped out, and the SWP macros below
314 * are used to store swap file info in the PTE itself.
315 *
316 * In the Xtensa processor MMU, any PTE entries in user space (or anywhere
317 * in virtual memory that can map differently across address spaces)
318 * must have a correct ring value that represents the RASID field that
319 * is changed when switching address spaces. Eg. such PTE entries cannot
320 * be set to ring zero, because that can cause a (global) kernel ASID
321 * entry to be created in the TLBs (even with invalid cache attribute),
322 * potentially causing a multihit exception when going back to another
323 * address space that mapped the same virtual address at another ring.
324 *
325 * SO: we avoid using ring bits (_PAGE_RING_MASK) in "not present" PTEs.
326 * We also avoid using the _PAGE_VALID bit which must be zero for non-present
327 * pages.
328 *
329 * We end up with the following available bits: 1..3 and 7..31.
330 * We don't bother with 1..3 for now (we can use them later if needed),
331 * and chose to allocate 6 bits for SWP_TYPE and the remaining 19 bits
332 * for SWP_OFFSET. At least 5 bits are needed for SWP_TYPE, because it
333 * is currently implemented as an index into swap_info[MAX_SWAPFILES]
334 * and MAX_SWAPFILES is currently defined as 32 in <linux/swap.h>.
335 * However, for some reason all other architectures in the 2.4 kernel
336 * reserve either 6, 7, or 8 bits so I'll not detract from that for now. :)
337 * SWP_OFFSET is an offset into the swap file in page-size units, so
338 * with 4 kB pages, 19 bits supports a maximum swap file size of 2 GB.
339 *
340 * FIXME: 2 GB isn't very big. Other bits can be used to allow
341 * larger swap sizes. In the meantime, it appears relatively easy to get
342 * around the 2 GB limitation by simply using multiple swap files.
343 */
344
345#define __swp_type(entry) (((entry).val >> 7) & 0x3f)
346#define __swp_offset(entry) ((entry).val >> 13)
347#define __swp_entry(type,offs) ((swp_entry_t) {((type) << 7) | ((offs) << 13)})
348#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
349#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
350
351#define PTE_FILE_MAX_BITS 29
352#define pte_to_pgoff(pte) (pte_val(pte) >> 3)
353#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
354
355
356#endif /* !defined (__ASSEMBLY__) */
357
358
359#ifdef __ASSEMBLY__
360
361/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
362 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
363 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
364 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
365 *
366 * Note: We require an additional temporary register which can be the same as
367 * the register that holds the address.
368 *
369 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
370 *
371 */
372#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
373#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
374
375#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
376 _PGD_INDEX(tmp, adr); \
377 addx4 mm, tmp, mm
378
379#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
380 srli pmd, pmd, PAGE_SHIFT; \
381 slli pmd, pmd, PAGE_SHIFT; \
382 addx4 pmd, tmp, pmd
383
384#else
385
386extern void paging_init(void);
387
388#define kern_addr_valid(addr) (1)
389
390extern void update_mmu_cache(struct vm_area_struct * vma,
391 unsigned long address, pte_t pte);
392
393/*
33bf5610 394 * remap a physical page `pfn' of size `size' with page protection `prot'
9a8fd558
CZ
395 * into virtual address `from'
396 */
33bf5610
RD
397#define io_remap_pfn_range(vma,from,pfn,size,prot) \
398 remap_pfn_range(vma, from, pfn, size, prot)
9a8fd558
CZ
399
400
401/* No page table caches to init */
402
403#define pgtable_cache_init() do { } while (0)
404
405typedef pte_t *pte_addr_t;
406
407#endif /* !defined (__ASSEMBLY__) */
408
409#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
9a8fd558
CZ
410#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
411#define __HAVE_ARCH_PTEP_SET_WRPROTECT
412#define __HAVE_ARCH_PTEP_MKDIRTY
413#define __HAVE_ARCH_PTE_SAME
414
415#include <asm-generic/pgtable.h>
416
417#endif /* _XTENSA_PGTABLE_H */
This page took 0.249177 seconds and 5 git commands to generate.