crypto: skcipher - Add low-level skcipher interface
[deliverable/linux.git] / include / crypto / skcipher.h
CommitLineData
61da88e2
HX
1/*
2 * Symmetric key ciphers.
3 *
7a7ffe65 4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
61da88e2
HX
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13#ifndef _CRYPTO_SKCIPHER_H
14#define _CRYPTO_SKCIPHER_H
15
16#include <linux/crypto.h>
03bf712f
HX
17#include <linux/kernel.h>
18#include <linux/slab.h>
61da88e2 19
7a7ffe65
HX
20/**
21 * struct skcipher_request - Symmetric key cipher request
22 * @cryptlen: Number of bytes to encrypt or decrypt
23 * @iv: Initialisation Vector
24 * @src: Source SG list
25 * @dst: Destination SG list
26 * @base: Underlying async request request
27 * @__ctx: Start of private context data
28 */
29struct skcipher_request {
30 unsigned int cryptlen;
31
32 u8 *iv;
33
34 struct scatterlist *src;
35 struct scatterlist *dst;
36
37 struct crypto_async_request base;
38
39 void *__ctx[] CRYPTO_MINALIGN_ATTR;
40};
41
61da88e2
HX
42/**
43 * struct skcipher_givcrypt_request - Crypto request with IV generation
44 * @seq: Sequence number for IV generation
45 * @giv: Space for generated IV
46 * @creq: The crypto request itself
47 */
48struct skcipher_givcrypt_request {
49 u64 seq;
50 u8 *giv;
51
52 struct ablkcipher_request creq;
53};
54
7a7ffe65
HX
55struct crypto_skcipher {
56 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
57 unsigned int keylen);
58 int (*encrypt)(struct skcipher_request *req);
59 int (*decrypt)(struct skcipher_request *req);
60
61 unsigned int ivsize;
62 unsigned int reqsize;
973fb3fb 63 unsigned int keysize;
a1383cd8 64
7a7ffe65
HX
65 struct crypto_tfm base;
66};
67
4e6c3df4
HX
68/**
69 * struct skcipher_alg - symmetric key cipher definition
70 * @min_keysize: Minimum key size supported by the transformation. This is the
71 * smallest key length supported by this transformation algorithm.
72 * This must be set to one of the pre-defined values as this is
73 * not hardware specific. Possible values for this field can be
74 * found via git grep "_MIN_KEY_SIZE" include/crypto/
75 * @max_keysize: Maximum key size supported by the transformation. This is the
76 * largest key length supported by this transformation algorithm.
77 * This must be set to one of the pre-defined values as this is
78 * not hardware specific. Possible values for this field can be
79 * found via git grep "_MAX_KEY_SIZE" include/crypto/
80 * @setkey: Set key for the transformation. This function is used to either
81 * program a supplied key into the hardware or store the key in the
82 * transformation context for programming it later. Note that this
83 * function does modify the transformation context. This function can
84 * be called multiple times during the existence of the transformation
85 * object, so one must make sure the key is properly reprogrammed into
86 * the hardware. This function is also responsible for checking the key
87 * length for validity. In case a software fallback was put in place in
88 * the @cra_init call, this function might need to use the fallback if
89 * the algorithm doesn't support all of the key sizes.
90 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
91 * the supplied scatterlist containing the blocks of data. The crypto
92 * API consumer is responsible for aligning the entries of the
93 * scatterlist properly and making sure the chunks are correctly
94 * sized. In case a software fallback was put in place in the
95 * @cra_init call, this function might need to use the fallback if
96 * the algorithm doesn't support all of the key sizes. In case the
97 * key was stored in transformation context, the key might need to be
98 * re-programmed into the hardware in this function. This function
99 * shall not modify the transformation context, as this function may
100 * be called in parallel with the same transformation object.
101 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
102 * and the conditions are exactly the same.
103 * @init: Initialize the cryptographic transformation object. This function
104 * is used to initialize the cryptographic transformation object.
105 * This function is called only once at the instantiation time, right
106 * after the transformation context was allocated. In case the
107 * cryptographic hardware has some special requirements which need to
108 * be handled by software, this function shall check for the precise
109 * requirement of the transformation and put any software fallbacks
110 * in place.
111 * @exit: Deinitialize the cryptographic transformation object. This is a
112 * counterpart to @init, used to remove various changes set in
113 * @init.
114 * @ivsize: IV size applicable for transformation. The consumer must provide an
115 * IV of exactly that size to perform the encrypt or decrypt operation.
116 * @chunksize: Equal to the block size except for stream ciphers such as
117 * CTR where it is set to the underlying block size.
118 *
119 * All fields except @ivsize are mandatory and must be filled.
120 */
121struct skcipher_alg {
122 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
123 unsigned int keylen);
124 int (*encrypt)(struct skcipher_request *req);
125 int (*decrypt)(struct skcipher_request *req);
126 int (*init)(struct crypto_skcipher *tfm);
127 void (*exit)(struct crypto_skcipher *tfm);
128
129 unsigned int min_keysize;
130 unsigned int max_keysize;
131 unsigned int ivsize;
132 unsigned int chunksize;
133
134 struct crypto_alg base;
135};
136
7a7ffe65
HX
137#define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
138 char __##name##_desc[sizeof(struct skcipher_request) + \
139 crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
140 struct skcipher_request *name = (void *)__##name##_desc
141
61da88e2
HX
142static inline struct crypto_ablkcipher *skcipher_givcrypt_reqtfm(
143 struct skcipher_givcrypt_request *req)
144{
145 return crypto_ablkcipher_reqtfm(&req->creq);
146}
147
03bf712f
HX
148static inline int crypto_skcipher_givencrypt(
149 struct skcipher_givcrypt_request *req)
150{
151 struct ablkcipher_tfm *crt =
152 crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req));
153 return crt->givencrypt(req);
154};
155
156static inline int crypto_skcipher_givdecrypt(
157 struct skcipher_givcrypt_request *req)
158{
159 struct ablkcipher_tfm *crt =
160 crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req));
161 return crt->givdecrypt(req);
162};
163
164static inline void skcipher_givcrypt_set_tfm(
165 struct skcipher_givcrypt_request *req, struct crypto_ablkcipher *tfm)
166{
167 req->creq.base.tfm = crypto_ablkcipher_tfm(tfm);
168}
169
170static inline struct skcipher_givcrypt_request *skcipher_givcrypt_cast(
171 struct crypto_async_request *req)
172{
173 return container_of(ablkcipher_request_cast(req),
174 struct skcipher_givcrypt_request, creq);
175}
176
177static inline struct skcipher_givcrypt_request *skcipher_givcrypt_alloc(
178 struct crypto_ablkcipher *tfm, gfp_t gfp)
179{
180 struct skcipher_givcrypt_request *req;
181
182 req = kmalloc(sizeof(struct skcipher_givcrypt_request) +
183 crypto_ablkcipher_reqsize(tfm), gfp);
184
185 if (likely(req))
186 skcipher_givcrypt_set_tfm(req, tfm);
187
188 return req;
189}
190
191static inline void skcipher_givcrypt_free(struct skcipher_givcrypt_request *req)
192{
193 kfree(req);
194}
195
196static inline void skcipher_givcrypt_set_callback(
197 struct skcipher_givcrypt_request *req, u32 flags,
3e3dc25f 198 crypto_completion_t compl, void *data)
03bf712f 199{
3e3dc25f 200 ablkcipher_request_set_callback(&req->creq, flags, compl, data);
03bf712f
HX
201}
202
203static inline void skcipher_givcrypt_set_crypt(
204 struct skcipher_givcrypt_request *req,
205 struct scatterlist *src, struct scatterlist *dst,
206 unsigned int nbytes, void *iv)
207{
208 ablkcipher_request_set_crypt(&req->creq, src, dst, nbytes, iv);
209}
210
211static inline void skcipher_givcrypt_set_giv(
212 struct skcipher_givcrypt_request *req, u8 *giv, u64 seq)
213{
214 req->giv = giv;
215 req->seq = seq;
216}
217
7a7ffe65
HX
218/**
219 * DOC: Symmetric Key Cipher API
220 *
221 * Symmetric key cipher API is used with the ciphers of type
222 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
223 *
224 * Asynchronous cipher operations imply that the function invocation for a
225 * cipher request returns immediately before the completion of the operation.
226 * The cipher request is scheduled as a separate kernel thread and therefore
227 * load-balanced on the different CPUs via the process scheduler. To allow
228 * the kernel crypto API to inform the caller about the completion of a cipher
229 * request, the caller must provide a callback function. That function is
230 * invoked with the cipher handle when the request completes.
231 *
232 * To support the asynchronous operation, additional information than just the
233 * cipher handle must be supplied to the kernel crypto API. That additional
234 * information is given by filling in the skcipher_request data structure.
235 *
236 * For the symmetric key cipher API, the state is maintained with the tfm
237 * cipher handle. A single tfm can be used across multiple calls and in
238 * parallel. For asynchronous block cipher calls, context data supplied and
239 * only used by the caller can be referenced the request data structure in
240 * addition to the IV used for the cipher request. The maintenance of such
241 * state information would be important for a crypto driver implementer to
242 * have, because when calling the callback function upon completion of the
243 * cipher operation, that callback function may need some information about
244 * which operation just finished if it invoked multiple in parallel. This
245 * state information is unused by the kernel crypto API.
246 */
247
248static inline struct crypto_skcipher *__crypto_skcipher_cast(
249 struct crypto_tfm *tfm)
250{
251 return container_of(tfm, struct crypto_skcipher, base);
252}
253
254/**
255 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
256 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
257 * skcipher cipher
258 * @type: specifies the type of the cipher
259 * @mask: specifies the mask for the cipher
260 *
261 * Allocate a cipher handle for an skcipher. The returned struct
262 * crypto_skcipher is the cipher handle that is required for any subsequent
263 * API invocation for that skcipher.
264 *
265 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
266 * of an error, PTR_ERR() returns the error code.
267 */
268struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
269 u32 type, u32 mask);
270
271static inline struct crypto_tfm *crypto_skcipher_tfm(
272 struct crypto_skcipher *tfm)
273{
274 return &tfm->base;
275}
276
277/**
278 * crypto_free_skcipher() - zeroize and free cipher handle
279 * @tfm: cipher handle to be freed
280 */
281static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
282{
283 crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
284}
285
286/**
287 * crypto_has_skcipher() - Search for the availability of an skcipher.
288 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
289 * skcipher
290 * @type: specifies the type of the cipher
291 * @mask: specifies the mask for the cipher
292 *
293 * Return: true when the skcipher is known to the kernel crypto API; false
294 * otherwise
295 */
296static inline int crypto_has_skcipher(const char *alg_name, u32 type,
297 u32 mask)
298{
299 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
300 crypto_skcipher_mask(mask));
301}
302
4e6c3df4
HX
303/**
304 * crypto_has_skcipher2() - Search for the availability of an skcipher.
305 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
306 * skcipher
307 * @type: specifies the type of the skcipher
308 * @mask: specifies the mask for the skcipher
309 *
310 * Return: true when the skcipher is known to the kernel crypto API; false
311 * otherwise
312 */
313int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
314
a2d382a4
HX
315static inline const char *crypto_skcipher_driver_name(
316 struct crypto_skcipher *tfm)
317{
92b3cad3 318 return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
a2d382a4
HX
319}
320
4e6c3df4
HX
321static inline struct skcipher_alg *crypto_skcipher_alg(
322 struct crypto_skcipher *tfm)
323{
324 return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
325 struct skcipher_alg, base);
326}
327
328static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
329{
330 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
331 CRYPTO_ALG_TYPE_BLKCIPHER)
332 return alg->base.cra_blkcipher.ivsize;
333
334 if (alg->base.cra_ablkcipher.encrypt)
335 return alg->base.cra_ablkcipher.ivsize;
336
337 return alg->ivsize;
338}
339
7a7ffe65
HX
340/**
341 * crypto_skcipher_ivsize() - obtain IV size
342 * @tfm: cipher handle
343 *
344 * The size of the IV for the skcipher referenced by the cipher handle is
345 * returned. This IV size may be zero if the cipher does not need an IV.
346 *
347 * Return: IV size in bytes
348 */
349static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
350{
351 return tfm->ivsize;
352}
353
4e6c3df4
HX
354static inline unsigned int crypto_skcipher_alg_chunksize(
355 struct skcipher_alg *alg)
356{
357 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
358 CRYPTO_ALG_TYPE_BLKCIPHER)
359 return alg->base.cra_blocksize;
360
361 if (alg->base.cra_ablkcipher.encrypt)
362 return alg->base.cra_blocksize;
363
364 return alg->chunksize;
365}
366
367/**
368 * crypto_skcipher_chunksize() - obtain chunk size
369 * @tfm: cipher handle
370 *
371 * The block size is set to one for ciphers such as CTR. However,
372 * you still need to provide incremental updates in multiples of
373 * the underlying block size as the IV does not have sub-block
374 * granularity. This is known in this API as the chunk size.
375 *
376 * Return: chunk size in bytes
377 */
378static inline unsigned int crypto_skcipher_chunksize(
379 struct crypto_skcipher *tfm)
380{
381 return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
382}
383
7a7ffe65
HX
384/**
385 * crypto_skcipher_blocksize() - obtain block size of cipher
386 * @tfm: cipher handle
387 *
388 * The block size for the skcipher referenced with the cipher handle is
389 * returned. The caller may use that information to allocate appropriate
390 * memory for the data returned by the encryption or decryption operation
391 *
392 * Return: block size of cipher
393 */
394static inline unsigned int crypto_skcipher_blocksize(
395 struct crypto_skcipher *tfm)
396{
397 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
398}
399
400static inline unsigned int crypto_skcipher_alignmask(
401 struct crypto_skcipher *tfm)
402{
403 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
404}
405
406static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
407{
408 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
409}
410
411static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
412 u32 flags)
413{
414 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
415}
416
417static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
418 u32 flags)
419{
420 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
421}
422
423/**
424 * crypto_skcipher_setkey() - set key for cipher
425 * @tfm: cipher handle
426 * @key: buffer holding the key
427 * @keylen: length of the key in bytes
428 *
429 * The caller provided key is set for the skcipher referenced by the cipher
430 * handle.
431 *
432 * Note, the key length determines the cipher type. Many block ciphers implement
433 * different cipher modes depending on the key size, such as AES-128 vs AES-192
434 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
435 * is performed.
436 *
437 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
438 */
439static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
440 const u8 *key, unsigned int keylen)
441{
442 return tfm->setkey(tfm, key, keylen);
443}
444
a1383cd8
HX
445static inline bool crypto_skcipher_has_setkey(struct crypto_skcipher *tfm)
446{
973fb3fb
HX
447 return tfm->keysize;
448}
449
450static inline unsigned int crypto_skcipher_default_keysize(
451 struct crypto_skcipher *tfm)
452{
453 return tfm->keysize;
a1383cd8
HX
454}
455
7a7ffe65
HX
456/**
457 * crypto_skcipher_reqtfm() - obtain cipher handle from request
458 * @req: skcipher_request out of which the cipher handle is to be obtained
459 *
460 * Return the crypto_skcipher handle when furnishing an skcipher_request
461 * data structure.
462 *
463 * Return: crypto_skcipher handle
464 */
465static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
466 struct skcipher_request *req)
467{
468 return __crypto_skcipher_cast(req->base.tfm);
469}
470
471/**
472 * crypto_skcipher_encrypt() - encrypt plaintext
473 * @req: reference to the skcipher_request handle that holds all information
474 * needed to perform the cipher operation
475 *
476 * Encrypt plaintext data using the skcipher_request handle. That data
477 * structure and how it is filled with data is discussed with the
478 * skcipher_request_* functions.
479 *
480 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
481 */
482static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
483{
484 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
485
486 return tfm->encrypt(req);
487}
488
489/**
490 * crypto_skcipher_decrypt() - decrypt ciphertext
491 * @req: reference to the skcipher_request handle that holds all information
492 * needed to perform the cipher operation
493 *
494 * Decrypt ciphertext data using the skcipher_request handle. That data
495 * structure and how it is filled with data is discussed with the
496 * skcipher_request_* functions.
497 *
498 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
499 */
500static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
501{
502 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
503
504 return tfm->decrypt(req);
505}
506
507/**
508 * DOC: Symmetric Key Cipher Request Handle
509 *
510 * The skcipher_request data structure contains all pointers to data
511 * required for the symmetric key cipher operation. This includes the cipher
512 * handle (which can be used by multiple skcipher_request instances), pointer
513 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
514 * as a handle to the skcipher_request_* API calls in a similar way as
515 * skcipher handle to the crypto_skcipher_* API calls.
516 */
517
518/**
519 * crypto_skcipher_reqsize() - obtain size of the request data structure
520 * @tfm: cipher handle
521 *
522 * Return: number of bytes
523 */
524static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
525{
526 return tfm->reqsize;
527}
528
529/**
530 * skcipher_request_set_tfm() - update cipher handle reference in request
531 * @req: request handle to be modified
532 * @tfm: cipher handle that shall be added to the request handle
533 *
534 * Allow the caller to replace the existing skcipher handle in the request
535 * data structure with a different one.
536 */
537static inline void skcipher_request_set_tfm(struct skcipher_request *req,
538 struct crypto_skcipher *tfm)
539{
540 req->base.tfm = crypto_skcipher_tfm(tfm);
541}
542
543static inline struct skcipher_request *skcipher_request_cast(
544 struct crypto_async_request *req)
545{
546 return container_of(req, struct skcipher_request, base);
547}
548
549/**
550 * skcipher_request_alloc() - allocate request data structure
551 * @tfm: cipher handle to be registered with the request
552 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
553 *
554 * Allocate the request data structure that must be used with the skcipher
555 * encrypt and decrypt API calls. During the allocation, the provided skcipher
556 * handle is registered in the request data structure.
557 *
6eae29e7 558 * Return: allocated request handle in case of success, or NULL if out of memory
7a7ffe65
HX
559 */
560static inline struct skcipher_request *skcipher_request_alloc(
561 struct crypto_skcipher *tfm, gfp_t gfp)
562{
563 struct skcipher_request *req;
564
565 req = kmalloc(sizeof(struct skcipher_request) +
566 crypto_skcipher_reqsize(tfm), gfp);
567
568 if (likely(req))
569 skcipher_request_set_tfm(req, tfm);
570
571 return req;
572}
573
574/**
575 * skcipher_request_free() - zeroize and free request data structure
576 * @req: request data structure cipher handle to be freed
577 */
578static inline void skcipher_request_free(struct skcipher_request *req)
579{
580 kzfree(req);
581}
582
1aaa753d
HX
583static inline void skcipher_request_zero(struct skcipher_request *req)
584{
585 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
586
587 memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
588}
589
7a7ffe65
HX
590/**
591 * skcipher_request_set_callback() - set asynchronous callback function
592 * @req: request handle
593 * @flags: specify zero or an ORing of the flags
594 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
595 * increase the wait queue beyond the initial maximum size;
596 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
597 * @compl: callback function pointer to be registered with the request handle
598 * @data: The data pointer refers to memory that is not used by the kernel
599 * crypto API, but provided to the callback function for it to use. Here,
600 * the caller can provide a reference to memory the callback function can
601 * operate on. As the callback function is invoked asynchronously to the
602 * related functionality, it may need to access data structures of the
603 * related functionality which can be referenced using this pointer. The
604 * callback function can access the memory via the "data" field in the
605 * crypto_async_request data structure provided to the callback function.
606 *
607 * This function allows setting the callback function that is triggered once the
608 * cipher operation completes.
609 *
610 * The callback function is registered with the skcipher_request handle and
611 * must comply with the following template
612 *
613 * void callback_function(struct crypto_async_request *req, int error)
614 */
615static inline void skcipher_request_set_callback(struct skcipher_request *req,
616 u32 flags,
617 crypto_completion_t compl,
618 void *data)
619{
620 req->base.complete = compl;
621 req->base.data = data;
622 req->base.flags = flags;
623}
624
625/**
626 * skcipher_request_set_crypt() - set data buffers
627 * @req: request handle
628 * @src: source scatter / gather list
629 * @dst: destination scatter / gather list
630 * @cryptlen: number of bytes to process from @src
631 * @iv: IV for the cipher operation which must comply with the IV size defined
632 * by crypto_skcipher_ivsize
633 *
634 * This function allows setting of the source data and destination data
635 * scatter / gather lists.
636 *
637 * For encryption, the source is treated as the plaintext and the
638 * destination is the ciphertext. For a decryption operation, the use is
639 * reversed - the source is the ciphertext and the destination is the plaintext.
640 */
641static inline void skcipher_request_set_crypt(
642 struct skcipher_request *req,
643 struct scatterlist *src, struct scatterlist *dst,
644 unsigned int cryptlen, void *iv)
645{
646 req->src = src;
647 req->dst = dst;
648 req->cryptlen = cryptlen;
649 req->iv = iv;
650}
651
61da88e2
HX
652#endif /* _CRYPTO_SKCIPHER_H */
653
This page took 0.675721 seconds and 5 git commands to generate.