Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[deliverable/linux.git] / include / linux / dmaengine.h
CommitLineData
c13c8260
CL
1/*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
d2ebfb33
RKAL
21#ifndef LINUX_DMAENGINE_H
22#define LINUX_DMAENGINE_H
1c0f16e5 23
c13c8260 24#include <linux/device.h>
0ad7c000 25#include <linux/err.h>
c13c8260 26#include <linux/uio.h>
187f1882 27#include <linux/bug.h>
90b44f8f 28#include <linux/scatterlist.h>
a8efa9d6 29#include <linux/bitmap.h>
dcc043dc 30#include <linux/types.h>
a8efa9d6 31#include <asm/page.h>
b7f080cf 32
c13c8260 33/**
fe4ada2d 34 * typedef dma_cookie_t - an opaque DMA cookie
c13c8260
CL
35 *
36 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
37 */
38typedef s32 dma_cookie_t;
76bd061f
SM
39#define DMA_MIN_COOKIE 1
40#define DMA_MAX_COOKIE INT_MAX
c13c8260 41
71ea1483
DC
42static inline int dma_submit_error(dma_cookie_t cookie)
43{
44 return cookie < 0 ? cookie : 0;
45}
c13c8260
CL
46
47/**
48 * enum dma_status - DMA transaction status
adfedd9a 49 * @DMA_COMPLETE: transaction completed
c13c8260 50 * @DMA_IN_PROGRESS: transaction not yet processed
07934481 51 * @DMA_PAUSED: transaction is paused
c13c8260
CL
52 * @DMA_ERROR: transaction failed
53 */
54enum dma_status {
7db5f727 55 DMA_COMPLETE,
c13c8260 56 DMA_IN_PROGRESS,
07934481 57 DMA_PAUSED,
c13c8260
CL
58 DMA_ERROR,
59};
60
7405f74b
DW
61/**
62 * enum dma_transaction_type - DMA transaction types/indexes
138f4c35
DW
63 *
64 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
65 * automatically set as dma devices are registered.
7405f74b
DW
66 */
67enum dma_transaction_type {
68 DMA_MEMCPY,
69 DMA_XOR,
b2f46fd8 70 DMA_PQ,
099f53cb
DW
71 DMA_XOR_VAL,
72 DMA_PQ_VAL,
7405f74b 73 DMA_INTERRUPT,
a86ee03c 74 DMA_SG,
59b5ec21 75 DMA_PRIVATE,
138f4c35 76 DMA_ASYNC_TX,
dc0ee643 77 DMA_SLAVE,
782bc950 78 DMA_CYCLIC,
b14dab79 79 DMA_INTERLEAVE,
7405f74b 80/* last transaction type for creation of the capabilities mask */
b14dab79
JB
81 DMA_TX_TYPE_END,
82};
dc0ee643 83
49920bc6
VK
84/**
85 * enum dma_transfer_direction - dma transfer mode and direction indicator
86 * @DMA_MEM_TO_MEM: Async/Memcpy mode
87 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
88 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
89 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
90 */
91enum dma_transfer_direction {
92 DMA_MEM_TO_MEM,
93 DMA_MEM_TO_DEV,
94 DMA_DEV_TO_MEM,
95 DMA_DEV_TO_DEV,
62268ce9 96 DMA_TRANS_NONE,
49920bc6 97};
7405f74b 98
b14dab79
JB
99/**
100 * Interleaved Transfer Request
101 * ----------------------------
102 * A chunk is collection of contiguous bytes to be transfered.
103 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
104 * ICGs may or maynot change between chunks.
105 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
106 * that when repeated an integral number of times, specifies the transfer.
107 * A transfer template is specification of a Frame, the number of times
108 * it is to be repeated and other per-transfer attributes.
109 *
110 * Practically, a client driver would have ready a template for each
111 * type of transfer it is going to need during its lifetime and
112 * set only 'src_start' and 'dst_start' before submitting the requests.
113 *
114 *
115 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
116 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
117 *
118 * == Chunk size
119 * ... ICG
120 */
121
122/**
123 * struct data_chunk - Element of scatter-gather list that makes a frame.
124 * @size: Number of bytes to read from source.
125 * size_dst := fn(op, size_src), so doesn't mean much for destination.
126 * @icg: Number of bytes to jump after last src/dst address of this
127 * chunk and before first src/dst address for next chunk.
128 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
129 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
130 */
131struct data_chunk {
132 size_t size;
133 size_t icg;
134};
135
136/**
137 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
138 * and attributes.
139 * @src_start: Bus address of source for the first chunk.
140 * @dst_start: Bus address of destination for the first chunk.
141 * @dir: Specifies the type of Source and Destination.
142 * @src_inc: If the source address increments after reading from it.
143 * @dst_inc: If the destination address increments after writing to it.
144 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
145 * Otherwise, source is read contiguously (icg ignored).
146 * Ignored if src_inc is false.
147 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
148 * Otherwise, destination is filled contiguously (icg ignored).
149 * Ignored if dst_inc is false.
150 * @numf: Number of frames in this template.
151 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
152 * @sgl: Array of {chunk,icg} pairs that make up a frame.
153 */
154struct dma_interleaved_template {
155 dma_addr_t src_start;
156 dma_addr_t dst_start;
157 enum dma_transfer_direction dir;
158 bool src_inc;
159 bool dst_inc;
160 bool src_sgl;
161 bool dst_sgl;
162 size_t numf;
163 size_t frame_size;
164 struct data_chunk sgl[0];
165};
166
d4c56f97 167/**
636bdeaa 168 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
b2f46fd8 169 * control completion, and communicate status.
d4c56f97 170 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
b2f46fd8 171 * this transaction
a88f6667 172 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
b2f46fd8
DW
173 * acknowledges receipt, i.e. has has a chance to establish any dependency
174 * chains
b2f46fd8
DW
175 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
176 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
177 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
178 * sources that were the result of a previous operation, in the case of a PQ
179 * operation it continues the calculation with new sources
0403e382
DW
180 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
181 * on the result of this operation
d4c56f97 182 */
636bdeaa 183enum dma_ctrl_flags {
d4c56f97 184 DMA_PREP_INTERRUPT = (1 << 0),
636bdeaa 185 DMA_CTRL_ACK = (1 << 1),
0776ae7b
BZ
186 DMA_PREP_PQ_DISABLE_P = (1 << 2),
187 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
188 DMA_PREP_CONTINUE = (1 << 4),
189 DMA_PREP_FENCE = (1 << 5),
d4c56f97
DW
190};
191
c3635c78
LW
192/**
193 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
194 * on a running channel.
195 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
196 * @DMA_PAUSE: pause ongoing transfers
197 * @DMA_RESUME: resume paused transfer
c156d0a5
LW
198 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
199 * that need to runtime reconfigure the slave channels (as opposed to passing
200 * configuration data in statically from the platform). An additional
201 * argument of struct dma_slave_config must be passed in with this
202 * command.
968f19ae
IS
203 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
204 * into external start mode.
c3635c78
LW
205 */
206enum dma_ctrl_cmd {
207 DMA_TERMINATE_ALL,
208 DMA_PAUSE,
209 DMA_RESUME,
c156d0a5 210 DMA_SLAVE_CONFIG,
968f19ae 211 FSLDMA_EXTERNAL_START,
c3635c78
LW
212};
213
ad283ea4
DW
214/**
215 * enum sum_check_bits - bit position of pq_check_flags
216 */
217enum sum_check_bits {
218 SUM_CHECK_P = 0,
219 SUM_CHECK_Q = 1,
220};
221
222/**
223 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
224 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
225 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
226 */
227enum sum_check_flags {
228 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
229 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
230};
231
232
7405f74b
DW
233/**
234 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
235 * See linux/cpumask.h
236 */
237typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
238
c13c8260
CL
239/**
240 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
c13c8260
CL
241 * @memcpy_count: transaction counter
242 * @bytes_transferred: byte counter
243 */
244
245struct dma_chan_percpu {
c13c8260
CL
246 /* stats */
247 unsigned long memcpy_count;
248 unsigned long bytes_transferred;
249};
250
251/**
252 * struct dma_chan - devices supply DMA channels, clients use them
fe4ada2d 253 * @device: ptr to the dma device who supplies this channel, always !%NULL
c13c8260 254 * @cookie: last cookie value returned to client
4d4e58de 255 * @completed_cookie: last completed cookie for this channel
fe4ada2d 256 * @chan_id: channel ID for sysfs
41d5e59c 257 * @dev: class device for sysfs
c13c8260
CL
258 * @device_node: used to add this to the device chan list
259 * @local: per-cpu pointer to a struct dma_chan_percpu
868d2ee2 260 * @client_count: how many clients are using this channel
bec08513 261 * @table_count: number of appearances in the mem-to-mem allocation table
287d8592 262 * @private: private data for certain client-channel associations
c13c8260
CL
263 */
264struct dma_chan {
c13c8260
CL
265 struct dma_device *device;
266 dma_cookie_t cookie;
4d4e58de 267 dma_cookie_t completed_cookie;
c13c8260
CL
268
269 /* sysfs */
270 int chan_id;
41d5e59c 271 struct dma_chan_dev *dev;
c13c8260 272
c13c8260 273 struct list_head device_node;
a29d8b8e 274 struct dma_chan_percpu __percpu *local;
7cc5bf9a 275 int client_count;
bec08513 276 int table_count;
287d8592 277 void *private;
c13c8260
CL
278};
279
41d5e59c
DW
280/**
281 * struct dma_chan_dev - relate sysfs device node to backing channel device
868d2ee2
VK
282 * @chan: driver channel device
283 * @device: sysfs device
284 * @dev_id: parent dma_device dev_id
285 * @idr_ref: reference count to gate release of dma_device dev_id
41d5e59c
DW
286 */
287struct dma_chan_dev {
288 struct dma_chan *chan;
289 struct device device;
864498aa
DW
290 int dev_id;
291 atomic_t *idr_ref;
41d5e59c
DW
292};
293
c156d0a5 294/**
ba730340 295 * enum dma_slave_buswidth - defines bus width of the DMA slave
c156d0a5
LW
296 * device, source or target buses
297 */
298enum dma_slave_buswidth {
299 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
300 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
301 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
93c6ee94 302 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
c156d0a5
LW
303 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
304 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
305};
306
307/**
308 * struct dma_slave_config - dma slave channel runtime config
309 * @direction: whether the data shall go in or out on this slave
397321f4
AP
310 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
311 * legal values.
c156d0a5
LW
312 * @src_addr: this is the physical address where DMA slave data
313 * should be read (RX), if the source is memory this argument is
314 * ignored.
315 * @dst_addr: this is the physical address where DMA slave data
316 * should be written (TX), if the source is memory this argument
317 * is ignored.
318 * @src_addr_width: this is the width in bytes of the source (RX)
319 * register where DMA data shall be read. If the source
320 * is memory this may be ignored depending on architecture.
321 * Legal values: 1, 2, 4, 8.
322 * @dst_addr_width: same as src_addr_width but for destination
323 * target (TX) mutatis mutandis.
324 * @src_maxburst: the maximum number of words (note: words, as in
325 * units of the src_addr_width member, not bytes) that can be sent
326 * in one burst to the device. Typically something like half the
327 * FIFO depth on I/O peripherals so you don't overflow it. This
328 * may or may not be applicable on memory sources.
329 * @dst_maxburst: same as src_maxburst but for destination target
330 * mutatis mutandis.
dcc043dc
VK
331 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
332 * with 'true' if peripheral should be flow controller. Direction will be
333 * selected at Runtime.
4fd1e324
LD
334 * @slave_id: Slave requester id. Only valid for slave channels. The dma
335 * slave peripheral will have unique id as dma requester which need to be
336 * pass as slave config.
c156d0a5
LW
337 *
338 * This struct is passed in as configuration data to a DMA engine
339 * in order to set up a certain channel for DMA transport at runtime.
340 * The DMA device/engine has to provide support for an additional
341 * command in the channel config interface, DMA_SLAVE_CONFIG
342 * and this struct will then be passed in as an argument to the
343 * DMA engine device_control() function.
344 *
7cbccb55
LPC
345 * The rationale for adding configuration information to this struct is as
346 * follows: if it is likely that more than one DMA slave controllers in
347 * the world will support the configuration option, then make it generic.
348 * If not: if it is fixed so that it be sent in static from the platform
349 * data, then prefer to do that.
c156d0a5
LW
350 */
351struct dma_slave_config {
49920bc6 352 enum dma_transfer_direction direction;
c156d0a5
LW
353 dma_addr_t src_addr;
354 dma_addr_t dst_addr;
355 enum dma_slave_buswidth src_addr_width;
356 enum dma_slave_buswidth dst_addr_width;
357 u32 src_maxburst;
358 u32 dst_maxburst;
dcc043dc 359 bool device_fc;
4fd1e324 360 unsigned int slave_id;
c156d0a5
LW
361};
362
50720563
LPC
363/**
364 * enum dma_residue_granularity - Granularity of the reported transfer residue
365 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
366 * DMA channel is only able to tell whether a descriptor has been completed or
367 * not, which means residue reporting is not supported by this channel. The
368 * residue field of the dma_tx_state field will always be 0.
369 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
370 * completed segment of the transfer (For cyclic transfers this is after each
371 * period). This is typically implemented by having the hardware generate an
372 * interrupt after each transferred segment and then the drivers updates the
373 * outstanding residue by the size of the segment. Another possibility is if
374 * the hardware supports scatter-gather and the segment descriptor has a field
375 * which gets set after the segment has been completed. The driver then counts
376 * the number of segments without the flag set to compute the residue.
377 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
378 * burst. This is typically only supported if the hardware has a progress
379 * register of some sort (E.g. a register with the current read/write address
380 * or a register with the amount of bursts/beats/bytes that have been
381 * transferred or still need to be transferred).
382 */
383enum dma_residue_granularity {
384 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
385 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
386 DMA_RESIDUE_GRANULARITY_BURST = 2,
387};
388
221a27c7
VK
389/* struct dma_slave_caps - expose capabilities of a slave channel only
390 *
391 * @src_addr_widths: bit mask of src addr widths the channel supports
392 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
393 * @directions: bit mask of slave direction the channel supported
394 * since the enum dma_transfer_direction is not defined as bits for each
395 * type of direction, the dma controller should fill (1 << <TYPE>) and same
396 * should be checked by controller as well
397 * @cmd_pause: true, if pause and thereby resume is supported
398 * @cmd_terminate: true, if terminate cmd is supported
50720563 399 * @residue_granularity: granularity of the reported transfer residue
221a27c7
VK
400 */
401struct dma_slave_caps {
402 u32 src_addr_widths;
403 u32 dstn_addr_widths;
404 u32 directions;
405 bool cmd_pause;
406 bool cmd_terminate;
50720563 407 enum dma_residue_granularity residue_granularity;
221a27c7
VK
408};
409
41d5e59c
DW
410static inline const char *dma_chan_name(struct dma_chan *chan)
411{
412 return dev_name(&chan->dev->device);
413}
d379b01e 414
c13c8260
CL
415void dma_chan_cleanup(struct kref *kref);
416
59b5ec21
DW
417/**
418 * typedef dma_filter_fn - callback filter for dma_request_channel
419 * @chan: channel to be reviewed
420 * @filter_param: opaque parameter passed through dma_request_channel
421 *
422 * When this optional parameter is specified in a call to dma_request_channel a
423 * suitable channel is passed to this routine for further dispositioning before
424 * being returned. Where 'suitable' indicates a non-busy channel that
7dd60251
DW
425 * satisfies the given capability mask. It returns 'true' to indicate that the
426 * channel is suitable.
59b5ec21 427 */
7dd60251 428typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
59b5ec21 429
7405f74b 430typedef void (*dma_async_tx_callback)(void *dma_async_param);
d38a8c62
DW
431
432struct dmaengine_unmap_data {
c1f43dd9 433 u8 map_cnt;
d38a8c62
DW
434 u8 to_cnt;
435 u8 from_cnt;
436 u8 bidi_cnt;
437 struct device *dev;
438 struct kref kref;
439 size_t len;
440 dma_addr_t addr[0];
441};
442
7405f74b
DW
443/**
444 * struct dma_async_tx_descriptor - async transaction descriptor
445 * ---dma generic offload fields---
446 * @cookie: tracking cookie for this transaction, set to -EBUSY if
447 * this tx is sitting on a dependency list
636bdeaa
DW
448 * @flags: flags to augment operation preparation, control completion, and
449 * communicate status
7405f74b 450 * @phys: physical address of the descriptor
7405f74b
DW
451 * @chan: target channel for this operation
452 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
7405f74b
DW
453 * @callback: routine to call after this operation is complete
454 * @callback_param: general parameter to pass to the callback routine
455 * ---async_tx api specific fields---
19242d72 456 * @next: at completion submit this descriptor
7405f74b 457 * @parent: pointer to the next level up in the dependency chain
19242d72 458 * @lock: protect the parent and next pointers
7405f74b
DW
459 */
460struct dma_async_tx_descriptor {
461 dma_cookie_t cookie;
636bdeaa 462 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
7405f74b 463 dma_addr_t phys;
7405f74b
DW
464 struct dma_chan *chan;
465 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
7405f74b
DW
466 dma_async_tx_callback callback;
467 void *callback_param;
d38a8c62 468 struct dmaengine_unmap_data *unmap;
5fc6d897 469#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
19242d72 470 struct dma_async_tx_descriptor *next;
7405f74b
DW
471 struct dma_async_tx_descriptor *parent;
472 spinlock_t lock;
caa20d97 473#endif
7405f74b
DW
474};
475
89716462 476#ifdef CONFIG_DMA_ENGINE
d38a8c62
DW
477static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
478 struct dmaengine_unmap_data *unmap)
479{
480 kref_get(&unmap->kref);
481 tx->unmap = unmap;
482}
483
89716462
DW
484struct dmaengine_unmap_data *
485dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
45c463ae 486void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
89716462
DW
487#else
488static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
489 struct dmaengine_unmap_data *unmap)
490{
491}
492static inline struct dmaengine_unmap_data *
493dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
494{
495 return NULL;
496}
497static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
498{
499}
500#endif
45c463ae 501
d38a8c62
DW
502static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
503{
504 if (tx->unmap) {
45c463ae 505 dmaengine_unmap_put(tx->unmap);
d38a8c62
DW
506 tx->unmap = NULL;
507 }
508}
509
5fc6d897 510#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
caa20d97
DW
511static inline void txd_lock(struct dma_async_tx_descriptor *txd)
512{
513}
514static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
515{
516}
517static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
518{
519 BUG();
520}
521static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
522{
523}
524static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
525{
526}
527static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
528{
529 return NULL;
530}
531static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
532{
533 return NULL;
534}
535
536#else
537static inline void txd_lock(struct dma_async_tx_descriptor *txd)
538{
539 spin_lock_bh(&txd->lock);
540}
541static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
542{
543 spin_unlock_bh(&txd->lock);
544}
545static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
546{
547 txd->next = next;
548 next->parent = txd;
549}
550static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
551{
552 txd->parent = NULL;
553}
554static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
555{
556 txd->next = NULL;
557}
558static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
559{
560 return txd->parent;
561}
562static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
563{
564 return txd->next;
565}
566#endif
567
07934481
LW
568/**
569 * struct dma_tx_state - filled in to report the status of
570 * a transfer.
571 * @last: last completed DMA cookie
572 * @used: last issued DMA cookie (i.e. the one in progress)
573 * @residue: the remaining number of bytes left to transmit
574 * on the selected transfer for states DMA_IN_PROGRESS and
575 * DMA_PAUSED if this is implemented in the driver, else 0
576 */
577struct dma_tx_state {
578 dma_cookie_t last;
579 dma_cookie_t used;
580 u32 residue;
581};
582
c13c8260
CL
583/**
584 * struct dma_device - info on the entity supplying DMA services
585 * @chancnt: how many DMA channels are supported
0f571515 586 * @privatecnt: how many DMA channels are requested by dma_request_channel
c13c8260
CL
587 * @channels: the list of struct dma_chan
588 * @global_node: list_head for global dma_device_list
7405f74b
DW
589 * @cap_mask: one or more dma_capability flags
590 * @max_xor: maximum number of xor sources, 0 if no capability
b2f46fd8 591 * @max_pq: maximum number of PQ sources and PQ-continue capability
83544ae9
DW
592 * @copy_align: alignment shift for memcpy operations
593 * @xor_align: alignment shift for xor operations
594 * @pq_align: alignment shift for pq operations
595 * @fill_align: alignment shift for memset operations
fe4ada2d 596 * @dev_id: unique device ID
7405f74b 597 * @dev: struct device reference for dma mapping api
fe4ada2d
RD
598 * @device_alloc_chan_resources: allocate resources and return the
599 * number of allocated descriptors
600 * @device_free_chan_resources: release DMA channel's resources
7405f74b
DW
601 * @device_prep_dma_memcpy: prepares a memcpy operation
602 * @device_prep_dma_xor: prepares a xor operation
099f53cb 603 * @device_prep_dma_xor_val: prepares a xor validation operation
b2f46fd8
DW
604 * @device_prep_dma_pq: prepares a pq operation
605 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
7405f74b 606 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
dc0ee643 607 * @device_prep_slave_sg: prepares a slave dma operation
782bc950
SH
608 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
609 * The function takes a buffer of size buf_len. The callback function will
610 * be called after period_len bytes have been transferred.
b14dab79 611 * @device_prep_interleaved_dma: Transfer expression in a generic way.
c3635c78
LW
612 * @device_control: manipulate all pending operations on a channel, returns
613 * zero or error code
07934481
LW
614 * @device_tx_status: poll for transaction completion, the optional
615 * txstate parameter can be supplied with a pointer to get a
25985edc 616 * struct with auxiliary transfer status information, otherwise the call
07934481 617 * will just return a simple status code
7405f74b 618 * @device_issue_pending: push pending transactions to hardware
221a27c7 619 * @device_slave_caps: return the slave channel capabilities
c13c8260
CL
620 */
621struct dma_device {
622
623 unsigned int chancnt;
0f571515 624 unsigned int privatecnt;
c13c8260
CL
625 struct list_head channels;
626 struct list_head global_node;
7405f74b 627 dma_cap_mask_t cap_mask;
b2f46fd8
DW
628 unsigned short max_xor;
629 unsigned short max_pq;
83544ae9
DW
630 u8 copy_align;
631 u8 xor_align;
632 u8 pq_align;
633 u8 fill_align;
b2f46fd8 634 #define DMA_HAS_PQ_CONTINUE (1 << 15)
c13c8260 635
c13c8260 636 int dev_id;
7405f74b 637 struct device *dev;
c13c8260 638
aa1e6f1a 639 int (*device_alloc_chan_resources)(struct dma_chan *chan);
c13c8260 640 void (*device_free_chan_resources)(struct dma_chan *chan);
7405f74b
DW
641
642 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
0036731c 643 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
d4c56f97 644 size_t len, unsigned long flags);
7405f74b 645 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
0036731c 646 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
d4c56f97 647 unsigned int src_cnt, size_t len, unsigned long flags);
099f53cb 648 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
0036731c 649 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
ad283ea4 650 size_t len, enum sum_check_flags *result, unsigned long flags);
b2f46fd8
DW
651 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
652 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
653 unsigned int src_cnt, const unsigned char *scf,
654 size_t len, unsigned long flags);
655 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
656 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
657 unsigned int src_cnt, const unsigned char *scf, size_t len,
658 enum sum_check_flags *pqres, unsigned long flags);
7405f74b 659 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
636bdeaa 660 struct dma_chan *chan, unsigned long flags);
a86ee03c
IS
661 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
662 struct dma_chan *chan,
663 struct scatterlist *dst_sg, unsigned int dst_nents,
664 struct scatterlist *src_sg, unsigned int src_nents,
665 unsigned long flags);
7405f74b 666
dc0ee643
HS
667 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
668 struct dma_chan *chan, struct scatterlist *sgl,
49920bc6 669 unsigned int sg_len, enum dma_transfer_direction direction,
185ecb5f 670 unsigned long flags, void *context);
782bc950
SH
671 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
672 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
185ecb5f 673 size_t period_len, enum dma_transfer_direction direction,
ec8b5e48 674 unsigned long flags, void *context);
b14dab79
JB
675 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
676 struct dma_chan *chan, struct dma_interleaved_template *xt,
677 unsigned long flags);
05827630
LW
678 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
679 unsigned long arg);
dc0ee643 680
07934481
LW
681 enum dma_status (*device_tx_status)(struct dma_chan *chan,
682 dma_cookie_t cookie,
683 struct dma_tx_state *txstate);
7405f74b 684 void (*device_issue_pending)(struct dma_chan *chan);
221a27c7 685 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
c13c8260
CL
686};
687
6e3ecaf0
SH
688static inline int dmaengine_device_control(struct dma_chan *chan,
689 enum dma_ctrl_cmd cmd,
690 unsigned long arg)
691{
944ea4dd
JM
692 if (chan->device->device_control)
693 return chan->device->device_control(chan, cmd, arg);
978c4172
AS
694
695 return -ENOSYS;
6e3ecaf0
SH
696}
697
698static inline int dmaengine_slave_config(struct dma_chan *chan,
699 struct dma_slave_config *config)
700{
701 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
702 (unsigned long)config);
703}
704
61cc13a5
AS
705static inline bool is_slave_direction(enum dma_transfer_direction direction)
706{
707 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
708}
709
90b44f8f 710static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
922ee08b 711 struct dma_chan *chan, dma_addr_t buf, size_t len,
49920bc6 712 enum dma_transfer_direction dir, unsigned long flags)
90b44f8f
VK
713{
714 struct scatterlist sg;
922ee08b
KM
715 sg_init_table(&sg, 1);
716 sg_dma_address(&sg) = buf;
717 sg_dma_len(&sg) = len;
90b44f8f 718
185ecb5f
AB
719 return chan->device->device_prep_slave_sg(chan, &sg, 1,
720 dir, flags, NULL);
90b44f8f
VK
721}
722
16052827
AB
723static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
724 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
725 enum dma_transfer_direction dir, unsigned long flags)
726{
727 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
185ecb5f 728 dir, flags, NULL);
16052827
AB
729}
730
e42d98eb
AB
731#ifdef CONFIG_RAPIDIO_DMA_ENGINE
732struct rio_dma_ext;
733static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
734 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
735 enum dma_transfer_direction dir, unsigned long flags,
736 struct rio_dma_ext *rio_ext)
737{
738 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
739 dir, flags, rio_ext);
740}
741#endif
742
16052827
AB
743static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
744 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
e7736cde
PU
745 size_t period_len, enum dma_transfer_direction dir,
746 unsigned long flags)
16052827
AB
747{
748 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
ec8b5e48 749 period_len, dir, flags, NULL);
a14acb4a
BS
750}
751
752static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
753 struct dma_chan *chan, struct dma_interleaved_template *xt,
754 unsigned long flags)
755{
756 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
90b44f8f
VK
757}
758
221a27c7
VK
759static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
760{
761 if (!chan || !caps)
762 return -EINVAL;
763
764 /* check if the channel supports slave transactions */
765 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
766 return -ENXIO;
767
768 if (chan->device->device_slave_caps)
769 return chan->device->device_slave_caps(chan, caps);
770
771 return -ENXIO;
772}
773
6e3ecaf0
SH
774static inline int dmaengine_terminate_all(struct dma_chan *chan)
775{
776 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
777}
778
779static inline int dmaengine_pause(struct dma_chan *chan)
780{
781 return dmaengine_device_control(chan, DMA_PAUSE, 0);
782}
783
784static inline int dmaengine_resume(struct dma_chan *chan)
785{
786 return dmaengine_device_control(chan, DMA_RESUME, 0);
787}
788
3052cc2c
LPC
789static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
790 dma_cookie_t cookie, struct dma_tx_state *state)
791{
792 return chan->device->device_tx_status(chan, cookie, state);
793}
794
98d530fe 795static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
6e3ecaf0
SH
796{
797 return desc->tx_submit(desc);
798}
799
83544ae9
DW
800static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
801{
802 size_t mask;
803
804 if (!align)
805 return true;
806 mask = (1 << align) - 1;
807 if (mask & (off1 | off2 | len))
808 return false;
809 return true;
810}
811
812static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
813 size_t off2, size_t len)
814{
815 return dmaengine_check_align(dev->copy_align, off1, off2, len);
816}
817
818static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
819 size_t off2, size_t len)
820{
821 return dmaengine_check_align(dev->xor_align, off1, off2, len);
822}
823
824static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
825 size_t off2, size_t len)
826{
827 return dmaengine_check_align(dev->pq_align, off1, off2, len);
828}
829
830static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
831 size_t off2, size_t len)
832{
833 return dmaengine_check_align(dev->fill_align, off1, off2, len);
834}
835
b2f46fd8
DW
836static inline void
837dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
838{
839 dma->max_pq = maxpq;
840 if (has_pq_continue)
841 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
842}
843
844static inline bool dmaf_continue(enum dma_ctrl_flags flags)
845{
846 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
847}
848
849static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
850{
851 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
852
853 return (flags & mask) == mask;
854}
855
856static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
857{
858 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
859}
860
d3f3cf85 861static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
b2f46fd8
DW
862{
863 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
864}
865
866/* dma_maxpq - reduce maxpq in the face of continued operations
867 * @dma - dma device with PQ capability
868 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
869 *
870 * When an engine does not support native continuation we need 3 extra
871 * source slots to reuse P and Q with the following coefficients:
872 * 1/ {00} * P : remove P from Q', but use it as a source for P'
873 * 2/ {01} * Q : use Q to continue Q' calculation
874 * 3/ {00} * Q : subtract Q from P' to cancel (2)
875 *
876 * In the case where P is disabled we only need 1 extra source:
877 * 1/ {01} * Q : use Q to continue Q' calculation
878 */
879static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
880{
881 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
882 return dma_dev_to_maxpq(dma);
883 else if (dmaf_p_disabled_continue(flags))
884 return dma_dev_to_maxpq(dma) - 1;
885 else if (dmaf_continue(flags))
886 return dma_dev_to_maxpq(dma) - 3;
887 BUG();
888}
889
c13c8260
CL
890/* --- public DMA engine API --- */
891
649274d9 892#ifdef CONFIG_DMA_ENGINE
209b84a8
DW
893void dmaengine_get(void);
894void dmaengine_put(void);
649274d9
DW
895#else
896static inline void dmaengine_get(void)
897{
898}
899static inline void dmaengine_put(void)
900{
901}
902#endif
903
b4bd07c2
DM
904#ifdef CONFIG_NET_DMA
905#define net_dmaengine_get() dmaengine_get()
906#define net_dmaengine_put() dmaengine_put()
907#else
908static inline void net_dmaengine_get(void)
909{
910}
911static inline void net_dmaengine_put(void)
912{
913}
914#endif
915
729b5d1b
DW
916#ifdef CONFIG_ASYNC_TX_DMA
917#define async_dmaengine_get() dmaengine_get()
918#define async_dmaengine_put() dmaengine_put()
5fc6d897 919#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
138f4c35
DW
920#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
921#else
729b5d1b 922#define async_dma_find_channel(type) dma_find_channel(type)
5fc6d897 923#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
729b5d1b
DW
924#else
925static inline void async_dmaengine_get(void)
926{
927}
928static inline void async_dmaengine_put(void)
929{
930}
931static inline struct dma_chan *
932async_dma_find_channel(enum dma_transaction_type type)
933{
934 return NULL;
935}
138f4c35 936#endif /* CONFIG_ASYNC_TX_DMA */
729b5d1b 937
7405f74b
DW
938dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
939 void *dest, void *src, size_t len);
940dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
941 struct page *page, unsigned int offset, void *kdata, size_t len);
942dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
943 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
944 unsigned int src_off, size_t len);
945void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
946 struct dma_chan *chan);
c13c8260 947
0839875e 948static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
7405f74b 949{
636bdeaa
DW
950 tx->flags |= DMA_CTRL_ACK;
951}
952
ef560682
GL
953static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
954{
955 tx->flags &= ~DMA_CTRL_ACK;
956}
957
0839875e 958static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
636bdeaa 959{
0839875e 960 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
c13c8260
CL
961}
962
7405f74b
DW
963#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
964static inline void
965__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
c13c8260 966{
7405f74b
DW
967 set_bit(tx_type, dstp->bits);
968}
c13c8260 969
0f571515
AN
970#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
971static inline void
972__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
973{
974 clear_bit(tx_type, dstp->bits);
975}
976
33df8ca0
DW
977#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
978static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
979{
980 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
981}
982
7405f74b
DW
983#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
984static inline int
985__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
986{
987 return test_bit(tx_type, srcp->bits);
c13c8260
CL
988}
989
7405f74b 990#define for_each_dma_cap_mask(cap, mask) \
e5a087fd 991 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
7405f74b 992
c13c8260 993/**
7405f74b 994 * dma_async_issue_pending - flush pending transactions to HW
fe4ada2d 995 * @chan: target DMA channel
c13c8260
CL
996 *
997 * This allows drivers to push copies to HW in batches,
998 * reducing MMIO writes where possible.
999 */
7405f74b 1000static inline void dma_async_issue_pending(struct dma_chan *chan)
c13c8260 1001{
ec8670f1 1002 chan->device->device_issue_pending(chan);
c13c8260
CL
1003}
1004
1005/**
7405f74b 1006 * dma_async_is_tx_complete - poll for transaction completion
c13c8260
CL
1007 * @chan: DMA channel
1008 * @cookie: transaction identifier to check status of
1009 * @last: returns last completed cookie, can be NULL
1010 * @used: returns last issued cookie, can be NULL
1011 *
1012 * If @last and @used are passed in, upon return they reflect the driver
1013 * internal state and can be used with dma_async_is_complete() to check
1014 * the status of multiple cookies without re-checking hardware state.
1015 */
7405f74b 1016static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
c13c8260
CL
1017 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1018{
07934481
LW
1019 struct dma_tx_state state;
1020 enum dma_status status;
1021
1022 status = chan->device->device_tx_status(chan, cookie, &state);
1023 if (last)
1024 *last = state.last;
1025 if (used)
1026 *used = state.used;
1027 return status;
c13c8260
CL
1028}
1029
1030/**
1031 * dma_async_is_complete - test a cookie against chan state
1032 * @cookie: transaction identifier to test status of
1033 * @last_complete: last know completed transaction
1034 * @last_used: last cookie value handed out
1035 *
e239345f 1036 * dma_async_is_complete() is used in dma_async_is_tx_complete()
8a5703f8 1037 * the test logic is separated for lightweight testing of multiple cookies
c13c8260
CL
1038 */
1039static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1040 dma_cookie_t last_complete, dma_cookie_t last_used)
1041{
1042 if (last_complete <= last_used) {
1043 if ((cookie <= last_complete) || (cookie > last_used))
adfedd9a 1044 return DMA_COMPLETE;
c13c8260
CL
1045 } else {
1046 if ((cookie <= last_complete) && (cookie > last_used))
adfedd9a 1047 return DMA_COMPLETE;
c13c8260
CL
1048 }
1049 return DMA_IN_PROGRESS;
1050}
1051
bca34692
DW
1052static inline void
1053dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1054{
1055 if (st) {
1056 st->last = last;
1057 st->used = used;
1058 st->residue = residue;
1059 }
1060}
1061
07f2211e 1062#ifdef CONFIG_DMA_ENGINE
4a43f394
JM
1063struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1064enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
07f2211e 1065enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
c50331e8 1066void dma_issue_pending_all(void);
a53e28da
LPC
1067struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1068 dma_filter_fn fn, void *fn_param);
0ad7c000
SW
1069struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1070 const char *name);
bef29ec5 1071struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
8f33d527 1072void dma_release_channel(struct dma_chan *chan);
07f2211e 1073#else
4a43f394
JM
1074static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1075{
1076 return NULL;
1077}
1078static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1079{
adfedd9a 1080 return DMA_COMPLETE;
4a43f394 1081}
07f2211e
DW
1082static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1083{
adfedd9a 1084 return DMA_COMPLETE;
07f2211e 1085}
c50331e8
DW
1086static inline void dma_issue_pending_all(void)
1087{
8f33d527 1088}
a53e28da 1089static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
8f33d527
GL
1090 dma_filter_fn fn, void *fn_param)
1091{
1092 return NULL;
1093}
0ad7c000
SW
1094static inline struct dma_chan *dma_request_slave_channel_reason(
1095 struct device *dev, const char *name)
1096{
1097 return ERR_PTR(-ENODEV);
1098}
9a6cecc8 1099static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
bef29ec5 1100 const char *name)
9a6cecc8 1101{
d18d5f59 1102 return NULL;
9a6cecc8 1103}
8f33d527
GL
1104static inline void dma_release_channel(struct dma_chan *chan)
1105{
c50331e8 1106}
07f2211e 1107#endif
c13c8260
CL
1108
1109/* --- DMA device --- */
1110
1111int dma_async_device_register(struct dma_device *device);
1112void dma_async_device_unregister(struct dma_device *device);
07f2211e 1113void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
7bb587f4 1114struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
8010dad5 1115struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
a2bd1140 1116struct dma_chan *net_dma_find_channel(void);
59b5ec21 1117#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
864ef69b
MP
1118#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1119 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1120
1121static inline struct dma_chan
a53e28da
LPC
1122*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1123 dma_filter_fn fn, void *fn_param,
1124 struct device *dev, char *name)
864ef69b
MP
1125{
1126 struct dma_chan *chan;
1127
1128 chan = dma_request_slave_channel(dev, name);
1129 if (chan)
1130 return chan;
1131
1132 return __dma_request_channel(mask, fn, fn_param);
1133}
c13c8260 1134
de5506e1
CL
1135/* --- Helper iov-locking functions --- */
1136
1137struct dma_page_list {
b2ddb901 1138 char __user *base_address;
de5506e1
CL
1139 int nr_pages;
1140 struct page **pages;
1141};
1142
1143struct dma_pinned_list {
1144 int nr_iovecs;
1145 struct dma_page_list page_list[0];
1146};
1147
1148struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1149void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1150
1151dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1152 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1153dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1154 struct dma_pinned_list *pinned_list, struct page *page,
1155 unsigned int offset, size_t len);
1156
c13c8260 1157#endif /* DMAENGINE_H */
This page took 0.842062 seconds and 5 git commands to generate.