Merge tag 'ktest-v3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[deliverable/linux.git] / include / linux / dmaengine.h
CommitLineData
c13c8260
CL
1/*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
d2ebfb33
RKAL
21#ifndef LINUX_DMAENGINE_H
22#define LINUX_DMAENGINE_H
1c0f16e5 23
c13c8260 24#include <linux/device.h>
0ad7c000 25#include <linux/err.h>
c13c8260 26#include <linux/uio.h>
187f1882 27#include <linux/bug.h>
90b44f8f 28#include <linux/scatterlist.h>
a8efa9d6 29#include <linux/bitmap.h>
dcc043dc 30#include <linux/types.h>
a8efa9d6 31#include <asm/page.h>
b7f080cf 32
c13c8260 33/**
fe4ada2d 34 * typedef dma_cookie_t - an opaque DMA cookie
c13c8260
CL
35 *
36 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
37 */
38typedef s32 dma_cookie_t;
76bd061f
SM
39#define DMA_MIN_COOKIE 1
40#define DMA_MAX_COOKIE INT_MAX
c13c8260 41
71ea1483
DC
42static inline int dma_submit_error(dma_cookie_t cookie)
43{
44 return cookie < 0 ? cookie : 0;
45}
c13c8260
CL
46
47/**
48 * enum dma_status - DMA transaction status
adfedd9a 49 * @DMA_COMPLETE: transaction completed
c13c8260 50 * @DMA_IN_PROGRESS: transaction not yet processed
07934481 51 * @DMA_PAUSED: transaction is paused
c13c8260
CL
52 * @DMA_ERROR: transaction failed
53 */
54enum dma_status {
7db5f727 55 DMA_COMPLETE,
c13c8260 56 DMA_IN_PROGRESS,
07934481 57 DMA_PAUSED,
c13c8260
CL
58 DMA_ERROR,
59};
60
7405f74b
DW
61/**
62 * enum dma_transaction_type - DMA transaction types/indexes
138f4c35
DW
63 *
64 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
65 * automatically set as dma devices are registered.
7405f74b
DW
66 */
67enum dma_transaction_type {
68 DMA_MEMCPY,
69 DMA_XOR,
b2f46fd8 70 DMA_PQ,
099f53cb
DW
71 DMA_XOR_VAL,
72 DMA_PQ_VAL,
7405f74b 73 DMA_INTERRUPT,
a86ee03c 74 DMA_SG,
59b5ec21 75 DMA_PRIVATE,
138f4c35 76 DMA_ASYNC_TX,
dc0ee643 77 DMA_SLAVE,
782bc950 78 DMA_CYCLIC,
b14dab79 79 DMA_INTERLEAVE,
7405f74b 80/* last transaction type for creation of the capabilities mask */
b14dab79
JB
81 DMA_TX_TYPE_END,
82};
dc0ee643 83
49920bc6
VK
84/**
85 * enum dma_transfer_direction - dma transfer mode and direction indicator
86 * @DMA_MEM_TO_MEM: Async/Memcpy mode
87 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
88 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
89 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
90 */
91enum dma_transfer_direction {
92 DMA_MEM_TO_MEM,
93 DMA_MEM_TO_DEV,
94 DMA_DEV_TO_MEM,
95 DMA_DEV_TO_DEV,
62268ce9 96 DMA_TRANS_NONE,
49920bc6 97};
7405f74b 98
b14dab79
JB
99/**
100 * Interleaved Transfer Request
101 * ----------------------------
102 * A chunk is collection of contiguous bytes to be transfered.
103 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
104 * ICGs may or maynot change between chunks.
105 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
106 * that when repeated an integral number of times, specifies the transfer.
107 * A transfer template is specification of a Frame, the number of times
108 * it is to be repeated and other per-transfer attributes.
109 *
110 * Practically, a client driver would have ready a template for each
111 * type of transfer it is going to need during its lifetime and
112 * set only 'src_start' and 'dst_start' before submitting the requests.
113 *
114 *
115 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
116 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
117 *
118 * == Chunk size
119 * ... ICG
120 */
121
122/**
123 * struct data_chunk - Element of scatter-gather list that makes a frame.
124 * @size: Number of bytes to read from source.
125 * size_dst := fn(op, size_src), so doesn't mean much for destination.
126 * @icg: Number of bytes to jump after last src/dst address of this
127 * chunk and before first src/dst address for next chunk.
128 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
129 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
130 */
131struct data_chunk {
132 size_t size;
133 size_t icg;
134};
135
136/**
137 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
138 * and attributes.
139 * @src_start: Bus address of source for the first chunk.
140 * @dst_start: Bus address of destination for the first chunk.
141 * @dir: Specifies the type of Source and Destination.
142 * @src_inc: If the source address increments after reading from it.
143 * @dst_inc: If the destination address increments after writing to it.
144 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
145 * Otherwise, source is read contiguously (icg ignored).
146 * Ignored if src_inc is false.
147 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
148 * Otherwise, destination is filled contiguously (icg ignored).
149 * Ignored if dst_inc is false.
150 * @numf: Number of frames in this template.
151 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
152 * @sgl: Array of {chunk,icg} pairs that make up a frame.
153 */
154struct dma_interleaved_template {
155 dma_addr_t src_start;
156 dma_addr_t dst_start;
157 enum dma_transfer_direction dir;
158 bool src_inc;
159 bool dst_inc;
160 bool src_sgl;
161 bool dst_sgl;
162 size_t numf;
163 size_t frame_size;
164 struct data_chunk sgl[0];
165};
166
d4c56f97 167/**
636bdeaa 168 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
b2f46fd8 169 * control completion, and communicate status.
d4c56f97 170 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
b2f46fd8 171 * this transaction
a88f6667 172 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
b2f46fd8
DW
173 * acknowledges receipt, i.e. has has a chance to establish any dependency
174 * chains
b2f46fd8
DW
175 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
176 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
177 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
178 * sources that were the result of a previous operation, in the case of a PQ
179 * operation it continues the calculation with new sources
0403e382
DW
180 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
181 * on the result of this operation
d4c56f97 182 */
636bdeaa 183enum dma_ctrl_flags {
d4c56f97 184 DMA_PREP_INTERRUPT = (1 << 0),
636bdeaa 185 DMA_CTRL_ACK = (1 << 1),
0776ae7b
BZ
186 DMA_PREP_PQ_DISABLE_P = (1 << 2),
187 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
188 DMA_PREP_CONTINUE = (1 << 4),
189 DMA_PREP_FENCE = (1 << 5),
d4c56f97
DW
190};
191
c3635c78
LW
192/**
193 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
194 * on a running channel.
195 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
196 * @DMA_PAUSE: pause ongoing transfers
197 * @DMA_RESUME: resume paused transfer
c156d0a5
LW
198 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
199 * that need to runtime reconfigure the slave channels (as opposed to passing
200 * configuration data in statically from the platform). An additional
201 * argument of struct dma_slave_config must be passed in with this
202 * command.
968f19ae
IS
203 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
204 * into external start mode.
c3635c78
LW
205 */
206enum dma_ctrl_cmd {
207 DMA_TERMINATE_ALL,
208 DMA_PAUSE,
209 DMA_RESUME,
c156d0a5 210 DMA_SLAVE_CONFIG,
968f19ae 211 FSLDMA_EXTERNAL_START,
c3635c78
LW
212};
213
ad283ea4
DW
214/**
215 * enum sum_check_bits - bit position of pq_check_flags
216 */
217enum sum_check_bits {
218 SUM_CHECK_P = 0,
219 SUM_CHECK_Q = 1,
220};
221
222/**
223 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
224 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
225 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
226 */
227enum sum_check_flags {
228 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
229 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
230};
231
232
7405f74b
DW
233/**
234 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
235 * See linux/cpumask.h
236 */
237typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
238
c13c8260
CL
239/**
240 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
c13c8260
CL
241 * @memcpy_count: transaction counter
242 * @bytes_transferred: byte counter
243 */
244
245struct dma_chan_percpu {
c13c8260
CL
246 /* stats */
247 unsigned long memcpy_count;
248 unsigned long bytes_transferred;
249};
250
251/**
252 * struct dma_chan - devices supply DMA channels, clients use them
fe4ada2d 253 * @device: ptr to the dma device who supplies this channel, always !%NULL
c13c8260 254 * @cookie: last cookie value returned to client
4d4e58de 255 * @completed_cookie: last completed cookie for this channel
fe4ada2d 256 * @chan_id: channel ID for sysfs
41d5e59c 257 * @dev: class device for sysfs
c13c8260
CL
258 * @device_node: used to add this to the device chan list
259 * @local: per-cpu pointer to a struct dma_chan_percpu
868d2ee2 260 * @client_count: how many clients are using this channel
bec08513 261 * @table_count: number of appearances in the mem-to-mem allocation table
287d8592 262 * @private: private data for certain client-channel associations
c13c8260
CL
263 */
264struct dma_chan {
c13c8260
CL
265 struct dma_device *device;
266 dma_cookie_t cookie;
4d4e58de 267 dma_cookie_t completed_cookie;
c13c8260
CL
268
269 /* sysfs */
270 int chan_id;
41d5e59c 271 struct dma_chan_dev *dev;
c13c8260 272
c13c8260 273 struct list_head device_node;
a29d8b8e 274 struct dma_chan_percpu __percpu *local;
7cc5bf9a 275 int client_count;
bec08513 276 int table_count;
287d8592 277 void *private;
c13c8260
CL
278};
279
41d5e59c
DW
280/**
281 * struct dma_chan_dev - relate sysfs device node to backing channel device
868d2ee2
VK
282 * @chan: driver channel device
283 * @device: sysfs device
284 * @dev_id: parent dma_device dev_id
285 * @idr_ref: reference count to gate release of dma_device dev_id
41d5e59c
DW
286 */
287struct dma_chan_dev {
288 struct dma_chan *chan;
289 struct device device;
864498aa
DW
290 int dev_id;
291 atomic_t *idr_ref;
41d5e59c
DW
292};
293
c156d0a5 294/**
ba730340 295 * enum dma_slave_buswidth - defines bus width of the DMA slave
c156d0a5
LW
296 * device, source or target buses
297 */
298enum dma_slave_buswidth {
299 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
300 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
301 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
302 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
303 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
304};
305
306/**
307 * struct dma_slave_config - dma slave channel runtime config
308 * @direction: whether the data shall go in or out on this slave
397321f4
AP
309 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
310 * legal values.
c156d0a5
LW
311 * @src_addr: this is the physical address where DMA slave data
312 * should be read (RX), if the source is memory this argument is
313 * ignored.
314 * @dst_addr: this is the physical address where DMA slave data
315 * should be written (TX), if the source is memory this argument
316 * is ignored.
317 * @src_addr_width: this is the width in bytes of the source (RX)
318 * register where DMA data shall be read. If the source
319 * is memory this may be ignored depending on architecture.
320 * Legal values: 1, 2, 4, 8.
321 * @dst_addr_width: same as src_addr_width but for destination
322 * target (TX) mutatis mutandis.
323 * @src_maxburst: the maximum number of words (note: words, as in
324 * units of the src_addr_width member, not bytes) that can be sent
325 * in one burst to the device. Typically something like half the
326 * FIFO depth on I/O peripherals so you don't overflow it. This
327 * may or may not be applicable on memory sources.
328 * @dst_maxburst: same as src_maxburst but for destination target
329 * mutatis mutandis.
dcc043dc
VK
330 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
331 * with 'true' if peripheral should be flow controller. Direction will be
332 * selected at Runtime.
4fd1e324
LD
333 * @slave_id: Slave requester id. Only valid for slave channels. The dma
334 * slave peripheral will have unique id as dma requester which need to be
335 * pass as slave config.
c156d0a5
LW
336 *
337 * This struct is passed in as configuration data to a DMA engine
338 * in order to set up a certain channel for DMA transport at runtime.
339 * The DMA device/engine has to provide support for an additional
340 * command in the channel config interface, DMA_SLAVE_CONFIG
341 * and this struct will then be passed in as an argument to the
342 * DMA engine device_control() function.
343 *
7cbccb55
LPC
344 * The rationale for adding configuration information to this struct is as
345 * follows: if it is likely that more than one DMA slave controllers in
346 * the world will support the configuration option, then make it generic.
347 * If not: if it is fixed so that it be sent in static from the platform
348 * data, then prefer to do that.
c156d0a5
LW
349 */
350struct dma_slave_config {
49920bc6 351 enum dma_transfer_direction direction;
c156d0a5
LW
352 dma_addr_t src_addr;
353 dma_addr_t dst_addr;
354 enum dma_slave_buswidth src_addr_width;
355 enum dma_slave_buswidth dst_addr_width;
356 u32 src_maxburst;
357 u32 dst_maxburst;
dcc043dc 358 bool device_fc;
4fd1e324 359 unsigned int slave_id;
c156d0a5
LW
360};
361
50720563
LPC
362/**
363 * enum dma_residue_granularity - Granularity of the reported transfer residue
364 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
365 * DMA channel is only able to tell whether a descriptor has been completed or
366 * not, which means residue reporting is not supported by this channel. The
367 * residue field of the dma_tx_state field will always be 0.
368 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
369 * completed segment of the transfer (For cyclic transfers this is after each
370 * period). This is typically implemented by having the hardware generate an
371 * interrupt after each transferred segment and then the drivers updates the
372 * outstanding residue by the size of the segment. Another possibility is if
373 * the hardware supports scatter-gather and the segment descriptor has a field
374 * which gets set after the segment has been completed. The driver then counts
375 * the number of segments without the flag set to compute the residue.
376 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
377 * burst. This is typically only supported if the hardware has a progress
378 * register of some sort (E.g. a register with the current read/write address
379 * or a register with the amount of bursts/beats/bytes that have been
380 * transferred or still need to be transferred).
381 */
382enum dma_residue_granularity {
383 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
384 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
385 DMA_RESIDUE_GRANULARITY_BURST = 2,
386};
387
221a27c7
VK
388/* struct dma_slave_caps - expose capabilities of a slave channel only
389 *
390 * @src_addr_widths: bit mask of src addr widths the channel supports
391 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
392 * @directions: bit mask of slave direction the channel supported
393 * since the enum dma_transfer_direction is not defined as bits for each
394 * type of direction, the dma controller should fill (1 << <TYPE>) and same
395 * should be checked by controller as well
396 * @cmd_pause: true, if pause and thereby resume is supported
397 * @cmd_terminate: true, if terminate cmd is supported
50720563 398 * @residue_granularity: granularity of the reported transfer residue
221a27c7
VK
399 */
400struct dma_slave_caps {
401 u32 src_addr_widths;
402 u32 dstn_addr_widths;
403 u32 directions;
404 bool cmd_pause;
405 bool cmd_terminate;
50720563 406 enum dma_residue_granularity residue_granularity;
221a27c7
VK
407};
408
41d5e59c
DW
409static inline const char *dma_chan_name(struct dma_chan *chan)
410{
411 return dev_name(&chan->dev->device);
412}
d379b01e 413
c13c8260
CL
414void dma_chan_cleanup(struct kref *kref);
415
59b5ec21
DW
416/**
417 * typedef dma_filter_fn - callback filter for dma_request_channel
418 * @chan: channel to be reviewed
419 * @filter_param: opaque parameter passed through dma_request_channel
420 *
421 * When this optional parameter is specified in a call to dma_request_channel a
422 * suitable channel is passed to this routine for further dispositioning before
423 * being returned. Where 'suitable' indicates a non-busy channel that
7dd60251
DW
424 * satisfies the given capability mask. It returns 'true' to indicate that the
425 * channel is suitable.
59b5ec21 426 */
7dd60251 427typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
59b5ec21 428
7405f74b 429typedef void (*dma_async_tx_callback)(void *dma_async_param);
d38a8c62
DW
430
431struct dmaengine_unmap_data {
c1f43dd9 432 u8 map_cnt;
d38a8c62
DW
433 u8 to_cnt;
434 u8 from_cnt;
435 u8 bidi_cnt;
436 struct device *dev;
437 struct kref kref;
438 size_t len;
439 dma_addr_t addr[0];
440};
441
7405f74b
DW
442/**
443 * struct dma_async_tx_descriptor - async transaction descriptor
444 * ---dma generic offload fields---
445 * @cookie: tracking cookie for this transaction, set to -EBUSY if
446 * this tx is sitting on a dependency list
636bdeaa
DW
447 * @flags: flags to augment operation preparation, control completion, and
448 * communicate status
7405f74b 449 * @phys: physical address of the descriptor
7405f74b
DW
450 * @chan: target channel for this operation
451 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
7405f74b
DW
452 * @callback: routine to call after this operation is complete
453 * @callback_param: general parameter to pass to the callback routine
454 * ---async_tx api specific fields---
19242d72 455 * @next: at completion submit this descriptor
7405f74b 456 * @parent: pointer to the next level up in the dependency chain
19242d72 457 * @lock: protect the parent and next pointers
7405f74b
DW
458 */
459struct dma_async_tx_descriptor {
460 dma_cookie_t cookie;
636bdeaa 461 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
7405f74b 462 dma_addr_t phys;
7405f74b
DW
463 struct dma_chan *chan;
464 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
7405f74b
DW
465 dma_async_tx_callback callback;
466 void *callback_param;
d38a8c62 467 struct dmaengine_unmap_data *unmap;
5fc6d897 468#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
19242d72 469 struct dma_async_tx_descriptor *next;
7405f74b
DW
470 struct dma_async_tx_descriptor *parent;
471 spinlock_t lock;
caa20d97 472#endif
7405f74b
DW
473};
474
89716462 475#ifdef CONFIG_DMA_ENGINE
d38a8c62
DW
476static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
477 struct dmaengine_unmap_data *unmap)
478{
479 kref_get(&unmap->kref);
480 tx->unmap = unmap;
481}
482
89716462
DW
483struct dmaengine_unmap_data *
484dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
45c463ae 485void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
89716462
DW
486#else
487static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
488 struct dmaengine_unmap_data *unmap)
489{
490}
491static inline struct dmaengine_unmap_data *
492dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
493{
494 return NULL;
495}
496static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
497{
498}
499#endif
45c463ae 500
d38a8c62
DW
501static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
502{
503 if (tx->unmap) {
45c463ae 504 dmaengine_unmap_put(tx->unmap);
d38a8c62
DW
505 tx->unmap = NULL;
506 }
507}
508
5fc6d897 509#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
caa20d97
DW
510static inline void txd_lock(struct dma_async_tx_descriptor *txd)
511{
512}
513static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
514{
515}
516static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
517{
518 BUG();
519}
520static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
521{
522}
523static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
524{
525}
526static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
527{
528 return NULL;
529}
530static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
531{
532 return NULL;
533}
534
535#else
536static inline void txd_lock(struct dma_async_tx_descriptor *txd)
537{
538 spin_lock_bh(&txd->lock);
539}
540static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
541{
542 spin_unlock_bh(&txd->lock);
543}
544static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
545{
546 txd->next = next;
547 next->parent = txd;
548}
549static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
550{
551 txd->parent = NULL;
552}
553static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
554{
555 txd->next = NULL;
556}
557static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
558{
559 return txd->parent;
560}
561static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
562{
563 return txd->next;
564}
565#endif
566
07934481
LW
567/**
568 * struct dma_tx_state - filled in to report the status of
569 * a transfer.
570 * @last: last completed DMA cookie
571 * @used: last issued DMA cookie (i.e. the one in progress)
572 * @residue: the remaining number of bytes left to transmit
573 * on the selected transfer for states DMA_IN_PROGRESS and
574 * DMA_PAUSED if this is implemented in the driver, else 0
575 */
576struct dma_tx_state {
577 dma_cookie_t last;
578 dma_cookie_t used;
579 u32 residue;
580};
581
c13c8260
CL
582/**
583 * struct dma_device - info on the entity supplying DMA services
584 * @chancnt: how many DMA channels are supported
0f571515 585 * @privatecnt: how many DMA channels are requested by dma_request_channel
c13c8260
CL
586 * @channels: the list of struct dma_chan
587 * @global_node: list_head for global dma_device_list
7405f74b
DW
588 * @cap_mask: one or more dma_capability flags
589 * @max_xor: maximum number of xor sources, 0 if no capability
b2f46fd8 590 * @max_pq: maximum number of PQ sources and PQ-continue capability
83544ae9
DW
591 * @copy_align: alignment shift for memcpy operations
592 * @xor_align: alignment shift for xor operations
593 * @pq_align: alignment shift for pq operations
594 * @fill_align: alignment shift for memset operations
fe4ada2d 595 * @dev_id: unique device ID
7405f74b 596 * @dev: struct device reference for dma mapping api
fe4ada2d
RD
597 * @device_alloc_chan_resources: allocate resources and return the
598 * number of allocated descriptors
599 * @device_free_chan_resources: release DMA channel's resources
7405f74b
DW
600 * @device_prep_dma_memcpy: prepares a memcpy operation
601 * @device_prep_dma_xor: prepares a xor operation
099f53cb 602 * @device_prep_dma_xor_val: prepares a xor validation operation
b2f46fd8
DW
603 * @device_prep_dma_pq: prepares a pq operation
604 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
7405f74b 605 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
dc0ee643 606 * @device_prep_slave_sg: prepares a slave dma operation
782bc950
SH
607 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
608 * The function takes a buffer of size buf_len. The callback function will
609 * be called after period_len bytes have been transferred.
b14dab79 610 * @device_prep_interleaved_dma: Transfer expression in a generic way.
c3635c78
LW
611 * @device_control: manipulate all pending operations on a channel, returns
612 * zero or error code
07934481
LW
613 * @device_tx_status: poll for transaction completion, the optional
614 * txstate parameter can be supplied with a pointer to get a
25985edc 615 * struct with auxiliary transfer status information, otherwise the call
07934481 616 * will just return a simple status code
7405f74b 617 * @device_issue_pending: push pending transactions to hardware
221a27c7 618 * @device_slave_caps: return the slave channel capabilities
c13c8260
CL
619 */
620struct dma_device {
621
622 unsigned int chancnt;
0f571515 623 unsigned int privatecnt;
c13c8260
CL
624 struct list_head channels;
625 struct list_head global_node;
7405f74b 626 dma_cap_mask_t cap_mask;
b2f46fd8
DW
627 unsigned short max_xor;
628 unsigned short max_pq;
83544ae9
DW
629 u8 copy_align;
630 u8 xor_align;
631 u8 pq_align;
632 u8 fill_align;
b2f46fd8 633 #define DMA_HAS_PQ_CONTINUE (1 << 15)
c13c8260 634
c13c8260 635 int dev_id;
7405f74b 636 struct device *dev;
c13c8260 637
aa1e6f1a 638 int (*device_alloc_chan_resources)(struct dma_chan *chan);
c13c8260 639 void (*device_free_chan_resources)(struct dma_chan *chan);
7405f74b
DW
640
641 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
0036731c 642 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
d4c56f97 643 size_t len, unsigned long flags);
7405f74b 644 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
0036731c 645 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
d4c56f97 646 unsigned int src_cnt, size_t len, unsigned long flags);
099f53cb 647 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
0036731c 648 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
ad283ea4 649 size_t len, enum sum_check_flags *result, unsigned long flags);
b2f46fd8
DW
650 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
651 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
652 unsigned int src_cnt, const unsigned char *scf,
653 size_t len, unsigned long flags);
654 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
655 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
656 unsigned int src_cnt, const unsigned char *scf, size_t len,
657 enum sum_check_flags *pqres, unsigned long flags);
7405f74b 658 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
636bdeaa 659 struct dma_chan *chan, unsigned long flags);
a86ee03c
IS
660 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
661 struct dma_chan *chan,
662 struct scatterlist *dst_sg, unsigned int dst_nents,
663 struct scatterlist *src_sg, unsigned int src_nents,
664 unsigned long flags);
7405f74b 665
dc0ee643
HS
666 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
667 struct dma_chan *chan, struct scatterlist *sgl,
49920bc6 668 unsigned int sg_len, enum dma_transfer_direction direction,
185ecb5f 669 unsigned long flags, void *context);
782bc950
SH
670 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
671 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
185ecb5f 672 size_t period_len, enum dma_transfer_direction direction,
ec8b5e48 673 unsigned long flags, void *context);
b14dab79
JB
674 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
675 struct dma_chan *chan, struct dma_interleaved_template *xt,
676 unsigned long flags);
05827630
LW
677 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
678 unsigned long arg);
dc0ee643 679
07934481
LW
680 enum dma_status (*device_tx_status)(struct dma_chan *chan,
681 dma_cookie_t cookie,
682 struct dma_tx_state *txstate);
7405f74b 683 void (*device_issue_pending)(struct dma_chan *chan);
221a27c7 684 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
c13c8260
CL
685};
686
6e3ecaf0
SH
687static inline int dmaengine_device_control(struct dma_chan *chan,
688 enum dma_ctrl_cmd cmd,
689 unsigned long arg)
690{
944ea4dd
JM
691 if (chan->device->device_control)
692 return chan->device->device_control(chan, cmd, arg);
978c4172
AS
693
694 return -ENOSYS;
6e3ecaf0
SH
695}
696
697static inline int dmaengine_slave_config(struct dma_chan *chan,
698 struct dma_slave_config *config)
699{
700 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
701 (unsigned long)config);
702}
703
61cc13a5
AS
704static inline bool is_slave_direction(enum dma_transfer_direction direction)
705{
706 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
707}
708
90b44f8f 709static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
922ee08b 710 struct dma_chan *chan, dma_addr_t buf, size_t len,
49920bc6 711 enum dma_transfer_direction dir, unsigned long flags)
90b44f8f
VK
712{
713 struct scatterlist sg;
922ee08b
KM
714 sg_init_table(&sg, 1);
715 sg_dma_address(&sg) = buf;
716 sg_dma_len(&sg) = len;
90b44f8f 717
185ecb5f
AB
718 return chan->device->device_prep_slave_sg(chan, &sg, 1,
719 dir, flags, NULL);
90b44f8f
VK
720}
721
16052827
AB
722static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
723 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
724 enum dma_transfer_direction dir, unsigned long flags)
725{
726 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
185ecb5f 727 dir, flags, NULL);
16052827
AB
728}
729
e42d98eb
AB
730#ifdef CONFIG_RAPIDIO_DMA_ENGINE
731struct rio_dma_ext;
732static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
733 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
734 enum dma_transfer_direction dir, unsigned long flags,
735 struct rio_dma_ext *rio_ext)
736{
737 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
738 dir, flags, rio_ext);
739}
740#endif
741
16052827
AB
742static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
743 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
e7736cde
PU
744 size_t period_len, enum dma_transfer_direction dir,
745 unsigned long flags)
16052827
AB
746{
747 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
ec8b5e48 748 period_len, dir, flags, NULL);
a14acb4a
BS
749}
750
751static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
752 struct dma_chan *chan, struct dma_interleaved_template *xt,
753 unsigned long flags)
754{
755 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
90b44f8f
VK
756}
757
221a27c7
VK
758static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
759{
760 if (!chan || !caps)
761 return -EINVAL;
762
763 /* check if the channel supports slave transactions */
764 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
765 return -ENXIO;
766
767 if (chan->device->device_slave_caps)
768 return chan->device->device_slave_caps(chan, caps);
769
770 return -ENXIO;
771}
772
6e3ecaf0
SH
773static inline int dmaengine_terminate_all(struct dma_chan *chan)
774{
775 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
776}
777
778static inline int dmaengine_pause(struct dma_chan *chan)
779{
780 return dmaengine_device_control(chan, DMA_PAUSE, 0);
781}
782
783static inline int dmaengine_resume(struct dma_chan *chan)
784{
785 return dmaengine_device_control(chan, DMA_RESUME, 0);
786}
787
3052cc2c
LPC
788static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
789 dma_cookie_t cookie, struct dma_tx_state *state)
790{
791 return chan->device->device_tx_status(chan, cookie, state);
792}
793
98d530fe 794static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
6e3ecaf0
SH
795{
796 return desc->tx_submit(desc);
797}
798
83544ae9
DW
799static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
800{
801 size_t mask;
802
803 if (!align)
804 return true;
805 mask = (1 << align) - 1;
806 if (mask & (off1 | off2 | len))
807 return false;
808 return true;
809}
810
811static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
812 size_t off2, size_t len)
813{
814 return dmaengine_check_align(dev->copy_align, off1, off2, len);
815}
816
817static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
818 size_t off2, size_t len)
819{
820 return dmaengine_check_align(dev->xor_align, off1, off2, len);
821}
822
823static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
824 size_t off2, size_t len)
825{
826 return dmaengine_check_align(dev->pq_align, off1, off2, len);
827}
828
829static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
830 size_t off2, size_t len)
831{
832 return dmaengine_check_align(dev->fill_align, off1, off2, len);
833}
834
b2f46fd8
DW
835static inline void
836dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
837{
838 dma->max_pq = maxpq;
839 if (has_pq_continue)
840 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
841}
842
843static inline bool dmaf_continue(enum dma_ctrl_flags flags)
844{
845 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
846}
847
848static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
849{
850 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
851
852 return (flags & mask) == mask;
853}
854
855static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
856{
857 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
858}
859
d3f3cf85 860static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
b2f46fd8
DW
861{
862 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
863}
864
865/* dma_maxpq - reduce maxpq in the face of continued operations
866 * @dma - dma device with PQ capability
867 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
868 *
869 * When an engine does not support native continuation we need 3 extra
870 * source slots to reuse P and Q with the following coefficients:
871 * 1/ {00} * P : remove P from Q', but use it as a source for P'
872 * 2/ {01} * Q : use Q to continue Q' calculation
873 * 3/ {00} * Q : subtract Q from P' to cancel (2)
874 *
875 * In the case where P is disabled we only need 1 extra source:
876 * 1/ {01} * Q : use Q to continue Q' calculation
877 */
878static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
879{
880 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
881 return dma_dev_to_maxpq(dma);
882 else if (dmaf_p_disabled_continue(flags))
883 return dma_dev_to_maxpq(dma) - 1;
884 else if (dmaf_continue(flags))
885 return dma_dev_to_maxpq(dma) - 3;
886 BUG();
887}
888
c13c8260
CL
889/* --- public DMA engine API --- */
890
649274d9 891#ifdef CONFIG_DMA_ENGINE
209b84a8
DW
892void dmaengine_get(void);
893void dmaengine_put(void);
649274d9
DW
894#else
895static inline void dmaengine_get(void)
896{
897}
898static inline void dmaengine_put(void)
899{
900}
901#endif
902
b4bd07c2
DM
903#ifdef CONFIG_NET_DMA
904#define net_dmaengine_get() dmaengine_get()
905#define net_dmaengine_put() dmaengine_put()
906#else
907static inline void net_dmaengine_get(void)
908{
909}
910static inline void net_dmaengine_put(void)
911{
912}
913#endif
914
729b5d1b
DW
915#ifdef CONFIG_ASYNC_TX_DMA
916#define async_dmaengine_get() dmaengine_get()
917#define async_dmaengine_put() dmaengine_put()
5fc6d897 918#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
138f4c35
DW
919#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
920#else
729b5d1b 921#define async_dma_find_channel(type) dma_find_channel(type)
5fc6d897 922#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
729b5d1b
DW
923#else
924static inline void async_dmaengine_get(void)
925{
926}
927static inline void async_dmaengine_put(void)
928{
929}
930static inline struct dma_chan *
931async_dma_find_channel(enum dma_transaction_type type)
932{
933 return NULL;
934}
138f4c35 935#endif /* CONFIG_ASYNC_TX_DMA */
729b5d1b 936
7405f74b
DW
937dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
938 void *dest, void *src, size_t len);
939dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
940 struct page *page, unsigned int offset, void *kdata, size_t len);
941dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
942 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
943 unsigned int src_off, size_t len);
944void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
945 struct dma_chan *chan);
c13c8260 946
0839875e 947static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
7405f74b 948{
636bdeaa
DW
949 tx->flags |= DMA_CTRL_ACK;
950}
951
ef560682
GL
952static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
953{
954 tx->flags &= ~DMA_CTRL_ACK;
955}
956
0839875e 957static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
636bdeaa 958{
0839875e 959 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
c13c8260
CL
960}
961
7405f74b
DW
962#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
963static inline void
964__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
c13c8260 965{
7405f74b
DW
966 set_bit(tx_type, dstp->bits);
967}
c13c8260 968
0f571515
AN
969#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
970static inline void
971__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
972{
973 clear_bit(tx_type, dstp->bits);
974}
975
33df8ca0
DW
976#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
977static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
978{
979 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
980}
981
7405f74b
DW
982#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
983static inline int
984__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
985{
986 return test_bit(tx_type, srcp->bits);
c13c8260
CL
987}
988
7405f74b 989#define for_each_dma_cap_mask(cap, mask) \
e5a087fd 990 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
7405f74b 991
c13c8260 992/**
7405f74b 993 * dma_async_issue_pending - flush pending transactions to HW
fe4ada2d 994 * @chan: target DMA channel
c13c8260
CL
995 *
996 * This allows drivers to push copies to HW in batches,
997 * reducing MMIO writes where possible.
998 */
7405f74b 999static inline void dma_async_issue_pending(struct dma_chan *chan)
c13c8260 1000{
ec8670f1 1001 chan->device->device_issue_pending(chan);
c13c8260
CL
1002}
1003
1004/**
7405f74b 1005 * dma_async_is_tx_complete - poll for transaction completion
c13c8260
CL
1006 * @chan: DMA channel
1007 * @cookie: transaction identifier to check status of
1008 * @last: returns last completed cookie, can be NULL
1009 * @used: returns last issued cookie, can be NULL
1010 *
1011 * If @last and @used are passed in, upon return they reflect the driver
1012 * internal state and can be used with dma_async_is_complete() to check
1013 * the status of multiple cookies without re-checking hardware state.
1014 */
7405f74b 1015static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
c13c8260
CL
1016 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1017{
07934481
LW
1018 struct dma_tx_state state;
1019 enum dma_status status;
1020
1021 status = chan->device->device_tx_status(chan, cookie, &state);
1022 if (last)
1023 *last = state.last;
1024 if (used)
1025 *used = state.used;
1026 return status;
c13c8260
CL
1027}
1028
1029/**
1030 * dma_async_is_complete - test a cookie against chan state
1031 * @cookie: transaction identifier to test status of
1032 * @last_complete: last know completed transaction
1033 * @last_used: last cookie value handed out
1034 *
e239345f 1035 * dma_async_is_complete() is used in dma_async_is_tx_complete()
8a5703f8 1036 * the test logic is separated for lightweight testing of multiple cookies
c13c8260
CL
1037 */
1038static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1039 dma_cookie_t last_complete, dma_cookie_t last_used)
1040{
1041 if (last_complete <= last_used) {
1042 if ((cookie <= last_complete) || (cookie > last_used))
adfedd9a 1043 return DMA_COMPLETE;
c13c8260
CL
1044 } else {
1045 if ((cookie <= last_complete) && (cookie > last_used))
adfedd9a 1046 return DMA_COMPLETE;
c13c8260
CL
1047 }
1048 return DMA_IN_PROGRESS;
1049}
1050
bca34692
DW
1051static inline void
1052dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1053{
1054 if (st) {
1055 st->last = last;
1056 st->used = used;
1057 st->residue = residue;
1058 }
1059}
1060
07f2211e 1061#ifdef CONFIG_DMA_ENGINE
4a43f394
JM
1062struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1063enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
07f2211e 1064enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
c50331e8 1065void dma_issue_pending_all(void);
a53e28da
LPC
1066struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1067 dma_filter_fn fn, void *fn_param);
0ad7c000
SW
1068struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1069 const char *name);
bef29ec5 1070struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
8f33d527 1071void dma_release_channel(struct dma_chan *chan);
07f2211e 1072#else
4a43f394
JM
1073static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1074{
1075 return NULL;
1076}
1077static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1078{
adfedd9a 1079 return DMA_COMPLETE;
4a43f394 1080}
07f2211e
DW
1081static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1082{
adfedd9a 1083 return DMA_COMPLETE;
07f2211e 1084}
c50331e8
DW
1085static inline void dma_issue_pending_all(void)
1086{
8f33d527 1087}
a53e28da 1088static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
8f33d527
GL
1089 dma_filter_fn fn, void *fn_param)
1090{
1091 return NULL;
1092}
0ad7c000
SW
1093static inline struct dma_chan *dma_request_slave_channel_reason(
1094 struct device *dev, const char *name)
1095{
1096 return ERR_PTR(-ENODEV);
1097}
9a6cecc8 1098static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
bef29ec5 1099 const char *name)
9a6cecc8 1100{
d18d5f59 1101 return NULL;
9a6cecc8 1102}
8f33d527
GL
1103static inline void dma_release_channel(struct dma_chan *chan)
1104{
c50331e8 1105}
07f2211e 1106#endif
c13c8260
CL
1107
1108/* --- DMA device --- */
1109
1110int dma_async_device_register(struct dma_device *device);
1111void dma_async_device_unregister(struct dma_device *device);
07f2211e 1112void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
7bb587f4 1113struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
8010dad5 1114struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
a2bd1140 1115struct dma_chan *net_dma_find_channel(void);
59b5ec21 1116#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
864ef69b
MP
1117#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1118 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1119
1120static inline struct dma_chan
a53e28da
LPC
1121*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1122 dma_filter_fn fn, void *fn_param,
1123 struct device *dev, char *name)
864ef69b
MP
1124{
1125 struct dma_chan *chan;
1126
1127 chan = dma_request_slave_channel(dev, name);
1128 if (chan)
1129 return chan;
1130
1131 return __dma_request_channel(mask, fn, fn_param);
1132}
c13c8260 1133
de5506e1
CL
1134/* --- Helper iov-locking functions --- */
1135
1136struct dma_page_list {
b2ddb901 1137 char __user *base_address;
de5506e1
CL
1138 int nr_pages;
1139 struct page **pages;
1140};
1141
1142struct dma_pinned_list {
1143 int nr_iovecs;
1144 struct dma_page_list page_list[0];
1145};
1146
1147struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1148void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1149
1150dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1151 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1152dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1153 struct dma_pinned_list *pinned_list, struct page *page,
1154 unsigned int offset, size_t len);
1155
c13c8260 1156#endif /* DMAENGINE_H */
This page took 0.70242 seconds and 5 git commands to generate.