Drivers: hv: Save and export negotiated vmbus version
[deliverable/linux.git] / include / linux / hyperv.h
CommitLineData
5c473400
S
1/*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
3f335ea2
S
24
25#ifndef _HYPERV_H
26#define _HYPERV_H
27
2939437c
S
28#include <linux/types.h>
29
30/*
31 * An implementation of HyperV key value pair (KVP) functionality for Linux.
32 *
33 *
34 * Copyright (C) 2010, Novell, Inc.
35 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
36 *
37 */
38
39/*
40 * Maximum value size - used for both key names and value data, and includes
41 * any applicable NULL terminators.
42 *
43 * Note: This limit is somewhat arbitrary, but falls easily within what is
44 * supported for all native guests (back to Win 2000) and what is reasonable
45 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
46 * limited to 255 character key names.
47 *
48 * MSDN recommends not storing data values larger than 2048 bytes in the
49 * registry.
50 *
51 * Note: This value is used in defining the KVP exchange message - this value
52 * cannot be modified without affecting the message size and compatibility.
53 */
54
55/*
56 * bytes, including any null terminators
57 */
58#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
59
60
61/*
62 * Maximum key size - the registry limit for the length of an entry name
63 * is 256 characters, including the null terminator
64 */
65
66#define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
67
68/*
69 * In Linux, we implement the KVP functionality in two components:
70 * 1) The kernel component which is packaged as part of the hv_utils driver
71 * is responsible for communicating with the host and responsible for
72 * implementing the host/guest protocol. 2) A user level daemon that is
73 * responsible for data gathering.
74 *
75 * Host/Guest Protocol: The host iterates over an index and expects the guest
76 * to assign a key name to the index and also return the value corresponding to
77 * the key. The host will have atmost one KVP transaction outstanding at any
78 * given point in time. The host side iteration stops when the guest returns
79 * an error. Microsoft has specified the following mapping of key names to
80 * host specified index:
81 *
82 * Index Key Name
83 * 0 FullyQualifiedDomainName
84 * 1 IntegrationServicesVersion
85 * 2 NetworkAddressIPv4
86 * 3 NetworkAddressIPv6
87 * 4 OSBuildNumber
88 * 5 OSName
89 * 6 OSMajorVersion
90 * 7 OSMinorVersion
91 * 8 OSVersion
92 * 9 ProcessorArchitecture
93 *
94 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
95 *
96 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
97 * data gathering functionality in a user mode daemon. The user level daemon
98 * is also responsible for binding the key name to the index as well. The
99 * kernel and user-level daemon communicate using a connector channel.
100 *
101 * The user mode component first registers with the
102 * the kernel component. Subsequently, the kernel component requests, data
103 * for the specified keys. In response to this message the user mode component
104 * fills in the value corresponding to the specified key. We overload the
105 * sequence field in the cn_msg header to define our KVP message types.
106 *
107 *
108 * The kernel component simply acts as a conduit for communication between the
109 * Windows host and the user-level daemon. The kernel component passes up the
110 * index received from the Host to the user-level daemon. If the index is
111 * valid (supported), the corresponding key as well as its
112 * value (both are strings) is returned. If the index is invalid
113 * (not supported), a NULL key string is returned.
114 */
115
2939437c
S
116
117/*
118 * Registry value types.
119 */
120
121#define REG_SZ 1
fa3d5b85
S
122#define REG_U32 4
123#define REG_U64 8
2939437c 124
9b595780
S
125/*
126 * As we look at expanding the KVP functionality to include
127 * IP injection functionality, we need to maintain binary
128 * compatibility with older daemons.
129 *
130 * The KVP opcodes are defined by the host and it was unfortunate
131 * that I chose to treat the registration operation as part of the
132 * KVP operations defined by the host.
133 * Here is the level of compatibility
134 * (between the user level daemon and the kernel KVP driver) that we
135 * will implement:
136 *
137 * An older daemon will always be supported on a newer driver.
138 * A given user level daemon will require a minimal version of the
139 * kernel driver.
140 * If we cannot handle the version differences, we will fail gracefully
141 * (this can happen when we have a user level daemon that is more
142 * advanced than the KVP driver.
143 *
144 * We will use values used in this handshake for determining if we have
145 * workable user level daemon and the kernel driver. We begin by taking the
146 * registration opcode out of the KVP opcode namespace. We will however,
147 * maintain compatibility with the existing user-level daemon code.
148 */
149
150/*
151 * Daemon code not supporting IP injection (legacy daemon).
152 */
153
154#define KVP_OP_REGISTER 4
155
156/*
157 * Daemon code supporting IP injection.
158 * The KVP opcode field is used to communicate the
159 * registration information; so define a namespace that
160 * will be distinct from the host defined KVP opcode.
161 */
162
163#define KVP_OP_REGISTER1 100
164
2939437c
S
165enum hv_kvp_exchg_op {
166 KVP_OP_GET = 0,
167 KVP_OP_SET,
168 KVP_OP_DELETE,
169 KVP_OP_ENUMERATE,
9b595780
S
170 KVP_OP_GET_IP_INFO,
171 KVP_OP_SET_IP_INFO,
2939437c
S
172 KVP_OP_COUNT /* Number of operations, must be last. */
173};
174
175enum hv_kvp_exchg_pool {
176 KVP_POOL_EXTERNAL = 0,
177 KVP_POOL_GUEST,
178 KVP_POOL_AUTO,
179 KVP_POOL_AUTO_EXTERNAL,
180 KVP_POOL_AUTO_INTERNAL,
181 KVP_POOL_COUNT /* Number of pools, must be last. */
182};
183
b47a81dc
S
184/*
185 * Some Hyper-V status codes.
186 */
187
188#define HV_S_OK 0x00000000
189#define HV_E_FAIL 0x80004005
190#define HV_S_CONT 0x80070103
191#define HV_ERROR_NOT_SUPPORTED 0x80070032
192#define HV_ERROR_MACHINE_LOCKED 0x800704F7
193#define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
32061b4d
S
194#define HV_INVALIDARG 0x80070057
195#define HV_GUID_NOTFOUND 0x80041002
b47a81dc 196
9b595780
S
197#define ADDR_FAMILY_NONE 0x00
198#define ADDR_FAMILY_IPV4 0x01
199#define ADDR_FAMILY_IPV6 0x02
200
201#define MAX_ADAPTER_ID_SIZE 128
202#define MAX_IP_ADDR_SIZE 1024
203#define MAX_GATEWAY_SIZE 512
204
205
206struct hv_kvp_ipaddr_value {
207 __u16 adapter_id[MAX_ADAPTER_ID_SIZE];
208 __u8 addr_family;
209 __u8 dhcp_enabled;
210 __u16 ip_addr[MAX_IP_ADDR_SIZE];
211 __u16 sub_net[MAX_IP_ADDR_SIZE];
212 __u16 gate_way[MAX_GATEWAY_SIZE];
213 __u16 dns_addr[MAX_IP_ADDR_SIZE];
214} __attribute__((packed));
215
216
2939437c 217struct hv_kvp_hdr {
59a084a7
S
218 __u8 operation;
219 __u8 pool;
220 __u16 pad;
221} __attribute__((packed));
2939437c
S
222
223struct hv_kvp_exchg_msg_value {
59a084a7
S
224 __u32 value_type;
225 __u32 key_size;
226 __u32 value_size;
227 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
e485ceac
S
228 union {
229 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
230 __u32 value_u32;
231 __u64 value_u64;
232 };
59a084a7 233} __attribute__((packed));
2939437c
S
234
235struct hv_kvp_msg_enumerate {
59a084a7 236 __u32 index;
2939437c 237 struct hv_kvp_exchg_msg_value data;
59a084a7 238} __attribute__((packed));
2939437c 239
e485ceac
S
240struct hv_kvp_msg_get {
241 struct hv_kvp_exchg_msg_value data;
242};
243
244struct hv_kvp_msg_set {
245 struct hv_kvp_exchg_msg_value data;
246};
247
248struct hv_kvp_msg_delete {
249 __u32 key_size;
250 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
251};
252
253struct hv_kvp_register {
254 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
255};
256
2939437c 257struct hv_kvp_msg {
9b595780
S
258 union {
259 struct hv_kvp_hdr kvp_hdr;
260 int error;
261 };
26403354 262 union {
e485ceac
S
263 struct hv_kvp_msg_get kvp_get;
264 struct hv_kvp_msg_set kvp_set;
265 struct hv_kvp_msg_delete kvp_delete;
266 struct hv_kvp_msg_enumerate kvp_enum_data;
9b595780 267 struct hv_kvp_ipaddr_value kvp_ip_val;
e485ceac 268 struct hv_kvp_register kvp_register;
26403354 269 } body;
59a084a7 270} __attribute__((packed));
2939437c 271
9b595780
S
272struct hv_kvp_ip_msg {
273 __u8 operation;
274 __u8 pool;
275 struct hv_kvp_ipaddr_value kvp_ip_val;
276} __attribute__((packed));
277
59a084a7 278#ifdef __KERNEL__
8ff3e6fc
S
279#include <linux/scatterlist.h>
280#include <linux/list.h>
358d2ee2 281#include <linux/uuid.h>
8ff3e6fc
S
282#include <linux/timer.h>
283#include <linux/workqueue.h>
284#include <linux/completion.h>
285#include <linux/device.h>
2e2c1d17 286#include <linux/mod_devicetable.h>
8ff3e6fc
S
287
288
c31c151b 289#define MAX_PAGE_BUFFER_COUNT 19
a363bf7b
S
290#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
291
292#pragma pack(push, 1)
293
294/* Single-page buffer */
295struct hv_page_buffer {
296 u32 len;
297 u32 offset;
298 u64 pfn;
299};
300
301/* Multiple-page buffer */
302struct hv_multipage_buffer {
303 /* Length and Offset determines the # of pfns in the array */
304 u32 len;
305 u32 offset;
306 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
307};
308
309/* 0x18 includes the proprietary packet header */
310#define MAX_PAGE_BUFFER_PACKET (0x18 + \
311 (sizeof(struct hv_page_buffer) * \
312 MAX_PAGE_BUFFER_COUNT))
313#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
314 sizeof(struct hv_multipage_buffer))
315
316
317#pragma pack(pop)
318
7effffb7
S
319struct hv_ring_buffer {
320 /* Offset in bytes from the start of ring data below */
321 u32 write_index;
322
323 /* Offset in bytes from the start of ring data below */
324 u32 read_index;
325
326 u32 interrupt_mask;
327
2416603e
S
328 /*
329 * Win8 uses some of the reserved bits to implement
330 * interrupt driven flow management. On the send side
331 * we can request that the receiver interrupt the sender
332 * when the ring transitions from being full to being able
333 * to handle a message of size "pending_send_sz".
334 *
335 * Add necessary state for this enhancement.
7effffb7 336 */
2416603e
S
337 u32 pending_send_sz;
338
339 u32 reserved1[12];
340
341 union {
342 struct {
343 u32 feat_pending_send_sz:1;
344 };
345 u32 value;
346 } feature_bits;
347
348 /* Pad it to PAGE_SIZE so that data starts on page boundary */
349 u8 reserved2[4028];
7effffb7
S
350
351 /*
352 * Ring data starts here + RingDataStartOffset
353 * !!! DO NOT place any fields below this !!!
354 */
355 u8 buffer[0];
356} __packed;
357
358struct hv_ring_buffer_info {
359 struct hv_ring_buffer *ring_buffer;
360 u32 ring_size; /* Include the shared header */
361 spinlock_t ring_lock;
362
363 u32 ring_datasize; /* < ring_size */
364 u32 ring_data_startoffset;
365};
366
367struct hv_ring_buffer_debug_info {
368 u32 current_interrupt_mask;
369 u32 current_read_index;
370 u32 current_write_index;
371 u32 bytes_avail_toread;
372 u32 bytes_avail_towrite;
373};
3f335ea2 374
33be96e4
HZ
375
376/*
377 *
378 * hv_get_ringbuffer_availbytes()
379 *
380 * Get number of bytes available to read and to write to
381 * for the specified ring buffer
382 */
383static inline void
384hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
385 u32 *read, u32 *write)
386{
387 u32 read_loc, write_loc, dsize;
388
389 smp_read_barrier_depends();
390
391 /* Capture the read/write indices before they changed */
392 read_loc = rbi->ring_buffer->read_index;
393 write_loc = rbi->ring_buffer->write_index;
394 dsize = rbi->ring_datasize;
395
396 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
397 read_loc - write_loc;
398 *read = dsize - *write;
399}
400
401
f7c6dfda
S
402/*
403 * We use the same version numbering for all Hyper-V modules.
404 *
405 * Definition of versioning is as follows;
406 *
407 * Major Number Changes for these scenarios;
408 * 1. When a new version of Windows Hyper-V
409 * is released.
410 * 2. A Major change has occurred in the
411 * Linux IC's.
412 * (For example the merge for the first time
413 * into the kernel) Every time the Major Number
414 * changes, the Revision number is reset to 0.
415 * Minor Number Changes when new functionality is added
416 * to the Linux IC's that is not a bug fix.
417 *
418 * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync
419 */
420#define HV_DRV_VERSION "3.1"
421
422
517d8dc6
S
423/* Make maximum size of pipe payload of 16K */
424#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
425
426/* Define PipeMode values. */
427#define VMBUS_PIPE_TYPE_BYTE 0x00000000
428#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
429
430/* The size of the user defined data buffer for non-pipe offers. */
431#define MAX_USER_DEFINED_BYTES 120
432
433/* The size of the user defined data buffer for pipe offers. */
434#define MAX_PIPE_USER_DEFINED_BYTES 116
435
436/*
437 * At the center of the Channel Management library is the Channel Offer. This
438 * struct contains the fundamental information about an offer.
439 */
440struct vmbus_channel_offer {
358d2ee2
S
441 uuid_le if_type;
442 uuid_le if_instance;
29423b7e
S
443
444 /*
445 * These two fields are not currently used.
446 */
447 u64 reserved1;
448 u64 reserved2;
449
517d8dc6
S
450 u16 chn_flags;
451 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
452
453 union {
454 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
455 struct {
456 unsigned char user_def[MAX_USER_DEFINED_BYTES];
457 } std;
458
459 /*
460 * Pipes:
461 * The following sructure is an integrated pipe protocol, which
462 * is implemented on top of standard user-defined data. Pipe
463 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
464 * use.
465 */
466 struct {
467 u32 pipe_mode;
468 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
469 } pipe;
470 } u;
29423b7e
S
471 /*
472 * The sub_channel_index is defined in win8.
473 */
474 u16 sub_channel_index;
475 u16 reserved3;
517d8dc6
S
476} __packed;
477
478/* Server Flags */
479#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
480#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
481#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
482#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
483#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
484#define VMBUS_CHANNEL_PARENT_OFFER 0x200
485#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
486
50ed40e0
S
487struct vmpacket_descriptor {
488 u16 type;
489 u16 offset8;
490 u16 len8;
491 u16 flags;
492 u64 trans_id;
493} __packed;
494
495struct vmpacket_header {
496 u32 prev_pkt_start_offset;
497 struct vmpacket_descriptor descriptor;
498} __packed;
499
500struct vmtransfer_page_range {
501 u32 byte_count;
502 u32 byte_offset;
503} __packed;
504
505struct vmtransfer_page_packet_header {
506 struct vmpacket_descriptor d;
507 u16 xfer_pageset_id;
1508d811 508 u8 sender_owns_set;
50ed40e0
S
509 u8 reserved;
510 u32 range_cnt;
511 struct vmtransfer_page_range ranges[1];
512} __packed;
513
514struct vmgpadl_packet_header {
515 struct vmpacket_descriptor d;
516 u32 gpadl;
517 u32 reserved;
518} __packed;
519
520struct vmadd_remove_transfer_page_set {
521 struct vmpacket_descriptor d;
522 u32 gpadl;
523 u16 xfer_pageset_id;
524 u16 reserved;
525} __packed;
526
527/*
528 * This structure defines a range in guest physical space that can be made to
529 * look virtually contiguous.
530 */
531struct gpa_range {
532 u32 byte_count;
533 u32 byte_offset;
534 u64 pfn_array[0];
535};
536
537/*
538 * This is the format for an Establish Gpadl packet, which contains a handle by
539 * which this GPADL will be known and a set of GPA ranges associated with it.
540 * This can be converted to a MDL by the guest OS. If there are multiple GPA
541 * ranges, then the resulting MDL will be "chained," representing multiple VA
542 * ranges.
543 */
544struct vmestablish_gpadl {
545 struct vmpacket_descriptor d;
546 u32 gpadl;
547 u32 range_cnt;
548 struct gpa_range range[1];
549} __packed;
550
551/*
552 * This is the format for a Teardown Gpadl packet, which indicates that the
553 * GPADL handle in the Establish Gpadl packet will never be referenced again.
554 */
555struct vmteardown_gpadl {
556 struct vmpacket_descriptor d;
557 u32 gpadl;
558 u32 reserved; /* for alignment to a 8-byte boundary */
559} __packed;
560
561/*
562 * This is the format for a GPA-Direct packet, which contains a set of GPA
563 * ranges, in addition to commands and/or data.
564 */
565struct vmdata_gpa_direct {
566 struct vmpacket_descriptor d;
567 u32 reserved;
568 u32 range_cnt;
569 struct gpa_range range[1];
570} __packed;
571
572/* This is the format for a Additional Data Packet. */
573struct vmadditional_data {
574 struct vmpacket_descriptor d;
575 u64 total_bytes;
576 u32 offset;
577 u32 byte_cnt;
578 unsigned char data[1];
579} __packed;
580
581union vmpacket_largest_possible_header {
582 struct vmpacket_descriptor simple_hdr;
583 struct vmtransfer_page_packet_header xfer_page_hdr;
584 struct vmgpadl_packet_header gpadl_hdr;
585 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
586 struct vmestablish_gpadl establish_gpadl_hdr;
587 struct vmteardown_gpadl teardown_gpadl_hdr;
588 struct vmdata_gpa_direct data_gpa_direct_hdr;
589};
590
591#define VMPACKET_DATA_START_ADDRESS(__packet) \
592 (void *)(((unsigned char *)__packet) + \
593 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
594
595#define VMPACKET_DATA_LENGTH(__packet) \
596 ((((struct vmpacket_descriptor)__packet)->len8 - \
597 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
598
599#define VMPACKET_TRANSFER_MODE(__packet) \
600 (((struct IMPACT)__packet)->type)
601
602enum vmbus_packet_type {
603 VM_PKT_INVALID = 0x0,
604 VM_PKT_SYNCH = 0x1,
605 VM_PKT_ADD_XFER_PAGESET = 0x2,
606 VM_PKT_RM_XFER_PAGESET = 0x3,
607 VM_PKT_ESTABLISH_GPADL = 0x4,
608 VM_PKT_TEARDOWN_GPADL = 0x5,
609 VM_PKT_DATA_INBAND = 0x6,
610 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
611 VM_PKT_DATA_USING_GPADL = 0x8,
612 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
613 VM_PKT_CANCEL_REQUEST = 0xa,
614 VM_PKT_COMP = 0xb,
615 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
616 VM_PKT_ADDITIONAL_DATA = 0xd
617};
618
619#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
517d8dc6 620
b56dda06 621
b56dda06
S
622/* Version 1 messages */
623enum vmbus_channel_message_type {
624 CHANNELMSG_INVALID = 0,
625 CHANNELMSG_OFFERCHANNEL = 1,
626 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
627 CHANNELMSG_REQUESTOFFERS = 3,
628 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
629 CHANNELMSG_OPENCHANNEL = 5,
630 CHANNELMSG_OPENCHANNEL_RESULT = 6,
631 CHANNELMSG_CLOSECHANNEL = 7,
632 CHANNELMSG_GPADL_HEADER = 8,
633 CHANNELMSG_GPADL_BODY = 9,
634 CHANNELMSG_GPADL_CREATED = 10,
635 CHANNELMSG_GPADL_TEARDOWN = 11,
636 CHANNELMSG_GPADL_TORNDOWN = 12,
637 CHANNELMSG_RELID_RELEASED = 13,
638 CHANNELMSG_INITIATE_CONTACT = 14,
639 CHANNELMSG_VERSION_RESPONSE = 15,
640 CHANNELMSG_UNLOAD = 16,
641#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
642 CHANNELMSG_VIEWRANGE_ADD = 17,
643 CHANNELMSG_VIEWRANGE_REMOVE = 18,
644#endif
645 CHANNELMSG_COUNT
646};
647
648struct vmbus_channel_message_header {
649 enum vmbus_channel_message_type msgtype;
650 u32 padding;
651} __packed;
652
653/* Query VMBus Version parameters */
654struct vmbus_channel_query_vmbus_version {
655 struct vmbus_channel_message_header header;
656 u32 version;
657} __packed;
658
659/* VMBus Version Supported parameters */
660struct vmbus_channel_version_supported {
661 struct vmbus_channel_message_header header;
1508d811 662 u8 version_supported;
b56dda06
S
663} __packed;
664
665/* Offer Channel parameters */
666struct vmbus_channel_offer_channel {
667 struct vmbus_channel_message_header header;
668 struct vmbus_channel_offer offer;
669 u32 child_relid;
670 u8 monitorid;
29423b7e
S
671 /*
672 * win7 and beyond splits this field into a bit field.
673 */
674 u8 monitor_allocated:1;
675 u8 reserved:7;
676 /*
677 * These are new fields added in win7 and later.
678 * Do not access these fields without checking the
679 * negotiated protocol.
680 *
681 * If "is_dedicated_interrupt" is set, we must not set the
682 * associated bit in the channel bitmap while sending the
683 * interrupt to the host.
684 *
685 * connection_id is to be used in signaling the host.
686 */
687 u16 is_dedicated_interrupt:1;
688 u16 reserved1:15;
689 u32 connection_id;
b56dda06
S
690} __packed;
691
692/* Rescind Offer parameters */
693struct vmbus_channel_rescind_offer {
694 struct vmbus_channel_message_header header;
695 u32 child_relid;
696} __packed;
697
698/*
699 * Request Offer -- no parameters, SynIC message contains the partition ID
700 * Set Snoop -- no parameters, SynIC message contains the partition ID
701 * Clear Snoop -- no parameters, SynIC message contains the partition ID
702 * All Offers Delivered -- no parameters, SynIC message contains the partition
703 * ID
704 * Flush Client -- no parameters, SynIC message contains the partition ID
705 */
706
707/* Open Channel parameters */
708struct vmbus_channel_open_channel {
709 struct vmbus_channel_message_header header;
710
711 /* Identifies the specific VMBus channel that is being opened. */
712 u32 child_relid;
713
714 /* ID making a particular open request at a channel offer unique. */
715 u32 openid;
716
717 /* GPADL for the channel's ring buffer. */
718 u32 ringbuffer_gpadlhandle;
719
720 /* GPADL for the channel's server context save area. */
721 u32 server_contextarea_gpadlhandle;
722
723 /*
724 * The upstream ring buffer begins at offset zero in the memory
725 * described by RingBufferGpadlHandle. The downstream ring buffer
726 * follows it at this offset (in pages).
727 */
728 u32 downstream_ringbuffer_pageoffset;
729
730 /* User-specific data to be passed along to the server endpoint. */
731 unsigned char userdata[MAX_USER_DEFINED_BYTES];
732} __packed;
733
734/* Open Channel Result parameters */
735struct vmbus_channel_open_result {
736 struct vmbus_channel_message_header header;
737 u32 child_relid;
738 u32 openid;
739 u32 status;
740} __packed;
741
742/* Close channel parameters; */
743struct vmbus_channel_close_channel {
744 struct vmbus_channel_message_header header;
745 u32 child_relid;
746} __packed;
747
748/* Channel Message GPADL */
749#define GPADL_TYPE_RING_BUFFER 1
750#define GPADL_TYPE_SERVER_SAVE_AREA 2
751#define GPADL_TYPE_TRANSACTION 8
752
753/*
754 * The number of PFNs in a GPADL message is defined by the number of
755 * pages that would be spanned by ByteCount and ByteOffset. If the
756 * implied number of PFNs won't fit in this packet, there will be a
757 * follow-up packet that contains more.
758 */
759struct vmbus_channel_gpadl_header {
760 struct vmbus_channel_message_header header;
761 u32 child_relid;
762 u32 gpadl;
763 u16 range_buflen;
764 u16 rangecount;
765 struct gpa_range range[0];
766} __packed;
767
768/* This is the followup packet that contains more PFNs. */
769struct vmbus_channel_gpadl_body {
770 struct vmbus_channel_message_header header;
771 u32 msgnumber;
772 u32 gpadl;
773 u64 pfn[0];
774} __packed;
775
776struct vmbus_channel_gpadl_created {
777 struct vmbus_channel_message_header header;
778 u32 child_relid;
779 u32 gpadl;
780 u32 creation_status;
781} __packed;
782
783struct vmbus_channel_gpadl_teardown {
784 struct vmbus_channel_message_header header;
785 u32 child_relid;
786 u32 gpadl;
787} __packed;
788
789struct vmbus_channel_gpadl_torndown {
790 struct vmbus_channel_message_header header;
791 u32 gpadl;
792} __packed;
793
794#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
795struct vmbus_channel_view_range_add {
796 struct vmbus_channel_message_header header;
797 PHYSICAL_ADDRESS viewrange_base;
798 u64 viewrange_length;
799 u32 child_relid;
800} __packed;
801
802struct vmbus_channel_view_range_remove {
803 struct vmbus_channel_message_header header;
804 PHYSICAL_ADDRESS viewrange_base;
805 u32 child_relid;
806} __packed;
807#endif
808
809struct vmbus_channel_relid_released {
810 struct vmbus_channel_message_header header;
811 u32 child_relid;
812} __packed;
813
814struct vmbus_channel_initiate_contact {
815 struct vmbus_channel_message_header header;
816 u32 vmbus_version_requested;
817 u32 padding2;
818 u64 interrupt_page;
819 u64 monitor_page1;
820 u64 monitor_page2;
821} __packed;
822
823struct vmbus_channel_version_response {
824 struct vmbus_channel_message_header header;
1508d811 825 u8 version_supported;
b56dda06
S
826} __packed;
827
828enum vmbus_channel_state {
829 CHANNEL_OFFER_STATE,
830 CHANNEL_OPENING_STATE,
831 CHANNEL_OPEN_STATE,
832};
833
b56dda06
S
834struct vmbus_channel_debug_info {
835 u32 relid;
836 enum vmbus_channel_state state;
358d2ee2
S
837 uuid_le interfacetype;
838 uuid_le interface_instance;
b56dda06
S
839 u32 monitorid;
840 u32 servermonitor_pending;
841 u32 servermonitor_latency;
842 u32 servermonitor_connectionid;
843 u32 clientmonitor_pending;
844 u32 clientmonitor_latency;
845 u32 clientmonitor_connectionid;
846
847 struct hv_ring_buffer_debug_info inbound;
848 struct hv_ring_buffer_debug_info outbound;
849};
850
851/*
852 * Represents each channel msg on the vmbus connection This is a
853 * variable-size data structure depending on the msg type itself
854 */
855struct vmbus_channel_msginfo {
856 /* Bookkeeping stuff */
857 struct list_head msglistentry;
858
859 /* So far, this is only used to handle gpadl body message */
860 struct list_head submsglist;
861
862 /* Synchronize the request/response if needed */
863 struct completion waitevent;
864 union {
865 struct vmbus_channel_version_supported version_supported;
866 struct vmbus_channel_open_result open_result;
867 struct vmbus_channel_gpadl_torndown gpadl_torndown;
868 struct vmbus_channel_gpadl_created gpadl_created;
869 struct vmbus_channel_version_response version_response;
870 } response;
871
872 u32 msgsize;
873 /*
874 * The channel message that goes out on the "wire".
875 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
876 */
877 unsigned char msg[0];
878};
879
f9f1db83
S
880struct vmbus_close_msg {
881 struct vmbus_channel_msginfo info;
882 struct vmbus_channel_close_channel msg;
883};
884
7d7c75cd
S
885struct vmbus_channel {
886 struct list_head listentry;
887
888 struct hv_device *device_obj;
889
890 struct work_struct work;
891
892 enum vmbus_channel_state state;
7d7c75cd
S
893
894 struct vmbus_channel_offer_channel offermsg;
895 /*
896 * These are based on the OfferMsg.MonitorId.
897 * Save it here for easy access.
898 */
899 u8 monitor_grp;
900 u8 monitor_bit;
901
902 u32 ringbuffer_gpadlhandle;
903
904 /* Allocated memory for ring buffer */
905 void *ringbuffer_pages;
906 u32 ringbuffer_pagecount;
907 struct hv_ring_buffer_info outbound; /* send to parent */
908 struct hv_ring_buffer_info inbound; /* receive from parent */
909 spinlock_t inbound_lock;
910 struct workqueue_struct *controlwq;
911
f9f1db83
S
912 struct vmbus_close_msg close_msg;
913
7d7c75cd
S
914 /* Channel callback are invoked in this workqueue context */
915 /* HANDLE dataWorkQueue; */
916
917 void (*onchannel_callback)(void *context);
918 void *channel_callback_context;
132368bd
S
919
920 /*
921 * A channel can be marked for efficient (batched)
922 * reading:
923 * If batched_reading is set to "true", we read until the
924 * channel is empty and hold off interrupts from the host
925 * during the entire read process.
926 * If batched_reading is set to "false", the client is not
927 * going to perform batched reading.
928 *
929 * By default we will enable batched reading; specific
930 * drivers that don't want this behavior can turn it off.
931 */
932
933 bool batched_reading;
7d7c75cd 934};
b56dda06 935
132368bd
S
936static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
937{
938 c->batched_reading = state;
939}
940
b56dda06
S
941void vmbus_onmessage(void *context);
942
943int vmbus_request_offers(void);
944
c35470b2
S
945/* The format must be the same as struct vmdata_gpa_direct */
946struct vmbus_channel_packet_page_buffer {
947 u16 type;
948 u16 dataoffset8;
949 u16 length8;
950 u16 flags;
951 u64 transactionid;
952 u32 reserved;
953 u32 rangecount;
954 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
955} __packed;
956
957/* The format must be the same as struct vmdata_gpa_direct */
958struct vmbus_channel_packet_multipage_buffer {
959 u16 type;
960 u16 dataoffset8;
961 u16 length8;
962 u16 flags;
963 u64 transactionid;
964 u32 reserved;
965 u32 rangecount; /* Always 1 in this case */
966 struct hv_multipage_buffer range;
967} __packed;
968
969
970extern int vmbus_open(struct vmbus_channel *channel,
971 u32 send_ringbuffersize,
972 u32 recv_ringbuffersize,
973 void *userdata,
974 u32 userdatalen,
975 void(*onchannel_callback)(void *context),
976 void *context);
977
978extern void vmbus_close(struct vmbus_channel *channel);
979
980extern int vmbus_sendpacket(struct vmbus_channel *channel,
981 const void *buffer,
982 u32 bufferLen,
983 u64 requestid,
984 enum vmbus_packet_type type,
985 u32 flags);
986
987extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
988 struct hv_page_buffer pagebuffers[],
989 u32 pagecount,
990 void *buffer,
991 u32 bufferlen,
992 u64 requestid);
993
994extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
995 struct hv_multipage_buffer *mpb,
996 void *buffer,
997 u32 bufferlen,
998 u64 requestid);
999
1000extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1001 void *kbuffer,
1002 u32 size,
1003 u32 *gpadl_handle);
1004
1005extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1006 u32 gpadl_handle);
1007
1008extern int vmbus_recvpacket(struct vmbus_channel *channel,
1009 void *buffer,
1010 u32 bufferlen,
1011 u32 *buffer_actual_len,
1012 u64 *requestid);
1013
1014extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1015 void *buffer,
1016 u32 bufferlen,
1017 u32 *buffer_actual_len,
1018 u64 *requestid);
1019
c35470b2
S
1020
1021extern void vmbus_get_debug_info(struct vmbus_channel *channel,
1022 struct vmbus_channel_debug_info *debug);
1023
1024extern void vmbus_ontimer(unsigned long data);
1025
35ea09c3
S
1026struct hv_dev_port_info {
1027 u32 int_mask;
1028 u32 read_idx;
1029 u32 write_idx;
1030 u32 bytes_avail_toread;
1031 u32 bytes_avail_towrite;
1032};
1033
35ea09c3
S
1034/* Base driver object */
1035struct hv_driver {
1036 const char *name;
1037
1038 /* the device type supported by this driver */
358d2ee2 1039 uuid_le dev_type;
2e2c1d17 1040 const struct hv_vmbus_device_id *id_table;
35ea09c3
S
1041
1042 struct device_driver driver;
1043
84946899 1044 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
35ea09c3
S
1045 int (*remove)(struct hv_device *);
1046 void (*shutdown)(struct hv_device *);
1047
1048};
1049
1050/* Base device object */
1051struct hv_device {
1052 /* the device type id of this device */
358d2ee2 1053 uuid_le dev_type;
35ea09c3
S
1054
1055 /* the device instance id of this device */
358d2ee2 1056 uuid_le dev_instance;
35ea09c3
S
1057
1058 struct device device;
1059
1060 struct vmbus_channel *channel;
35ea09c3
S
1061};
1062
27b5b3ca
S
1063
1064static inline struct hv_device *device_to_hv_device(struct device *d)
1065{
1066 return container_of(d, struct hv_device, device);
1067}
1068
1069static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1070{
1071 return container_of(d, struct hv_driver, driver);
1072}
1073
ab101e86
S
1074static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1075{
1076 dev_set_drvdata(&dev->device, data);
1077}
1078
1079static inline void *hv_get_drvdata(struct hv_device *dev)
1080{
1081 return dev_get_drvdata(&dev->device);
1082}
27b5b3ca
S
1083
1084/* Vmbus interface */
768fa219
GKH
1085#define vmbus_driver_register(driver) \
1086 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1087int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1088 struct module *owner,
1089 const char *mod_name);
1090void vmbus_driver_unregister(struct hv_driver *hv_driver);
27b5b3ca 1091
c45cf2d4
GKH
1092/**
1093 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
1094 *
1095 * This macro is used to create a struct hv_vmbus_device_id that matches a
1096 * specific device.
1097 */
1098#define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \
1099 g8, g9, ga, gb, gc, gd, ge, gf) \
1100 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \
1101 g8, g9, ga, gb, gc, gd, ge, gf },
1102
b189702d
S
1103/*
1104 * Common header for Hyper-V ICs
1105 */
1106
1107#define ICMSGTYPE_NEGOTIATE 0
1108#define ICMSGTYPE_HEARTBEAT 1
1109#define ICMSGTYPE_KVPEXCHANGE 2
1110#define ICMSGTYPE_SHUTDOWN 3
1111#define ICMSGTYPE_TIMESYNC 4
1112#define ICMSGTYPE_VSS 5
1113
1114#define ICMSGHDRFLAG_TRANSACTION 1
1115#define ICMSGHDRFLAG_REQUEST 2
1116#define ICMSGHDRFLAG_RESPONSE 4
1117
b189702d 1118
a29b643c
S
1119/*
1120 * While we want to handle util services as regular devices,
1121 * there is only one instance of each of these services; so
1122 * we statically allocate the service specific state.
1123 */
1124
1125struct hv_util_service {
1126 u8 *recv_buffer;
1127 void (*util_cb)(void *);
1128 int (*util_init)(struct hv_util_service *);
1129 void (*util_deinit)(void);
1130};
1131
b189702d
S
1132struct vmbuspipe_hdr {
1133 u32 flags;
1134 u32 msgsize;
1135} __packed;
1136
1137struct ic_version {
1138 u16 major;
1139 u16 minor;
1140} __packed;
1141
1142struct icmsg_hdr {
1143 struct ic_version icverframe;
1144 u16 icmsgtype;
1145 struct ic_version icvermsg;
1146 u16 icmsgsize;
1147 u32 status;
1148 u8 ictransaction_id;
1149 u8 icflags;
1150 u8 reserved[2];
1151} __packed;
1152
1153struct icmsg_negotiate {
1154 u16 icframe_vercnt;
1155 u16 icmsg_vercnt;
1156 u32 reserved;
1157 struct ic_version icversion_data[1]; /* any size array */
1158} __packed;
1159
1160struct shutdown_msg_data {
1161 u32 reason_code;
1162 u32 timeout_seconds;
1163 u32 flags;
1164 u8 display_message[2048];
1165} __packed;
1166
1167struct heartbeat_msg_data {
1168 u64 seq_num;
1169 u32 reserved[8];
1170} __packed;
1171
1172/* Time Sync IC defs */
1173#define ICTIMESYNCFLAG_PROBE 0
1174#define ICTIMESYNCFLAG_SYNC 1
1175#define ICTIMESYNCFLAG_SAMPLE 2
1176
1177#ifdef __x86_64__
1178#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1179#else
1180#define WLTIMEDELTA 116444736000000000LL
1181#endif
1182
1183struct ictimesync_data {
1184 u64 parenttime;
1185 u64 childtime;
1186 u64 roundtriptime;
1187 u8 flags;
1188} __packed;
1189
b189702d
S
1190struct hyperv_service_callback {
1191 u8 msg_type;
1192 char *log_msg;
358d2ee2 1193 uuid_le data;
b189702d
S
1194 struct vmbus_channel *channel;
1195 void (*callback) (void *context);
1196};
1197
c836d0ab 1198#define MAX_SRV_VER 0x7ffffff
da0e9631 1199extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *,
c836d0ab
S
1200 struct icmsg_negotiate *, u8 *, int,
1201 int);
b189702d 1202
2939437c
S
1203int hv_kvp_init(struct hv_util_service *);
1204void hv_kvp_deinit(void);
1205void hv_kvp_onchannelcallback(void *);
1206
37f7278b
S
1207/*
1208 * Negotiated version with the Host.
1209 */
1210
1211extern __u32 vmbus_proto_version;
1212
2939437c 1213#endif /* __KERNEL__ */
3f335ea2 1214#endif /* _HYPERV_H */
This page took 0.225557 seconds and 5 git commands to generate.