mm/memblock.c: factor out of top-down allocation
[deliverable/linux.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4 27
fccc9987 28#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 29extern unsigned long max_mapnr;
fccc9987
JL
30
31static inline void set_max_mapnr(unsigned long limit)
32{
33 max_mapnr = limit;
34}
35#else
36static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
37#endif
38
4481374c 39extern unsigned long totalram_pages;
1da177e4 40extern void * high_memory;
1da177e4
LT
41extern int page_cluster;
42
43#ifdef CONFIG_SYSCTL
44extern int sysctl_legacy_va_layout;
45#else
46#define sysctl_legacy_va_layout 0
47#endif
48
49#include <asm/page.h>
50#include <asm/pgtable.h>
51#include <asm/processor.h>
1da177e4 52
c9b1d098 53extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 54extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 55
1da177e4
LT
56#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
57
27ac792c
AR
58/* to align the pointer to the (next) page boundary */
59#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
60
0fa73b86
AM
61/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
62#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
63
1da177e4
LT
64/*
65 * Linux kernel virtual memory manager primitives.
66 * The idea being to have a "virtual" mm in the same way
67 * we have a virtual fs - giving a cleaner interface to the
68 * mm details, and allowing different kinds of memory mappings
69 * (from shared memory to executable loading to arbitrary
70 * mmap() functions).
71 */
72
c43692e8
CL
73extern struct kmem_cache *vm_area_cachep;
74
1da177e4 75#ifndef CONFIG_MMU
8feae131
DH
76extern struct rb_root nommu_region_tree;
77extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
78
79extern unsigned int kobjsize(const void *objp);
80#endif
81
82/*
605d9288 83 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 84 */
cc2383ec
KK
85#define VM_NONE 0x00000000
86
1da177e4
LT
87#define VM_READ 0x00000001 /* currently active flags */
88#define VM_WRITE 0x00000002
89#define VM_EXEC 0x00000004
90#define VM_SHARED 0x00000008
91
7e2cff42 92/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
93#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
94#define VM_MAYWRITE 0x00000020
95#define VM_MAYEXEC 0x00000040
96#define VM_MAYSHARE 0x00000080
97
98#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 99#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
100#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
101
1da177e4
LT
102#define VM_LOCKED 0x00002000
103#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
104
105 /* Used by sys_madvise() */
106#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
107#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
108
109#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
110#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 111#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 112#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
113#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
114#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 115#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 116#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 117
d9104d1c
CG
118#ifdef CONFIG_MEM_SOFT_DIRTY
119# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
120#else
121# define VM_SOFTDIRTY 0
122#endif
123
b379d790 124#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
125#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
126#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 127#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 128
cc2383ec
KK
129#if defined(CONFIG_X86)
130# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
131#elif defined(CONFIG_PPC)
132# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
133#elif defined(CONFIG_PARISC)
134# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
135#elif defined(CONFIG_METAG)
136# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
137#elif defined(CONFIG_IA64)
138# define VM_GROWSUP VM_ARCH_1
139#elif !defined(CONFIG_MMU)
140# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
141#endif
142
143#ifndef VM_GROWSUP
144# define VM_GROWSUP VM_NONE
145#endif
146
a8bef8ff
MG
147/* Bits set in the VMA until the stack is in its final location */
148#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
149
1da177e4
LT
150#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
151#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
152#endif
153
154#ifdef CONFIG_STACK_GROWSUP
155#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
156#else
157#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
158#endif
159
b291f000 160/*
78f11a25
AA
161 * Special vmas that are non-mergable, non-mlock()able.
162 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 163 */
314e51b9 164#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 165
1da177e4
LT
166/*
167 * mapping from the currently active vm_flags protection bits (the
168 * low four bits) to a page protection mask..
169 */
170extern pgprot_t protection_map[16];
171
d0217ac0
NP
172#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
173#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 174#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 175#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 176#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 177#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 178#define FAULT_FLAG_TRIED 0x40 /* second try */
759496ba 179#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 180
54cb8821 181/*
d0217ac0 182 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
183 * ->fault function. The vma's ->fault is responsible for returning a bitmask
184 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 185 *
d0217ac0 186 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 187 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 188 */
d0217ac0
NP
189struct vm_fault {
190 unsigned int flags; /* FAULT_FLAG_xxx flags */
191 pgoff_t pgoff; /* Logical page offset based on vma */
192 void __user *virtual_address; /* Faulting virtual address */
193
194 struct page *page; /* ->fault handlers should return a
83c54070 195 * page here, unless VM_FAULT_NOPAGE
d0217ac0 196 * is set (which is also implied by
83c54070 197 * VM_FAULT_ERROR).
d0217ac0 198 */
54cb8821 199};
1da177e4
LT
200
201/*
202 * These are the virtual MM functions - opening of an area, closing and
203 * unmapping it (needed to keep files on disk up-to-date etc), pointer
204 * to the functions called when a no-page or a wp-page exception occurs.
205 */
206struct vm_operations_struct {
207 void (*open)(struct vm_area_struct * area);
208 void (*close)(struct vm_area_struct * area);
d0217ac0 209 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
210
211 /* notification that a previously read-only page is about to become
212 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 213 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
214
215 /* called by access_process_vm when get_user_pages() fails, typically
216 * for use by special VMAs that can switch between memory and hardware
217 */
218 int (*access)(struct vm_area_struct *vma, unsigned long addr,
219 void *buf, int len, int write);
1da177e4 220#ifdef CONFIG_NUMA
a6020ed7
LS
221 /*
222 * set_policy() op must add a reference to any non-NULL @new mempolicy
223 * to hold the policy upon return. Caller should pass NULL @new to
224 * remove a policy and fall back to surrounding context--i.e. do not
225 * install a MPOL_DEFAULT policy, nor the task or system default
226 * mempolicy.
227 */
1da177e4 228 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
229
230 /*
231 * get_policy() op must add reference [mpol_get()] to any policy at
232 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
233 * in mm/mempolicy.c will do this automatically.
234 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
235 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
236 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
237 * must return NULL--i.e., do not "fallback" to task or system default
238 * policy.
239 */
1da177e4
LT
240 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
241 unsigned long addr);
7b2259b3
CL
242 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
243 const nodemask_t *to, unsigned long flags);
1da177e4 244#endif
0b173bc4
KK
245 /* called by sys_remap_file_pages() to populate non-linear mapping */
246 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
247 unsigned long size, pgoff_t pgoff);
1da177e4
LT
248};
249
250struct mmu_gather;
251struct inode;
252
349aef0b
AM
253#define page_private(page) ((page)->private)
254#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 255
b12c4ad1
MK
256/* It's valid only if the page is free path or free_list */
257static inline void set_freepage_migratetype(struct page *page, int migratetype)
258{
95e34412 259 page->index = migratetype;
b12c4ad1
MK
260}
261
262/* It's valid only if the page is free path or free_list */
263static inline int get_freepage_migratetype(struct page *page)
264{
95e34412 265 return page->index;
b12c4ad1
MK
266}
267
1da177e4
LT
268/*
269 * FIXME: take this include out, include page-flags.h in
270 * files which need it (119 of them)
271 */
272#include <linux/page-flags.h>
71e3aac0 273#include <linux/huge_mm.h>
1da177e4
LT
274
275/*
276 * Methods to modify the page usage count.
277 *
278 * What counts for a page usage:
279 * - cache mapping (page->mapping)
280 * - private data (page->private)
281 * - page mapped in a task's page tables, each mapping
282 * is counted separately
283 *
284 * Also, many kernel routines increase the page count before a critical
285 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
286 */
287
288/*
da6052f7 289 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 290 */
7c8ee9a8
NP
291static inline int put_page_testzero(struct page *page)
292{
725d704e 293 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 294 return atomic_dec_and_test(&page->_count);
7c8ee9a8 295}
1da177e4
LT
296
297/*
7c8ee9a8
NP
298 * Try to grab a ref unless the page has a refcount of zero, return false if
299 * that is the case.
8e0861fa
AK
300 * This can be called when MMU is off so it must not access
301 * any of the virtual mappings.
1da177e4 302 */
7c8ee9a8
NP
303static inline int get_page_unless_zero(struct page *page)
304{
8dc04efb 305 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 306}
1da177e4 307
8e0861fa
AK
308/*
309 * Try to drop a ref unless the page has a refcount of one, return false if
310 * that is the case.
311 * This is to make sure that the refcount won't become zero after this drop.
312 * This can be called when MMU is off so it must not access
313 * any of the virtual mappings.
314 */
315static inline int put_page_unless_one(struct page *page)
316{
317 return atomic_add_unless(&page->_count, -1, 1);
318}
319
53df8fdc
WF
320extern int page_is_ram(unsigned long pfn);
321
48667e7a 322/* Support for virtually mapped pages */
b3bdda02
CL
323struct page *vmalloc_to_page(const void *addr);
324unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 325
0738c4bb
PM
326/*
327 * Determine if an address is within the vmalloc range
328 *
329 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
330 * is no special casing required.
331 */
9e2779fa
CL
332static inline int is_vmalloc_addr(const void *x)
333{
0738c4bb 334#ifdef CONFIG_MMU
9e2779fa
CL
335 unsigned long addr = (unsigned long)x;
336
337 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
338#else
339 return 0;
8ca3ed87 340#endif
0738c4bb 341}
81ac3ad9
KH
342#ifdef CONFIG_MMU
343extern int is_vmalloc_or_module_addr(const void *x);
344#else
934831d0 345static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
346{
347 return 0;
348}
349#endif
9e2779fa 350
e9da73d6
AA
351static inline void compound_lock(struct page *page)
352{
353#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 354 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
355 bit_spin_lock(PG_compound_lock, &page->flags);
356#endif
357}
358
359static inline void compound_unlock(struct page *page)
360{
361#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 362 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
363 bit_spin_unlock(PG_compound_lock, &page->flags);
364#endif
365}
366
367static inline unsigned long compound_lock_irqsave(struct page *page)
368{
369 unsigned long uninitialized_var(flags);
370#ifdef CONFIG_TRANSPARENT_HUGEPAGE
371 local_irq_save(flags);
372 compound_lock(page);
373#endif
374 return flags;
375}
376
377static inline void compound_unlock_irqrestore(struct page *page,
378 unsigned long flags)
379{
380#ifdef CONFIG_TRANSPARENT_HUGEPAGE
381 compound_unlock(page);
382 local_irq_restore(flags);
383#endif
384}
385
d85f3385
CL
386static inline struct page *compound_head(struct page *page)
387{
6d777953 388 if (unlikely(PageTail(page)))
d85f3385
CL
389 return page->first_page;
390 return page;
391}
392
70b50f94
AA
393/*
394 * The atomic page->_mapcount, starts from -1: so that transitions
395 * both from it and to it can be tracked, using atomic_inc_and_test
396 * and atomic_add_negative(-1).
397 */
22b751c3 398static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
399{
400 atomic_set(&(page)->_mapcount, -1);
401}
402
403static inline int page_mapcount(struct page *page)
404{
405 return atomic_read(&(page)->_mapcount) + 1;
406}
407
4c21e2f2 408static inline int page_count(struct page *page)
1da177e4 409{
d85f3385 410 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
411}
412
b35a35b5
AA
413static inline void get_huge_page_tail(struct page *page)
414{
415 /*
416 * __split_huge_page_refcount() cannot run
417 * from under us.
418 */
419 VM_BUG_ON(page_mapcount(page) < 0);
420 VM_BUG_ON(atomic_read(&page->_count) != 0);
421 atomic_inc(&page->_mapcount);
422}
423
70b50f94
AA
424extern bool __get_page_tail(struct page *page);
425
1da177e4
LT
426static inline void get_page(struct page *page)
427{
70b50f94
AA
428 if (unlikely(PageTail(page)))
429 if (likely(__get_page_tail(page)))
430 return;
91807063
AA
431 /*
432 * Getting a normal page or the head of a compound page
70b50f94 433 * requires to already have an elevated page->_count.
91807063 434 */
70b50f94 435 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
436 atomic_inc(&page->_count);
437}
438
b49af68f
CL
439static inline struct page *virt_to_head_page(const void *x)
440{
441 struct page *page = virt_to_page(x);
442 return compound_head(page);
443}
444
7835e98b
NP
445/*
446 * Setup the page count before being freed into the page allocator for
447 * the first time (boot or memory hotplug)
448 */
449static inline void init_page_count(struct page *page)
450{
451 atomic_set(&page->_count, 1);
452}
453
5f24ce5f
AA
454/*
455 * PageBuddy() indicate that the page is free and in the buddy system
456 * (see mm/page_alloc.c).
ef2b4b95
AA
457 *
458 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
459 * -2 so that an underflow of the page_mapcount() won't be mistaken
460 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
461 * efficiently by most CPU architectures.
5f24ce5f 462 */
ef2b4b95
AA
463#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
464
5f24ce5f
AA
465static inline int PageBuddy(struct page *page)
466{
ef2b4b95 467 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
468}
469
470static inline void __SetPageBuddy(struct page *page)
471{
472 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 473 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
474}
475
476static inline void __ClearPageBuddy(struct page *page)
477{
478 VM_BUG_ON(!PageBuddy(page));
479 atomic_set(&page->_mapcount, -1);
480}
481
1da177e4 482void put_page(struct page *page);
1d7ea732 483void put_pages_list(struct list_head *pages);
1da177e4 484
8dfcc9ba 485void split_page(struct page *page, unsigned int order);
748446bb 486int split_free_page(struct page *page);
8dfcc9ba 487
33f2ef89
AW
488/*
489 * Compound pages have a destructor function. Provide a
490 * prototype for that function and accessor functions.
491 * These are _only_ valid on the head of a PG_compound page.
492 */
493typedef void compound_page_dtor(struct page *);
494
495static inline void set_compound_page_dtor(struct page *page,
496 compound_page_dtor *dtor)
497{
498 page[1].lru.next = (void *)dtor;
499}
500
501static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
502{
503 return (compound_page_dtor *)page[1].lru.next;
504}
505
d85f3385
CL
506static inline int compound_order(struct page *page)
507{
6d777953 508 if (!PageHead(page))
d85f3385
CL
509 return 0;
510 return (unsigned long)page[1].lru.prev;
511}
512
513static inline void set_compound_order(struct page *page, unsigned long order)
514{
515 page[1].lru.prev = (void *)order;
516}
517
3dece370 518#ifdef CONFIG_MMU
14fd403f
AA
519/*
520 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
521 * servicing faults for write access. In the normal case, do always want
522 * pte_mkwrite. But get_user_pages can cause write faults for mappings
523 * that do not have writing enabled, when used by access_process_vm.
524 */
525static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
526{
527 if (likely(vma->vm_flags & VM_WRITE))
528 pte = pte_mkwrite(pte);
529 return pte;
530}
3dece370 531#endif
14fd403f 532
1da177e4
LT
533/*
534 * Multiple processes may "see" the same page. E.g. for untouched
535 * mappings of /dev/null, all processes see the same page full of
536 * zeroes, and text pages of executables and shared libraries have
537 * only one copy in memory, at most, normally.
538 *
539 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
540 * page_count() == 0 means the page is free. page->lru is then used for
541 * freelist management in the buddy allocator.
da6052f7 542 * page_count() > 0 means the page has been allocated.
1da177e4 543 *
da6052f7
NP
544 * Pages are allocated by the slab allocator in order to provide memory
545 * to kmalloc and kmem_cache_alloc. In this case, the management of the
546 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
547 * unless a particular usage is carefully commented. (the responsibility of
548 * freeing the kmalloc memory is the caller's, of course).
1da177e4 549 *
da6052f7
NP
550 * A page may be used by anyone else who does a __get_free_page().
551 * In this case, page_count still tracks the references, and should only
552 * be used through the normal accessor functions. The top bits of page->flags
553 * and page->virtual store page management information, but all other fields
554 * are unused and could be used privately, carefully. The management of this
555 * page is the responsibility of the one who allocated it, and those who have
556 * subsequently been given references to it.
557 *
558 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
559 * managed by the Linux memory manager: I/O, buffers, swapping etc.
560 * The following discussion applies only to them.
561 *
da6052f7
NP
562 * A pagecache page contains an opaque `private' member, which belongs to the
563 * page's address_space. Usually, this is the address of a circular list of
564 * the page's disk buffers. PG_private must be set to tell the VM to call
565 * into the filesystem to release these pages.
1da177e4 566 *
da6052f7
NP
567 * A page may belong to an inode's memory mapping. In this case, page->mapping
568 * is the pointer to the inode, and page->index is the file offset of the page,
569 * in units of PAGE_CACHE_SIZE.
1da177e4 570 *
da6052f7
NP
571 * If pagecache pages are not associated with an inode, they are said to be
572 * anonymous pages. These may become associated with the swapcache, and in that
573 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 574 *
da6052f7
NP
575 * In either case (swapcache or inode backed), the pagecache itself holds one
576 * reference to the page. Setting PG_private should also increment the
577 * refcount. The each user mapping also has a reference to the page.
1da177e4 578 *
da6052f7
NP
579 * The pagecache pages are stored in a per-mapping radix tree, which is
580 * rooted at mapping->page_tree, and indexed by offset.
581 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
582 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 583 *
da6052f7 584 * All pagecache pages may be subject to I/O:
1da177e4
LT
585 * - inode pages may need to be read from disk,
586 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
587 * to be written back to the inode on disk,
588 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
589 * modified may need to be swapped out to swap space and (later) to be read
590 * back into memory.
1da177e4
LT
591 */
592
593/*
594 * The zone field is never updated after free_area_init_core()
595 * sets it, so none of the operations on it need to be atomic.
1da177e4 596 */
348f8b6c 597
90572890 598/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 599#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
600#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
601#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 602#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 603
348f8b6c 604/*
25985edc 605 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
606 * sections we define the shift as 0; that plus a 0 mask ensures
607 * the compiler will optimise away reference to them.
608 */
d41dee36
AW
609#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
610#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
611#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 612#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 613
bce54bbf
WD
614/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
615#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 616#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
617#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
618 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 619#else
89689ae7 620#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
621#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
622 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
623#endif
624
bd8029b6 625#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 626
9223b419
CL
627#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
628#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
629#endif
630
d41dee36
AW
631#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
632#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
633#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
90572890 634#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
89689ae7 635#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 636
33dd4e0e 637static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 638{
348f8b6c 639 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 640}
1da177e4 641
9127ab4f
CS
642#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
643#define SECTION_IN_PAGE_FLAGS
644#endif
645
89689ae7 646/*
7a8010cd
VB
647 * The identification function is mainly used by the buddy allocator for
648 * determining if two pages could be buddies. We are not really identifying
649 * the zone since we could be using the section number id if we do not have
650 * node id available in page flags.
651 * We only guarantee that it will return the same value for two combinable
652 * pages in a zone.
89689ae7 653 */
cb2b95e1
AW
654static inline int page_zone_id(struct page *page)
655{
89689ae7 656 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
657}
658
25ba77c1 659static inline int zone_to_nid(struct zone *zone)
89fa3024 660{
d5f541ed
CL
661#ifdef CONFIG_NUMA
662 return zone->node;
663#else
664 return 0;
665#endif
89fa3024
CL
666}
667
89689ae7 668#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 669extern int page_to_nid(const struct page *page);
89689ae7 670#else
33dd4e0e 671static inline int page_to_nid(const struct page *page)
d41dee36 672{
89689ae7 673 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 674}
89689ae7
CL
675#endif
676
57e0a030 677#ifdef CONFIG_NUMA_BALANCING
90572890 678static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 679{
90572890 680 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
681}
682
90572890 683static inline int cpupid_to_pid(int cpupid)
57e0a030 684{
90572890 685 return cpupid & LAST__PID_MASK;
57e0a030 686}
b795854b 687
90572890 688static inline int cpupid_to_cpu(int cpupid)
b795854b 689{
90572890 690 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
691}
692
90572890 693static inline int cpupid_to_nid(int cpupid)
b795854b 694{
90572890 695 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
696}
697
90572890 698static inline bool cpupid_pid_unset(int cpupid)
57e0a030 699{
90572890 700 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
701}
702
90572890 703static inline bool cpupid_cpu_unset(int cpupid)
b795854b 704{
90572890 705 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
706}
707
8c8a743c
PZ
708static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
709{
710 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
711}
712
713#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
714#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
715static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 716{
90572890 717 return xchg(&page->_last_cpupid, cpupid);
b795854b 718}
90572890
PZ
719
720static inline int page_cpupid_last(struct page *page)
721{
722 return page->_last_cpupid;
723}
724static inline void page_cpupid_reset_last(struct page *page)
b795854b 725{
90572890 726 page->_last_cpupid = -1;
57e0a030
MG
727}
728#else
90572890 729static inline int page_cpupid_last(struct page *page)
75980e97 730{
90572890 731 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
732}
733
90572890 734extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 735
90572890 736static inline void page_cpupid_reset_last(struct page *page)
75980e97 737{
90572890 738 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 739
90572890
PZ
740 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
741 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 742}
90572890
PZ
743#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
744#else /* !CONFIG_NUMA_BALANCING */
745static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 746{
90572890 747 return page_to_nid(page); /* XXX */
57e0a030
MG
748}
749
90572890 750static inline int page_cpupid_last(struct page *page)
57e0a030 751{
90572890 752 return page_to_nid(page); /* XXX */
57e0a030
MG
753}
754
90572890 755static inline int cpupid_to_nid(int cpupid)
b795854b
MG
756{
757 return -1;
758}
759
90572890 760static inline int cpupid_to_pid(int cpupid)
b795854b
MG
761{
762 return -1;
763}
764
90572890 765static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
766{
767 return -1;
768}
769
90572890
PZ
770static inline int cpu_pid_to_cpupid(int nid, int pid)
771{
772 return -1;
773}
774
775static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
776{
777 return 1;
778}
779
90572890 780static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
781{
782}
8c8a743c
PZ
783
784static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
785{
786 return false;
787}
90572890 788#endif /* CONFIG_NUMA_BALANCING */
57e0a030 789
33dd4e0e 790static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
791{
792 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
793}
794
9127ab4f 795#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
796static inline void set_page_section(struct page *page, unsigned long section)
797{
798 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
799 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
800}
801
aa462abe 802static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
803{
804 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
805}
308c05e3 806#endif
d41dee36 807
2f1b6248 808static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
809{
810 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
811 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
812}
2f1b6248 813
348f8b6c
DH
814static inline void set_page_node(struct page *page, unsigned long node)
815{
816 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
817 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 818}
89689ae7 819
2f1b6248 820static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 821 unsigned long node, unsigned long pfn)
1da177e4 822{
348f8b6c
DH
823 set_page_zone(page, zone);
824 set_page_node(page, node);
9127ab4f 825#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 826 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 827#endif
1da177e4
LT
828}
829
f6ac2354
CL
830/*
831 * Some inline functions in vmstat.h depend on page_zone()
832 */
833#include <linux/vmstat.h>
834
33dd4e0e 835static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 836{
aa462abe 837 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
838}
839
840#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
841#define HASHED_PAGE_VIRTUAL
842#endif
843
844#if defined(WANT_PAGE_VIRTUAL)
845#define page_address(page) ((page)->virtual)
846#define set_page_address(page, address) \
847 do { \
848 (page)->virtual = (address); \
849 } while(0)
850#define page_address_init() do { } while(0)
851#endif
852
853#if defined(HASHED_PAGE_VIRTUAL)
f9918794 854void *page_address(const struct page *page);
1da177e4
LT
855void set_page_address(struct page *page, void *virtual);
856void page_address_init(void);
857#endif
858
859#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
860#define page_address(page) lowmem_page_address(page)
861#define set_page_address(page, address) do { } while(0)
862#define page_address_init() do { } while(0)
863#endif
864
865/*
866 * On an anonymous page mapped into a user virtual memory area,
867 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
868 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
869 *
870 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
871 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
872 * and then page->mapping points, not to an anon_vma, but to a private
873 * structure which KSM associates with that merged page. See ksm.h.
874 *
875 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
876 *
877 * Please note that, confusingly, "page_mapping" refers to the inode
878 * address_space which maps the page from disk; whereas "page_mapped"
879 * refers to user virtual address space into which the page is mapped.
880 */
881#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
882#define PAGE_MAPPING_KSM 2
883#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 884
9800339b 885extern struct address_space *page_mapping(struct page *page);
1da177e4 886
3ca7b3c5
HD
887/* Neutral page->mapping pointer to address_space or anon_vma or other */
888static inline void *page_rmapping(struct page *page)
889{
890 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
891}
892
f981c595
MG
893extern struct address_space *__page_file_mapping(struct page *);
894
895static inline
896struct address_space *page_file_mapping(struct page *page)
897{
898 if (unlikely(PageSwapCache(page)))
899 return __page_file_mapping(page);
900
901 return page->mapping;
902}
903
1da177e4
LT
904static inline int PageAnon(struct page *page)
905{
906 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
907}
908
909/*
910 * Return the pagecache index of the passed page. Regular pagecache pages
911 * use ->index whereas swapcache pages use ->private
912 */
913static inline pgoff_t page_index(struct page *page)
914{
915 if (unlikely(PageSwapCache(page)))
4c21e2f2 916 return page_private(page);
1da177e4
LT
917 return page->index;
918}
919
f981c595
MG
920extern pgoff_t __page_file_index(struct page *page);
921
922/*
923 * Return the file index of the page. Regular pagecache pages use ->index
924 * whereas swapcache pages use swp_offset(->private)
925 */
926static inline pgoff_t page_file_index(struct page *page)
927{
928 if (unlikely(PageSwapCache(page)))
929 return __page_file_index(page);
930
931 return page->index;
932}
933
1da177e4
LT
934/*
935 * Return true if this page is mapped into pagetables.
936 */
937static inline int page_mapped(struct page *page)
938{
939 return atomic_read(&(page)->_mapcount) >= 0;
940}
941
1da177e4
LT
942/*
943 * Different kinds of faults, as returned by handle_mm_fault().
944 * Used to decide whether a process gets delivered SIGBUS or
945 * just gets major/minor fault counters bumped up.
946 */
d0217ac0 947
83c54070 948#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 949
83c54070
NP
950#define VM_FAULT_OOM 0x0001
951#define VM_FAULT_SIGBUS 0x0002
952#define VM_FAULT_MAJOR 0x0004
953#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
954#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
955#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 956
83c54070
NP
957#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
958#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 959#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 960#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 961
aa50d3a7
AK
962#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
963
964#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
c0292554 965 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
aa50d3a7
AK
966
967/* Encode hstate index for a hwpoisoned large page */
968#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
969#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 970
1c0fe6e3
NP
971/*
972 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
973 */
974extern void pagefault_out_of_memory(void);
975
1da177e4
LT
976#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
977
ddd588b5 978/*
7bf02ea2 979 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
980 * various contexts.
981 */
4b59e6c4
DR
982#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
983#define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
ddd588b5 984
7bf02ea2
DR
985extern void show_free_areas(unsigned int flags);
986extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 987
1da177e4
LT
988int shmem_zero_setup(struct vm_area_struct *);
989
e8edc6e0 990extern int can_do_mlock(void);
1da177e4
LT
991extern int user_shm_lock(size_t, struct user_struct *);
992extern void user_shm_unlock(size_t, struct user_struct *);
993
994/*
995 * Parameter block passed down to zap_pte_range in exceptional cases.
996 */
997struct zap_details {
998 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
999 struct address_space *check_mapping; /* Check page->mapping if set */
1000 pgoff_t first_index; /* Lowest page->index to unmap */
1001 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1002};
1003
7e675137
NP
1004struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1005 pte_t pte);
1006
c627f9cc
JS
1007int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1008 unsigned long size);
14f5ff5d 1009void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1010 unsigned long size, struct zap_details *);
4f74d2c8
LT
1011void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1012 unsigned long start, unsigned long end);
e6473092
MM
1013
1014/**
1015 * mm_walk - callbacks for walk_page_range
1016 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1017 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1018 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1019 * this handler is required to be able to handle
1020 * pmd_trans_huge() pmds. They may simply choose to
1021 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1022 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1023 * @pte_hole: if set, called for each hole at all levels
5dc37642 1024 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1025 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1026 * is used.
e6473092
MM
1027 *
1028 * (see walk_page_range for more details)
1029 */
1030struct mm_walk {
0f157a5b
AM
1031 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1032 unsigned long next, struct mm_walk *walk);
1033 int (*pud_entry)(pud_t *pud, unsigned long addr,
1034 unsigned long next, struct mm_walk *walk);
1035 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1036 unsigned long next, struct mm_walk *walk);
1037 int (*pte_entry)(pte_t *pte, unsigned long addr,
1038 unsigned long next, struct mm_walk *walk);
1039 int (*pte_hole)(unsigned long addr, unsigned long next,
1040 struct mm_walk *walk);
1041 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1042 unsigned long addr, unsigned long next,
1043 struct mm_walk *walk);
2165009b
DH
1044 struct mm_struct *mm;
1045 void *private;
e6473092
MM
1046};
1047
2165009b
DH
1048int walk_page_range(unsigned long addr, unsigned long end,
1049 struct mm_walk *walk);
42b77728 1050void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1051 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1052int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1053 struct vm_area_struct *vma);
1da177e4
LT
1054void unmap_mapping_range(struct address_space *mapping,
1055 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1056int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1057 unsigned long *pfn);
d87fe660 1058int follow_phys(struct vm_area_struct *vma, unsigned long address,
1059 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1060int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1061 void *buf, int len, int write);
1da177e4
LT
1062
1063static inline void unmap_shared_mapping_range(struct address_space *mapping,
1064 loff_t const holebegin, loff_t const holelen)
1065{
1066 unmap_mapping_range(mapping, holebegin, holelen, 0);
1067}
1068
7caef267 1069extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1070extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1071void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1072int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1073int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1074int invalidate_inode_page(struct page *page);
1075
7ee1dd3f 1076#ifdef CONFIG_MMU
83c54070 1077extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1078 unsigned long address, unsigned int flags);
5c723ba5
PZ
1079extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1080 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1081#else
1082static inline int handle_mm_fault(struct mm_struct *mm,
1083 struct vm_area_struct *vma, unsigned long address,
d06063cc 1084 unsigned int flags)
7ee1dd3f
DH
1085{
1086 /* should never happen if there's no MMU */
1087 BUG();
1088 return VM_FAULT_SIGBUS;
1089}
5c723ba5
PZ
1090static inline int fixup_user_fault(struct task_struct *tsk,
1091 struct mm_struct *mm, unsigned long address,
1092 unsigned int fault_flags)
1093{
1094 /* should never happen if there's no MMU */
1095 BUG();
1096 return -EFAULT;
1097}
7ee1dd3f 1098#endif
f33ea7f4 1099
1da177e4 1100extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1101extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1102 void *buf, int len, int write);
1da177e4 1103
28a35716
ML
1104long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1105 unsigned long start, unsigned long nr_pages,
1106 unsigned int foll_flags, struct page **pages,
1107 struct vm_area_struct **vmas, int *nonblocking);
1108long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1109 unsigned long start, unsigned long nr_pages,
1110 int write, int force, struct page **pages,
1111 struct vm_area_struct **vmas);
d2bf6be8
NP
1112int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1113 struct page **pages);
18022c5d
MG
1114struct kvec;
1115int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1116 struct page **pages);
1117int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1118struct page *get_dump_page(unsigned long addr);
1da177e4 1119
cf9a2ae8 1120extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1121extern void do_invalidatepage(struct page *page, unsigned int offset,
1122 unsigned int length);
cf9a2ae8 1123
1da177e4 1124int __set_page_dirty_nobuffers(struct page *page);
76719325 1125int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1126int redirty_page_for_writepage(struct writeback_control *wbc,
1127 struct page *page);
e3a7cca1 1128void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1129void account_page_writeback(struct page *page);
b3c97528 1130int set_page_dirty(struct page *page);
1da177e4
LT
1131int set_page_dirty_lock(struct page *page);
1132int clear_page_dirty_for_io(struct page *page);
1133
39aa3cb3 1134/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1135static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1136{
1137 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1138}
1139
a09a79f6
MP
1140static inline int stack_guard_page_start(struct vm_area_struct *vma,
1141 unsigned long addr)
1142{
1143 return (vma->vm_flags & VM_GROWSDOWN) &&
1144 (vma->vm_start == addr) &&
1145 !vma_growsdown(vma->vm_prev, addr);
1146}
1147
1148/* Is the vma a continuation of the stack vma below it? */
1149static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1150{
1151 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1152}
1153
1154static inline int stack_guard_page_end(struct vm_area_struct *vma,
1155 unsigned long addr)
1156{
1157 return (vma->vm_flags & VM_GROWSUP) &&
1158 (vma->vm_end == addr) &&
1159 !vma_growsup(vma->vm_next, addr);
1160}
1161
b7643757
SP
1162extern pid_t
1163vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1164
b6a2fea3
OW
1165extern unsigned long move_page_tables(struct vm_area_struct *vma,
1166 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1167 unsigned long new_addr, unsigned long len,
1168 bool need_rmap_locks);
7da4d641
PZ
1169extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1170 unsigned long end, pgprot_t newprot,
4b10e7d5 1171 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1172extern int mprotect_fixup(struct vm_area_struct *vma,
1173 struct vm_area_struct **pprev, unsigned long start,
1174 unsigned long end, unsigned long newflags);
1da177e4 1175
465a454f
PZ
1176/*
1177 * doesn't attempt to fault and will return short.
1178 */
1179int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1180 struct page **pages);
d559db08
KH
1181/*
1182 * per-process(per-mm_struct) statistics.
1183 */
d559db08
KH
1184static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1185{
69c97823
KK
1186 long val = atomic_long_read(&mm->rss_stat.count[member]);
1187
1188#ifdef SPLIT_RSS_COUNTING
1189 /*
1190 * counter is updated in asynchronous manner and may go to minus.
1191 * But it's never be expected number for users.
1192 */
1193 if (val < 0)
1194 val = 0;
172703b0 1195#endif
69c97823
KK
1196 return (unsigned long)val;
1197}
d559db08
KH
1198
1199static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1200{
172703b0 1201 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1202}
1203
1204static inline void inc_mm_counter(struct mm_struct *mm, int member)
1205{
172703b0 1206 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1207}
1208
1209static inline void dec_mm_counter(struct mm_struct *mm, int member)
1210{
172703b0 1211 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1212}
1213
d559db08
KH
1214static inline unsigned long get_mm_rss(struct mm_struct *mm)
1215{
1216 return get_mm_counter(mm, MM_FILEPAGES) +
1217 get_mm_counter(mm, MM_ANONPAGES);
1218}
1219
1220static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1221{
1222 return max(mm->hiwater_rss, get_mm_rss(mm));
1223}
1224
1225static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1226{
1227 return max(mm->hiwater_vm, mm->total_vm);
1228}
1229
1230static inline void update_hiwater_rss(struct mm_struct *mm)
1231{
1232 unsigned long _rss = get_mm_rss(mm);
1233
1234 if ((mm)->hiwater_rss < _rss)
1235 (mm)->hiwater_rss = _rss;
1236}
1237
1238static inline void update_hiwater_vm(struct mm_struct *mm)
1239{
1240 if (mm->hiwater_vm < mm->total_vm)
1241 mm->hiwater_vm = mm->total_vm;
1242}
1243
1244static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1245 struct mm_struct *mm)
1246{
1247 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1248
1249 if (*maxrss < hiwater_rss)
1250 *maxrss = hiwater_rss;
1251}
1252
53bddb4e 1253#if defined(SPLIT_RSS_COUNTING)
05af2e10 1254void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1255#else
05af2e10 1256static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1257{
1258}
1259#endif
465a454f 1260
4e950f6f 1261int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1262
25ca1d6c
NK
1263extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1264 spinlock_t **ptl);
1265static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1266 spinlock_t **ptl)
1267{
1268 pte_t *ptep;
1269 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1270 return ptep;
1271}
c9cfcddf 1272
5f22df00
NP
1273#ifdef __PAGETABLE_PUD_FOLDED
1274static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1275 unsigned long address)
1276{
1277 return 0;
1278}
1279#else
1bb3630e 1280int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1281#endif
1282
1283#ifdef __PAGETABLE_PMD_FOLDED
1284static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1285 unsigned long address)
1286{
1287 return 0;
1288}
1289#else
1bb3630e 1290int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1291#endif
1292
8ac1f832
AA
1293int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1294 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1295int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1296
1da177e4
LT
1297/*
1298 * The following ifdef needed to get the 4level-fixup.h header to work.
1299 * Remove it when 4level-fixup.h has been removed.
1300 */
1bb3630e 1301#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1302static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1303{
1bb3630e
HD
1304 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1305 NULL: pud_offset(pgd, address);
1da177e4
LT
1306}
1307
1308static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1309{
1bb3630e
HD
1310 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1311 NULL: pmd_offset(pud, address);
1da177e4 1312}
1bb3630e
HD
1313#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1314
f7d0b926 1315#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1316/*
1317 * We tuck a spinlock to guard each pagetable page into its struct page,
1318 * at page->private, with BUILD_BUG_ON to make sure that this will not
1319 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1320 * When freeing, reset page->mapping so free_pages_check won't complain.
1321 */
349aef0b 1322#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1323#define pte_lock_init(_page) do { \
1324 spin_lock_init(__pte_lockptr(_page)); \
1325} while (0)
1326#define pte_lock_deinit(page) ((page)->mapping = NULL)
1327#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1328#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1329/*
1330 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1331 */
1332#define pte_lock_init(page) do {} while (0)
1333#define pte_lock_deinit(page) do {} while (0)
1334#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1335#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1336
2f569afd
MS
1337static inline void pgtable_page_ctor(struct page *page)
1338{
1339 pte_lock_init(page);
1340 inc_zone_page_state(page, NR_PAGETABLE);
1341}
1342
1343static inline void pgtable_page_dtor(struct page *page)
1344{
1345 pte_lock_deinit(page);
1346 dec_zone_page_state(page, NR_PAGETABLE);
1347}
1348
c74df32c
HD
1349#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1350({ \
4c21e2f2 1351 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1352 pte_t *__pte = pte_offset_map(pmd, address); \
1353 *(ptlp) = __ptl; \
1354 spin_lock(__ptl); \
1355 __pte; \
1356})
1357
1358#define pte_unmap_unlock(pte, ptl) do { \
1359 spin_unlock(ptl); \
1360 pte_unmap(pte); \
1361} while (0)
1362
8ac1f832
AA
1363#define pte_alloc_map(mm, vma, pmd, address) \
1364 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1365 pmd, address))? \
1366 NULL: pte_offset_map(pmd, address))
1bb3630e 1367
c74df32c 1368#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1369 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1370 pmd, address))? \
c74df32c
HD
1371 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1372
1bb3630e 1373#define pte_alloc_kernel(pmd, address) \
8ac1f832 1374 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1375 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1376
1377extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1378extern void free_area_init_node(int nid, unsigned long * zones_size,
1379 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1380extern void free_initmem(void);
1381
69afade7
JL
1382/*
1383 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1384 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1385 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1386 * Return pages freed into the buddy system.
1387 */
11199692 1388extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1389 int poison, char *s);
c3d5f5f0 1390
cfa11e08
JL
1391#ifdef CONFIG_HIGHMEM
1392/*
1393 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1394 * and totalram_pages.
1395 */
1396extern void free_highmem_page(struct page *page);
1397#endif
69afade7 1398
c3d5f5f0 1399extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1400extern void mem_init_print_info(const char *str);
69afade7
JL
1401
1402/* Free the reserved page into the buddy system, so it gets managed. */
1403static inline void __free_reserved_page(struct page *page)
1404{
1405 ClearPageReserved(page);
1406 init_page_count(page);
1407 __free_page(page);
1408}
1409
1410static inline void free_reserved_page(struct page *page)
1411{
1412 __free_reserved_page(page);
1413 adjust_managed_page_count(page, 1);
1414}
1415
1416static inline void mark_page_reserved(struct page *page)
1417{
1418 SetPageReserved(page);
1419 adjust_managed_page_count(page, -1);
1420}
1421
1422/*
1423 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1424 * The freed pages will be poisoned with pattern "poison" if it's within
1425 * range [0, UCHAR_MAX].
1426 * Return pages freed into the buddy system.
69afade7
JL
1427 */
1428static inline unsigned long free_initmem_default(int poison)
1429{
1430 extern char __init_begin[], __init_end[];
1431
11199692 1432 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1433 poison, "unused kernel");
1434}
1435
7ee3d4e8
JL
1436static inline unsigned long get_num_physpages(void)
1437{
1438 int nid;
1439 unsigned long phys_pages = 0;
1440
1441 for_each_online_node(nid)
1442 phys_pages += node_present_pages(nid);
1443
1444 return phys_pages;
1445}
1446
0ee332c1 1447#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1448/*
0ee332c1 1449 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1450 * zones, allocate the backing mem_map and account for memory holes in a more
1451 * architecture independent manner. This is a substitute for creating the
1452 * zone_sizes[] and zholes_size[] arrays and passing them to
1453 * free_area_init_node()
1454 *
1455 * An architecture is expected to register range of page frames backed by
0ee332c1 1456 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1457 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1458 * usage, an architecture is expected to do something like
1459 *
1460 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1461 * max_highmem_pfn};
1462 * for_each_valid_physical_page_range()
0ee332c1 1463 * memblock_add_node(base, size, nid)
c713216d
MG
1464 * free_area_init_nodes(max_zone_pfns);
1465 *
0ee332c1
TH
1466 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1467 * registered physical page range. Similarly
1468 * sparse_memory_present_with_active_regions() calls memory_present() for
1469 * each range when SPARSEMEM is enabled.
c713216d
MG
1470 *
1471 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1472 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1473 */
1474extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1475unsigned long node_map_pfn_alignment(void);
32996250
YL
1476unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1477 unsigned long end_pfn);
c713216d
MG
1478extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1479 unsigned long end_pfn);
1480extern void get_pfn_range_for_nid(unsigned int nid,
1481 unsigned long *start_pfn, unsigned long *end_pfn);
1482extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1483extern void free_bootmem_with_active_regions(int nid,
1484 unsigned long max_low_pfn);
1485extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1486
0ee332c1 1487#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1488
0ee332c1 1489#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1490 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1491static inline int __early_pfn_to_nid(unsigned long pfn)
1492{
1493 return 0;
1494}
1495#else
1496/* please see mm/page_alloc.c */
1497extern int __meminit early_pfn_to_nid(unsigned long pfn);
1498#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1499/* there is a per-arch backend function. */
1500extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1501#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1502#endif
1503
0e0b864e 1504extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1505extern void memmap_init_zone(unsigned long, int, unsigned long,
1506 unsigned long, enum memmap_context);
bc75d33f 1507extern void setup_per_zone_wmarks(void);
1b79acc9 1508extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1509extern void mem_init(void);
8feae131 1510extern void __init mmap_init(void);
b2b755b5 1511extern void show_mem(unsigned int flags);
1da177e4
LT
1512extern void si_meminfo(struct sysinfo * val);
1513extern void si_meminfo_node(struct sysinfo *val, int nid);
1514
3ee9a4f0
JP
1515extern __printf(3, 4)
1516void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1517
e7c8d5c9 1518extern void setup_per_cpu_pageset(void);
e7c8d5c9 1519
112067f0 1520extern void zone_pcp_update(struct zone *zone);
340175b7 1521extern void zone_pcp_reset(struct zone *zone);
112067f0 1522
75f7ad8e
PS
1523/* page_alloc.c */
1524extern int min_free_kbytes;
1525
8feae131 1526/* nommu.c */
33e5d769 1527extern atomic_long_t mmap_pages_allocated;
7e660872 1528extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1529
6b2dbba8 1530/* interval_tree.c */
6b2dbba8
ML
1531void vma_interval_tree_insert(struct vm_area_struct *node,
1532 struct rb_root *root);
9826a516
ML
1533void vma_interval_tree_insert_after(struct vm_area_struct *node,
1534 struct vm_area_struct *prev,
1535 struct rb_root *root);
6b2dbba8
ML
1536void vma_interval_tree_remove(struct vm_area_struct *node,
1537 struct rb_root *root);
1538struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1539 unsigned long start, unsigned long last);
1540struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1541 unsigned long start, unsigned long last);
1542
1543#define vma_interval_tree_foreach(vma, root, start, last) \
1544 for (vma = vma_interval_tree_iter_first(root, start, last); \
1545 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1546
1547static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1548 struct list_head *list)
1549{
6b2dbba8 1550 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1551}
1552
bf181b9f
ML
1553void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1554 struct rb_root *root);
1555void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1556 struct rb_root *root);
1557struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1558 struct rb_root *root, unsigned long start, unsigned long last);
1559struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1560 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1561#ifdef CONFIG_DEBUG_VM_RB
1562void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1563#endif
bf181b9f
ML
1564
1565#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1566 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1567 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1568
1da177e4 1569/* mmap.c */
34b4e4aa 1570extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1571extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1572 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1573extern struct vm_area_struct *vma_merge(struct mm_struct *,
1574 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1575 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1576 struct mempolicy *);
1577extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1578extern int split_vma(struct mm_struct *,
1579 struct vm_area_struct *, unsigned long addr, int new_below);
1580extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1581extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1582 struct rb_node **, struct rb_node *);
a8fb5618 1583extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1584extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1585 unsigned long addr, unsigned long len, pgoff_t pgoff,
1586 bool *need_rmap_locks);
1da177e4 1587extern void exit_mmap(struct mm_struct *);
925d1c40 1588
7906d00c
AA
1589extern int mm_take_all_locks(struct mm_struct *mm);
1590extern void mm_drop_all_locks(struct mm_struct *mm);
1591
38646013
JS
1592extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1593extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1594
119f657c 1595extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1596extern int install_special_mapping(struct mm_struct *mm,
1597 unsigned long addr, unsigned long len,
1598 unsigned long flags, struct page **pages);
1da177e4
LT
1599
1600extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1601
0165ab44 1602extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1603 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1604extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1605 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1606 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1607extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1608
bebeb3d6
ML
1609#ifdef CONFIG_MMU
1610extern int __mm_populate(unsigned long addr, unsigned long len,
1611 int ignore_errors);
1612static inline void mm_populate(unsigned long addr, unsigned long len)
1613{
1614 /* Ignore errors */
1615 (void) __mm_populate(addr, len, 1);
1616}
1617#else
1618static inline void mm_populate(unsigned long addr, unsigned long len) {}
1619#endif
1620
e4eb1ff6
LT
1621/* These take the mm semaphore themselves */
1622extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1623extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1624extern unsigned long vm_mmap(struct file *, unsigned long,
1625 unsigned long, unsigned long,
1626 unsigned long, unsigned long);
1da177e4 1627
db4fbfb9
ML
1628struct vm_unmapped_area_info {
1629#define VM_UNMAPPED_AREA_TOPDOWN 1
1630 unsigned long flags;
1631 unsigned long length;
1632 unsigned long low_limit;
1633 unsigned long high_limit;
1634 unsigned long align_mask;
1635 unsigned long align_offset;
1636};
1637
1638extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1639extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1640
1641/*
1642 * Search for an unmapped address range.
1643 *
1644 * We are looking for a range that:
1645 * - does not intersect with any VMA;
1646 * - is contained within the [low_limit, high_limit) interval;
1647 * - is at least the desired size.
1648 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1649 */
1650static inline unsigned long
1651vm_unmapped_area(struct vm_unmapped_area_info *info)
1652{
1653 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1654 return unmapped_area(info);
1655 else
1656 return unmapped_area_topdown(info);
1657}
1658
85821aab 1659/* truncate.c */
1da177e4 1660extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1661extern void truncate_inode_pages_range(struct address_space *,
1662 loff_t lstart, loff_t lend);
1da177e4
LT
1663
1664/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1665extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1666extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1667
1668/* mm/page-writeback.c */
1669int write_one_page(struct page *page, int wait);
1cf6e7d8 1670void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1671
1672/* readahead.c */
1673#define VM_MAX_READAHEAD 128 /* kbytes */
1674#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1675
1da177e4 1676int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1677 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1678
1679void page_cache_sync_readahead(struct address_space *mapping,
1680 struct file_ra_state *ra,
1681 struct file *filp,
1682 pgoff_t offset,
1683 unsigned long size);
1684
1685void page_cache_async_readahead(struct address_space *mapping,
1686 struct file_ra_state *ra,
1687 struct file *filp,
1688 struct page *pg,
1689 pgoff_t offset,
1690 unsigned long size);
1691
1da177e4 1692unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1693unsigned long ra_submit(struct file_ra_state *ra,
1694 struct address_space *mapping,
1695 struct file *filp);
1da177e4 1696
d05f3169 1697/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1698extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1699
1700/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1701extern int expand_downwards(struct vm_area_struct *vma,
1702 unsigned long address);
8ca3eb08 1703#if VM_GROWSUP
46dea3d0 1704extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
LT
1705#else
1706 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1707#endif
1da177e4
LT
1708
1709/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1710extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1711extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1712 struct vm_area_struct **pprev);
1713
1714/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1715 NULL if none. Assume start_addr < end_addr. */
1716static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1717{
1718 struct vm_area_struct * vma = find_vma(mm,start_addr);
1719
1720 if (vma && end_addr <= vma->vm_start)
1721 vma = NULL;
1722 return vma;
1723}
1724
1725static inline unsigned long vma_pages(struct vm_area_struct *vma)
1726{
1727 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1728}
1729
640708a2
PE
1730/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1731static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1732 unsigned long vm_start, unsigned long vm_end)
1733{
1734 struct vm_area_struct *vma = find_vma(mm, vm_start);
1735
1736 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1737 vma = NULL;
1738
1739 return vma;
1740}
1741
bad849b3 1742#ifdef CONFIG_MMU
804af2cf 1743pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1744#else
1745static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1746{
1747 return __pgprot(0);
1748}
1749#endif
1750
b24f53a0 1751#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
4b10e7d5 1752unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1753 unsigned long start, unsigned long end);
1754#endif
1755
deceb6cd 1756struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1757int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1758 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1759int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1760int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1761 unsigned long pfn);
423bad60
NP
1762int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1763 unsigned long pfn);
b4cbb197
LT
1764int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1765
deceb6cd 1766
240aadee
ML
1767struct page *follow_page_mask(struct vm_area_struct *vma,
1768 unsigned long address, unsigned int foll_flags,
1769 unsigned int *page_mask);
1770
1771static inline struct page *follow_page(struct vm_area_struct *vma,
1772 unsigned long address, unsigned int foll_flags)
1773{
1774 unsigned int unused_page_mask;
1775 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1776}
1777
deceb6cd
HD
1778#define FOLL_WRITE 0x01 /* check pte is writable */
1779#define FOLL_TOUCH 0x02 /* mark page accessed */
1780#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1781#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1782#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1783#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1784 * and return without waiting upon it */
110d74a9 1785#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1786#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1787#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1788#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1789#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1da177e4 1790
2f569afd 1791typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1792 void *data);
1793extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1794 unsigned long size, pte_fn_t fn, void *data);
1795
1da177e4 1796#ifdef CONFIG_PROC_FS
ab50b8ed 1797void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1798#else
ab50b8ed 1799static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1800 unsigned long flags, struct file *file, long pages)
1801{
44de9d0c 1802 mm->total_vm += pages;
1da177e4
LT
1803}
1804#endif /* CONFIG_PROC_FS */
1805
12d6f21e 1806#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1807extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1808#ifdef CONFIG_HIBERNATION
1809extern bool kernel_page_present(struct page *page);
1810#endif /* CONFIG_HIBERNATION */
12d6f21e 1811#else
1da177e4 1812static inline void
9858db50 1813kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1814#ifdef CONFIG_HIBERNATION
1815static inline bool kernel_page_present(struct page *page) { return true; }
1816#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1817#endif
1818
31db58b3 1819extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1820#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1821int in_gate_area_no_mm(unsigned long addr);
83b964bb 1822int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1823#else
cae5d390
SW
1824int in_gate_area_no_mm(unsigned long addr);
1825#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1826#endif /* __HAVE_ARCH_GATE_AREA */
1827
146732ce
JT
1828#ifdef CONFIG_SYSCTL
1829extern int sysctl_drop_caches;
8d65af78 1830int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1831 void __user *, size_t *, loff_t *);
146732ce
JT
1832#endif
1833
a09ed5e0 1834unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1835 unsigned long nr_pages_scanned,
1836 unsigned long lru_pages);
9d0243bc 1837
7a9166e3
LY
1838#ifndef CONFIG_MMU
1839#define randomize_va_space 0
1840#else
a62eaf15 1841extern int randomize_va_space;
7a9166e3 1842#endif
a62eaf15 1843
045e72ac 1844const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1845void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1846
9bdac914
YL
1847void sparse_mem_maps_populate_node(struct page **map_map,
1848 unsigned long pnum_begin,
1849 unsigned long pnum_end,
1850 unsigned long map_count,
1851 int nodeid);
1852
98f3cfc1 1853struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1854pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1855pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1856pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1857pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1858void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1859void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1860void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
1861int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1862 int node);
1863int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 1864void vmemmap_populate_print_last(void);
0197518c 1865#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 1866void vmemmap_free(unsigned long start, unsigned long end);
0197518c 1867#endif
46723bfa
YI
1868void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1869 unsigned long size);
6a46079c 1870
82ba011b
AK
1871enum mf_flags {
1872 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1873 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1874 MF_MUST_KILL = 1 << 2,
cf870c70 1875 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 1876};
cd42f4a3 1877extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1878extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1879extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1880extern int sysctl_memory_failure_early_kill;
1881extern int sysctl_memory_failure_recovery;
facb6011 1882extern void shake_page(struct page *p, int access);
293c07e3 1883extern atomic_long_t num_poisoned_pages;
facb6011 1884extern int soft_offline_page(struct page *page, int flags);
6a46079c 1885
718a3821
WF
1886extern void dump_page(struct page *page);
1887
47ad8475
AA
1888#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1889extern void clear_huge_page(struct page *page,
1890 unsigned long addr,
1891 unsigned int pages_per_huge_page);
1892extern void copy_user_huge_page(struct page *dst, struct page *src,
1893 unsigned long addr, struct vm_area_struct *vma,
1894 unsigned int pages_per_huge_page);
1895#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1896
c0a32fc5
SG
1897#ifdef CONFIG_DEBUG_PAGEALLOC
1898extern unsigned int _debug_guardpage_minorder;
1899
1900static inline unsigned int debug_guardpage_minorder(void)
1901{
1902 return _debug_guardpage_minorder;
1903}
1904
1905static inline bool page_is_guard(struct page *page)
1906{
1907 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1908}
1909#else
1910static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1911static inline bool page_is_guard(struct page *page) { return false; }
1912#endif /* CONFIG_DEBUG_PAGEALLOC */
1913
f9872caf
CS
1914#if MAX_NUMNODES > 1
1915void __init setup_nr_node_ids(void);
1916#else
1917static inline void setup_nr_node_ids(void) {}
1918#endif
1919
1da177e4
LT
1920#endif /* __KERNEL__ */
1921#endif /* _LINUX_MM_H */
This page took 1.290261 seconds and 5 git commands to generate.