mm/hwpoison: fix PageHWPoison test/set race
[deliverable/linux.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
1da177e4
LT
23
24struct mempolicy;
25struct anon_vma;
bf181b9f 26struct anon_vma_chain;
4e950f6f 27struct file_ra_state;
e8edc6e0 28struct user_struct;
4e950f6f 29struct writeback_control;
682aa8e1 30struct bdi_writeback;
1da177e4 31
fccc9987 32#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 33extern unsigned long max_mapnr;
fccc9987
JL
34
35static inline void set_max_mapnr(unsigned long limit)
36{
37 max_mapnr = limit;
38}
39#else
40static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
41#endif
42
4481374c 43extern unsigned long totalram_pages;
1da177e4 44extern void * high_memory;
1da177e4
LT
45extern int page_cluster;
46
47#ifdef CONFIG_SYSCTL
48extern int sysctl_legacy_va_layout;
49#else
50#define sysctl_legacy_va_layout 0
51#endif
52
53#include <asm/page.h>
54#include <asm/pgtable.h>
55#include <asm/processor.h>
1da177e4 56
79442ed1
TC
57#ifndef __pa_symbol
58#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
59#endif
60
593befa6
DD
61/*
62 * To prevent common memory management code establishing
63 * a zero page mapping on a read fault.
64 * This macro should be defined within <asm/pgtable.h>.
65 * s390 does this to prevent multiplexing of hardware bits
66 * related to the physical page in case of virtualization.
67 */
68#ifndef mm_forbids_zeropage
69#define mm_forbids_zeropage(X) (0)
70#endif
71
c9b1d098 72extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 73extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 74
49f0ce5f
JM
75extern int sysctl_overcommit_memory;
76extern int sysctl_overcommit_ratio;
77extern unsigned long sysctl_overcommit_kbytes;
78
79extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
80 size_t *, loff_t *);
81extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
82 size_t *, loff_t *);
83
1da177e4
LT
84#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
85
27ac792c
AR
86/* to align the pointer to the (next) page boundary */
87#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
88
0fa73b86
AM
89/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
90#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
91
1da177e4
LT
92/*
93 * Linux kernel virtual memory manager primitives.
94 * The idea being to have a "virtual" mm in the same way
95 * we have a virtual fs - giving a cleaner interface to the
96 * mm details, and allowing different kinds of memory mappings
97 * (from shared memory to executable loading to arbitrary
98 * mmap() functions).
99 */
100
c43692e8
CL
101extern struct kmem_cache *vm_area_cachep;
102
1da177e4 103#ifndef CONFIG_MMU
8feae131
DH
104extern struct rb_root nommu_region_tree;
105extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
106
107extern unsigned int kobjsize(const void *objp);
108#endif
109
110/*
605d9288 111 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 112 */
cc2383ec
KK
113#define VM_NONE 0x00000000
114
1da177e4
LT
115#define VM_READ 0x00000001 /* currently active flags */
116#define VM_WRITE 0x00000002
117#define VM_EXEC 0x00000004
118#define VM_SHARED 0x00000008
119
7e2cff42 120/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
121#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
122#define VM_MAYWRITE 0x00000020
123#define VM_MAYEXEC 0x00000040
124#define VM_MAYSHARE 0x00000080
125
126#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 127#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 128#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 129#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 130#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 131
1da177e4
LT
132#define VM_LOCKED 0x00002000
133#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
134
135 /* Used by sys_madvise() */
136#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
137#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
138
139#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
140#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 141#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 142#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 143#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 144#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 145#define VM_ARCH_2 0x02000000
0103bd16 146#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 147
d9104d1c
CG
148#ifdef CONFIG_MEM_SOFT_DIRTY
149# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
150#else
151# define VM_SOFTDIRTY 0
152#endif
153
b379d790 154#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
155#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
156#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 157#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 158
cc2383ec
KK
159#if defined(CONFIG_X86)
160# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
161#elif defined(CONFIG_PPC)
162# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
163#elif defined(CONFIG_PARISC)
164# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
165#elif defined(CONFIG_METAG)
166# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
167#elif defined(CONFIG_IA64)
168# define VM_GROWSUP VM_ARCH_1
169#elif !defined(CONFIG_MMU)
170# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
171#endif
172
4aae7e43
QR
173#if defined(CONFIG_X86)
174/* MPX specific bounds table or bounds directory */
175# define VM_MPX VM_ARCH_2
176#endif
177
cc2383ec
KK
178#ifndef VM_GROWSUP
179# define VM_GROWSUP VM_NONE
180#endif
181
a8bef8ff
MG
182/* Bits set in the VMA until the stack is in its final location */
183#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
184
1da177e4
LT
185#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
186#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
187#endif
188
189#ifdef CONFIG_STACK_GROWSUP
190#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191#else
192#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193#endif
194
b291f000 195/*
78f11a25
AA
196 * Special vmas that are non-mergable, non-mlock()able.
197 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 198 */
9050d7eb 199#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 200
a0715cc2
AT
201/* This mask defines which mm->def_flags a process can inherit its parent */
202#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
203
1da177e4
LT
204/*
205 * mapping from the currently active vm_flags protection bits (the
206 * low four bits) to a page protection mask..
207 */
208extern pgprot_t protection_map[16];
209
d0217ac0 210#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
211#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
212#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
213#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
214#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
215#define FAULT_FLAG_TRIED 0x20 /* Second try */
216#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 217
54cb8821 218/*
d0217ac0 219 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
220 * ->fault function. The vma's ->fault is responsible for returning a bitmask
221 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 222 *
9b4bdd2f 223 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 224 */
d0217ac0
NP
225struct vm_fault {
226 unsigned int flags; /* FAULT_FLAG_xxx flags */
227 pgoff_t pgoff; /* Logical page offset based on vma */
228 void __user *virtual_address; /* Faulting virtual address */
229
2e4cdab0 230 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 231 struct page *page; /* ->fault handlers should return a
83c54070 232 * page here, unless VM_FAULT_NOPAGE
d0217ac0 233 * is set (which is also implied by
83c54070 234 * VM_FAULT_ERROR).
d0217ac0 235 */
8c6e50b0
KS
236 /* for ->map_pages() only */
237 pgoff_t max_pgoff; /* map pages for offset from pgoff till
238 * max_pgoff inclusive */
239 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 240};
1da177e4
LT
241
242/*
243 * These are the virtual MM functions - opening of an area, closing and
244 * unmapping it (needed to keep files on disk up-to-date etc), pointer
245 * to the functions called when a no-page or a wp-page exception occurs.
246 */
247struct vm_operations_struct {
248 void (*open)(struct vm_area_struct * area);
249 void (*close)(struct vm_area_struct * area);
5477e70a 250 int (*mremap)(struct vm_area_struct * area);
d0217ac0 251 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
252 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
253 pmd_t *, unsigned int flags);
8c6e50b0 254 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
255
256 /* notification that a previously read-only page is about to become
257 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 258 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 259
dd906184
BH
260 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
261 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
262
28b2ee20
RR
263 /* called by access_process_vm when get_user_pages() fails, typically
264 * for use by special VMAs that can switch between memory and hardware
265 */
266 int (*access)(struct vm_area_struct *vma, unsigned long addr,
267 void *buf, int len, int write);
78d683e8
AL
268
269 /* Called by the /proc/PID/maps code to ask the vma whether it
270 * has a special name. Returning non-NULL will also cause this
271 * vma to be dumped unconditionally. */
272 const char *(*name)(struct vm_area_struct *vma);
273
1da177e4 274#ifdef CONFIG_NUMA
a6020ed7
LS
275 /*
276 * set_policy() op must add a reference to any non-NULL @new mempolicy
277 * to hold the policy upon return. Caller should pass NULL @new to
278 * remove a policy and fall back to surrounding context--i.e. do not
279 * install a MPOL_DEFAULT policy, nor the task or system default
280 * mempolicy.
281 */
1da177e4 282 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
283
284 /*
285 * get_policy() op must add reference [mpol_get()] to any policy at
286 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
287 * in mm/mempolicy.c will do this automatically.
288 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
289 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
290 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
291 * must return NULL--i.e., do not "fallback" to task or system default
292 * policy.
293 */
1da177e4
LT
294 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
295 unsigned long addr);
296#endif
667a0a06
DV
297 /*
298 * Called by vm_normal_page() for special PTEs to find the
299 * page for @addr. This is useful if the default behavior
300 * (using pte_page()) would not find the correct page.
301 */
302 struct page *(*find_special_page)(struct vm_area_struct *vma,
303 unsigned long addr);
1da177e4
LT
304};
305
306struct mmu_gather;
307struct inode;
308
349aef0b
AM
309#define page_private(page) ((page)->private)
310#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 311
1da177e4
LT
312/*
313 * FIXME: take this include out, include page-flags.h in
314 * files which need it (119 of them)
315 */
316#include <linux/page-flags.h>
71e3aac0 317#include <linux/huge_mm.h>
1da177e4
LT
318
319/*
320 * Methods to modify the page usage count.
321 *
322 * What counts for a page usage:
323 * - cache mapping (page->mapping)
324 * - private data (page->private)
325 * - page mapped in a task's page tables, each mapping
326 * is counted separately
327 *
328 * Also, many kernel routines increase the page count before a critical
329 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
330 */
331
332/*
da6052f7 333 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 334 */
7c8ee9a8
NP
335static inline int put_page_testzero(struct page *page)
336{
309381fe 337 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 338 return atomic_dec_and_test(&page->_count);
7c8ee9a8 339}
1da177e4
LT
340
341/*
7c8ee9a8
NP
342 * Try to grab a ref unless the page has a refcount of zero, return false if
343 * that is the case.
8e0861fa
AK
344 * This can be called when MMU is off so it must not access
345 * any of the virtual mappings.
1da177e4 346 */
7c8ee9a8
NP
347static inline int get_page_unless_zero(struct page *page)
348{
8dc04efb 349 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 350}
1da177e4 351
53df8fdc 352extern int page_is_ram(unsigned long pfn);
67cf13ce 353extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 354
48667e7a 355/* Support for virtually mapped pages */
b3bdda02
CL
356struct page *vmalloc_to_page(const void *addr);
357unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 358
0738c4bb
PM
359/*
360 * Determine if an address is within the vmalloc range
361 *
362 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
363 * is no special casing required.
364 */
9e2779fa
CL
365static inline int is_vmalloc_addr(const void *x)
366{
0738c4bb 367#ifdef CONFIG_MMU
9e2779fa
CL
368 unsigned long addr = (unsigned long)x;
369
370 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
371#else
372 return 0;
8ca3ed87 373#endif
0738c4bb 374}
81ac3ad9
KH
375#ifdef CONFIG_MMU
376extern int is_vmalloc_or_module_addr(const void *x);
377#else
934831d0 378static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
379{
380 return 0;
381}
382#endif
9e2779fa 383
39f1f78d
AV
384extern void kvfree(const void *addr);
385
e9da73d6
AA
386static inline void compound_lock(struct page *page)
387{
388#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 389 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
390 bit_spin_lock(PG_compound_lock, &page->flags);
391#endif
392}
393
394static inline void compound_unlock(struct page *page)
395{
396#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 397 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
398 bit_spin_unlock(PG_compound_lock, &page->flags);
399#endif
400}
401
402static inline unsigned long compound_lock_irqsave(struct page *page)
403{
404 unsigned long uninitialized_var(flags);
405#ifdef CONFIG_TRANSPARENT_HUGEPAGE
406 local_irq_save(flags);
407 compound_lock(page);
408#endif
409 return flags;
410}
411
412static inline void compound_unlock_irqrestore(struct page *page,
413 unsigned long flags)
414{
415#ifdef CONFIG_TRANSPARENT_HUGEPAGE
416 compound_unlock(page);
417 local_irq_restore(flags);
418#endif
419}
420
d2ee40ea
JZ
421static inline struct page *compound_head_by_tail(struct page *tail)
422{
423 struct page *head = tail->first_page;
424
425 /*
426 * page->first_page may be a dangling pointer to an old
427 * compound page, so recheck that it is still a tail
428 * page before returning.
429 */
430 smp_rmb();
431 if (likely(PageTail(tail)))
432 return head;
433 return tail;
434}
435
ccaafd7f
JK
436/*
437 * Since either compound page could be dismantled asynchronously in THP
438 * or we access asynchronously arbitrary positioned struct page, there
439 * would be tail flag race. To handle this race, we should call
440 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
441 */
d85f3385
CL
442static inline struct page *compound_head(struct page *page)
443{
d2ee40ea
JZ
444 if (unlikely(PageTail(page)))
445 return compound_head_by_tail(page);
d85f3385
CL
446 return page;
447}
448
ccaafd7f
JK
449/*
450 * If we access compound page synchronously such as access to
451 * allocated page, there is no need to handle tail flag race, so we can
452 * check tail flag directly without any synchronization primitive.
453 */
454static inline struct page *compound_head_fast(struct page *page)
455{
456 if (unlikely(PageTail(page)))
457 return page->first_page;
458 return page;
459}
460
70b50f94
AA
461/*
462 * The atomic page->_mapcount, starts from -1: so that transitions
463 * both from it and to it can be tracked, using atomic_inc_and_test
464 * and atomic_add_negative(-1).
465 */
22b751c3 466static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
467{
468 atomic_set(&(page)->_mapcount, -1);
469}
470
471static inline int page_mapcount(struct page *page)
472{
1d148e21
WY
473 VM_BUG_ON_PAGE(PageSlab(page), page);
474 return atomic_read(&page->_mapcount) + 1;
70b50f94
AA
475}
476
4c21e2f2 477static inline int page_count(struct page *page)
1da177e4 478{
d85f3385 479 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
480}
481
44518d2b
AA
482static inline bool __compound_tail_refcounted(struct page *page)
483{
c761471b 484 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
44518d2b
AA
485}
486
487/*
488 * This takes a head page as parameter and tells if the
489 * tail page reference counting can be skipped.
490 *
491 * For this to be safe, PageSlab and PageHeadHuge must remain true on
492 * any given page where they return true here, until all tail pins
493 * have been released.
494 */
495static inline bool compound_tail_refcounted(struct page *page)
496{
309381fe 497 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
498 return __compound_tail_refcounted(page);
499}
500
b35a35b5
AA
501static inline void get_huge_page_tail(struct page *page)
502{
503 /*
5eaf1a9e 504 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 505 */
309381fe
SL
506 VM_BUG_ON_PAGE(!PageTail(page), page);
507 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
508 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 509 if (compound_tail_refcounted(page->first_page))
44518d2b 510 atomic_inc(&page->_mapcount);
b35a35b5
AA
511}
512
70b50f94
AA
513extern bool __get_page_tail(struct page *page);
514
1da177e4
LT
515static inline void get_page(struct page *page)
516{
70b50f94
AA
517 if (unlikely(PageTail(page)))
518 if (likely(__get_page_tail(page)))
519 return;
91807063
AA
520 /*
521 * Getting a normal page or the head of a compound page
70b50f94 522 * requires to already have an elevated page->_count.
91807063 523 */
309381fe 524 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
525 atomic_inc(&page->_count);
526}
527
b49af68f
CL
528static inline struct page *virt_to_head_page(const void *x)
529{
530 struct page *page = virt_to_page(x);
ccaafd7f
JK
531
532 /*
533 * We don't need to worry about synchronization of tail flag
534 * when we call virt_to_head_page() since it is only called for
535 * already allocated page and this page won't be freed until
536 * this virt_to_head_page() is finished. So use _fast variant.
537 */
538 return compound_head_fast(page);
b49af68f
CL
539}
540
7835e98b
NP
541/*
542 * Setup the page count before being freed into the page allocator for
543 * the first time (boot or memory hotplug)
544 */
545static inline void init_page_count(struct page *page)
546{
547 atomic_set(&page->_count, 1);
548}
549
1da177e4 550void put_page(struct page *page);
1d7ea732 551void put_pages_list(struct list_head *pages);
1da177e4 552
8dfcc9ba 553void split_page(struct page *page, unsigned int order);
748446bb 554int split_free_page(struct page *page);
8dfcc9ba 555
33f2ef89
AW
556/*
557 * Compound pages have a destructor function. Provide a
558 * prototype for that function and accessor functions.
559 * These are _only_ valid on the head of a PG_compound page.
560 */
33f2ef89
AW
561
562static inline void set_compound_page_dtor(struct page *page,
563 compound_page_dtor *dtor)
564{
e4b294c2 565 page[1].compound_dtor = dtor;
33f2ef89
AW
566}
567
568static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
569{
e4b294c2 570 return page[1].compound_dtor;
33f2ef89
AW
571}
572
d85f3385
CL
573static inline int compound_order(struct page *page)
574{
6d777953 575 if (!PageHead(page))
d85f3385 576 return 0;
e4b294c2 577 return page[1].compound_order;
d85f3385
CL
578}
579
580static inline void set_compound_order(struct page *page, unsigned long order)
581{
e4b294c2 582 page[1].compound_order = order;
d85f3385
CL
583}
584
3dece370 585#ifdef CONFIG_MMU
14fd403f
AA
586/*
587 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
588 * servicing faults for write access. In the normal case, do always want
589 * pte_mkwrite. But get_user_pages can cause write faults for mappings
590 * that do not have writing enabled, when used by access_process_vm.
591 */
592static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
593{
594 if (likely(vma->vm_flags & VM_WRITE))
595 pte = pte_mkwrite(pte);
596 return pte;
597}
8c6e50b0
KS
598
599void do_set_pte(struct vm_area_struct *vma, unsigned long address,
600 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 601#endif
14fd403f 602
1da177e4
LT
603/*
604 * Multiple processes may "see" the same page. E.g. for untouched
605 * mappings of /dev/null, all processes see the same page full of
606 * zeroes, and text pages of executables and shared libraries have
607 * only one copy in memory, at most, normally.
608 *
609 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
610 * page_count() == 0 means the page is free. page->lru is then used for
611 * freelist management in the buddy allocator.
da6052f7 612 * page_count() > 0 means the page has been allocated.
1da177e4 613 *
da6052f7
NP
614 * Pages are allocated by the slab allocator in order to provide memory
615 * to kmalloc and kmem_cache_alloc. In this case, the management of the
616 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
617 * unless a particular usage is carefully commented. (the responsibility of
618 * freeing the kmalloc memory is the caller's, of course).
1da177e4 619 *
da6052f7
NP
620 * A page may be used by anyone else who does a __get_free_page().
621 * In this case, page_count still tracks the references, and should only
622 * be used through the normal accessor functions. The top bits of page->flags
623 * and page->virtual store page management information, but all other fields
624 * are unused and could be used privately, carefully. The management of this
625 * page is the responsibility of the one who allocated it, and those who have
626 * subsequently been given references to it.
627 *
628 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
629 * managed by the Linux memory manager: I/O, buffers, swapping etc.
630 * The following discussion applies only to them.
631 *
da6052f7
NP
632 * A pagecache page contains an opaque `private' member, which belongs to the
633 * page's address_space. Usually, this is the address of a circular list of
634 * the page's disk buffers. PG_private must be set to tell the VM to call
635 * into the filesystem to release these pages.
1da177e4 636 *
da6052f7
NP
637 * A page may belong to an inode's memory mapping. In this case, page->mapping
638 * is the pointer to the inode, and page->index is the file offset of the page,
639 * in units of PAGE_CACHE_SIZE.
1da177e4 640 *
da6052f7
NP
641 * If pagecache pages are not associated with an inode, they are said to be
642 * anonymous pages. These may become associated with the swapcache, and in that
643 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 644 *
da6052f7
NP
645 * In either case (swapcache or inode backed), the pagecache itself holds one
646 * reference to the page. Setting PG_private should also increment the
647 * refcount. The each user mapping also has a reference to the page.
1da177e4 648 *
da6052f7
NP
649 * The pagecache pages are stored in a per-mapping radix tree, which is
650 * rooted at mapping->page_tree, and indexed by offset.
651 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
652 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 653 *
da6052f7 654 * All pagecache pages may be subject to I/O:
1da177e4
LT
655 * - inode pages may need to be read from disk,
656 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
657 * to be written back to the inode on disk,
658 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
659 * modified may need to be swapped out to swap space and (later) to be read
660 * back into memory.
1da177e4
LT
661 */
662
663/*
664 * The zone field is never updated after free_area_init_core()
665 * sets it, so none of the operations on it need to be atomic.
1da177e4 666 */
348f8b6c 667
90572890 668/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 669#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
670#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
671#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 672#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 673
348f8b6c 674/*
25985edc 675 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
676 * sections we define the shift as 0; that plus a 0 mask ensures
677 * the compiler will optimise away reference to them.
678 */
d41dee36
AW
679#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
680#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
681#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 682#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 683
bce54bbf
WD
684/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
685#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 686#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
687#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
688 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 689#else
89689ae7 690#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
691#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
692 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
693#endif
694
bd8029b6 695#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 696
9223b419
CL
697#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
698#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
699#endif
700
d41dee36
AW
701#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
702#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
703#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 704#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 705#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 706
33dd4e0e 707static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 708{
348f8b6c 709 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 710}
1da177e4 711
9127ab4f
CS
712#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
713#define SECTION_IN_PAGE_FLAGS
714#endif
715
89689ae7 716/*
7a8010cd
VB
717 * The identification function is mainly used by the buddy allocator for
718 * determining if two pages could be buddies. We are not really identifying
719 * the zone since we could be using the section number id if we do not have
720 * node id available in page flags.
721 * We only guarantee that it will return the same value for two combinable
722 * pages in a zone.
89689ae7 723 */
cb2b95e1
AW
724static inline int page_zone_id(struct page *page)
725{
89689ae7 726 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
727}
728
25ba77c1 729static inline int zone_to_nid(struct zone *zone)
89fa3024 730{
d5f541ed
CL
731#ifdef CONFIG_NUMA
732 return zone->node;
733#else
734 return 0;
735#endif
89fa3024
CL
736}
737
89689ae7 738#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 739extern int page_to_nid(const struct page *page);
89689ae7 740#else
33dd4e0e 741static inline int page_to_nid(const struct page *page)
d41dee36 742{
89689ae7 743 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 744}
89689ae7
CL
745#endif
746
57e0a030 747#ifdef CONFIG_NUMA_BALANCING
90572890 748static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 749{
90572890 750 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
751}
752
90572890 753static inline int cpupid_to_pid(int cpupid)
57e0a030 754{
90572890 755 return cpupid & LAST__PID_MASK;
57e0a030 756}
b795854b 757
90572890 758static inline int cpupid_to_cpu(int cpupid)
b795854b 759{
90572890 760 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
761}
762
90572890 763static inline int cpupid_to_nid(int cpupid)
b795854b 764{
90572890 765 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
766}
767
90572890 768static inline bool cpupid_pid_unset(int cpupid)
57e0a030 769{
90572890 770 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
771}
772
90572890 773static inline bool cpupid_cpu_unset(int cpupid)
b795854b 774{
90572890 775 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
776}
777
8c8a743c
PZ
778static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
779{
780 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
781}
782
783#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
784#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
785static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 786{
1ae71d03 787 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 788}
90572890
PZ
789
790static inline int page_cpupid_last(struct page *page)
791{
792 return page->_last_cpupid;
793}
794static inline void page_cpupid_reset_last(struct page *page)
b795854b 795{
1ae71d03 796 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
797}
798#else
90572890 799static inline int page_cpupid_last(struct page *page)
75980e97 800{
90572890 801 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
802}
803
90572890 804extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 805
90572890 806static inline void page_cpupid_reset_last(struct page *page)
75980e97 807{
90572890 808 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 809
90572890
PZ
810 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
811 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 812}
90572890
PZ
813#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
814#else /* !CONFIG_NUMA_BALANCING */
815static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 816{
90572890 817 return page_to_nid(page); /* XXX */
57e0a030
MG
818}
819
90572890 820static inline int page_cpupid_last(struct page *page)
57e0a030 821{
90572890 822 return page_to_nid(page); /* XXX */
57e0a030
MG
823}
824
90572890 825static inline int cpupid_to_nid(int cpupid)
b795854b
MG
826{
827 return -1;
828}
829
90572890 830static inline int cpupid_to_pid(int cpupid)
b795854b
MG
831{
832 return -1;
833}
834
90572890 835static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
836{
837 return -1;
838}
839
90572890
PZ
840static inline int cpu_pid_to_cpupid(int nid, int pid)
841{
842 return -1;
843}
844
845static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
846{
847 return 1;
848}
849
90572890 850static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
851{
852}
8c8a743c
PZ
853
854static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
855{
856 return false;
857}
90572890 858#endif /* CONFIG_NUMA_BALANCING */
57e0a030 859
33dd4e0e 860static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
861{
862 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
863}
864
9127ab4f 865#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
866static inline void set_page_section(struct page *page, unsigned long section)
867{
868 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
869 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
870}
871
aa462abe 872static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
873{
874 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
875}
308c05e3 876#endif
d41dee36 877
2f1b6248 878static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
879{
880 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
881 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
882}
2f1b6248 883
348f8b6c
DH
884static inline void set_page_node(struct page *page, unsigned long node)
885{
886 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
887 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 888}
89689ae7 889
2f1b6248 890static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 891 unsigned long node, unsigned long pfn)
1da177e4 892{
348f8b6c
DH
893 set_page_zone(page, zone);
894 set_page_node(page, node);
9127ab4f 895#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 896 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 897#endif
1da177e4
LT
898}
899
f6ac2354
CL
900/*
901 * Some inline functions in vmstat.h depend on page_zone()
902 */
903#include <linux/vmstat.h>
904
33dd4e0e 905static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 906{
aa462abe 907 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
908}
909
910#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
911#define HASHED_PAGE_VIRTUAL
912#endif
913
914#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
915static inline void *page_address(const struct page *page)
916{
917 return page->virtual;
918}
919static inline void set_page_address(struct page *page, void *address)
920{
921 page->virtual = address;
922}
1da177e4
LT
923#define page_address_init() do { } while(0)
924#endif
925
926#if defined(HASHED_PAGE_VIRTUAL)
f9918794 927void *page_address(const struct page *page);
1da177e4
LT
928void set_page_address(struct page *page, void *virtual);
929void page_address_init(void);
930#endif
931
932#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
933#define page_address(page) lowmem_page_address(page)
934#define set_page_address(page, address) do { } while(0)
935#define page_address_init() do { } while(0)
936#endif
937
e39155ea
KS
938extern void *page_rmapping(struct page *page);
939extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 940extern struct address_space *page_mapping(struct page *page);
1da177e4 941
f981c595
MG
942extern struct address_space *__page_file_mapping(struct page *);
943
944static inline
945struct address_space *page_file_mapping(struct page *page)
946{
947 if (unlikely(PageSwapCache(page)))
948 return __page_file_mapping(page);
949
950 return page->mapping;
951}
952
1da177e4
LT
953/*
954 * Return the pagecache index of the passed page. Regular pagecache pages
955 * use ->index whereas swapcache pages use ->private
956 */
957static inline pgoff_t page_index(struct page *page)
958{
959 if (unlikely(PageSwapCache(page)))
4c21e2f2 960 return page_private(page);
1da177e4
LT
961 return page->index;
962}
963
f981c595
MG
964extern pgoff_t __page_file_index(struct page *page);
965
966/*
967 * Return the file index of the page. Regular pagecache pages use ->index
968 * whereas swapcache pages use swp_offset(->private)
969 */
970static inline pgoff_t page_file_index(struct page *page)
971{
972 if (unlikely(PageSwapCache(page)))
973 return __page_file_index(page);
974
975 return page->index;
976}
977
1da177e4
LT
978/*
979 * Return true if this page is mapped into pagetables.
980 */
981static inline int page_mapped(struct page *page)
982{
983 return atomic_read(&(page)->_mapcount) >= 0;
984}
985
2f064f34
MH
986/*
987 * Return true only if the page has been allocated with
988 * ALLOC_NO_WATERMARKS and the low watermark was not
989 * met implying that the system is under some pressure.
990 */
991static inline bool page_is_pfmemalloc(struct page *page)
992{
993 /*
994 * Page index cannot be this large so this must be
995 * a pfmemalloc page.
996 */
997 return page->index == -1UL;
998}
999
1000/*
1001 * Only to be called by the page allocator on a freshly allocated
1002 * page.
1003 */
1004static inline void set_page_pfmemalloc(struct page *page)
1005{
1006 page->index = -1UL;
1007}
1008
1009static inline void clear_page_pfmemalloc(struct page *page)
1010{
1011 page->index = 0;
1012}
1013
1da177e4
LT
1014/*
1015 * Different kinds of faults, as returned by handle_mm_fault().
1016 * Used to decide whether a process gets delivered SIGBUS or
1017 * just gets major/minor fault counters bumped up.
1018 */
d0217ac0 1019
83c54070 1020#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1021
83c54070
NP
1022#define VM_FAULT_OOM 0x0001
1023#define VM_FAULT_SIGBUS 0x0002
1024#define VM_FAULT_MAJOR 0x0004
1025#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1026#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1027#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1028#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1029
83c54070
NP
1030#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1031#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1032#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1033#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1034
aa50d3a7
AK
1035#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1036
33692f27
LT
1037#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1038 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1039 VM_FAULT_FALLBACK)
aa50d3a7
AK
1040
1041/* Encode hstate index for a hwpoisoned large page */
1042#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1043#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1044
1c0fe6e3
NP
1045/*
1046 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1047 */
1048extern void pagefault_out_of_memory(void);
1049
1da177e4
LT
1050#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1051
ddd588b5 1052/*
7bf02ea2 1053 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1054 * various contexts.
1055 */
4b59e6c4 1056#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1057
7bf02ea2
DR
1058extern void show_free_areas(unsigned int flags);
1059extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1060
1da177e4 1061int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1062#ifdef CONFIG_SHMEM
1063bool shmem_mapping(struct address_space *mapping);
1064#else
1065static inline bool shmem_mapping(struct address_space *mapping)
1066{
1067 return false;
1068}
1069#endif
1da177e4 1070
e8edc6e0 1071extern int can_do_mlock(void);
1da177e4
LT
1072extern int user_shm_lock(size_t, struct user_struct *);
1073extern void user_shm_unlock(size_t, struct user_struct *);
1074
1075/*
1076 * Parameter block passed down to zap_pte_range in exceptional cases.
1077 */
1078struct zap_details {
1da177e4
LT
1079 struct address_space *check_mapping; /* Check page->mapping if set */
1080 pgoff_t first_index; /* Lowest page->index to unmap */
1081 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1082};
1083
7e675137
NP
1084struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1085 pte_t pte);
1086
c627f9cc
JS
1087int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1088 unsigned long size);
14f5ff5d 1089void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1090 unsigned long size, struct zap_details *);
4f74d2c8
LT
1091void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1092 unsigned long start, unsigned long end);
e6473092
MM
1093
1094/**
1095 * mm_walk - callbacks for walk_page_range
e6473092 1096 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1097 * this handler is required to be able to handle
1098 * pmd_trans_huge() pmds. They may simply choose to
1099 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1100 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1101 * @pte_hole: if set, called for each hole at all levels
5dc37642 1102 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1103 * @test_walk: caller specific callback function to determine whether
1104 * we walk over the current vma or not. A positive returned
1105 * value means "do page table walk over the current vma,"
1106 * and a negative one means "abort current page table walk
1107 * right now." 0 means "skip the current vma."
1108 * @mm: mm_struct representing the target process of page table walk
1109 * @vma: vma currently walked (NULL if walking outside vmas)
1110 * @private: private data for callbacks' usage
e6473092 1111 *
fafaa426 1112 * (see the comment on walk_page_range() for more details)
e6473092
MM
1113 */
1114struct mm_walk {
0f157a5b
AM
1115 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1116 unsigned long next, struct mm_walk *walk);
1117 int (*pte_entry)(pte_t *pte, unsigned long addr,
1118 unsigned long next, struct mm_walk *walk);
1119 int (*pte_hole)(unsigned long addr, unsigned long next,
1120 struct mm_walk *walk);
1121 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1122 unsigned long addr, unsigned long next,
1123 struct mm_walk *walk);
fafaa426
NH
1124 int (*test_walk)(unsigned long addr, unsigned long next,
1125 struct mm_walk *walk);
2165009b 1126 struct mm_struct *mm;
fafaa426 1127 struct vm_area_struct *vma;
2165009b 1128 void *private;
e6473092
MM
1129};
1130
2165009b
DH
1131int walk_page_range(unsigned long addr, unsigned long end,
1132 struct mm_walk *walk);
900fc5f1 1133int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1134void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1135 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1136int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1137 struct vm_area_struct *vma);
1da177e4
LT
1138void unmap_mapping_range(struct address_space *mapping,
1139 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1140int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1141 unsigned long *pfn);
d87fe660 1142int follow_phys(struct vm_area_struct *vma, unsigned long address,
1143 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1144int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1145 void *buf, int len, int write);
1da177e4
LT
1146
1147static inline void unmap_shared_mapping_range(struct address_space *mapping,
1148 loff_t const holebegin, loff_t const holelen)
1149{
1150 unmap_mapping_range(mapping, holebegin, holelen, 0);
1151}
1152
7caef267 1153extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1154extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1155void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1156void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1157int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1158int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1159int invalidate_inode_page(struct page *page);
1160
7ee1dd3f 1161#ifdef CONFIG_MMU
83c54070 1162extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1163 unsigned long address, unsigned int flags);
5c723ba5
PZ
1164extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1165 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1166#else
1167static inline int handle_mm_fault(struct mm_struct *mm,
1168 struct vm_area_struct *vma, unsigned long address,
d06063cc 1169 unsigned int flags)
7ee1dd3f
DH
1170{
1171 /* should never happen if there's no MMU */
1172 BUG();
1173 return VM_FAULT_SIGBUS;
1174}
5c723ba5
PZ
1175static inline int fixup_user_fault(struct task_struct *tsk,
1176 struct mm_struct *mm, unsigned long address,
1177 unsigned int fault_flags)
1178{
1179 /* should never happen if there's no MMU */
1180 BUG();
1181 return -EFAULT;
1182}
7ee1dd3f 1183#endif
f33ea7f4 1184
1da177e4 1185extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1186extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1187 void *buf, int len, int write);
1da177e4 1188
28a35716
ML
1189long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1190 unsigned long start, unsigned long nr_pages,
1191 unsigned int foll_flags, struct page **pages,
1192 struct vm_area_struct **vmas, int *nonblocking);
1193long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1194 unsigned long start, unsigned long nr_pages,
1195 int write, int force, struct page **pages,
1196 struct vm_area_struct **vmas);
f0818f47
AA
1197long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1198 unsigned long start, unsigned long nr_pages,
1199 int write, int force, struct page **pages,
1200 int *locked);
0fd71a56
AA
1201long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1202 unsigned long start, unsigned long nr_pages,
1203 int write, int force, struct page **pages,
1204 unsigned int gup_flags);
f0818f47
AA
1205long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1206 unsigned long start, unsigned long nr_pages,
1207 int write, int force, struct page **pages);
d2bf6be8
NP
1208int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1209 struct page **pages);
18022c5d
MG
1210struct kvec;
1211int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1212 struct page **pages);
1213int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1214struct page *get_dump_page(unsigned long addr);
1da177e4 1215
cf9a2ae8 1216extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1217extern void do_invalidatepage(struct page *page, unsigned int offset,
1218 unsigned int length);
cf9a2ae8 1219
1da177e4 1220int __set_page_dirty_nobuffers(struct page *page);
76719325 1221int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1222int redirty_page_for_writepage(struct writeback_control *wbc,
1223 struct page *page);
c4843a75
GT
1224void account_page_dirtied(struct page *page, struct address_space *mapping,
1225 struct mem_cgroup *memcg);
1226void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1227 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1228int set_page_dirty(struct page *page);
1da177e4 1229int set_page_dirty_lock(struct page *page);
11f81bec 1230void cancel_dirty_page(struct page *page);
1da177e4 1231int clear_page_dirty_for_io(struct page *page);
b9ea2515 1232
a9090253 1233int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1234
39aa3cb3 1235/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1236static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1237{
1238 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1239}
1240
b5330628
ON
1241static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1242{
1243 return !vma->vm_ops;
1244}
1245
a09a79f6
MP
1246static inline int stack_guard_page_start(struct vm_area_struct *vma,
1247 unsigned long addr)
1248{
1249 return (vma->vm_flags & VM_GROWSDOWN) &&
1250 (vma->vm_start == addr) &&
1251 !vma_growsdown(vma->vm_prev, addr);
1252}
1253
1254/* Is the vma a continuation of the stack vma below it? */
1255static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1256{
1257 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1258}
1259
1260static inline int stack_guard_page_end(struct vm_area_struct *vma,
1261 unsigned long addr)
1262{
1263 return (vma->vm_flags & VM_GROWSUP) &&
1264 (vma->vm_end == addr) &&
1265 !vma_growsup(vma->vm_next, addr);
1266}
1267
58cb6548
ON
1268extern struct task_struct *task_of_stack(struct task_struct *task,
1269 struct vm_area_struct *vma, bool in_group);
b7643757 1270
b6a2fea3
OW
1271extern unsigned long move_page_tables(struct vm_area_struct *vma,
1272 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1273 unsigned long new_addr, unsigned long len,
1274 bool need_rmap_locks);
7da4d641
PZ
1275extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1276 unsigned long end, pgprot_t newprot,
4b10e7d5 1277 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1278extern int mprotect_fixup(struct vm_area_struct *vma,
1279 struct vm_area_struct **pprev, unsigned long start,
1280 unsigned long end, unsigned long newflags);
1da177e4 1281
465a454f
PZ
1282/*
1283 * doesn't attempt to fault and will return short.
1284 */
1285int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1286 struct page **pages);
d559db08
KH
1287/*
1288 * per-process(per-mm_struct) statistics.
1289 */
d559db08
KH
1290static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1291{
69c97823
KK
1292 long val = atomic_long_read(&mm->rss_stat.count[member]);
1293
1294#ifdef SPLIT_RSS_COUNTING
1295 /*
1296 * counter is updated in asynchronous manner and may go to minus.
1297 * But it's never be expected number for users.
1298 */
1299 if (val < 0)
1300 val = 0;
172703b0 1301#endif
69c97823
KK
1302 return (unsigned long)val;
1303}
d559db08
KH
1304
1305static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1306{
172703b0 1307 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1308}
1309
1310static inline void inc_mm_counter(struct mm_struct *mm, int member)
1311{
172703b0 1312 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1313}
1314
1315static inline void dec_mm_counter(struct mm_struct *mm, int member)
1316{
172703b0 1317 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1318}
1319
d559db08
KH
1320static inline unsigned long get_mm_rss(struct mm_struct *mm)
1321{
1322 return get_mm_counter(mm, MM_FILEPAGES) +
1323 get_mm_counter(mm, MM_ANONPAGES);
1324}
1325
1326static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1327{
1328 return max(mm->hiwater_rss, get_mm_rss(mm));
1329}
1330
1331static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1332{
1333 return max(mm->hiwater_vm, mm->total_vm);
1334}
1335
1336static inline void update_hiwater_rss(struct mm_struct *mm)
1337{
1338 unsigned long _rss = get_mm_rss(mm);
1339
1340 if ((mm)->hiwater_rss < _rss)
1341 (mm)->hiwater_rss = _rss;
1342}
1343
1344static inline void update_hiwater_vm(struct mm_struct *mm)
1345{
1346 if (mm->hiwater_vm < mm->total_vm)
1347 mm->hiwater_vm = mm->total_vm;
1348}
1349
695f0559
PC
1350static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1351{
1352 mm->hiwater_rss = get_mm_rss(mm);
1353}
1354
d559db08
KH
1355static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1356 struct mm_struct *mm)
1357{
1358 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1359
1360 if (*maxrss < hiwater_rss)
1361 *maxrss = hiwater_rss;
1362}
1363
53bddb4e 1364#if defined(SPLIT_RSS_COUNTING)
05af2e10 1365void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1366#else
05af2e10 1367static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1368{
1369}
1370#endif
465a454f 1371
4e950f6f 1372int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1373
25ca1d6c
NK
1374extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1375 spinlock_t **ptl);
1376static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1377 spinlock_t **ptl)
1378{
1379 pte_t *ptep;
1380 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1381 return ptep;
1382}
c9cfcddf 1383
5f22df00
NP
1384#ifdef __PAGETABLE_PUD_FOLDED
1385static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1386 unsigned long address)
1387{
1388 return 0;
1389}
1390#else
1bb3630e 1391int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1392#endif
1393
2d2f5119 1394#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1395static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1396 unsigned long address)
1397{
1398 return 0;
1399}
dc6c9a35 1400
2d2f5119
KS
1401static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1402
dc6c9a35
KS
1403static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1404{
1405 return 0;
1406}
1407
1408static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1409static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1410
5f22df00 1411#else
1bb3630e 1412int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1413
2d2f5119
KS
1414static inline void mm_nr_pmds_init(struct mm_struct *mm)
1415{
1416 atomic_long_set(&mm->nr_pmds, 0);
1417}
1418
dc6c9a35
KS
1419static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1420{
1421 return atomic_long_read(&mm->nr_pmds);
1422}
1423
1424static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1425{
1426 atomic_long_inc(&mm->nr_pmds);
1427}
1428
1429static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1430{
1431 atomic_long_dec(&mm->nr_pmds);
1432}
5f22df00
NP
1433#endif
1434
8ac1f832
AA
1435int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1436 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1437int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1438
1da177e4
LT
1439/*
1440 * The following ifdef needed to get the 4level-fixup.h header to work.
1441 * Remove it when 4level-fixup.h has been removed.
1442 */
1bb3630e 1443#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1444static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1445{
1bb3630e
HD
1446 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1447 NULL: pud_offset(pgd, address);
1da177e4
LT
1448}
1449
1450static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1451{
1bb3630e
HD
1452 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1453 NULL: pmd_offset(pud, address);
1da177e4 1454}
1bb3630e
HD
1455#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1456
57c1ffce 1457#if USE_SPLIT_PTE_PTLOCKS
597d795a 1458#if ALLOC_SPLIT_PTLOCKS
b35f1819 1459void __init ptlock_cache_init(void);
539edb58
PZ
1460extern bool ptlock_alloc(struct page *page);
1461extern void ptlock_free(struct page *page);
1462
1463static inline spinlock_t *ptlock_ptr(struct page *page)
1464{
1465 return page->ptl;
1466}
597d795a 1467#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1468static inline void ptlock_cache_init(void)
1469{
1470}
1471
49076ec2
KS
1472static inline bool ptlock_alloc(struct page *page)
1473{
49076ec2
KS
1474 return true;
1475}
539edb58 1476
49076ec2
KS
1477static inline void ptlock_free(struct page *page)
1478{
49076ec2
KS
1479}
1480
1481static inline spinlock_t *ptlock_ptr(struct page *page)
1482{
539edb58 1483 return &page->ptl;
49076ec2 1484}
597d795a 1485#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1486
1487static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1488{
1489 return ptlock_ptr(pmd_page(*pmd));
1490}
1491
1492static inline bool ptlock_init(struct page *page)
1493{
1494 /*
1495 * prep_new_page() initialize page->private (and therefore page->ptl)
1496 * with 0. Make sure nobody took it in use in between.
1497 *
1498 * It can happen if arch try to use slab for page table allocation:
1499 * slab code uses page->slab_cache and page->first_page (for tail
1500 * pages), which share storage with page->ptl.
1501 */
309381fe 1502 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1503 if (!ptlock_alloc(page))
1504 return false;
1505 spin_lock_init(ptlock_ptr(page));
1506 return true;
1507}
1508
1509/* Reset page->mapping so free_pages_check won't complain. */
1510static inline void pte_lock_deinit(struct page *page)
1511{
1512 page->mapping = NULL;
1513 ptlock_free(page);
1514}
1515
57c1ffce 1516#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1517/*
1518 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1519 */
49076ec2
KS
1520static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1521{
1522 return &mm->page_table_lock;
1523}
b35f1819 1524static inline void ptlock_cache_init(void) {}
49076ec2
KS
1525static inline bool ptlock_init(struct page *page) { return true; }
1526static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1527#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1528
b35f1819
KS
1529static inline void pgtable_init(void)
1530{
1531 ptlock_cache_init();
1532 pgtable_cache_init();
1533}
1534
390f44e2 1535static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1536{
2f569afd 1537 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1538 return ptlock_init(page);
2f569afd
MS
1539}
1540
1541static inline void pgtable_page_dtor(struct page *page)
1542{
1543 pte_lock_deinit(page);
1544 dec_zone_page_state(page, NR_PAGETABLE);
1545}
1546
c74df32c
HD
1547#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1548({ \
4c21e2f2 1549 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1550 pte_t *__pte = pte_offset_map(pmd, address); \
1551 *(ptlp) = __ptl; \
1552 spin_lock(__ptl); \
1553 __pte; \
1554})
1555
1556#define pte_unmap_unlock(pte, ptl) do { \
1557 spin_unlock(ptl); \
1558 pte_unmap(pte); \
1559} while (0)
1560
8ac1f832
AA
1561#define pte_alloc_map(mm, vma, pmd, address) \
1562 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1563 pmd, address))? \
1564 NULL: pte_offset_map(pmd, address))
1bb3630e 1565
c74df32c 1566#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1567 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1568 pmd, address))? \
c74df32c
HD
1569 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1570
1bb3630e 1571#define pte_alloc_kernel(pmd, address) \
8ac1f832 1572 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1573 NULL: pte_offset_kernel(pmd, address))
1da177e4 1574
e009bb30
KS
1575#if USE_SPLIT_PMD_PTLOCKS
1576
634391ac
MS
1577static struct page *pmd_to_page(pmd_t *pmd)
1578{
1579 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1580 return virt_to_page((void *)((unsigned long) pmd & mask));
1581}
1582
e009bb30
KS
1583static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1584{
634391ac 1585 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1586}
1587
1588static inline bool pgtable_pmd_page_ctor(struct page *page)
1589{
e009bb30
KS
1590#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1591 page->pmd_huge_pte = NULL;
1592#endif
49076ec2 1593 return ptlock_init(page);
e009bb30
KS
1594}
1595
1596static inline void pgtable_pmd_page_dtor(struct page *page)
1597{
1598#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1599 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1600#endif
49076ec2 1601 ptlock_free(page);
e009bb30
KS
1602}
1603
634391ac 1604#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1605
1606#else
1607
9a86cb7b
KS
1608static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1609{
1610 return &mm->page_table_lock;
1611}
1612
e009bb30
KS
1613static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1614static inline void pgtable_pmd_page_dtor(struct page *page) {}
1615
c389a250 1616#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1617
e009bb30
KS
1618#endif
1619
9a86cb7b
KS
1620static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1621{
1622 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1623 spin_lock(ptl);
1624 return ptl;
1625}
1626
1da177e4 1627extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1628extern void free_area_init_node(int nid, unsigned long * zones_size,
1629 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1630extern void free_initmem(void);
1631
69afade7
JL
1632/*
1633 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1634 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1635 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1636 * Return pages freed into the buddy system.
1637 */
11199692 1638extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1639 int poison, char *s);
c3d5f5f0 1640
cfa11e08
JL
1641#ifdef CONFIG_HIGHMEM
1642/*
1643 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1644 * and totalram_pages.
1645 */
1646extern void free_highmem_page(struct page *page);
1647#endif
69afade7 1648
c3d5f5f0 1649extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1650extern void mem_init_print_info(const char *str);
69afade7 1651
92923ca3
NZ
1652extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1653
69afade7
JL
1654/* Free the reserved page into the buddy system, so it gets managed. */
1655static inline void __free_reserved_page(struct page *page)
1656{
1657 ClearPageReserved(page);
1658 init_page_count(page);
1659 __free_page(page);
1660}
1661
1662static inline void free_reserved_page(struct page *page)
1663{
1664 __free_reserved_page(page);
1665 adjust_managed_page_count(page, 1);
1666}
1667
1668static inline void mark_page_reserved(struct page *page)
1669{
1670 SetPageReserved(page);
1671 adjust_managed_page_count(page, -1);
1672}
1673
1674/*
1675 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1676 * The freed pages will be poisoned with pattern "poison" if it's within
1677 * range [0, UCHAR_MAX].
1678 * Return pages freed into the buddy system.
69afade7
JL
1679 */
1680static inline unsigned long free_initmem_default(int poison)
1681{
1682 extern char __init_begin[], __init_end[];
1683
11199692 1684 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1685 poison, "unused kernel");
1686}
1687
7ee3d4e8
JL
1688static inline unsigned long get_num_physpages(void)
1689{
1690 int nid;
1691 unsigned long phys_pages = 0;
1692
1693 for_each_online_node(nid)
1694 phys_pages += node_present_pages(nid);
1695
1696 return phys_pages;
1697}
1698
0ee332c1 1699#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1700/*
0ee332c1 1701 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1702 * zones, allocate the backing mem_map and account for memory holes in a more
1703 * architecture independent manner. This is a substitute for creating the
1704 * zone_sizes[] and zholes_size[] arrays and passing them to
1705 * free_area_init_node()
1706 *
1707 * An architecture is expected to register range of page frames backed by
0ee332c1 1708 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1709 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1710 * usage, an architecture is expected to do something like
1711 *
1712 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1713 * max_highmem_pfn};
1714 * for_each_valid_physical_page_range()
0ee332c1 1715 * memblock_add_node(base, size, nid)
c713216d
MG
1716 * free_area_init_nodes(max_zone_pfns);
1717 *
0ee332c1
TH
1718 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1719 * registered physical page range. Similarly
1720 * sparse_memory_present_with_active_regions() calls memory_present() for
1721 * each range when SPARSEMEM is enabled.
c713216d
MG
1722 *
1723 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1724 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1725 */
1726extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1727unsigned long node_map_pfn_alignment(void);
32996250
YL
1728unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1729 unsigned long end_pfn);
c713216d
MG
1730extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1731 unsigned long end_pfn);
1732extern void get_pfn_range_for_nid(unsigned int nid,
1733 unsigned long *start_pfn, unsigned long *end_pfn);
1734extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1735extern void free_bootmem_with_active_regions(int nid,
1736 unsigned long max_low_pfn);
1737extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1738
0ee332c1 1739#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1740
0ee332c1 1741#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1742 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1743static inline int __early_pfn_to_nid(unsigned long pfn,
1744 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1745{
1746 return 0;
1747}
1748#else
1749/* please see mm/page_alloc.c */
1750extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1751/* there is a per-arch backend function. */
8a942fde
MG
1752extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1753 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1754#endif
1755
0e0b864e 1756extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1757extern void memmap_init_zone(unsigned long, int, unsigned long,
1758 unsigned long, enum memmap_context);
bc75d33f 1759extern void setup_per_zone_wmarks(void);
1b79acc9 1760extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1761extern void mem_init(void);
8feae131 1762extern void __init mmap_init(void);
b2b755b5 1763extern void show_mem(unsigned int flags);
1da177e4
LT
1764extern void si_meminfo(struct sysinfo * val);
1765extern void si_meminfo_node(struct sysinfo *val, int nid);
1766
3ee9a4f0
JP
1767extern __printf(3, 4)
1768void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1769
e7c8d5c9 1770extern void setup_per_cpu_pageset(void);
e7c8d5c9 1771
112067f0 1772extern void zone_pcp_update(struct zone *zone);
340175b7 1773extern void zone_pcp_reset(struct zone *zone);
112067f0 1774
75f7ad8e
PS
1775/* page_alloc.c */
1776extern int min_free_kbytes;
1777
8feae131 1778/* nommu.c */
33e5d769 1779extern atomic_long_t mmap_pages_allocated;
7e660872 1780extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1781
6b2dbba8 1782/* interval_tree.c */
6b2dbba8
ML
1783void vma_interval_tree_insert(struct vm_area_struct *node,
1784 struct rb_root *root);
9826a516
ML
1785void vma_interval_tree_insert_after(struct vm_area_struct *node,
1786 struct vm_area_struct *prev,
1787 struct rb_root *root);
6b2dbba8
ML
1788void vma_interval_tree_remove(struct vm_area_struct *node,
1789 struct rb_root *root);
1790struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1791 unsigned long start, unsigned long last);
1792struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1793 unsigned long start, unsigned long last);
1794
1795#define vma_interval_tree_foreach(vma, root, start, last) \
1796 for (vma = vma_interval_tree_iter_first(root, start, last); \
1797 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1798
bf181b9f
ML
1799void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1800 struct rb_root *root);
1801void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1802 struct rb_root *root);
1803struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1804 struct rb_root *root, unsigned long start, unsigned long last);
1805struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1806 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1807#ifdef CONFIG_DEBUG_VM_RB
1808void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1809#endif
bf181b9f
ML
1810
1811#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1812 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1813 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1814
1da177e4 1815/* mmap.c */
34b4e4aa 1816extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1817extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1818 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1819extern struct vm_area_struct *vma_merge(struct mm_struct *,
1820 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1821 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1822 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1823extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1824extern int split_vma(struct mm_struct *,
1825 struct vm_area_struct *, unsigned long addr, int new_below);
1826extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1827extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1828 struct rb_node **, struct rb_node *);
a8fb5618 1829extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1830extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1831 unsigned long addr, unsigned long len, pgoff_t pgoff,
1832 bool *need_rmap_locks);
1da177e4 1833extern void exit_mmap(struct mm_struct *);
925d1c40 1834
9c599024
CG
1835static inline int check_data_rlimit(unsigned long rlim,
1836 unsigned long new,
1837 unsigned long start,
1838 unsigned long end_data,
1839 unsigned long start_data)
1840{
1841 if (rlim < RLIM_INFINITY) {
1842 if (((new - start) + (end_data - start_data)) > rlim)
1843 return -ENOSPC;
1844 }
1845
1846 return 0;
1847}
1848
7906d00c
AA
1849extern int mm_take_all_locks(struct mm_struct *mm);
1850extern void mm_drop_all_locks(struct mm_struct *mm);
1851
38646013
JS
1852extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1853extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1854
119f657c 1855extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1856extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1857 unsigned long addr, unsigned long len,
a62c34bd
AL
1858 unsigned long flags,
1859 const struct vm_special_mapping *spec);
1860/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1861extern int install_special_mapping(struct mm_struct *mm,
1862 unsigned long addr, unsigned long len,
1863 unsigned long flags, struct page **pages);
1da177e4
LT
1864
1865extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1866
0165ab44 1867extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1868 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1869extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1870 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1871 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1872extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1873
bebeb3d6
ML
1874#ifdef CONFIG_MMU
1875extern int __mm_populate(unsigned long addr, unsigned long len,
1876 int ignore_errors);
1877static inline void mm_populate(unsigned long addr, unsigned long len)
1878{
1879 /* Ignore errors */
1880 (void) __mm_populate(addr, len, 1);
1881}
1882#else
1883static inline void mm_populate(unsigned long addr, unsigned long len) {}
1884#endif
1885
e4eb1ff6
LT
1886/* These take the mm semaphore themselves */
1887extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1888extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1889extern unsigned long vm_mmap(struct file *, unsigned long,
1890 unsigned long, unsigned long,
1891 unsigned long, unsigned long);
1da177e4 1892
db4fbfb9
ML
1893struct vm_unmapped_area_info {
1894#define VM_UNMAPPED_AREA_TOPDOWN 1
1895 unsigned long flags;
1896 unsigned long length;
1897 unsigned long low_limit;
1898 unsigned long high_limit;
1899 unsigned long align_mask;
1900 unsigned long align_offset;
1901};
1902
1903extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1904extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1905
1906/*
1907 * Search for an unmapped address range.
1908 *
1909 * We are looking for a range that:
1910 * - does not intersect with any VMA;
1911 * - is contained within the [low_limit, high_limit) interval;
1912 * - is at least the desired size.
1913 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1914 */
1915static inline unsigned long
1916vm_unmapped_area(struct vm_unmapped_area_info *info)
1917{
cdd7875e 1918 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 1919 return unmapped_area_topdown(info);
cdd7875e
BP
1920 else
1921 return unmapped_area(info);
db4fbfb9
ML
1922}
1923
85821aab 1924/* truncate.c */
1da177e4 1925extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1926extern void truncate_inode_pages_range(struct address_space *,
1927 loff_t lstart, loff_t lend);
91b0abe3 1928extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1929
1930/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1931extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1932extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1933extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1934
1935/* mm/page-writeback.c */
1936int write_one_page(struct page *page, int wait);
1cf6e7d8 1937void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1938
1939/* readahead.c */
1940#define VM_MAX_READAHEAD 128 /* kbytes */
1941#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1942
1da177e4 1943int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1944 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1945
1946void page_cache_sync_readahead(struct address_space *mapping,
1947 struct file_ra_state *ra,
1948 struct file *filp,
1949 pgoff_t offset,
1950 unsigned long size);
1951
1952void page_cache_async_readahead(struct address_space *mapping,
1953 struct file_ra_state *ra,
1954 struct file *filp,
1955 struct page *pg,
1956 pgoff_t offset,
1957 unsigned long size);
1958
1da177e4
LT
1959unsigned long max_sane_readahead(unsigned long nr);
1960
d05f3169 1961/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1962extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1963
1964/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1965extern int expand_downwards(struct vm_area_struct *vma,
1966 unsigned long address);
8ca3eb08 1967#if VM_GROWSUP
46dea3d0 1968extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1969#else
fee7e49d 1970 #define expand_upwards(vma, address) (0)
9ab88515 1971#endif
1da177e4
LT
1972
1973/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1974extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1975extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1976 struct vm_area_struct **pprev);
1977
1978/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1979 NULL if none. Assume start_addr < end_addr. */
1980static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1981{
1982 struct vm_area_struct * vma = find_vma(mm,start_addr);
1983
1984 if (vma && end_addr <= vma->vm_start)
1985 vma = NULL;
1986 return vma;
1987}
1988
1989static inline unsigned long vma_pages(struct vm_area_struct *vma)
1990{
1991 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1992}
1993
640708a2
PE
1994/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1995static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1996 unsigned long vm_start, unsigned long vm_end)
1997{
1998 struct vm_area_struct *vma = find_vma(mm, vm_start);
1999
2000 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2001 vma = NULL;
2002
2003 return vma;
2004}
2005
bad849b3 2006#ifdef CONFIG_MMU
804af2cf 2007pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2008void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2009#else
2010static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2011{
2012 return __pgprot(0);
2013}
64e45507
PF
2014static inline void vma_set_page_prot(struct vm_area_struct *vma)
2015{
2016 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2017}
bad849b3
DH
2018#endif
2019
5877231f 2020#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2021unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2022 unsigned long start, unsigned long end);
2023#endif
2024
deceb6cd 2025struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2026int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2027 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2028int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2029int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2030 unsigned long pfn);
423bad60
NP
2031int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2032 unsigned long pfn);
b4cbb197
LT
2033int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2034
deceb6cd 2035
240aadee
ML
2036struct page *follow_page_mask(struct vm_area_struct *vma,
2037 unsigned long address, unsigned int foll_flags,
2038 unsigned int *page_mask);
2039
2040static inline struct page *follow_page(struct vm_area_struct *vma,
2041 unsigned long address, unsigned int foll_flags)
2042{
2043 unsigned int unused_page_mask;
2044 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2045}
2046
deceb6cd
HD
2047#define FOLL_WRITE 0x01 /* check pte is writable */
2048#define FOLL_TOUCH 0x02 /* mark page accessed */
2049#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2050#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2051#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2052#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2053 * and return without waiting upon it */
84d33df2 2054#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2055#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2056#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2057#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2058#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2059#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2060
2f569afd 2061typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2062 void *data);
2063extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2064 unsigned long size, pte_fn_t fn, void *data);
2065
1da177e4 2066#ifdef CONFIG_PROC_FS
ab50b8ed 2067void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2068#else
ab50b8ed 2069static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2070 unsigned long flags, struct file *file, long pages)
2071{
44de9d0c 2072 mm->total_vm += pages;
1da177e4
LT
2073}
2074#endif /* CONFIG_PROC_FS */
2075
12d6f21e 2076#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2077extern bool _debug_pagealloc_enabled;
2078extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2079
2080static inline bool debug_pagealloc_enabled(void)
2081{
2082 return _debug_pagealloc_enabled;
2083}
2084
2085static inline void
2086kernel_map_pages(struct page *page, int numpages, int enable)
2087{
2088 if (!debug_pagealloc_enabled())
2089 return;
2090
2091 __kernel_map_pages(page, numpages, enable);
2092}
8a235efa
RW
2093#ifdef CONFIG_HIBERNATION
2094extern bool kernel_page_present(struct page *page);
2095#endif /* CONFIG_HIBERNATION */
12d6f21e 2096#else
1da177e4 2097static inline void
9858db50 2098kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2099#ifdef CONFIG_HIBERNATION
2100static inline bool kernel_page_present(struct page *page) { return true; }
2101#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2102#endif
2103
a6c19dfe 2104#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2105extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2106extern int in_gate_area_no_mm(unsigned long addr);
2107extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2108#else
a6c19dfe
AL
2109static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2110{
2111 return NULL;
2112}
2113static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2114static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2115{
2116 return 0;
2117}
1da177e4
LT
2118#endif /* __HAVE_ARCH_GATE_AREA */
2119
146732ce
JT
2120#ifdef CONFIG_SYSCTL
2121extern int sysctl_drop_caches;
8d65af78 2122int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2123 void __user *, size_t *, loff_t *);
146732ce
JT
2124#endif
2125
cb731d6c
VD
2126void drop_slab(void);
2127void drop_slab_node(int nid);
9d0243bc 2128
7a9166e3
LY
2129#ifndef CONFIG_MMU
2130#define randomize_va_space 0
2131#else
a62eaf15 2132extern int randomize_va_space;
7a9166e3 2133#endif
a62eaf15 2134
045e72ac 2135const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2136void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2137
9bdac914
YL
2138void sparse_mem_maps_populate_node(struct page **map_map,
2139 unsigned long pnum_begin,
2140 unsigned long pnum_end,
2141 unsigned long map_count,
2142 int nodeid);
2143
98f3cfc1 2144struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2145pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2146pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2147pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2148pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2149void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2150void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2151void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2152int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2153 int node);
2154int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2155void vmemmap_populate_print_last(void);
0197518c 2156#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2157void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2158#endif
46723bfa
YI
2159void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2160 unsigned long size);
6a46079c 2161
82ba011b
AK
2162enum mf_flags {
2163 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2164 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2165 MF_MUST_KILL = 1 << 2,
cf870c70 2166 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2167};
cd42f4a3 2168extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2169extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2170extern int unpoison_memory(unsigned long pfn);
ead07f6a 2171extern int get_hwpoison_page(struct page *page);
6a46079c
AK
2172extern int sysctl_memory_failure_early_kill;
2173extern int sysctl_memory_failure_recovery;
facb6011 2174extern void shake_page(struct page *p, int access);
293c07e3 2175extern atomic_long_t num_poisoned_pages;
facb6011 2176extern int soft_offline_page(struct page *page, int flags);
6a46079c 2177
cc637b17
XX
2178
2179/*
2180 * Error handlers for various types of pages.
2181 */
cc3e2af4 2182enum mf_result {
cc637b17
XX
2183 MF_IGNORED, /* Error: cannot be handled */
2184 MF_FAILED, /* Error: handling failed */
2185 MF_DELAYED, /* Will be handled later */
2186 MF_RECOVERED, /* Successfully recovered */
2187};
2188
2189enum mf_action_page_type {
2190 MF_MSG_KERNEL,
2191 MF_MSG_KERNEL_HIGH_ORDER,
2192 MF_MSG_SLAB,
2193 MF_MSG_DIFFERENT_COMPOUND,
2194 MF_MSG_POISONED_HUGE,
2195 MF_MSG_HUGE,
2196 MF_MSG_FREE_HUGE,
2197 MF_MSG_UNMAP_FAILED,
2198 MF_MSG_DIRTY_SWAPCACHE,
2199 MF_MSG_CLEAN_SWAPCACHE,
2200 MF_MSG_DIRTY_MLOCKED_LRU,
2201 MF_MSG_CLEAN_MLOCKED_LRU,
2202 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2203 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2204 MF_MSG_DIRTY_LRU,
2205 MF_MSG_CLEAN_LRU,
2206 MF_MSG_TRUNCATED_LRU,
2207 MF_MSG_BUDDY,
2208 MF_MSG_BUDDY_2ND,
2209 MF_MSG_UNKNOWN,
2210};
2211
47ad8475
AA
2212#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2213extern void clear_huge_page(struct page *page,
2214 unsigned long addr,
2215 unsigned int pages_per_huge_page);
2216extern void copy_user_huge_page(struct page *dst, struct page *src,
2217 unsigned long addr, struct vm_area_struct *vma,
2218 unsigned int pages_per_huge_page);
2219#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2220
e30825f1
JK
2221extern struct page_ext_operations debug_guardpage_ops;
2222extern struct page_ext_operations page_poisoning_ops;
2223
c0a32fc5
SG
2224#ifdef CONFIG_DEBUG_PAGEALLOC
2225extern unsigned int _debug_guardpage_minorder;
e30825f1 2226extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2227
2228static inline unsigned int debug_guardpage_minorder(void)
2229{
2230 return _debug_guardpage_minorder;
2231}
2232
e30825f1
JK
2233static inline bool debug_guardpage_enabled(void)
2234{
2235 return _debug_guardpage_enabled;
2236}
2237
c0a32fc5
SG
2238static inline bool page_is_guard(struct page *page)
2239{
e30825f1
JK
2240 struct page_ext *page_ext;
2241
2242 if (!debug_guardpage_enabled())
2243 return false;
2244
2245 page_ext = lookup_page_ext(page);
2246 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2247}
2248#else
2249static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2250static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2251static inline bool page_is_guard(struct page *page) { return false; }
2252#endif /* CONFIG_DEBUG_PAGEALLOC */
2253
f9872caf
CS
2254#if MAX_NUMNODES > 1
2255void __init setup_nr_node_ids(void);
2256#else
2257static inline void setup_nr_node_ids(void) {}
2258#endif
2259
1da177e4
LT
2260#endif /* __KERNEL__ */
2261#endif /* _LINUX_MM_H */
This page took 1.730478 seconds and 5 git commands to generate.