oom: move oom_killer_enable()/oom_killer_disable to where they belong
[deliverable/linux.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
97965478 18#include <linux/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
64c5e135 41#define MIGRATE_RESERVE 3
a5d76b54
KH
42#define MIGRATE_ISOLATE 4 /* can't allocate from here */
43#define MIGRATE_TYPES 5
b2a0ac88
MG
44
45#define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
48
467c996c
MG
49extern int page_group_by_mobility_disabled;
50
51static inline int get_pageblock_migratetype(struct page *page)
52{
467c996c
MG
53 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
54}
55
1da177e4 56struct free_area {
b2a0ac88 57 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
58 unsigned long nr_free;
59};
60
61struct pglist_data;
62
63/*
64 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
65 * So add a wild amount of padding here to ensure that they fall into separate
66 * cachelines. There are very few zone structures in the machine, so space
67 * consumption is not a concern here.
68 */
69#if defined(CONFIG_SMP)
70struct zone_padding {
71 char x[0];
22fc6ecc 72} ____cacheline_internodealigned_in_smp;
1da177e4
LT
73#define ZONE_PADDING(name) struct zone_padding name;
74#else
75#define ZONE_PADDING(name)
76#endif
77
2244b95a 78enum zone_stat_item {
51ed4491 79 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 80 NR_FREE_PAGES,
b69408e8 81 NR_LRU_BASE,
4f98a2fe
RR
82 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
83 NR_ACTIVE_ANON, /* " " " " " */
84 NR_INACTIVE_FILE, /* " " " " " */
85 NR_ACTIVE_FILE, /* " " " " " */
894bc310 86 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 87 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
88 NR_ANON_PAGES, /* Mapped anonymous pages */
89 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 90 only modified from process context */
347ce434 91 NR_FILE_PAGES,
b1e7a8fd 92 NR_FILE_DIRTY,
ce866b34 93 NR_WRITEBACK,
51ed4491
CL
94 NR_SLAB_RECLAIMABLE,
95 NR_SLAB_UNRECLAIMABLE,
96 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
97 NR_KERNEL_STACK,
98 /* Second 128 byte cacheline */
fd39fc85 99 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 100 NR_BOUNCE,
e129b5c2 101 NR_VMSCAN_WRITE,
fc3ba692 102 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
103 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
104 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 105 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ca889e6c
CL
106#ifdef CONFIG_NUMA
107 NUMA_HIT, /* allocated in intended node */
108 NUMA_MISS, /* allocated in non intended node */
109 NUMA_FOREIGN, /* was intended here, hit elsewhere */
110 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
111 NUMA_LOCAL, /* allocation from local node */
112 NUMA_OTHER, /* allocation from other node */
113#endif
2244b95a
CL
114 NR_VM_ZONE_STAT_ITEMS };
115
4f98a2fe
RR
116/*
117 * We do arithmetic on the LRU lists in various places in the code,
118 * so it is important to keep the active lists LRU_ACTIVE higher in
119 * the array than the corresponding inactive lists, and to keep
120 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
121 *
122 * This has to be kept in sync with the statistics in zone_stat_item
123 * above and the descriptions in vmstat_text in mm/vmstat.c
124 */
125#define LRU_BASE 0
126#define LRU_ACTIVE 1
127#define LRU_FILE 2
128
b69408e8 129enum lru_list {
4f98a2fe
RR
130 LRU_INACTIVE_ANON = LRU_BASE,
131 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
132 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
133 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 134 LRU_UNEVICTABLE,
894bc310
LS
135 NR_LRU_LISTS
136};
b69408e8
CL
137
138#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
139
894bc310
LS
140#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
141
4f98a2fe
RR
142static inline int is_file_lru(enum lru_list l)
143{
144 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
145}
146
b69408e8
CL
147static inline int is_active_lru(enum lru_list l)
148{
4f98a2fe 149 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
150}
151
894bc310
LS
152static inline int is_unevictable_lru(enum lru_list l)
153{
894bc310 154 return (l == LRU_UNEVICTABLE);
894bc310
LS
155}
156
41858966
MG
157enum zone_watermarks {
158 WMARK_MIN,
159 WMARK_LOW,
160 WMARK_HIGH,
161 NR_WMARK
162};
163
164#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
165#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
166#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
167
1da177e4
LT
168struct per_cpu_pages {
169 int count; /* number of pages in the list */
1da177e4
LT
170 int high; /* high watermark, emptying needed */
171 int batch; /* chunk size for buddy add/remove */
172 struct list_head list; /* the list of pages */
173};
174
175struct per_cpu_pageset {
3dfa5721 176 struct per_cpu_pages pcp;
4037d452
CL
177#ifdef CONFIG_NUMA
178 s8 expire;
179#endif
2244b95a 180#ifdef CONFIG_SMP
df9ecaba 181 s8 stat_threshold;
2244b95a
CL
182 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
183#endif
1da177e4
LT
184} ____cacheline_aligned_in_smp;
185
e7c8d5c9
CL
186#ifdef CONFIG_NUMA
187#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
188#else
189#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
190#endif
191
97965478
CL
192#endif /* !__GENERATING_BOUNDS.H */
193
2f1b6248 194enum zone_type {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
196 /*
197 * ZONE_DMA is used when there are devices that are not able
198 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
199 * carve out the portion of memory that is needed for these devices.
200 * The range is arch specific.
201 *
202 * Some examples
203 *
204 * Architecture Limit
205 * ---------------------------
206 * parisc, ia64, sparc <4G
207 * s390 <2G
2f1b6248
CL
208 * arm Various
209 * alpha Unlimited or 0-16MB.
210 *
211 * i386, x86_64 and multiple other arches
212 * <16M.
213 */
214 ZONE_DMA,
4b51d669 215#endif
fb0e7942 216#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
217 /*
218 * x86_64 needs two ZONE_DMAs because it supports devices that are
219 * only able to do DMA to the lower 16M but also 32 bit devices that
220 * can only do DMA areas below 4G.
221 */
222 ZONE_DMA32,
fb0e7942 223#endif
2f1b6248
CL
224 /*
225 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
226 * performed on pages in ZONE_NORMAL if the DMA devices support
227 * transfers to all addressable memory.
228 */
229 ZONE_NORMAL,
e53ef38d 230#ifdef CONFIG_HIGHMEM
2f1b6248
CL
231 /*
232 * A memory area that is only addressable by the kernel through
233 * mapping portions into its own address space. This is for example
234 * used by i386 to allow the kernel to address the memory beyond
235 * 900MB. The kernel will set up special mappings (page
236 * table entries on i386) for each page that the kernel needs to
237 * access.
238 */
239 ZONE_HIGHMEM,
e53ef38d 240#endif
2a1e274a 241 ZONE_MOVABLE,
97965478 242 __MAX_NR_ZONES
2f1b6248 243};
1da177e4 244
97965478
CL
245#ifndef __GENERATING_BOUNDS_H
246
1da177e4
LT
247/*
248 * When a memory allocation must conform to specific limitations (such
249 * as being suitable for DMA) the caller will pass in hints to the
250 * allocator in the gfp_mask, in the zone modifier bits. These bits
251 * are used to select a priority ordered list of memory zones which
19655d34 252 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 253 */
fb0e7942 254
97965478 255#if MAX_NR_ZONES < 2
4b51d669 256#define ZONES_SHIFT 0
97965478 257#elif MAX_NR_ZONES <= 2
19655d34 258#define ZONES_SHIFT 1
97965478 259#elif MAX_NR_ZONES <= 4
19655d34 260#define ZONES_SHIFT 2
4b51d669
CL
261#else
262#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 263#endif
1da177e4 264
6e901571
KM
265struct zone_reclaim_stat {
266 /*
267 * The pageout code in vmscan.c keeps track of how many of the
268 * mem/swap backed and file backed pages are refeferenced.
269 * The higher the rotated/scanned ratio, the more valuable
270 * that cache is.
271 *
272 * The anon LRU stats live in [0], file LRU stats in [1]
273 */
274 unsigned long recent_rotated[2];
275 unsigned long recent_scanned[2];
276};
277
1da177e4
LT
278struct zone {
279 /* Fields commonly accessed by the page allocator */
41858966
MG
280
281 /* zone watermarks, access with *_wmark_pages(zone) macros */
282 unsigned long watermark[NR_WMARK];
283
1da177e4
LT
284 /*
285 * We don't know if the memory that we're going to allocate will be freeable
286 * or/and it will be released eventually, so to avoid totally wasting several
287 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
288 * to run OOM on the lower zones despite there's tons of freeable ram
289 * on the higher zones). This array is recalculated at runtime if the
290 * sysctl_lowmem_reserve_ratio sysctl changes.
291 */
292 unsigned long lowmem_reserve[MAX_NR_ZONES];
293
e7c8d5c9 294#ifdef CONFIG_NUMA
d5f541ed 295 int node;
9614634f
CL
296 /*
297 * zone reclaim becomes active if more unmapped pages exist.
298 */
8417bba4 299 unsigned long min_unmapped_pages;
0ff38490 300 unsigned long min_slab_pages;
e7c8d5c9
CL
301 struct per_cpu_pageset *pageset[NR_CPUS];
302#else
1da177e4 303 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 304#endif
1da177e4
LT
305 /*
306 * free areas of different sizes
307 */
308 spinlock_t lock;
bdc8cb98
DH
309#ifdef CONFIG_MEMORY_HOTPLUG
310 /* see spanned/present_pages for more description */
311 seqlock_t span_seqlock;
312#endif
1da177e4
LT
313 struct free_area free_area[MAX_ORDER];
314
835c134e
MG
315#ifndef CONFIG_SPARSEMEM
316 /*
d9c23400 317 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
318 * In SPARSEMEM, this map is stored in struct mem_section
319 */
320 unsigned long *pageblock_flags;
321#endif /* CONFIG_SPARSEMEM */
322
1da177e4
LT
323
324 ZONE_PADDING(_pad1_)
325
326 /* Fields commonly accessed by the page reclaim scanner */
327 spinlock_t lru_lock;
6e08a369 328 struct zone_lru {
b69408e8 329 struct list_head list;
6e08a369 330 unsigned long nr_saved_scan; /* accumulated for batching */
b69408e8 331 } lru[NR_LRU_LISTS];
4f98a2fe 332
6e901571 333 struct zone_reclaim_stat reclaim_stat;
4f98a2fe 334
1da177e4 335 unsigned long pages_scanned; /* since last reclaim */
e815af95 336 unsigned long flags; /* zone flags, see below */
753ee728 337
2244b95a
CL
338 /* Zone statistics */
339 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 340
1da177e4
LT
341 /*
342 * prev_priority holds the scanning priority for this zone. It is
343 * defined as the scanning priority at which we achieved our reclaim
344 * target at the previous try_to_free_pages() or balance_pgdat()
345 * invokation.
346 *
347 * We use prev_priority as a measure of how much stress page reclaim is
348 * under - it drives the swappiness decision: whether to unmap mapped
349 * pages.
350 *
3bb1a852 351 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
352 * it is expected to average out OK.
353 */
1da177e4
LT
354 int prev_priority;
355
556adecb
RR
356 /*
357 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
358 * this zone's LRU. Maintained by the pageout code.
359 */
360 unsigned int inactive_ratio;
361
1da177e4
LT
362
363 ZONE_PADDING(_pad2_)
364 /* Rarely used or read-mostly fields */
365
366 /*
367 * wait_table -- the array holding the hash table
02b694de 368 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
369 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
370 *
371 * The purpose of all these is to keep track of the people
372 * waiting for a page to become available and make them
373 * runnable again when possible. The trouble is that this
374 * consumes a lot of space, especially when so few things
375 * wait on pages at a given time. So instead of using
376 * per-page waitqueues, we use a waitqueue hash table.
377 *
378 * The bucket discipline is to sleep on the same queue when
379 * colliding and wake all in that wait queue when removing.
380 * When something wakes, it must check to be sure its page is
381 * truly available, a la thundering herd. The cost of a
382 * collision is great, but given the expected load of the
383 * table, they should be so rare as to be outweighed by the
384 * benefits from the saved space.
385 *
386 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
387 * primary users of these fields, and in mm/page_alloc.c
388 * free_area_init_core() performs the initialization of them.
389 */
390 wait_queue_head_t * wait_table;
02b694de 391 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
392 unsigned long wait_table_bits;
393
394 /*
395 * Discontig memory support fields.
396 */
397 struct pglist_data *zone_pgdat;
1da177e4
LT
398 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
399 unsigned long zone_start_pfn;
400
bdc8cb98
DH
401 /*
402 * zone_start_pfn, spanned_pages and present_pages are all
403 * protected by span_seqlock. It is a seqlock because it has
404 * to be read outside of zone->lock, and it is done in the main
405 * allocator path. But, it is written quite infrequently.
406 *
407 * The lock is declared along with zone->lock because it is
408 * frequently read in proximity to zone->lock. It's good to
409 * give them a chance of being in the same cacheline.
410 */
1da177e4
LT
411 unsigned long spanned_pages; /* total size, including holes */
412 unsigned long present_pages; /* amount of memory (excluding holes) */
413
414 /*
415 * rarely used fields:
416 */
15ad7cdc 417 const char *name;
22fc6ecc 418} ____cacheline_internodealigned_in_smp;
1da177e4 419
e815af95
DR
420typedef enum {
421 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
422 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 423 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
424} zone_flags_t;
425
426static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
427{
428 set_bit(flag, &zone->flags);
429}
d773ed6b
DR
430
431static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
432{
433 return test_and_set_bit(flag, &zone->flags);
434}
435
e815af95
DR
436static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
437{
438 clear_bit(flag, &zone->flags);
439}
440
441static inline int zone_is_all_unreclaimable(const struct zone *zone)
442{
443 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
444}
d773ed6b 445
e815af95
DR
446static inline int zone_is_reclaim_locked(const struct zone *zone)
447{
448 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
449}
d773ed6b 450
098d7f12
DR
451static inline int zone_is_oom_locked(const struct zone *zone)
452{
453 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
454}
e815af95 455
1da177e4
LT
456/*
457 * The "priority" of VM scanning is how much of the queues we will scan in one
458 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
459 * queues ("queue_length >> 12") during an aging round.
460 */
461#define DEF_PRIORITY 12
462
9276b1bc
PJ
463/* Maximum number of zones on a zonelist */
464#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
465
466#ifdef CONFIG_NUMA
523b9458
CL
467
468/*
469 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
470 * allocations to a single node for GFP_THISNODE.
471 *
54a6eb5c
MG
472 * [0] : Zonelist with fallback
473 * [1] : No fallback (GFP_THISNODE)
523b9458 474 */
54a6eb5c 475#define MAX_ZONELISTS 2
523b9458
CL
476
477
9276b1bc
PJ
478/*
479 * We cache key information from each zonelist for smaller cache
480 * footprint when scanning for free pages in get_page_from_freelist().
481 *
482 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
483 * up short of free memory since the last time (last_fullzone_zap)
484 * we zero'd fullzones.
485 * 2) The array z_to_n[] maps each zone in the zonelist to its node
486 * id, so that we can efficiently evaluate whether that node is
487 * set in the current tasks mems_allowed.
488 *
489 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
490 * indexed by a zones offset in the zonelist zones[] array.
491 *
492 * The get_page_from_freelist() routine does two scans. During the
493 * first scan, we skip zones whose corresponding bit in 'fullzones'
494 * is set or whose corresponding node in current->mems_allowed (which
495 * comes from cpusets) is not set. During the second scan, we bypass
496 * this zonelist_cache, to ensure we look methodically at each zone.
497 *
498 * Once per second, we zero out (zap) fullzones, forcing us to
499 * reconsider nodes that might have regained more free memory.
500 * The field last_full_zap is the time we last zapped fullzones.
501 *
502 * This mechanism reduces the amount of time we waste repeatedly
503 * reexaming zones for free memory when they just came up low on
504 * memory momentarilly ago.
505 *
506 * The zonelist_cache struct members logically belong in struct
507 * zonelist. However, the mempolicy zonelists constructed for
508 * MPOL_BIND are intentionally variable length (and usually much
509 * shorter). A general purpose mechanism for handling structs with
510 * multiple variable length members is more mechanism than we want
511 * here. We resort to some special case hackery instead.
512 *
513 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
514 * part because they are shorter), so we put the fixed length stuff
515 * at the front of the zonelist struct, ending in a variable length
516 * zones[], as is needed by MPOL_BIND.
517 *
518 * Then we put the optional zonelist cache on the end of the zonelist
519 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
520 * the fixed length portion at the front of the struct. This pointer
521 * both enables us to find the zonelist cache, and in the case of
522 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
523 * to know that the zonelist cache is not there.
524 *
525 * The end result is that struct zonelists come in two flavors:
526 * 1) The full, fixed length version, shown below, and
527 * 2) The custom zonelists for MPOL_BIND.
528 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
529 *
530 * Even though there may be multiple CPU cores on a node modifying
531 * fullzones or last_full_zap in the same zonelist_cache at the same
532 * time, we don't lock it. This is just hint data - if it is wrong now
533 * and then, the allocator will still function, perhaps a bit slower.
534 */
535
536
537struct zonelist_cache {
9276b1bc 538 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 539 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
540 unsigned long last_full_zap; /* when last zap'd (jiffies) */
541};
542#else
54a6eb5c 543#define MAX_ZONELISTS 1
9276b1bc
PJ
544struct zonelist_cache;
545#endif
546
dd1a239f
MG
547/*
548 * This struct contains information about a zone in a zonelist. It is stored
549 * here to avoid dereferences into large structures and lookups of tables
550 */
551struct zoneref {
552 struct zone *zone; /* Pointer to actual zone */
553 int zone_idx; /* zone_idx(zoneref->zone) */
554};
555
1da177e4
LT
556/*
557 * One allocation request operates on a zonelist. A zonelist
558 * is a list of zones, the first one is the 'goal' of the
559 * allocation, the other zones are fallback zones, in decreasing
560 * priority.
561 *
9276b1bc
PJ
562 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
563 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
564 * *
565 * To speed the reading of the zonelist, the zonerefs contain the zone index
566 * of the entry being read. Helper functions to access information given
567 * a struct zoneref are
568 *
569 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
570 * zonelist_zone_idx() - Return the index of the zone for an entry
571 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
572 */
573struct zonelist {
9276b1bc 574 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 575 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
576#ifdef CONFIG_NUMA
577 struct zonelist_cache zlcache; // optional ...
578#endif
1da177e4
LT
579};
580
c713216d
MG
581#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
582struct node_active_region {
583 unsigned long start_pfn;
584 unsigned long end_pfn;
585 int nid;
586};
587#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 588
5b99cd0e
HC
589#ifndef CONFIG_DISCONTIGMEM
590/* The array of struct pages - for discontigmem use pgdat->lmem_map */
591extern struct page *mem_map;
592#endif
593
1da177e4
LT
594/*
595 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
596 * (mostly NUMA machines?) to denote a higher-level memory zone than the
597 * zone denotes.
598 *
599 * On NUMA machines, each NUMA node would have a pg_data_t to describe
600 * it's memory layout.
601 *
602 * Memory statistics and page replacement data structures are maintained on a
603 * per-zone basis.
604 */
605struct bootmem_data;
606typedef struct pglist_data {
607 struct zone node_zones[MAX_NR_ZONES];
523b9458 608 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 609 int nr_zones;
52d4b9ac 610#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 611 struct page *node_mem_map;
52d4b9ac
KH
612#ifdef CONFIG_CGROUP_MEM_RES_CTLR
613 struct page_cgroup *node_page_cgroup;
614#endif
d41dee36 615#endif
1da177e4 616 struct bootmem_data *bdata;
208d54e5
DH
617#ifdef CONFIG_MEMORY_HOTPLUG
618 /*
619 * Must be held any time you expect node_start_pfn, node_present_pages
620 * or node_spanned_pages stay constant. Holding this will also
621 * guarantee that any pfn_valid() stays that way.
622 *
623 * Nests above zone->lock and zone->size_seqlock.
624 */
625 spinlock_t node_size_lock;
626#endif
1da177e4
LT
627 unsigned long node_start_pfn;
628 unsigned long node_present_pages; /* total number of physical pages */
629 unsigned long node_spanned_pages; /* total size of physical page
630 range, including holes */
631 int node_id;
1da177e4
LT
632 wait_queue_head_t kswapd_wait;
633 struct task_struct *kswapd;
634 int kswapd_max_order;
635} pg_data_t;
636
637#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
638#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 639#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 640#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
641#else
642#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
643#endif
408fde81 644#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 645
208d54e5
DH
646#include <linux/memory_hotplug.h>
647
1da177e4
LT
648void get_zone_counts(unsigned long *active, unsigned long *inactive,
649 unsigned long *free);
650void build_all_zonelists(void);
651void wakeup_kswapd(struct zone *zone, int order);
652int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 653 int classzone_idx, int alloc_flags);
a2f3aa02
DH
654enum memmap_context {
655 MEMMAP_EARLY,
656 MEMMAP_HOTPLUG,
657};
718127cc 658extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
659 unsigned long size,
660 enum memmap_context context);
718127cc 661
1da177e4
LT
662#ifdef CONFIG_HAVE_MEMORY_PRESENT
663void memory_present(int nid, unsigned long start, unsigned long end);
664#else
665static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
666#endif
667
668#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
669unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
670#endif
671
672/*
673 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
674 */
675#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
676
f3fe6512
CK
677static inline int populated_zone(struct zone *zone)
678{
679 return (!!zone->present_pages);
680}
681
2a1e274a
MG
682extern int movable_zone;
683
684static inline int zone_movable_is_highmem(void)
685{
686#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
687 return movable_zone == ZONE_HIGHMEM;
688#else
689 return 0;
690#endif
691}
692
2f1b6248 693static inline int is_highmem_idx(enum zone_type idx)
1da177e4 694{
e53ef38d 695#ifdef CONFIG_HIGHMEM
2a1e274a
MG
696 return (idx == ZONE_HIGHMEM ||
697 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
698#else
699 return 0;
700#endif
1da177e4
LT
701}
702
2f1b6248 703static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
704{
705 return (idx == ZONE_NORMAL);
706}
9328b8fa 707
1da177e4
LT
708/**
709 * is_highmem - helper function to quickly check if a struct zone is a
710 * highmem zone or not. This is an attempt to keep references
711 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
712 * @zone - pointer to struct zone variable
713 */
714static inline int is_highmem(struct zone *zone)
715{
e53ef38d 716#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
717 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
718 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
719 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
720 zone_movable_is_highmem());
e53ef38d
CL
721#else
722 return 0;
723#endif
1da177e4
LT
724}
725
726static inline int is_normal(struct zone *zone)
727{
728 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
729}
730
9328b8fa
NP
731static inline int is_dma32(struct zone *zone)
732{
fb0e7942 733#ifdef CONFIG_ZONE_DMA32
9328b8fa 734 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
735#else
736 return 0;
737#endif
9328b8fa
NP
738}
739
740static inline int is_dma(struct zone *zone)
741{
4b51d669 742#ifdef CONFIG_ZONE_DMA
9328b8fa 743 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
744#else
745 return 0;
746#endif
9328b8fa
NP
747}
748
1da177e4
LT
749/* These two functions are used to setup the per zone pages min values */
750struct ctl_table;
751struct file;
752int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
753 void __user *, size_t *, loff_t *);
754extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
755int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
756 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
757int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
758 void __user *, size_t *, loff_t *);
9614634f
CL
759int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
760 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
761int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
762 struct file *, void __user *, size_t *, loff_t *);
1da177e4 763
f0c0b2b8
KH
764extern int numa_zonelist_order_handler(struct ctl_table *, int,
765 struct file *, void __user *, size_t *, loff_t *);
766extern char numa_zonelist_order[];
767#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
768
93b7504e 769#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
770
771extern struct pglist_data contig_page_data;
772#define NODE_DATA(nid) (&contig_page_data)
773#define NODE_MEM_MAP(nid) mem_map
1da177e4 774
93b7504e 775#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
776
777#include <asm/mmzone.h>
778
93b7504e 779#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 780
95144c78
KH
781extern struct pglist_data *first_online_pgdat(void);
782extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
783extern struct zone *next_zone(struct zone *zone);
8357f869
KH
784
785/**
12d15f0d 786 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
787 * @pgdat - pointer to a pg_data_t variable
788 */
789#define for_each_online_pgdat(pgdat) \
790 for (pgdat = first_online_pgdat(); \
791 pgdat; \
792 pgdat = next_online_pgdat(pgdat))
8357f869
KH
793/**
794 * for_each_zone - helper macro to iterate over all memory zones
795 * @zone - pointer to struct zone variable
796 *
797 * The user only needs to declare the zone variable, for_each_zone
798 * fills it in.
799 */
800#define for_each_zone(zone) \
801 for (zone = (first_online_pgdat())->node_zones; \
802 zone; \
803 zone = next_zone(zone))
804
ee99c71c
KM
805#define for_each_populated_zone(zone) \
806 for (zone = (first_online_pgdat())->node_zones; \
807 zone; \
808 zone = next_zone(zone)) \
809 if (!populated_zone(zone)) \
810 ; /* do nothing */ \
811 else
812
dd1a239f
MG
813static inline struct zone *zonelist_zone(struct zoneref *zoneref)
814{
815 return zoneref->zone;
816}
817
818static inline int zonelist_zone_idx(struct zoneref *zoneref)
819{
820 return zoneref->zone_idx;
821}
822
823static inline int zonelist_node_idx(struct zoneref *zoneref)
824{
825#ifdef CONFIG_NUMA
826 /* zone_to_nid not available in this context */
827 return zoneref->zone->node;
828#else
829 return 0;
830#endif /* CONFIG_NUMA */
831}
832
19770b32
MG
833/**
834 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
835 * @z - The cursor used as a starting point for the search
836 * @highest_zoneidx - The zone index of the highest zone to return
837 * @nodes - An optional nodemask to filter the zonelist with
838 * @zone - The first suitable zone found is returned via this parameter
839 *
840 * This function returns the next zone at or below a given zone index that is
841 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
842 * search. The zoneref returned is a cursor that represents the current zone
843 * being examined. It should be advanced by one before calling
844 * next_zones_zonelist again.
19770b32
MG
845 */
846struct zoneref *next_zones_zonelist(struct zoneref *z,
847 enum zone_type highest_zoneidx,
848 nodemask_t *nodes,
849 struct zone **zone);
dd1a239f 850
19770b32
MG
851/**
852 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
853 * @zonelist - The zonelist to search for a suitable zone
854 * @highest_zoneidx - The zone index of the highest zone to return
855 * @nodes - An optional nodemask to filter the zonelist with
856 * @zone - The first suitable zone found is returned via this parameter
857 *
858 * This function returns the first zone at or below a given zone index that is
859 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
860 * used to iterate the zonelist with next_zones_zonelist by advancing it by
861 * one before calling.
19770b32 862 */
dd1a239f 863static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
864 enum zone_type highest_zoneidx,
865 nodemask_t *nodes,
866 struct zone **zone)
54a6eb5c 867{
19770b32
MG
868 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
869 zone);
54a6eb5c
MG
870}
871
19770b32
MG
872/**
873 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
874 * @zone - The current zone in the iterator
875 * @z - The current pointer within zonelist->zones being iterated
876 * @zlist - The zonelist being iterated
877 * @highidx - The zone index of the highest zone to return
878 * @nodemask - Nodemask allowed by the allocator
879 *
880 * This iterator iterates though all zones at or below a given zone index and
881 * within a given nodemask
882 */
883#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
884 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
885 zone; \
5bead2a0 886 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
887
888/**
889 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
890 * @zone - The current zone in the iterator
891 * @z - The current pointer within zonelist->zones being iterated
892 * @zlist - The zonelist being iterated
893 * @highidx - The zone index of the highest zone to return
894 *
895 * This iterator iterates though all zones at or below a given zone index.
896 */
897#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 898 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 899
d41dee36
AW
900#ifdef CONFIG_SPARSEMEM
901#include <asm/sparsemem.h>
902#endif
903
c713216d
MG
904#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
905 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
906static inline unsigned long early_pfn_to_nid(unsigned long pfn)
907{
908 return 0;
909}
b159d43f
AW
910#endif
911
2bdaf115
AW
912#ifdef CONFIG_FLATMEM
913#define pfn_to_nid(pfn) (0)
914#endif
915
d41dee36
AW
916#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
917#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
918
919#ifdef CONFIG_SPARSEMEM
920
921/*
922 * SECTION_SHIFT #bits space required to store a section #
923 *
924 * PA_SECTION_SHIFT physical address to/from section number
925 * PFN_SECTION_SHIFT pfn to/from section number
926 */
927#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
928
929#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
930#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
931
932#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
933
934#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
935#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
936
835c134e 937#define SECTION_BLOCKFLAGS_BITS \
d9c23400 938 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 939
d41dee36
AW
940#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
941#error Allocator MAX_ORDER exceeds SECTION_SIZE
942#endif
943
944struct page;
52d4b9ac 945struct page_cgroup;
d41dee36 946struct mem_section {
29751f69
AW
947 /*
948 * This is, logically, a pointer to an array of struct
949 * pages. However, it is stored with some other magic.
950 * (see sparse.c::sparse_init_one_section())
951 *
30c253e6
AW
952 * Additionally during early boot we encode node id of
953 * the location of the section here to guide allocation.
954 * (see sparse.c::memory_present())
955 *
29751f69
AW
956 * Making it a UL at least makes someone do a cast
957 * before using it wrong.
958 */
959 unsigned long section_mem_map;
5c0e3066
MG
960
961 /* See declaration of similar field in struct zone */
962 unsigned long *pageblock_flags;
52d4b9ac
KH
963#ifdef CONFIG_CGROUP_MEM_RES_CTLR
964 /*
965 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
966 * section. (see memcontrol.h/page_cgroup.h about this.)
967 */
968 struct page_cgroup *page_cgroup;
969 unsigned long pad;
970#endif
d41dee36
AW
971};
972
3e347261
BP
973#ifdef CONFIG_SPARSEMEM_EXTREME
974#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
975#else
976#define SECTIONS_PER_ROOT 1
977#endif
802f192e 978
3e347261
BP
979#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
980#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
981#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 982
3e347261
BP
983#ifdef CONFIG_SPARSEMEM_EXTREME
984extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 985#else
3e347261
BP
986extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
987#endif
d41dee36 988
29751f69
AW
989static inline struct mem_section *__nr_to_section(unsigned long nr)
990{
3e347261
BP
991 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
992 return NULL;
993 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 994}
4ca644d9 995extern int __section_nr(struct mem_section* ms);
04753278 996extern unsigned long usemap_size(void);
29751f69
AW
997
998/*
999 * We use the lower bits of the mem_map pointer to store
1000 * a little bit of information. There should be at least
1001 * 3 bits here due to 32-bit alignment.
1002 */
1003#define SECTION_MARKED_PRESENT (1UL<<0)
1004#define SECTION_HAS_MEM_MAP (1UL<<1)
1005#define SECTION_MAP_LAST_BIT (1UL<<2)
1006#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1007#define SECTION_NID_SHIFT 2
29751f69
AW
1008
1009static inline struct page *__section_mem_map_addr(struct mem_section *section)
1010{
1011 unsigned long map = section->section_mem_map;
1012 map &= SECTION_MAP_MASK;
1013 return (struct page *)map;
1014}
1015
540557b9 1016static inline int present_section(struct mem_section *section)
29751f69 1017{
802f192e 1018 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1019}
1020
540557b9
AW
1021static inline int present_section_nr(unsigned long nr)
1022{
1023 return present_section(__nr_to_section(nr));
1024}
1025
1026static inline int valid_section(struct mem_section *section)
29751f69 1027{
802f192e 1028 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1029}
1030
1031static inline int valid_section_nr(unsigned long nr)
1032{
1033 return valid_section(__nr_to_section(nr));
1034}
1035
d41dee36
AW
1036static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1037{
29751f69 1038 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1039}
1040
d41dee36
AW
1041static inline int pfn_valid(unsigned long pfn)
1042{
1043 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1044 return 0;
29751f69 1045 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
1046}
1047
540557b9
AW
1048static inline int pfn_present(unsigned long pfn)
1049{
1050 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1051 return 0;
1052 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1053}
1054
d41dee36
AW
1055/*
1056 * These are _only_ used during initialisation, therefore they
1057 * can use __initdata ... They could have names to indicate
1058 * this restriction.
1059 */
1060#ifdef CONFIG_NUMA
161599ff
AW
1061#define pfn_to_nid(pfn) \
1062({ \
1063 unsigned long __pfn_to_nid_pfn = (pfn); \
1064 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1065})
2bdaf115
AW
1066#else
1067#define pfn_to_nid(pfn) (0)
d41dee36
AW
1068#endif
1069
d41dee36
AW
1070#define early_pfn_valid(pfn) pfn_valid(pfn)
1071void sparse_init(void);
1072#else
1073#define sparse_init() do {} while (0)
28ae55c9 1074#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1075#endif /* CONFIG_SPARSEMEM */
1076
75167957 1077#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1078bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1079#else
1080#define early_pfn_in_nid(pfn, nid) (1)
1081#endif
1082
d41dee36
AW
1083#ifndef early_pfn_valid
1084#define early_pfn_valid(pfn) (1)
1085#endif
1086
1087void memory_present(int nid, unsigned long start, unsigned long end);
1088unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1089
14e07298
AW
1090/*
1091 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1092 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1093 * pfn_valid_within() should be used in this case; we optimise this away
1094 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1095 */
1096#ifdef CONFIG_HOLES_IN_ZONE
1097#define pfn_valid_within(pfn) pfn_valid(pfn)
1098#else
1099#define pfn_valid_within(pfn) (1)
1100#endif
1101
eb33575c
MG
1102#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1103/*
1104 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1105 * associated with it or not. In FLATMEM, it is expected that holes always
1106 * have valid memmap as long as there is valid PFNs either side of the hole.
1107 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1108 * entire section.
1109 *
1110 * However, an ARM, and maybe other embedded architectures in the future
1111 * free memmap backing holes to save memory on the assumption the memmap is
1112 * never used. The page_zone linkages are then broken even though pfn_valid()
1113 * returns true. A walker of the full memmap must then do this additional
1114 * check to ensure the memmap they are looking at is sane by making sure
1115 * the zone and PFN linkages are still valid. This is expensive, but walkers
1116 * of the full memmap are extremely rare.
1117 */
1118int memmap_valid_within(unsigned long pfn,
1119 struct page *page, struct zone *zone);
1120#else
1121static inline int memmap_valid_within(unsigned long pfn,
1122 struct page *page, struct zone *zone)
1123{
1124 return 1;
1125}
1126#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1127
97965478 1128#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1129#endif /* !__ASSEMBLY__ */
1da177e4 1130#endif /* _LINUX_MMZONE_H */
This page took 0.774564 seconds and 5 git commands to generate.