Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / include / linux / percpu.h
CommitLineData
1da177e4
LT
1#ifndef __LINUX_PERCPU_H
2#define __LINUX_PERCPU_H
7ff6f082 3
0a3021f4 4#include <linux/preempt.h>
1da177e4 5#include <linux/smp.h>
7ff6f082 6#include <linux/cpumask.h>
6a242909 7#include <linux/pfn.h>
de380b55 8#include <linux/init.h>
7ff6f082 9
1da177e4
LT
10#include <asm/percpu.h>
11
6a242909 12/* enough to cover all DEFINE_PER_CPUs in modules */
b00742d3 13#ifdef CONFIG_MODULES
6a242909 14#define PERCPU_MODULE_RESERVE (8 << 10)
b00742d3 15#else
6a242909 16#define PERCPU_MODULE_RESERVE 0
1da177e4
LT
17#endif
18
6a242909 19#ifndef PERCPU_ENOUGH_ROOM
b00742d3 20#define PERCPU_ENOUGH_ROOM \
6a242909
TH
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23#endif
b00742d3 24
632bbfee
JB
25/*
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
28 */
29#define get_cpu_var(var) (*({ \
632bbfee
JB
30 preempt_disable(); \
31 &__get_cpu_var(var); }))
f7b64fe8 32
e0fdb0e0
RR
33/*
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
36 */
f7b64fe8 37#define put_cpu_var(var) do { \
e0fdb0e0 38 (void)&(var); \
f7b64fe8
TH
39 preempt_enable(); \
40} while (0)
1da177e4 41
8b8e2ec1
PZ
42#define get_cpu_ptr(var) ({ \
43 preempt_disable(); \
44 this_cpu_ptr(var); })
45
46#define put_cpu_ptr(var) do { \
47 (void)(var); \
48 preempt_enable(); \
49} while (0)
50
8d408b4b 51/* minimum unit size, also is the maximum supported allocation size */
6abad5ac 52#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
8d408b4b 53
099a19d9
TH
54/*
55 * Percpu allocator can serve percpu allocations before slab is
56 * initialized which allows slab to depend on the percpu allocator.
57 * The following two parameters decide how much resource to
58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
59 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
60 */
61#define PERCPU_DYNAMIC_EARLY_SLOTS 128
62#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
63
8d408b4b
TH
64/*
65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
6b19b0c2
TH
66 * back on the first chunk for dynamic percpu allocation if arch is
67 * manually allocating and mapping it for faster access (as a part of
68 * large page mapping for example).
8d408b4b 69 *
6b19b0c2
TH
70 * The following values give between one and two pages of free space
71 * after typical minimal boot (2-way SMP, single disk and NIC) with
72 * both defconfig and a distro config on x86_64 and 32. More
73 * intelligent way to determine this would be nice.
8d408b4b 74 */
6b19b0c2
TH
75#if BITS_PER_LONG > 32
76#define PERCPU_DYNAMIC_RESERVE (20 << 10)
77#else
78#define PERCPU_DYNAMIC_RESERVE (12 << 10)
79#endif
8d408b4b 80
fbf59bc9 81extern void *pcpu_base_addr;
fb435d52 82extern const unsigned long *pcpu_unit_offsets;
1da177e4 83
fd1e8a1f
TH
84struct pcpu_group_info {
85 int nr_units; /* aligned # of units */
86 unsigned long base_offset; /* base address offset */
87 unsigned int *cpu_map; /* unit->cpu map, empty
88 * entries contain NR_CPUS */
89};
90
91struct pcpu_alloc_info {
92 size_t static_size;
93 size_t reserved_size;
94 size_t dyn_size;
95 size_t unit_size;
96 size_t atom_size;
97 size_t alloc_size;
98 size_t __ai_size; /* internal, don't use */
99 int nr_groups; /* 0 if grouping unnecessary */
100 struct pcpu_group_info groups[];
101};
102
f58dc01b
TH
103enum pcpu_fc {
104 PCPU_FC_AUTO,
105 PCPU_FC_EMBED,
106 PCPU_FC_PAGE,
f58dc01b
TH
107
108 PCPU_FC_NR,
109};
17f3609c 110extern const char * const pcpu_fc_names[PCPU_FC_NR];
f58dc01b
TH
111
112extern enum pcpu_fc pcpu_chosen_fc;
113
3cbc8565
TH
114typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
115 size_t align);
d4b95f80
TH
116typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
117typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
a530b795 118typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
fbf59bc9 119
fd1e8a1f
TH
120extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
121 int nr_units);
122extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
123
fb435d52
TH
124extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
125 void *base_addr);
8d408b4b 126
08fc4580 127#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
4ba6ce25 128extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
129 size_t atom_size,
130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
131 pcpu_fc_alloc_fn_t alloc_fn,
132 pcpu_fc_free_fn_t free_fn);
08fc4580 133#endif
66c3a757 134
08fc4580 135#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
fb435d52 136extern int __init pcpu_page_first_chunk(size_t reserved_size,
d4b95f80
TH
137 pcpu_fc_alloc_fn_t alloc_fn,
138 pcpu_fc_free_fn_t free_fn,
139 pcpu_fc_populate_pte_fn_t populate_pte_fn);
08fc4580 140#endif
d4b95f80 141
f2a8205c
TH
142/*
143 * Use this to get to a cpu's version of the per-cpu object
144 * dynamically allocated. Non-atomic access to the current CPU's
145 * version should probably be combined with get_cpu()/put_cpu().
146 */
bbddff05 147#ifdef CONFIG_SMP
fbf59bc9 148#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
bbddff05
TH
149#else
150#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
151#endif
fbf59bc9 152
e0fdb0e0 153extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
10fad5e4 154extern bool is_kernel_percpu_address(unsigned long addr);
1da177e4 155
bbddff05 156#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
e74e3962
TH
157extern void __init setup_per_cpu_areas(void);
158#endif
099a19d9 159extern void __init percpu_init_late(void);
e74e3962 160
de380b55
TH
161extern void __percpu *__alloc_percpu(size_t size, size_t align);
162extern void free_percpu(void __percpu *__pdata);
163extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
164
64ef291f 165#define alloc_percpu(type) \
e0fdb0e0 166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
1da177e4 167
7340a0b1
CL
168/*
169 * Branching function to split up a function into a set of functions that
170 * are called for different scalar sizes of the objects handled.
171 */
172
173extern void __bad_size_call_parameter(void);
174
0f5e4816
TH
175#define __pcpu_size_call_return(stem, variable) \
176({ typeof(variable) pscr_ret__; \
545695fb 177 __verify_pcpu_ptr(&(variable)); \
7340a0b1 178 switch(sizeof(variable)) { \
0f5e4816
TH
179 case 1: pscr_ret__ = stem##1(variable);break; \
180 case 2: pscr_ret__ = stem##2(variable);break; \
181 case 4: pscr_ret__ = stem##4(variable);break; \
182 case 8: pscr_ret__ = stem##8(variable);break; \
7340a0b1
CL
183 default: \
184 __bad_size_call_parameter();break; \
185 } \
0f5e4816 186 pscr_ret__; \
7340a0b1
CL
187})
188
a663ffff
CL
189#define __pcpu_size_call_return2(stem, variable, ...) \
190({ \
191 typeof(variable) pscr2_ret__; \
192 __verify_pcpu_ptr(&(variable)); \
193 switch(sizeof(variable)) { \
194 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
195 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
196 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
197 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
198 default: \
199 __bad_size_call_parameter(); break; \
200 } \
201 pscr2_ret__; \
202})
203
7c334339
CL
204/*
205 * Special handling for cmpxchg_double. cmpxchg_double is passed two
206 * percpu variables. The first has to be aligned to a double word
207 * boundary and the second has to follow directly thereafter.
d4d84fef
CM
208 * We enforce this on all architectures even if they don't support
209 * a double cmpxchg instruction, since it's a cheap requirement, and it
210 * avoids breaking the requirement for architectures with the instruction.
7c334339
CL
211 */
212#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
213({ \
214 bool pdcrb_ret__; \
215 __verify_pcpu_ptr(&pcp1); \
216 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
217 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
218 VM_BUG_ON((unsigned long)(&pcp2) != \
219 (unsigned long)(&pcp1) + sizeof(pcp1)); \
220 switch(sizeof(pcp1)) { \
221 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
222 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
223 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
224 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
225 default: \
226 __bad_size_call_parameter(); break; \
227 } \
228 pdcrb_ret__; \
229})
230
0f5e4816 231#define __pcpu_size_call(stem, variable, ...) \
7340a0b1 232do { \
545695fb 233 __verify_pcpu_ptr(&(variable)); \
7340a0b1
CL
234 switch(sizeof(variable)) { \
235 case 1: stem##1(variable, __VA_ARGS__);break; \
236 case 2: stem##2(variable, __VA_ARGS__);break; \
237 case 4: stem##4(variable, __VA_ARGS__);break; \
238 case 8: stem##8(variable, __VA_ARGS__);break; \
239 default: \
240 __bad_size_call_parameter();break; \
241 } \
242} while (0)
243
244/*
245 * Optimized manipulation for memory allocated through the per cpu
dd17c8f7 246 * allocator or for addresses of per cpu variables.
7340a0b1
CL
247 *
248 * These operation guarantee exclusivity of access for other operations
249 * on the *same* processor. The assumption is that per cpu data is only
250 * accessed by a single processor instance (the current one).
251 *
252 * The first group is used for accesses that must be done in a
253 * preemption safe way since we know that the context is not preempt
254 * safe. Interrupts may occur. If the interrupt modifies the variable
255 * too then RMW actions will not be reliable.
256 *
257 * The arch code can provide optimized functions in two ways:
258 *
259 * 1. Override the function completely. F.e. define this_cpu_add().
260 * The arch must then ensure that the various scalar format passed
261 * are handled correctly.
262 *
263 * 2. Provide functions for certain scalar sizes. F.e. provide
264 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
265 * sized RMW actions. If arch code does not provide operations for
266 * a scalar size then the fallback in the generic code will be
267 * used.
268 */
269
270#define _this_cpu_generic_read(pcp) \
271({ typeof(pcp) ret__; \
272 preempt_disable(); \
273 ret__ = *this_cpu_ptr(&(pcp)); \
274 preempt_enable(); \
275 ret__; \
276})
277
278#ifndef this_cpu_read
279# ifndef this_cpu_read_1
280# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
281# endif
282# ifndef this_cpu_read_2
283# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
284# endif
285# ifndef this_cpu_read_4
286# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
287# endif
288# ifndef this_cpu_read_8
289# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
290# endif
0f5e4816 291# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
7340a0b1
CL
292#endif
293
294#define _this_cpu_generic_to_op(pcp, val, op) \
295do { \
933393f5 296 unsigned long flags; \
e920d597 297 raw_local_irq_save(flags); \
f7b64fe8 298 *__this_cpu_ptr(&(pcp)) op val; \
e920d597 299 raw_local_irq_restore(flags); \
7340a0b1
CL
300} while (0)
301
302#ifndef this_cpu_write
303# ifndef this_cpu_write_1
304# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
305# endif
306# ifndef this_cpu_write_2
307# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
308# endif
309# ifndef this_cpu_write_4
310# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
311# endif
312# ifndef this_cpu_write_8
313# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
314# endif
0f5e4816 315# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
7340a0b1
CL
316#endif
317
318#ifndef this_cpu_add
319# ifndef this_cpu_add_1
320# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
321# endif
322# ifndef this_cpu_add_2
323# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
324# endif
325# ifndef this_cpu_add_4
326# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
327# endif
328# ifndef this_cpu_add_8
329# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
330# endif
0f5e4816 331# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
7340a0b1
CL
332#endif
333
334#ifndef this_cpu_sub
bd09d9a3 335# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(typeof(pcp))(val))
7340a0b1
CL
336#endif
337
338#ifndef this_cpu_inc
339# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
340#endif
341
342#ifndef this_cpu_dec
343# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
344#endif
345
346#ifndef this_cpu_and
347# ifndef this_cpu_and_1
348# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
349# endif
350# ifndef this_cpu_and_2
351# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
352# endif
353# ifndef this_cpu_and_4
354# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
355# endif
356# ifndef this_cpu_and_8
357# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
358# endif
0f5e4816 359# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
7340a0b1
CL
360#endif
361
362#ifndef this_cpu_or
363# ifndef this_cpu_or_1
364# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
365# endif
366# ifndef this_cpu_or_2
367# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
368# endif
369# ifndef this_cpu_or_4
370# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
371# endif
372# ifndef this_cpu_or_8
373# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
374# endif
0f5e4816 375# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
7340a0b1
CL
376#endif
377
40304775
TH
378#define _this_cpu_generic_add_return(pcp, val) \
379({ \
380 typeof(pcp) ret__; \
933393f5 381 unsigned long flags; \
e920d597 382 raw_local_irq_save(flags); \
40304775
TH
383 __this_cpu_add(pcp, val); \
384 ret__ = __this_cpu_read(pcp); \
e920d597 385 raw_local_irq_restore(flags); \
40304775
TH
386 ret__; \
387})
388
389#ifndef this_cpu_add_return
390# ifndef this_cpu_add_return_1
391# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
392# endif
393# ifndef this_cpu_add_return_2
394# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
395# endif
396# ifndef this_cpu_add_return_4
397# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
398# endif
399# ifndef this_cpu_add_return_8
400# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
401# endif
402# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
403#endif
404
bd09d9a3 405#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val))
40304775
TH
406#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
407#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
408
2b712442
CL
409#define _this_cpu_generic_xchg(pcp, nval) \
410({ typeof(pcp) ret__; \
933393f5 411 unsigned long flags; \
e920d597 412 raw_local_irq_save(flags); \
2b712442
CL
413 ret__ = __this_cpu_read(pcp); \
414 __this_cpu_write(pcp, nval); \
e920d597 415 raw_local_irq_restore(flags); \
2b712442
CL
416 ret__; \
417})
418
419#ifndef this_cpu_xchg
420# ifndef this_cpu_xchg_1
421# define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
422# endif
423# ifndef this_cpu_xchg_2
424# define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
425# endif
426# ifndef this_cpu_xchg_4
427# define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
428# endif
429# ifndef this_cpu_xchg_8
430# define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
431# endif
432# define this_cpu_xchg(pcp, nval) \
433 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
434#endif
435
436#define _this_cpu_generic_cmpxchg(pcp, oval, nval) \
933393f5
CL
437({ \
438 typeof(pcp) ret__; \
439 unsigned long flags; \
e920d597 440 raw_local_irq_save(flags); \
2b712442
CL
441 ret__ = __this_cpu_read(pcp); \
442 if (ret__ == (oval)) \
443 __this_cpu_write(pcp, nval); \
e920d597 444 raw_local_irq_restore(flags); \
2b712442
CL
445 ret__; \
446})
447
448#ifndef this_cpu_cmpxchg
449# ifndef this_cpu_cmpxchg_1
450# define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
451# endif
452# ifndef this_cpu_cmpxchg_2
453# define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
454# endif
455# ifndef this_cpu_cmpxchg_4
456# define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
457# endif
458# ifndef this_cpu_cmpxchg_8
459# define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
460# endif
461# define this_cpu_cmpxchg(pcp, oval, nval) \
462 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
463#endif
464
7c334339
CL
465/*
466 * cmpxchg_double replaces two adjacent scalars at once. The first
467 * two parameters are per cpu variables which have to be of the same
468 * size. A truth value is returned to indicate success or failure
469 * (since a double register result is difficult to handle). There is
470 * very limited hardware support for these operations, so only certain
471 * sizes may work.
472 */
473#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
474({ \
475 int ret__; \
933393f5 476 unsigned long flags; \
e920d597 477 raw_local_irq_save(flags); \
7c334339
CL
478 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
479 oval1, oval2, nval1, nval2); \
e920d597 480 raw_local_irq_restore(flags); \
7c334339
CL
481 ret__; \
482})
483
484#ifndef this_cpu_cmpxchg_double
485# ifndef this_cpu_cmpxchg_double_1
486# define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
487 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
488# endif
489# ifndef this_cpu_cmpxchg_double_2
490# define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
491 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
492# endif
493# ifndef this_cpu_cmpxchg_double_4
494# define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
495 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
496# endif
497# ifndef this_cpu_cmpxchg_double_8
498# define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
499 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
500# endif
501# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
502 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
503#endif
504
7340a0b1 505/*
933393f5 506 * Generic percpu operations for context that are safe from preemption/interrupts.
7340a0b1 507 * Either we do not care about races or the caller has the
933393f5 508 * responsibility of handling preemption/interrupt issues. Arch code can still
7340a0b1
CL
509 * override these instructions since the arch per cpu code may be more
510 * efficient and may actually get race freeness for free (that is the
511 * case for x86 for example).
512 *
513 * If there is no other protection through preempt disable and/or
514 * disabling interupts then one of these RMW operations can show unexpected
515 * behavior because the execution thread was rescheduled on another processor
516 * or an interrupt occurred and the same percpu variable was modified from
517 * the interrupt context.
518 */
519#ifndef __this_cpu_read
520# ifndef __this_cpu_read_1
521# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
522# endif
523# ifndef __this_cpu_read_2
524# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
525# endif
526# ifndef __this_cpu_read_4
527# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
528# endif
529# ifndef __this_cpu_read_8
530# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
531# endif
0f5e4816 532# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
7340a0b1
CL
533#endif
534
535#define __this_cpu_generic_to_op(pcp, val, op) \
536do { \
537 *__this_cpu_ptr(&(pcp)) op val; \
538} while (0)
539
540#ifndef __this_cpu_write
541# ifndef __this_cpu_write_1
542# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
543# endif
544# ifndef __this_cpu_write_2
545# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
546# endif
547# ifndef __this_cpu_write_4
548# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
549# endif
550# ifndef __this_cpu_write_8
551# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
552# endif
0f5e4816 553# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
7340a0b1
CL
554#endif
555
556#ifndef __this_cpu_add
557# ifndef __this_cpu_add_1
558# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
559# endif
560# ifndef __this_cpu_add_2
561# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
562# endif
563# ifndef __this_cpu_add_4
564# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
565# endif
566# ifndef __this_cpu_add_8
567# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
568# endif
0f5e4816 569# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
7340a0b1
CL
570#endif
571
572#ifndef __this_cpu_sub
bd09d9a3 573# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(typeof(pcp))(val))
7340a0b1
CL
574#endif
575
576#ifndef __this_cpu_inc
577# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
578#endif
579
580#ifndef __this_cpu_dec
581# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
582#endif
583
584#ifndef __this_cpu_and
585# ifndef __this_cpu_and_1
586# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
587# endif
588# ifndef __this_cpu_and_2
589# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
590# endif
591# ifndef __this_cpu_and_4
592# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
593# endif
594# ifndef __this_cpu_and_8
595# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
596# endif
0f5e4816 597# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
7340a0b1
CL
598#endif
599
600#ifndef __this_cpu_or
601# ifndef __this_cpu_or_1
602# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
603# endif
604# ifndef __this_cpu_or_2
605# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
606# endif
607# ifndef __this_cpu_or_4
608# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
609# endif
610# ifndef __this_cpu_or_8
611# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
612# endif
0f5e4816 613# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
7340a0b1
CL
614#endif
615
a663ffff
CL
616#define __this_cpu_generic_add_return(pcp, val) \
617({ \
618 __this_cpu_add(pcp, val); \
619 __this_cpu_read(pcp); \
620})
621
622#ifndef __this_cpu_add_return
623# ifndef __this_cpu_add_return_1
624# define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
625# endif
626# ifndef __this_cpu_add_return_2
627# define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
628# endif
629# ifndef __this_cpu_add_return_4
630# define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
631# endif
632# ifndef __this_cpu_add_return_8
633# define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
634# endif
7d96b3e5
KK
635# define __this_cpu_add_return(pcp, val) \
636 __pcpu_size_call_return2(__this_cpu_add_return_, pcp, val)
a663ffff
CL
637#endif
638
bd09d9a3 639#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
adb79506
KK
640#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
641#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
a663ffff 642
2b712442
CL
643#define __this_cpu_generic_xchg(pcp, nval) \
644({ typeof(pcp) ret__; \
645 ret__ = __this_cpu_read(pcp); \
646 __this_cpu_write(pcp, nval); \
647 ret__; \
648})
649
650#ifndef __this_cpu_xchg
651# ifndef __this_cpu_xchg_1
652# define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
653# endif
654# ifndef __this_cpu_xchg_2
655# define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
656# endif
657# ifndef __this_cpu_xchg_4
658# define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
659# endif
660# ifndef __this_cpu_xchg_8
661# define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
662# endif
663# define __this_cpu_xchg(pcp, nval) \
664 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
665#endif
666
667#define __this_cpu_generic_cmpxchg(pcp, oval, nval) \
668({ \
669 typeof(pcp) ret__; \
670 ret__ = __this_cpu_read(pcp); \
671 if (ret__ == (oval)) \
672 __this_cpu_write(pcp, nval); \
673 ret__; \
674})
675
676#ifndef __this_cpu_cmpxchg
677# ifndef __this_cpu_cmpxchg_1
678# define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
679# endif
680# ifndef __this_cpu_cmpxchg_2
681# define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
682# endif
683# ifndef __this_cpu_cmpxchg_4
684# define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
685# endif
686# ifndef __this_cpu_cmpxchg_8
687# define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
688# endif
689# define __this_cpu_cmpxchg(pcp, oval, nval) \
690 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
691#endif
692
7c334339
CL
693#define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
694({ \
695 int __ret = 0; \
696 if (__this_cpu_read(pcp1) == (oval1) && \
697 __this_cpu_read(pcp2) == (oval2)) { \
698 __this_cpu_write(pcp1, (nval1)); \
699 __this_cpu_write(pcp2, (nval2)); \
700 __ret = 1; \
701 } \
702 (__ret); \
703})
704
705#ifndef __this_cpu_cmpxchg_double
706# ifndef __this_cpu_cmpxchg_double_1
707# define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
708 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
709# endif
710# ifndef __this_cpu_cmpxchg_double_2
711# define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
712 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
713# endif
714# ifndef __this_cpu_cmpxchg_double_4
715# define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
716 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
717# endif
718# ifndef __this_cpu_cmpxchg_double_8
719# define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
720 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
721# endif
722# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
723 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
724#endif
725
1da177e4 726#endif /* __LINUX_PERCPU_H */
This page took 0.922109 seconds and 5 git commands to generate.