sched/core: Use tsk_cpus_allowed() instead of accessing ->cpus_allowed
[deliverable/linux.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
5c9a8750 54#include <linux/kcov.h>
7c3ab738 55#include <linux/task_io_accounting.h>
9745512c 56#include <linux/latencytop.h>
9e2b2dc4 57#include <linux/cred.h>
fa14ff4a 58#include <linux/llist.h>
7b44ab97 59#include <linux/uidgid.h>
21caf2fc 60#include <linux/gfp.h>
d4311ff1 61#include <linux/magic.h>
7d7efec3 62#include <linux/cgroup-defs.h>
a3b6714e
DW
63
64#include <asm/processor.h>
36d57ac4 65
d50dde5a
DF
66#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
67
68/*
69 * Extended scheduling parameters data structure.
70 *
71 * This is needed because the original struct sched_param can not be
72 * altered without introducing ABI issues with legacy applications
73 * (e.g., in sched_getparam()).
74 *
75 * However, the possibility of specifying more than just a priority for
76 * the tasks may be useful for a wide variety of application fields, e.g.,
77 * multimedia, streaming, automation and control, and many others.
78 *
79 * This variant (sched_attr) is meant at describing a so-called
80 * sporadic time-constrained task. In such model a task is specified by:
81 * - the activation period or minimum instance inter-arrival time;
82 * - the maximum (or average, depending on the actual scheduling
83 * discipline) computation time of all instances, a.k.a. runtime;
84 * - the deadline (relative to the actual activation time) of each
85 * instance.
86 * Very briefly, a periodic (sporadic) task asks for the execution of
87 * some specific computation --which is typically called an instance--
88 * (at most) every period. Moreover, each instance typically lasts no more
89 * than the runtime and must be completed by time instant t equal to
90 * the instance activation time + the deadline.
91 *
92 * This is reflected by the actual fields of the sched_attr structure:
93 *
94 * @size size of the structure, for fwd/bwd compat.
95 *
96 * @sched_policy task's scheduling policy
97 * @sched_flags for customizing the scheduler behaviour
98 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
99 * @sched_priority task's static priority (SCHED_FIFO/RR)
100 * @sched_deadline representative of the task's deadline
101 * @sched_runtime representative of the task's runtime
102 * @sched_period representative of the task's period
103 *
104 * Given this task model, there are a multiplicity of scheduling algorithms
105 * and policies, that can be used to ensure all the tasks will make their
106 * timing constraints.
aab03e05
DF
107 *
108 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
109 * only user of this new interface. More information about the algorithm
110 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
111 */
112struct sched_attr {
113 u32 size;
114
115 u32 sched_policy;
116 u64 sched_flags;
117
118 /* SCHED_NORMAL, SCHED_BATCH */
119 s32 sched_nice;
120
121 /* SCHED_FIFO, SCHED_RR */
122 u32 sched_priority;
123
124 /* SCHED_DEADLINE */
125 u64 sched_runtime;
126 u64 sched_deadline;
127 u64 sched_period;
128};
129
c87e2837 130struct futex_pi_state;
286100a6 131struct robust_list_head;
bddd87c7 132struct bio_list;
5ad4e53b 133struct fs_struct;
cdd6c482 134struct perf_event_context;
73c10101 135struct blk_plug;
c4ad8f98 136struct filename;
89076bc3 137struct nameidata;
1da177e4 138
615d6e87
DB
139#define VMACACHE_BITS 2
140#define VMACACHE_SIZE (1U << VMACACHE_BITS)
141#define VMACACHE_MASK (VMACACHE_SIZE - 1)
142
1da177e4
LT
143/*
144 * These are the constant used to fake the fixed-point load-average
145 * counting. Some notes:
146 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
147 * a load-average precision of 10 bits integer + 11 bits fractional
148 * - if you want to count load-averages more often, you need more
149 * precision, or rounding will get you. With 2-second counting freq,
150 * the EXP_n values would be 1981, 2034 and 2043 if still using only
151 * 11 bit fractions.
152 */
153extern unsigned long avenrun[]; /* Load averages */
2d02494f 154extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
155
156#define FSHIFT 11 /* nr of bits of precision */
157#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 158#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
159#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
160#define EXP_5 2014 /* 1/exp(5sec/5min) */
161#define EXP_15 2037 /* 1/exp(5sec/15min) */
162
163#define CALC_LOAD(load,exp,n) \
164 load *= exp; \
165 load += n*(FIXED_1-exp); \
166 load >>= FSHIFT;
167
168extern unsigned long total_forks;
169extern int nr_threads;
1da177e4
LT
170DECLARE_PER_CPU(unsigned long, process_counts);
171extern int nr_processes(void);
172extern unsigned long nr_running(void);
2ee507c4 173extern bool single_task_running(void);
1da177e4 174extern unsigned long nr_iowait(void);
8c215bd3 175extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 176extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 177
0f004f5a 178extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
179
180#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
181extern void cpu_load_update_nohz_start(void);
182extern void cpu_load_update_nohz_stop(void);
3289bdb4 183#else
1f41906a
FW
184static inline void cpu_load_update_nohz_start(void) { }
185static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 186#endif
1da177e4 187
b637a328
PM
188extern void dump_cpu_task(int cpu);
189
43ae34cb
IM
190struct seq_file;
191struct cfs_rq;
4cf86d77 192struct task_group;
43ae34cb
IM
193#ifdef CONFIG_SCHED_DEBUG
194extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
195extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 196#endif
1da177e4 197
4a8342d2
LT
198/*
199 * Task state bitmask. NOTE! These bits are also
200 * encoded in fs/proc/array.c: get_task_state().
201 *
202 * We have two separate sets of flags: task->state
203 * is about runnability, while task->exit_state are
204 * about the task exiting. Confusing, but this way
205 * modifying one set can't modify the other one by
206 * mistake.
207 */
1da177e4
LT
208#define TASK_RUNNING 0
209#define TASK_INTERRUPTIBLE 1
210#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
211#define __TASK_STOPPED 4
212#define __TASK_TRACED 8
4a8342d2 213/* in tsk->exit_state */
ad86622b
ON
214#define EXIT_DEAD 16
215#define EXIT_ZOMBIE 32
abd50b39 216#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 217/* in tsk->state again */
af927232 218#define TASK_DEAD 64
f021a3c2 219#define TASK_WAKEKILL 128
e9c84311 220#define TASK_WAKING 256
f2530dc7 221#define TASK_PARKED 512
80ed87c8
PZ
222#define TASK_NOLOAD 1024
223#define TASK_STATE_MAX 2048
f021a3c2 224
80ed87c8 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 226
e1781538
PZ
227extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
229
230/* Convenience macros for the sake of set_task_state */
231#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 234
80ed87c8
PZ
235#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
92a1f4bc
MW
237/* Convenience macros for the sake of wake_up */
238#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 239#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
240
241/* get_task_state() */
242#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 245
f021a3c2
MW
246#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 248#define task_is_stopped_or_traced(task) \
f021a3c2 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 250#define task_contributes_to_load(task) \
e3c8ca83 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
1da177e4 254
8eb23b9f
PZ
255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257#define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262#define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 265 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
266 } while (0)
267
268/*
269 * set_current_state() includes a barrier so that the write of current->state
270 * is correctly serialised wrt the caller's subsequent test of whether to
271 * actually sleep:
272 *
273 * set_current_state(TASK_UNINTERRUPTIBLE);
274 * if (do_i_need_to_sleep())
275 * schedule();
276 *
277 * If the caller does not need such serialisation then use __set_current_state()
278 */
279#define __set_current_state(state_value) \
280 do { \
281 current->task_state_change = _THIS_IP_; \
282 current->state = (state_value); \
283 } while (0)
284#define set_current_state(state_value) \
285 do { \
286 current->task_state_change = _THIS_IP_; \
b92b8b35 287 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
288 } while (0)
289
290#else
291
1da177e4
LT
292#define __set_task_state(tsk, state_value) \
293 do { (tsk)->state = (state_value); } while (0)
294#define set_task_state(tsk, state_value) \
b92b8b35 295 smp_store_mb((tsk)->state, (state_value))
1da177e4 296
498d0c57
AM
297/*
298 * set_current_state() includes a barrier so that the write of current->state
299 * is correctly serialised wrt the caller's subsequent test of whether to
300 * actually sleep:
301 *
302 * set_current_state(TASK_UNINTERRUPTIBLE);
303 * if (do_i_need_to_sleep())
304 * schedule();
305 *
306 * If the caller does not need such serialisation then use __set_current_state()
307 */
8eb23b9f 308#define __set_current_state(state_value) \
1da177e4 309 do { current->state = (state_value); } while (0)
8eb23b9f 310#define set_current_state(state_value) \
b92b8b35 311 smp_store_mb(current->state, (state_value))
1da177e4 312
8eb23b9f
PZ
313#endif
314
1da177e4
LT
315/* Task command name length */
316#define TASK_COMM_LEN 16
317
1da177e4
LT
318#include <linux/spinlock.h>
319
320/*
321 * This serializes "schedule()" and also protects
322 * the run-queue from deletions/modifications (but
323 * _adding_ to the beginning of the run-queue has
324 * a separate lock).
325 */
326extern rwlock_t tasklist_lock;
327extern spinlock_t mmlist_lock;
328
36c8b586 329struct task_struct;
1da177e4 330
db1466b3
PM
331#ifdef CONFIG_PROVE_RCU
332extern int lockdep_tasklist_lock_is_held(void);
333#endif /* #ifdef CONFIG_PROVE_RCU */
334
1da177e4
LT
335extern void sched_init(void);
336extern void sched_init_smp(void);
2d07b255 337extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 338extern void init_idle(struct task_struct *idle, int cpu);
1df21055 339extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 340
3fa0818b
RR
341extern cpumask_var_t cpu_isolated_map;
342
89f19f04 343extern int runqueue_is_locked(int cpu);
017730c1 344
3451d024 345#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 346extern void nohz_balance_enter_idle(int cpu);
69e1e811 347extern void set_cpu_sd_state_idle(void);
bc7a34b8 348extern int get_nohz_timer_target(void);
46cb4b7c 349#else
c1cc017c 350static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 351static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 352#endif
1da177e4 353
e59e2ae2 354/*
39bc89fd 355 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
356 */
357extern void show_state_filter(unsigned long state_filter);
358
359static inline void show_state(void)
360{
39bc89fd 361 show_state_filter(0);
e59e2ae2
IM
362}
363
1da177e4
LT
364extern void show_regs(struct pt_regs *);
365
366/*
367 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
368 * task), SP is the stack pointer of the first frame that should be shown in the back
369 * trace (or NULL if the entire call-chain of the task should be shown).
370 */
371extern void show_stack(struct task_struct *task, unsigned long *sp);
372
1da177e4
LT
373extern void cpu_init (void);
374extern void trap_init(void);
375extern void update_process_times(int user);
376extern void scheduler_tick(void);
9cf7243d 377extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
378extern int sched_cpu_activate(unsigned int cpu);
379extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 380
f2785ddb
TG
381#ifdef CONFIG_HOTPLUG_CPU
382extern int sched_cpu_dying(unsigned int cpu);
383#else
384# define sched_cpu_dying NULL
385#endif
1da177e4 386
82a1fcb9
IM
387extern void sched_show_task(struct task_struct *p);
388
19cc36c0 389#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 390extern void touch_softlockup_watchdog_sched(void);
8446f1d3 391extern void touch_softlockup_watchdog(void);
d6ad3e28 392extern void touch_softlockup_watchdog_sync(void);
04c9167f 393extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
394extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
395 void __user *buffer,
396 size_t *lenp, loff_t *ppos);
9c44bc03 397extern unsigned int softlockup_panic;
ac1f5912 398extern unsigned int hardlockup_panic;
004417a6 399void lockup_detector_init(void);
8446f1d3 400#else
03e0d461
TH
401static inline void touch_softlockup_watchdog_sched(void)
402{
403}
8446f1d3
IM
404static inline void touch_softlockup_watchdog(void)
405{
406}
d6ad3e28
JW
407static inline void touch_softlockup_watchdog_sync(void)
408{
409}
04c9167f
JF
410static inline void touch_all_softlockup_watchdogs(void)
411{
412}
004417a6
PZ
413static inline void lockup_detector_init(void)
414{
415}
8446f1d3
IM
416#endif
417
8b414521
MT
418#ifdef CONFIG_DETECT_HUNG_TASK
419void reset_hung_task_detector(void);
420#else
421static inline void reset_hung_task_detector(void)
422{
423}
424#endif
425
1da177e4
LT
426/* Attach to any functions which should be ignored in wchan output. */
427#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
428
429/* Linker adds these: start and end of __sched functions */
430extern char __sched_text_start[], __sched_text_end[];
431
1da177e4
LT
432/* Is this address in the __sched functions? */
433extern int in_sched_functions(unsigned long addr);
434
435#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 436extern signed long schedule_timeout(signed long timeout);
64ed93a2 437extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 438extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 439extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 440extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 441asmlinkage void schedule(void);
c5491ea7 442extern void schedule_preempt_disabled(void);
1da177e4 443
9cff8ade
N
444extern long io_schedule_timeout(long timeout);
445
446static inline void io_schedule(void)
447{
448 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
449}
450
ab516013 451struct nsproxy;
acce292c 452struct user_namespace;
1da177e4 453
efc1a3b1
DH
454#ifdef CONFIG_MMU
455extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
456extern unsigned long
457arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
458 unsigned long, unsigned long);
459extern unsigned long
460arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
461 unsigned long len, unsigned long pgoff,
462 unsigned long flags);
efc1a3b1
DH
463#else
464static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
465#endif
1da177e4 466
d049f74f
KC
467#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
468#define SUID_DUMP_USER 1 /* Dump as user of process */
469#define SUID_DUMP_ROOT 2 /* Dump as root */
470
6c5d5238 471/* mm flags */
f8af4da3 472
7288e118 473/* for SUID_DUMP_* above */
3cb4a0bb 474#define MMF_DUMPABLE_BITS 2
f8af4da3 475#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 476
942be387
ON
477extern void set_dumpable(struct mm_struct *mm, int value);
478/*
479 * This returns the actual value of the suid_dumpable flag. For things
480 * that are using this for checking for privilege transitions, it must
481 * test against SUID_DUMP_USER rather than treating it as a boolean
482 * value.
483 */
484static inline int __get_dumpable(unsigned long mm_flags)
485{
486 return mm_flags & MMF_DUMPABLE_MASK;
487}
488
489static inline int get_dumpable(struct mm_struct *mm)
490{
491 return __get_dumpable(mm->flags);
492}
493
3cb4a0bb
KH
494/* coredump filter bits */
495#define MMF_DUMP_ANON_PRIVATE 2
496#define MMF_DUMP_ANON_SHARED 3
497#define MMF_DUMP_MAPPED_PRIVATE 4
498#define MMF_DUMP_MAPPED_SHARED 5
82df3973 499#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
500#define MMF_DUMP_HUGETLB_PRIVATE 7
501#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
502#define MMF_DUMP_DAX_PRIVATE 9
503#define MMF_DUMP_DAX_SHARED 10
f8af4da3 504
3cb4a0bb 505#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 506#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
507#define MMF_DUMP_FILTER_MASK \
508 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
509#define MMF_DUMP_FILTER_DEFAULT \
e575f111 510 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
511 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
512
513#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
514# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
515#else
516# define MMF_DUMP_MASK_DEFAULT_ELF 0
517#endif
f8af4da3
HD
518 /* leave room for more dump flags */
519#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 520#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 521#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 522
9f68f672
ON
523#define MMF_HAS_UPROBES 19 /* has uprobes */
524#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 525
f8af4da3 526#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 527
1da177e4
LT
528struct sighand_struct {
529 atomic_t count;
530 struct k_sigaction action[_NSIG];
531 spinlock_t siglock;
b8fceee1 532 wait_queue_head_t signalfd_wqh;
1da177e4
LT
533};
534
0e464814 535struct pacct_struct {
f6ec29a4
KK
536 int ac_flag;
537 long ac_exitcode;
0e464814 538 unsigned long ac_mem;
77787bfb
KK
539 cputime_t ac_utime, ac_stime;
540 unsigned long ac_minflt, ac_majflt;
0e464814
KK
541};
542
42c4ab41
SG
543struct cpu_itimer {
544 cputime_t expires;
545 cputime_t incr;
8356b5f9
SG
546 u32 error;
547 u32 incr_error;
42c4ab41
SG
548};
549
d37f761d 550/**
9d7fb042 551 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
552 * @utime: time spent in user mode
553 * @stime: time spent in system mode
9d7fb042 554 * @lock: protects the above two fields
d37f761d 555 *
9d7fb042
PZ
556 * Stores previous user/system time values such that we can guarantee
557 * monotonicity.
d37f761d 558 */
9d7fb042
PZ
559struct prev_cputime {
560#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
561 cputime_t utime;
562 cputime_t stime;
9d7fb042
PZ
563 raw_spinlock_t lock;
564#endif
d37f761d
FW
565};
566
9d7fb042
PZ
567static inline void prev_cputime_init(struct prev_cputime *prev)
568{
569#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
570 prev->utime = prev->stime = 0;
571 raw_spin_lock_init(&prev->lock);
572#endif
573}
574
f06febc9
FM
575/**
576 * struct task_cputime - collected CPU time counts
577 * @utime: time spent in user mode, in &cputime_t units
578 * @stime: time spent in kernel mode, in &cputime_t units
579 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 580 *
9d7fb042
PZ
581 * This structure groups together three kinds of CPU time that are tracked for
582 * threads and thread groups. Most things considering CPU time want to group
583 * these counts together and treat all three of them in parallel.
f06febc9
FM
584 */
585struct task_cputime {
586 cputime_t utime;
587 cputime_t stime;
588 unsigned long long sum_exec_runtime;
589};
9d7fb042 590
f06febc9 591/* Alternate field names when used to cache expirations. */
f06febc9 592#define virt_exp utime
9d7fb042 593#define prof_exp stime
f06febc9
FM
594#define sched_exp sum_exec_runtime
595
4cd4c1b4
PZ
596#define INIT_CPUTIME \
597 (struct task_cputime) { \
64861634
MS
598 .utime = 0, \
599 .stime = 0, \
4cd4c1b4
PZ
600 .sum_exec_runtime = 0, \
601 }
602
971e8a98
JL
603/*
604 * This is the atomic variant of task_cputime, which can be used for
605 * storing and updating task_cputime statistics without locking.
606 */
607struct task_cputime_atomic {
608 atomic64_t utime;
609 atomic64_t stime;
610 atomic64_t sum_exec_runtime;
611};
612
613#define INIT_CPUTIME_ATOMIC \
614 (struct task_cputime_atomic) { \
615 .utime = ATOMIC64_INIT(0), \
616 .stime = ATOMIC64_INIT(0), \
617 .sum_exec_runtime = ATOMIC64_INIT(0), \
618 }
619
609ca066 620#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 621
c99e6efe 622/*
87dcbc06
PZ
623 * Disable preemption until the scheduler is running -- use an unconditional
624 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 625 *
87dcbc06 626 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 627 */
87dcbc06 628#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 629
c99e6efe 630/*
609ca066
PZ
631 * Initial preempt_count value; reflects the preempt_count schedule invariant
632 * which states that during context switches:
d86ee480 633 *
609ca066
PZ
634 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
635 *
636 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
637 * Note: See finish_task_switch().
c99e6efe 638 */
609ca066 639#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 640
f06febc9 641/**
4cd4c1b4 642 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 643 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
644 * @running: true when there are timers running and
645 * @cputime_atomic receives updates.
c8d75aa4
JL
646 * @checking_timer: true when a thread in the group is in the
647 * process of checking for thread group timers.
f06febc9
FM
648 *
649 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 650 * used for thread group CPU timer calculations.
f06febc9 651 */
4cd4c1b4 652struct thread_group_cputimer {
71107445 653 struct task_cputime_atomic cputime_atomic;
d5c373eb 654 bool running;
c8d75aa4 655 bool checking_timer;
f06febc9 656};
f06febc9 657
4714d1d3 658#include <linux/rwsem.h>
5091faa4
MG
659struct autogroup;
660
1da177e4 661/*
e815f0a8 662 * NOTE! "signal_struct" does not have its own
1da177e4
LT
663 * locking, because a shared signal_struct always
664 * implies a shared sighand_struct, so locking
665 * sighand_struct is always a proper superset of
666 * the locking of signal_struct.
667 */
668struct signal_struct {
ea6d290c 669 atomic_t sigcnt;
1da177e4 670 atomic_t live;
b3ac022c 671 int nr_threads;
0c740d0a 672 struct list_head thread_head;
1da177e4
LT
673
674 wait_queue_head_t wait_chldexit; /* for wait4() */
675
676 /* current thread group signal load-balancing target: */
36c8b586 677 struct task_struct *curr_target;
1da177e4
LT
678
679 /* shared signal handling: */
680 struct sigpending shared_pending;
681
682 /* thread group exit support */
683 int group_exit_code;
684 /* overloaded:
685 * - notify group_exit_task when ->count is equal to notify_count
686 * - everyone except group_exit_task is stopped during signal delivery
687 * of fatal signals, group_exit_task processes the signal.
688 */
1da177e4 689 int notify_count;
07dd20e0 690 struct task_struct *group_exit_task;
1da177e4
LT
691
692 /* thread group stop support, overloads group_exit_code too */
693 int group_stop_count;
694 unsigned int flags; /* see SIGNAL_* flags below */
695
ebec18a6
LP
696 /*
697 * PR_SET_CHILD_SUBREAPER marks a process, like a service
698 * manager, to re-parent orphan (double-forking) child processes
699 * to this process instead of 'init'. The service manager is
700 * able to receive SIGCHLD signals and is able to investigate
701 * the process until it calls wait(). All children of this
702 * process will inherit a flag if they should look for a
703 * child_subreaper process at exit.
704 */
705 unsigned int is_child_subreaper:1;
706 unsigned int has_child_subreaper:1;
707
1da177e4 708 /* POSIX.1b Interval Timers */
5ed67f05
PE
709 int posix_timer_id;
710 struct list_head posix_timers;
1da177e4
LT
711
712 /* ITIMER_REAL timer for the process */
2ff678b8 713 struct hrtimer real_timer;
fea9d175 714 struct pid *leader_pid;
2ff678b8 715 ktime_t it_real_incr;
1da177e4 716
42c4ab41
SG
717 /*
718 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
719 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
720 * values are defined to 0 and 1 respectively
721 */
722 struct cpu_itimer it[2];
1da177e4 723
f06febc9 724 /*
4cd4c1b4
PZ
725 * Thread group totals for process CPU timers.
726 * See thread_group_cputimer(), et al, for details.
f06febc9 727 */
4cd4c1b4 728 struct thread_group_cputimer cputimer;
f06febc9
FM
729
730 /* Earliest-expiration cache. */
731 struct task_cputime cputime_expires;
732
d027d45d 733#ifdef CONFIG_NO_HZ_FULL
f009a7a7 734 atomic_t tick_dep_mask;
d027d45d
FW
735#endif
736
f06febc9
FM
737 struct list_head cpu_timers[3];
738
ab521dc0 739 struct pid *tty_old_pgrp;
1ec320af 740
1da177e4
LT
741 /* boolean value for session group leader */
742 int leader;
743
744 struct tty_struct *tty; /* NULL if no tty */
745
5091faa4
MG
746#ifdef CONFIG_SCHED_AUTOGROUP
747 struct autogroup *autogroup;
748#endif
1da177e4
LT
749 /*
750 * Cumulative resource counters for dead threads in the group,
751 * and for reaped dead child processes forked by this group.
752 * Live threads maintain their own counters and add to these
753 * in __exit_signal, except for the group leader.
754 */
e78c3496 755 seqlock_t stats_lock;
32bd671d 756 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
757 cputime_t gtime;
758 cputime_t cgtime;
9d7fb042 759 struct prev_cputime prev_cputime;
1da177e4
LT
760 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
761 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 762 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 763 unsigned long maxrss, cmaxrss;
940389b8 764 struct task_io_accounting ioac;
1da177e4 765
32bd671d
PZ
766 /*
767 * Cumulative ns of schedule CPU time fo dead threads in the
768 * group, not including a zombie group leader, (This only differs
769 * from jiffies_to_ns(utime + stime) if sched_clock uses something
770 * other than jiffies.)
771 */
772 unsigned long long sum_sched_runtime;
773
1da177e4
LT
774 /*
775 * We don't bother to synchronize most readers of this at all,
776 * because there is no reader checking a limit that actually needs
777 * to get both rlim_cur and rlim_max atomically, and either one
778 * alone is a single word that can safely be read normally.
779 * getrlimit/setrlimit use task_lock(current->group_leader) to
780 * protect this instead of the siglock, because they really
781 * have no need to disable irqs.
782 */
783 struct rlimit rlim[RLIM_NLIMITS];
784
0e464814
KK
785#ifdef CONFIG_BSD_PROCESS_ACCT
786 struct pacct_struct pacct; /* per-process accounting information */
787#endif
ad4ecbcb 788#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
789 struct taskstats *stats;
790#endif
522ed776
MT
791#ifdef CONFIG_AUDIT
792 unsigned audit_tty;
793 struct tty_audit_buf *tty_audit_buf;
794#endif
28b83c51 795
e1e12d2f 796 oom_flags_t oom_flags;
a9c58b90
DR
797 short oom_score_adj; /* OOM kill score adjustment */
798 short oom_score_adj_min; /* OOM kill score adjustment min value.
799 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
800
801 struct mutex cred_guard_mutex; /* guard against foreign influences on
802 * credential calculations
803 * (notably. ptrace) */
1da177e4
LT
804};
805
806/*
807 * Bits in flags field of signal_struct.
808 */
809#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
810#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
811#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 812#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
813/*
814 * Pending notifications to parent.
815 */
816#define SIGNAL_CLD_STOPPED 0x00000010
817#define SIGNAL_CLD_CONTINUED 0x00000020
818#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 819
fae5fa44
ON
820#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
821
ed5d2cac
ON
822/* If true, all threads except ->group_exit_task have pending SIGKILL */
823static inline int signal_group_exit(const struct signal_struct *sig)
824{
825 return (sig->flags & SIGNAL_GROUP_EXIT) ||
826 (sig->group_exit_task != NULL);
827}
828
1da177e4
LT
829/*
830 * Some day this will be a full-fledged user tracking system..
831 */
832struct user_struct {
833 atomic_t __count; /* reference count */
834 atomic_t processes; /* How many processes does this user have? */
1da177e4 835 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 836#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
837 atomic_t inotify_watches; /* How many inotify watches does this user have? */
838 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
839#endif
4afeff85
EP
840#ifdef CONFIG_FANOTIFY
841 atomic_t fanotify_listeners;
842#endif
7ef9964e 843#ifdef CONFIG_EPOLL
52bd19f7 844 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 845#endif
970a8645 846#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
847 /* protected by mq_lock */
848 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 849#endif
1da177e4 850 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 851 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 852 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
853
854#ifdef CONFIG_KEYS
855 struct key *uid_keyring; /* UID specific keyring */
856 struct key *session_keyring; /* UID's default session keyring */
857#endif
858
859 /* Hash table maintenance information */
735de223 860 struct hlist_node uidhash_node;
7b44ab97 861 kuid_t uid;
24e377a8 862
aaac3ba9 863#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
864 atomic_long_t locked_vm;
865#endif
1da177e4
LT
866};
867
eb41d946 868extern int uids_sysfs_init(void);
5cb350ba 869
7b44ab97 870extern struct user_struct *find_user(kuid_t);
1da177e4
LT
871
872extern struct user_struct root_user;
873#define INIT_USER (&root_user)
874
b6dff3ec 875
1da177e4
LT
876struct backing_dev_info;
877struct reclaim_state;
878
f6db8347 879#ifdef CONFIG_SCHED_INFO
1da177e4
LT
880struct sched_info {
881 /* cumulative counters */
2d72376b 882 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 883 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
884
885 /* timestamps */
172ba844
BS
886 unsigned long long last_arrival,/* when we last ran on a cpu */
887 last_queued; /* when we were last queued to run */
1da177e4 888};
f6db8347 889#endif /* CONFIG_SCHED_INFO */
1da177e4 890
ca74e92b
SN
891#ifdef CONFIG_TASK_DELAY_ACCT
892struct task_delay_info {
893 spinlock_t lock;
894 unsigned int flags; /* Private per-task flags */
895
896 /* For each stat XXX, add following, aligned appropriately
897 *
898 * struct timespec XXX_start, XXX_end;
899 * u64 XXX_delay;
900 * u32 XXX_count;
901 *
902 * Atomicity of updates to XXX_delay, XXX_count protected by
903 * single lock above (split into XXX_lock if contention is an issue).
904 */
0ff92245
SN
905
906 /*
907 * XXX_count is incremented on every XXX operation, the delay
908 * associated with the operation is added to XXX_delay.
909 * XXX_delay contains the accumulated delay time in nanoseconds.
910 */
9667a23d 911 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
912 u64 blkio_delay; /* wait for sync block io completion */
913 u64 swapin_delay; /* wait for swapin block io completion */
914 u32 blkio_count; /* total count of the number of sync block */
915 /* io operations performed */
916 u32 swapin_count; /* total count of the number of swapin block */
917 /* io operations performed */
873b4771 918
9667a23d 919 u64 freepages_start;
873b4771
KK
920 u64 freepages_delay; /* wait for memory reclaim */
921 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 922};
52f17b6c
CS
923#endif /* CONFIG_TASK_DELAY_ACCT */
924
925static inline int sched_info_on(void)
926{
927#ifdef CONFIG_SCHEDSTATS
928 return 1;
929#elif defined(CONFIG_TASK_DELAY_ACCT)
930 extern int delayacct_on;
931 return delayacct_on;
932#else
933 return 0;
ca74e92b 934#endif
52f17b6c 935}
ca74e92b 936
cb251765
MG
937#ifdef CONFIG_SCHEDSTATS
938void force_schedstat_enabled(void);
939#endif
940
d15bcfdb
IM
941enum cpu_idle_type {
942 CPU_IDLE,
943 CPU_NOT_IDLE,
944 CPU_NEWLY_IDLE,
945 CPU_MAX_IDLE_TYPES
1da177e4
LT
946};
947
6ecdd749
YD
948/*
949 * Integer metrics need fixed point arithmetic, e.g., sched/fair
950 * has a few: load, load_avg, util_avg, freq, and capacity.
951 *
952 * We define a basic fixed point arithmetic range, and then formalize
953 * all these metrics based on that basic range.
954 */
955# define SCHED_FIXEDPOINT_SHIFT 10
956# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
957
1399fa78 958/*
ca8ce3d0 959 * Increase resolution of cpu_capacity calculations
1399fa78 960 */
6ecdd749 961#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 962#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 963
76751049
PZ
964/*
965 * Wake-queues are lists of tasks with a pending wakeup, whose
966 * callers have already marked the task as woken internally,
967 * and can thus carry on. A common use case is being able to
968 * do the wakeups once the corresponding user lock as been
969 * released.
970 *
971 * We hold reference to each task in the list across the wakeup,
972 * thus guaranteeing that the memory is still valid by the time
973 * the actual wakeups are performed in wake_up_q().
974 *
975 * One per task suffices, because there's never a need for a task to be
976 * in two wake queues simultaneously; it is forbidden to abandon a task
977 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
978 * already in a wake queue, the wakeup will happen soon and the second
979 * waker can just skip it.
980 *
981 * The WAKE_Q macro declares and initializes the list head.
982 * wake_up_q() does NOT reinitialize the list; it's expected to be
983 * called near the end of a function, where the fact that the queue is
984 * not used again will be easy to see by inspection.
985 *
986 * Note that this can cause spurious wakeups. schedule() callers
987 * must ensure the call is done inside a loop, confirming that the
988 * wakeup condition has in fact occurred.
989 */
990struct wake_q_node {
991 struct wake_q_node *next;
992};
993
994struct wake_q_head {
995 struct wake_q_node *first;
996 struct wake_q_node **lastp;
997};
998
999#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1000
1001#define WAKE_Q(name) \
1002 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1003
1004extern void wake_q_add(struct wake_q_head *head,
1005 struct task_struct *task);
1006extern void wake_up_q(struct wake_q_head *head);
1007
1399fa78
NR
1008/*
1009 * sched-domains (multiprocessor balancing) declarations:
1010 */
2dd73a4f 1011#ifdef CONFIG_SMP
b5d978e0
PZ
1012#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1013#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1014#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1015#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1016#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1017#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 1018#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 1019#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1020#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1021#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1022#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1023#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1024#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1025#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1026
143e1e28 1027#ifdef CONFIG_SCHED_SMT
b6220ad6 1028static inline int cpu_smt_flags(void)
143e1e28 1029{
5d4dfddd 1030 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1031}
1032#endif
1033
1034#ifdef CONFIG_SCHED_MC
b6220ad6 1035static inline int cpu_core_flags(void)
143e1e28
VG
1036{
1037 return SD_SHARE_PKG_RESOURCES;
1038}
1039#endif
1040
1041#ifdef CONFIG_NUMA
b6220ad6 1042static inline int cpu_numa_flags(void)
143e1e28
VG
1043{
1044 return SD_NUMA;
1045}
1046#endif
532cb4c4 1047
1d3504fc
HS
1048struct sched_domain_attr {
1049 int relax_domain_level;
1050};
1051
1052#define SD_ATTR_INIT (struct sched_domain_attr) { \
1053 .relax_domain_level = -1, \
1054}
1055
60495e77
PZ
1056extern int sched_domain_level_max;
1057
5e6521ea
LZ
1058struct sched_group;
1059
1da177e4
LT
1060struct sched_domain {
1061 /* These fields must be setup */
1062 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1063 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1064 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1065 unsigned long min_interval; /* Minimum balance interval ms */
1066 unsigned long max_interval; /* Maximum balance interval ms */
1067 unsigned int busy_factor; /* less balancing by factor if busy */
1068 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1069 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1070 unsigned int busy_idx;
1071 unsigned int idle_idx;
1072 unsigned int newidle_idx;
1073 unsigned int wake_idx;
147cbb4b 1074 unsigned int forkexec_idx;
a52bfd73 1075 unsigned int smt_gain;
25f55d9d
VG
1076
1077 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1078 int flags; /* See SD_* */
60495e77 1079 int level;
1da177e4
LT
1080
1081 /* Runtime fields. */
1082 unsigned long last_balance; /* init to jiffies. units in jiffies */
1083 unsigned int balance_interval; /* initialise to 1. units in ms. */
1084 unsigned int nr_balance_failed; /* initialise to 0 */
1085
f48627e6 1086 /* idle_balance() stats */
9bd721c5 1087 u64 max_newidle_lb_cost;
f48627e6 1088 unsigned long next_decay_max_lb_cost;
2398f2c6 1089
1da177e4
LT
1090#ifdef CONFIG_SCHEDSTATS
1091 /* load_balance() stats */
480b9434
KC
1092 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1093 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1094 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1095 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1096 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1097 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1098 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1099 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1100
1101 /* Active load balancing */
480b9434
KC
1102 unsigned int alb_count;
1103 unsigned int alb_failed;
1104 unsigned int alb_pushed;
1da177e4 1105
68767a0a 1106 /* SD_BALANCE_EXEC stats */
480b9434
KC
1107 unsigned int sbe_count;
1108 unsigned int sbe_balanced;
1109 unsigned int sbe_pushed;
1da177e4 1110
68767a0a 1111 /* SD_BALANCE_FORK stats */
480b9434
KC
1112 unsigned int sbf_count;
1113 unsigned int sbf_balanced;
1114 unsigned int sbf_pushed;
68767a0a 1115
1da177e4 1116 /* try_to_wake_up() stats */
480b9434
KC
1117 unsigned int ttwu_wake_remote;
1118 unsigned int ttwu_move_affine;
1119 unsigned int ttwu_move_balance;
1da177e4 1120#endif
a5d8c348
IM
1121#ifdef CONFIG_SCHED_DEBUG
1122 char *name;
1123#endif
dce840a0
PZ
1124 union {
1125 void *private; /* used during construction */
1126 struct rcu_head rcu; /* used during destruction */
1127 };
6c99e9ad 1128
669c55e9 1129 unsigned int span_weight;
4200efd9
IM
1130 /*
1131 * Span of all CPUs in this domain.
1132 *
1133 * NOTE: this field is variable length. (Allocated dynamically
1134 * by attaching extra space to the end of the structure,
1135 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1136 */
1137 unsigned long span[0];
1da177e4
LT
1138};
1139
758b2cdc
RR
1140static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1141{
6c99e9ad 1142 return to_cpumask(sd->span);
758b2cdc
RR
1143}
1144
acc3f5d7 1145extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1146 struct sched_domain_attr *dattr_new);
029190c5 1147
acc3f5d7
RR
1148/* Allocate an array of sched domains, for partition_sched_domains(). */
1149cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1150void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1151
39be3501
PZ
1152bool cpus_share_cache(int this_cpu, int that_cpu);
1153
143e1e28 1154typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1155typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1156
1157#define SDTL_OVERLAP 0x01
1158
1159struct sd_data {
1160 struct sched_domain **__percpu sd;
1161 struct sched_group **__percpu sg;
63b2ca30 1162 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1163};
1164
1165struct sched_domain_topology_level {
1166 sched_domain_mask_f mask;
1167 sched_domain_flags_f sd_flags;
1168 int flags;
1169 int numa_level;
1170 struct sd_data data;
1171#ifdef CONFIG_SCHED_DEBUG
1172 char *name;
1173#endif
1174};
1175
143e1e28 1176extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1177extern void wake_up_if_idle(int cpu);
143e1e28
VG
1178
1179#ifdef CONFIG_SCHED_DEBUG
1180# define SD_INIT_NAME(type) .name = #type
1181#else
1182# define SD_INIT_NAME(type)
1183#endif
1184
1b427c15 1185#else /* CONFIG_SMP */
1da177e4 1186
1b427c15 1187struct sched_domain_attr;
d02c7a8c 1188
1b427c15 1189static inline void
acc3f5d7 1190partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1191 struct sched_domain_attr *dattr_new)
1192{
d02c7a8c 1193}
39be3501
PZ
1194
1195static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1196{
1197 return true;
1198}
1199
1b427c15 1200#endif /* !CONFIG_SMP */
1da177e4 1201
47fe38fc 1202
1da177e4 1203struct io_context; /* See blkdev.h */
1da177e4 1204
1da177e4 1205
383f2835 1206#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1207extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1208#else
1209static inline void prefetch_stack(struct task_struct *t) { }
1210#endif
1da177e4
LT
1211
1212struct audit_context; /* See audit.c */
1213struct mempolicy;
b92ce558 1214struct pipe_inode_info;
4865ecf1 1215struct uts_namespace;
1da177e4 1216
20b8a59f 1217struct load_weight {
9dbdb155
PZ
1218 unsigned long weight;
1219 u32 inv_weight;
20b8a59f
IM
1220};
1221
9d89c257 1222/*
7b595334
YD
1223 * The load_avg/util_avg accumulates an infinite geometric series
1224 * (see __update_load_avg() in kernel/sched/fair.c).
1225 *
1226 * [load_avg definition]
1227 *
1228 * load_avg = runnable% * scale_load_down(load)
1229 *
1230 * where runnable% is the time ratio that a sched_entity is runnable.
1231 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1232 * blocked sched_entities.
7b595334
YD
1233 *
1234 * load_avg may also take frequency scaling into account:
1235 *
1236 * load_avg = runnable% * scale_load_down(load) * freq%
1237 *
1238 * where freq% is the CPU frequency normalized to the highest frequency.
1239 *
1240 * [util_avg definition]
1241 *
1242 * util_avg = running% * SCHED_CAPACITY_SCALE
1243 *
1244 * where running% is the time ratio that a sched_entity is running on
1245 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1246 * and blocked sched_entities.
1247 *
1248 * util_avg may also factor frequency scaling and CPU capacity scaling:
1249 *
1250 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1251 *
1252 * where freq% is the same as above, and capacity% is the CPU capacity
1253 * normalized to the greatest capacity (due to uarch differences, etc).
1254 *
1255 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1256 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1257 * we therefore scale them to as large a range as necessary. This is for
1258 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1259 *
1260 * [Overflow issue]
1261 *
1262 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1263 * with the highest load (=88761), always runnable on a single cfs_rq,
1264 * and should not overflow as the number already hits PID_MAX_LIMIT.
1265 *
1266 * For all other cases (including 32-bit kernels), struct load_weight's
1267 * weight will overflow first before we do, because:
1268 *
1269 * Max(load_avg) <= Max(load.weight)
1270 *
1271 * Then it is the load_weight's responsibility to consider overflow
1272 * issues.
9d89c257 1273 */
9d85f21c 1274struct sched_avg {
9d89c257
YD
1275 u64 last_update_time, load_sum;
1276 u32 util_sum, period_contrib;
1277 unsigned long load_avg, util_avg;
9d85f21c
PT
1278};
1279
94c18227 1280#ifdef CONFIG_SCHEDSTATS
41acab88 1281struct sched_statistics {
20b8a59f 1282 u64 wait_start;
94c18227 1283 u64 wait_max;
6d082592
AV
1284 u64 wait_count;
1285 u64 wait_sum;
8f0dfc34
AV
1286 u64 iowait_count;
1287 u64 iowait_sum;
94c18227 1288
20b8a59f 1289 u64 sleep_start;
20b8a59f 1290 u64 sleep_max;
94c18227
IM
1291 s64 sum_sleep_runtime;
1292
1293 u64 block_start;
20b8a59f
IM
1294 u64 block_max;
1295 u64 exec_max;
eba1ed4b 1296 u64 slice_max;
cc367732 1297
cc367732
IM
1298 u64 nr_migrations_cold;
1299 u64 nr_failed_migrations_affine;
1300 u64 nr_failed_migrations_running;
1301 u64 nr_failed_migrations_hot;
1302 u64 nr_forced_migrations;
cc367732
IM
1303
1304 u64 nr_wakeups;
1305 u64 nr_wakeups_sync;
1306 u64 nr_wakeups_migrate;
1307 u64 nr_wakeups_local;
1308 u64 nr_wakeups_remote;
1309 u64 nr_wakeups_affine;
1310 u64 nr_wakeups_affine_attempts;
1311 u64 nr_wakeups_passive;
1312 u64 nr_wakeups_idle;
41acab88
LDM
1313};
1314#endif
1315
1316struct sched_entity {
1317 struct load_weight load; /* for load-balancing */
1318 struct rb_node run_node;
1319 struct list_head group_node;
1320 unsigned int on_rq;
1321
1322 u64 exec_start;
1323 u64 sum_exec_runtime;
1324 u64 vruntime;
1325 u64 prev_sum_exec_runtime;
1326
41acab88
LDM
1327 u64 nr_migrations;
1328
41acab88
LDM
1329#ifdef CONFIG_SCHEDSTATS
1330 struct sched_statistics statistics;
94c18227
IM
1331#endif
1332
20b8a59f 1333#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1334 int depth;
20b8a59f
IM
1335 struct sched_entity *parent;
1336 /* rq on which this entity is (to be) queued: */
1337 struct cfs_rq *cfs_rq;
1338 /* rq "owned" by this entity/group: */
1339 struct cfs_rq *my_q;
1340#endif
8bd75c77 1341
141965c7 1342#ifdef CONFIG_SMP
5a107804
JO
1343 /*
1344 * Per entity load average tracking.
1345 *
1346 * Put into separate cache line so it does not
1347 * collide with read-mostly values above.
1348 */
1349 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1350#endif
20b8a59f 1351};
70b97a7f 1352
fa717060
PZ
1353struct sched_rt_entity {
1354 struct list_head run_list;
78f2c7db 1355 unsigned long timeout;
57d2aa00 1356 unsigned long watchdog_stamp;
bee367ed 1357 unsigned int time_slice;
ff77e468
PZ
1358 unsigned short on_rq;
1359 unsigned short on_list;
6f505b16 1360
58d6c2d7 1361 struct sched_rt_entity *back;
052f1dc7 1362#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1363 struct sched_rt_entity *parent;
1364 /* rq on which this entity is (to be) queued: */
1365 struct rt_rq *rt_rq;
1366 /* rq "owned" by this entity/group: */
1367 struct rt_rq *my_q;
1368#endif
fa717060
PZ
1369};
1370
aab03e05
DF
1371struct sched_dl_entity {
1372 struct rb_node rb_node;
1373
1374 /*
1375 * Original scheduling parameters. Copied here from sched_attr
4027d080 1376 * during sched_setattr(), they will remain the same until
1377 * the next sched_setattr().
aab03e05
DF
1378 */
1379 u64 dl_runtime; /* maximum runtime for each instance */
1380 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1381 u64 dl_period; /* separation of two instances (period) */
332ac17e 1382 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1383
1384 /*
1385 * Actual scheduling parameters. Initialized with the values above,
1386 * they are continously updated during task execution. Note that
1387 * the remaining runtime could be < 0 in case we are in overrun.
1388 */
1389 s64 runtime; /* remaining runtime for this instance */
1390 u64 deadline; /* absolute deadline for this instance */
1391 unsigned int flags; /* specifying the scheduler behaviour */
1392
1393 /*
1394 * Some bool flags:
1395 *
1396 * @dl_throttled tells if we exhausted the runtime. If so, the
1397 * task has to wait for a replenishment to be performed at the
1398 * next firing of dl_timer.
1399 *
2d3d891d
DF
1400 * @dl_boosted tells if we are boosted due to DI. If so we are
1401 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1402 * exit the critical section);
1403 *
1404 * @dl_yielded tells if task gave up the cpu before consuming
1405 * all its available runtime during the last job.
aab03e05 1406 */
72f9f3fd 1407 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1408
1409 /*
1410 * Bandwidth enforcement timer. Each -deadline task has its
1411 * own bandwidth to be enforced, thus we need one timer per task.
1412 */
1413 struct hrtimer dl_timer;
1414};
8bd75c77 1415
1d082fd0
PM
1416union rcu_special {
1417 struct {
8203d6d0
PM
1418 u8 blocked;
1419 u8 need_qs;
1420 u8 exp_need_qs;
1421 u8 pad; /* Otherwise the compiler can store garbage here. */
1422 } b; /* Bits. */
1423 u32 s; /* Set of bits. */
1d082fd0 1424};
86848966
PM
1425struct rcu_node;
1426
8dc85d54
PZ
1427enum perf_event_task_context {
1428 perf_invalid_context = -1,
1429 perf_hw_context = 0,
89a1e187 1430 perf_sw_context,
8dc85d54
PZ
1431 perf_nr_task_contexts,
1432};
1433
72b252ae
MG
1434/* Track pages that require TLB flushes */
1435struct tlbflush_unmap_batch {
1436 /*
1437 * Each bit set is a CPU that potentially has a TLB entry for one of
1438 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1439 */
1440 struct cpumask cpumask;
1441
1442 /* True if any bit in cpumask is set */
1443 bool flush_required;
d950c947
MG
1444
1445 /*
1446 * If true then the PTE was dirty when unmapped. The entry must be
1447 * flushed before IO is initiated or a stale TLB entry potentially
1448 * allows an update without redirtying the page.
1449 */
1450 bool writable;
72b252ae
MG
1451};
1452
1da177e4
LT
1453struct task_struct {
1454 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1455 void *stack;
1da177e4 1456 atomic_t usage;
97dc32cd
WC
1457 unsigned int flags; /* per process flags, defined below */
1458 unsigned int ptrace;
1da177e4 1459
2dd73a4f 1460#ifdef CONFIG_SMP
fa14ff4a 1461 struct llist_node wake_entry;
3ca7a440 1462 int on_cpu;
63b0e9ed 1463 unsigned int wakee_flips;
62470419 1464 unsigned long wakee_flip_decay_ts;
63b0e9ed 1465 struct task_struct *last_wakee;
ac66f547
PZ
1466
1467 int wake_cpu;
2dd73a4f 1468#endif
fd2f4419 1469 int on_rq;
50e645a8 1470
b29739f9 1471 int prio, static_prio, normal_prio;
c7aceaba 1472 unsigned int rt_priority;
5522d5d5 1473 const struct sched_class *sched_class;
20b8a59f 1474 struct sched_entity se;
fa717060 1475 struct sched_rt_entity rt;
8323f26c
PZ
1476#ifdef CONFIG_CGROUP_SCHED
1477 struct task_group *sched_task_group;
1478#endif
aab03e05 1479 struct sched_dl_entity dl;
1da177e4 1480
e107be36
AK
1481#ifdef CONFIG_PREEMPT_NOTIFIERS
1482 /* list of struct preempt_notifier: */
1483 struct hlist_head preempt_notifiers;
1484#endif
1485
6c5c9341 1486#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1487 unsigned int btrace_seq;
6c5c9341 1488#endif
1da177e4 1489
97dc32cd 1490 unsigned int policy;
29baa747 1491 int nr_cpus_allowed;
1da177e4 1492 cpumask_t cpus_allowed;
1da177e4 1493
a57eb940 1494#ifdef CONFIG_PREEMPT_RCU
e260be67 1495 int rcu_read_lock_nesting;
1d082fd0 1496 union rcu_special rcu_read_unlock_special;
f41d911f 1497 struct list_head rcu_node_entry;
a57eb940 1498 struct rcu_node *rcu_blocked_node;
28f6569a 1499#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1500#ifdef CONFIG_TASKS_RCU
1501 unsigned long rcu_tasks_nvcsw;
1502 bool rcu_tasks_holdout;
1503 struct list_head rcu_tasks_holdout_list;
176f8f7a 1504 int rcu_tasks_idle_cpu;
8315f422 1505#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1506
f6db8347 1507#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1508 struct sched_info sched_info;
1509#endif
1510
1511 struct list_head tasks;
806c09a7 1512#ifdef CONFIG_SMP
917b627d 1513 struct plist_node pushable_tasks;
1baca4ce 1514 struct rb_node pushable_dl_tasks;
806c09a7 1515#endif
1da177e4
LT
1516
1517 struct mm_struct *mm, *active_mm;
615d6e87
DB
1518 /* per-thread vma caching */
1519 u32 vmacache_seqnum;
1520 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1521#if defined(SPLIT_RSS_COUNTING)
1522 struct task_rss_stat rss_stat;
1523#endif
1da177e4 1524/* task state */
97dc32cd 1525 int exit_state;
1da177e4
LT
1526 int exit_code, exit_signal;
1527 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1528 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1529
1530 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1531 unsigned int personality;
9b89f6ba 1532
be958bdc 1533 /* scheduler bits, serialized by scheduler locks */
ca94c442 1534 unsigned sched_reset_on_fork:1;
a8e4f2ea 1535 unsigned sched_contributes_to_load:1;
ff303e66 1536 unsigned sched_migrated:1;
be958bdc
PZ
1537 unsigned :0; /* force alignment to the next boundary */
1538
1539 /* unserialized, strictly 'current' */
1540 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1541 unsigned in_iowait:1;
626ebc41
TH
1542#ifdef CONFIG_MEMCG
1543 unsigned memcg_may_oom:1;
127424c8 1544#ifndef CONFIG_SLOB
6f185c29
VD
1545 unsigned memcg_kmem_skip_account:1;
1546#endif
127424c8 1547#endif
ff303e66
PZ
1548#ifdef CONFIG_COMPAT_BRK
1549 unsigned brk_randomized:1;
1550#endif
6f185c29 1551
1d4457f9
KC
1552 unsigned long atomic_flags; /* Flags needing atomic access. */
1553
f56141e3
AL
1554 struct restart_block restart_block;
1555
1da177e4
LT
1556 pid_t pid;
1557 pid_t tgid;
0a425405 1558
1314562a 1559#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1560 /* Canary value for the -fstack-protector gcc feature */
1561 unsigned long stack_canary;
1314562a 1562#endif
4d1d61a6 1563 /*
1da177e4 1564 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1565 * older sibling, respectively. (p->father can be replaced with
f470021a 1566 * p->real_parent->pid)
1da177e4 1567 */
abd63bc3
KC
1568 struct task_struct __rcu *real_parent; /* real parent process */
1569 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1570 /*
f470021a 1571 * children/sibling forms the list of my natural children
1da177e4
LT
1572 */
1573 struct list_head children; /* list of my children */
1574 struct list_head sibling; /* linkage in my parent's children list */
1575 struct task_struct *group_leader; /* threadgroup leader */
1576
f470021a
RM
1577 /*
1578 * ptraced is the list of tasks this task is using ptrace on.
1579 * This includes both natural children and PTRACE_ATTACH targets.
1580 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1581 */
1582 struct list_head ptraced;
1583 struct list_head ptrace_entry;
1584
1da177e4 1585 /* PID/PID hash table linkage. */
92476d7f 1586 struct pid_link pids[PIDTYPE_MAX];
47e65328 1587 struct list_head thread_group;
0c740d0a 1588 struct list_head thread_node;
1da177e4
LT
1589
1590 struct completion *vfork_done; /* for vfork() */
1591 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1592 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1593
c66f08be 1594 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1595 cputime_t gtime;
9d7fb042 1596 struct prev_cputime prev_cputime;
6a61671b 1597#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1598 seqcount_t vtime_seqcount;
6a61671b
FW
1599 unsigned long long vtime_snap;
1600 enum {
7098c1ea
FW
1601 /* Task is sleeping or running in a CPU with VTIME inactive */
1602 VTIME_INACTIVE = 0,
1603 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1604 VTIME_USER,
7098c1ea 1605 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1606 VTIME_SYS,
1607 } vtime_snap_whence;
d99ca3b9 1608#endif
d027d45d
FW
1609
1610#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1611 atomic_t tick_dep_mask;
d027d45d 1612#endif
1da177e4 1613 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1614 u64 start_time; /* monotonic time in nsec */
57e0be04 1615 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1616/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1617 unsigned long min_flt, maj_flt;
1618
f06febc9 1619 struct task_cputime cputime_expires;
1da177e4
LT
1620 struct list_head cpu_timers[3];
1621
1622/* process credentials */
1b0ba1c9 1623 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1624 * credentials (COW) */
1b0ba1c9 1625 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1626 * credentials (COW) */
36772092
PBG
1627 char comm[TASK_COMM_LEN]; /* executable name excluding path
1628 - access with [gs]et_task_comm (which lock
1629 it with task_lock())
221af7f8 1630 - initialized normally by setup_new_exec */
1da177e4 1631/* file system info */
756daf26 1632 struct nameidata *nameidata;
3d5b6fcc 1633#ifdef CONFIG_SYSVIPC
1da177e4
LT
1634/* ipc stuff */
1635 struct sysv_sem sysvsem;
ab602f79 1636 struct sysv_shm sysvshm;
3d5b6fcc 1637#endif
e162b39a 1638#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1639/* hung task detection */
82a1fcb9
IM
1640 unsigned long last_switch_count;
1641#endif
1da177e4
LT
1642/* filesystem information */
1643 struct fs_struct *fs;
1644/* open file information */
1645 struct files_struct *files;
1651e14e 1646/* namespaces */
ab516013 1647 struct nsproxy *nsproxy;
1da177e4
LT
1648/* signal handlers */
1649 struct signal_struct *signal;
1650 struct sighand_struct *sighand;
1651
1652 sigset_t blocked, real_blocked;
f3de272b 1653 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1654 struct sigpending pending;
1655
1656 unsigned long sas_ss_sp;
1657 size_t sas_ss_size;
2e01fabe 1658
67d12145 1659 struct callback_head *task_works;
e73f8959 1660
1da177e4 1661 struct audit_context *audit_context;
bfef93a5 1662#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1663 kuid_t loginuid;
4746ec5b 1664 unsigned int sessionid;
bfef93a5 1665#endif
932ecebb 1666 struct seccomp seccomp;
1da177e4
LT
1667
1668/* Thread group tracking */
1669 u32 parent_exec_id;
1670 u32 self_exec_id;
58568d2a
MX
1671/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1672 * mempolicy */
1da177e4 1673 spinlock_t alloc_lock;
1da177e4 1674
b29739f9 1675 /* Protection of the PI data structures: */
1d615482 1676 raw_spinlock_t pi_lock;
b29739f9 1677
76751049
PZ
1678 struct wake_q_node wake_q;
1679
23f78d4a
IM
1680#ifdef CONFIG_RT_MUTEXES
1681 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1682 struct rb_root pi_waiters;
1683 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1684 /* Deadlock detection and priority inheritance handling */
1685 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1686#endif
1687
408894ee
IM
1688#ifdef CONFIG_DEBUG_MUTEXES
1689 /* mutex deadlock detection */
1690 struct mutex_waiter *blocked_on;
1691#endif
de30a2b3
IM
1692#ifdef CONFIG_TRACE_IRQFLAGS
1693 unsigned int irq_events;
de30a2b3 1694 unsigned long hardirq_enable_ip;
de30a2b3 1695 unsigned long hardirq_disable_ip;
fa1452e8 1696 unsigned int hardirq_enable_event;
de30a2b3 1697 unsigned int hardirq_disable_event;
fa1452e8
HS
1698 int hardirqs_enabled;
1699 int hardirq_context;
de30a2b3 1700 unsigned long softirq_disable_ip;
de30a2b3 1701 unsigned long softirq_enable_ip;
fa1452e8 1702 unsigned int softirq_disable_event;
de30a2b3 1703 unsigned int softirq_enable_event;
fa1452e8 1704 int softirqs_enabled;
de30a2b3
IM
1705 int softirq_context;
1706#endif
fbb9ce95 1707#ifdef CONFIG_LOCKDEP
bdb9441e 1708# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1709 u64 curr_chain_key;
1710 int lockdep_depth;
fbb9ce95 1711 unsigned int lockdep_recursion;
c7aceaba 1712 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1713 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1714#endif
c6d30853
AR
1715#ifdef CONFIG_UBSAN
1716 unsigned int in_ubsan;
1717#endif
408894ee 1718
1da177e4
LT
1719/* journalling filesystem info */
1720 void *journal_info;
1721
d89d8796 1722/* stacked block device info */
bddd87c7 1723 struct bio_list *bio_list;
d89d8796 1724
73c10101
JA
1725#ifdef CONFIG_BLOCK
1726/* stack plugging */
1727 struct blk_plug *plug;
1728#endif
1729
1da177e4
LT
1730/* VM state */
1731 struct reclaim_state *reclaim_state;
1732
1da177e4
LT
1733 struct backing_dev_info *backing_dev_info;
1734
1735 struct io_context *io_context;
1736
1737 unsigned long ptrace_message;
1738 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1739 struct task_io_accounting ioac;
8f0ab514 1740#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1741 u64 acct_rss_mem1; /* accumulated rss usage */
1742 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1743 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1744#endif
1745#ifdef CONFIG_CPUSETS
58568d2a 1746 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1747 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1748 int cpuset_mem_spread_rotor;
6adef3eb 1749 int cpuset_slab_spread_rotor;
1da177e4 1750#endif
ddbcc7e8 1751#ifdef CONFIG_CGROUPS
817929ec 1752 /* Control Group info protected by css_set_lock */
2c392b8c 1753 struct css_set __rcu *cgroups;
817929ec
PM
1754 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1755 struct list_head cg_list;
ddbcc7e8 1756#endif
42b2dd0a 1757#ifdef CONFIG_FUTEX
0771dfef 1758 struct robust_list_head __user *robust_list;
34f192c6
IM
1759#ifdef CONFIG_COMPAT
1760 struct compat_robust_list_head __user *compat_robust_list;
1761#endif
c87e2837
IM
1762 struct list_head pi_state_list;
1763 struct futex_pi_state *pi_state_cache;
c7aceaba 1764#endif
cdd6c482 1765#ifdef CONFIG_PERF_EVENTS
8dc85d54 1766 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1767 struct mutex perf_event_mutex;
1768 struct list_head perf_event_list;
a63eaf34 1769#endif
8f47b187
TG
1770#ifdef CONFIG_DEBUG_PREEMPT
1771 unsigned long preempt_disable_ip;
1772#endif
c7aceaba 1773#ifdef CONFIG_NUMA
58568d2a 1774 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1775 short il_next;
207205a2 1776 short pref_node_fork;
42b2dd0a 1777#endif
cbee9f88
PZ
1778#ifdef CONFIG_NUMA_BALANCING
1779 int numa_scan_seq;
cbee9f88 1780 unsigned int numa_scan_period;
598f0ec0 1781 unsigned int numa_scan_period_max;
de1c9ce6 1782 int numa_preferred_nid;
6b9a7460 1783 unsigned long numa_migrate_retry;
cbee9f88 1784 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1785 u64 last_task_numa_placement;
1786 u64 last_sum_exec_runtime;
cbee9f88 1787 struct callback_head numa_work;
f809ca9a 1788
8c8a743c
PZ
1789 struct list_head numa_entry;
1790 struct numa_group *numa_group;
1791
745d6147 1792 /*
44dba3d5
IM
1793 * numa_faults is an array split into four regions:
1794 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1795 * in this precise order.
1796 *
1797 * faults_memory: Exponential decaying average of faults on a per-node
1798 * basis. Scheduling placement decisions are made based on these
1799 * counts. The values remain static for the duration of a PTE scan.
1800 * faults_cpu: Track the nodes the process was running on when a NUMA
1801 * hinting fault was incurred.
1802 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1803 * during the current scan window. When the scan completes, the counts
1804 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1805 */
44dba3d5 1806 unsigned long *numa_faults;
83e1d2cd 1807 unsigned long total_numa_faults;
745d6147 1808
04bb2f94
RR
1809 /*
1810 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1811 * scan window were remote/local or failed to migrate. The task scan
1812 * period is adapted based on the locality of the faults with different
1813 * weights depending on whether they were shared or private faults
04bb2f94 1814 */
074c2381 1815 unsigned long numa_faults_locality[3];
04bb2f94 1816
b32e86b4 1817 unsigned long numa_pages_migrated;
cbee9f88
PZ
1818#endif /* CONFIG_NUMA_BALANCING */
1819
72b252ae
MG
1820#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1821 struct tlbflush_unmap_batch tlb_ubc;
1822#endif
1823
e56d0903 1824 struct rcu_head rcu;
b92ce558
JA
1825
1826 /*
1827 * cache last used pipe for splice
1828 */
1829 struct pipe_inode_info *splice_pipe;
5640f768
ED
1830
1831 struct page_frag task_frag;
1832
ca74e92b
SN
1833#ifdef CONFIG_TASK_DELAY_ACCT
1834 struct task_delay_info *delays;
f4f154fd
AM
1835#endif
1836#ifdef CONFIG_FAULT_INJECTION
1837 int make_it_fail;
ca74e92b 1838#endif
9d823e8f
WF
1839 /*
1840 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1841 * balance_dirty_pages() for some dirty throttling pause
1842 */
1843 int nr_dirtied;
1844 int nr_dirtied_pause;
83712358 1845 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1846
9745512c
AV
1847#ifdef CONFIG_LATENCYTOP
1848 int latency_record_count;
1849 struct latency_record latency_record[LT_SAVECOUNT];
1850#endif
6976675d
AV
1851 /*
1852 * time slack values; these are used to round up poll() and
1853 * select() etc timeout values. These are in nanoseconds.
1854 */
da8b44d5
JS
1855 u64 timer_slack_ns;
1856 u64 default_timer_slack_ns;
f8d570a4 1857
0b24becc
AR
1858#ifdef CONFIG_KASAN
1859 unsigned int kasan_depth;
1860#endif
fb52607a 1861#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1862 /* Index of current stored address in ret_stack */
f201ae23
FW
1863 int curr_ret_stack;
1864 /* Stack of return addresses for return function tracing */
1865 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1866 /* time stamp for last schedule */
1867 unsigned long long ftrace_timestamp;
f201ae23
FW
1868 /*
1869 * Number of functions that haven't been traced
1870 * because of depth overrun.
1871 */
1872 atomic_t trace_overrun;
380c4b14
FW
1873 /* Pause for the tracing */
1874 atomic_t tracing_graph_pause;
f201ae23 1875#endif
ea4e2bc4
SR
1876#ifdef CONFIG_TRACING
1877 /* state flags for use by tracers */
1878 unsigned long trace;
b1cff0ad 1879 /* bitmask and counter of trace recursion */
261842b7
SR
1880 unsigned long trace_recursion;
1881#endif /* CONFIG_TRACING */
5c9a8750
DV
1882#ifdef CONFIG_KCOV
1883 /* Coverage collection mode enabled for this task (0 if disabled). */
1884 enum kcov_mode kcov_mode;
1885 /* Size of the kcov_area. */
1886 unsigned kcov_size;
1887 /* Buffer for coverage collection. */
1888 void *kcov_area;
1889 /* kcov desciptor wired with this task or NULL. */
1890 struct kcov *kcov;
1891#endif
6f185c29 1892#ifdef CONFIG_MEMCG
626ebc41
TH
1893 struct mem_cgroup *memcg_in_oom;
1894 gfp_t memcg_oom_gfp_mask;
1895 int memcg_oom_order;
b23afb93
TH
1896
1897 /* number of pages to reclaim on returning to userland */
1898 unsigned int memcg_nr_pages_over_high;
569b846d 1899#endif
0326f5a9
SD
1900#ifdef CONFIG_UPROBES
1901 struct uprobe_task *utask;
0326f5a9 1902#endif
cafe5635
KO
1903#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1904 unsigned int sequential_io;
1905 unsigned int sequential_io_avg;
1906#endif
8eb23b9f
PZ
1907#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1908 unsigned long task_state_change;
1909#endif
8bcbde54 1910 int pagefault_disabled;
03049269 1911#ifdef CONFIG_MMU
29c696e1 1912 struct task_struct *oom_reaper_list;
03049269 1913#endif
0c8c0f03
DH
1914/* CPU-specific state of this task */
1915 struct thread_struct thread;
1916/*
1917 * WARNING: on x86, 'thread_struct' contains a variable-sized
1918 * structure. It *MUST* be at the end of 'task_struct'.
1919 *
1920 * Do not put anything below here!
1921 */
1da177e4
LT
1922};
1923
5aaeb5c0
IM
1924#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1925extern int arch_task_struct_size __read_mostly;
1926#else
1927# define arch_task_struct_size (sizeof(struct task_struct))
1928#endif
0c8c0f03 1929
76e6eee0 1930/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1931#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1932
6688cc05
PZ
1933#define TNF_MIGRATED 0x01
1934#define TNF_NO_GROUP 0x02
dabe1d99 1935#define TNF_SHARED 0x04
04bb2f94 1936#define TNF_FAULT_LOCAL 0x08
074c2381 1937#define TNF_MIGRATE_FAIL 0x10
6688cc05 1938
cbee9f88 1939#ifdef CONFIG_NUMA_BALANCING
6688cc05 1940extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1941extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1942extern void set_numabalancing_state(bool enabled);
82727018 1943extern void task_numa_free(struct task_struct *p);
10f39042
RR
1944extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1945 int src_nid, int dst_cpu);
cbee9f88 1946#else
ac8e895b 1947static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1948 int flags)
cbee9f88
PZ
1949{
1950}
e29cf08b
MG
1951static inline pid_t task_numa_group_id(struct task_struct *p)
1952{
1953 return 0;
1954}
1a687c2e
MG
1955static inline void set_numabalancing_state(bool enabled)
1956{
1957}
82727018
RR
1958static inline void task_numa_free(struct task_struct *p)
1959{
1960}
10f39042
RR
1961static inline bool should_numa_migrate_memory(struct task_struct *p,
1962 struct page *page, int src_nid, int dst_cpu)
1963{
1964 return true;
1965}
cbee9f88
PZ
1966#endif
1967
e868171a 1968static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1969{
1970 return task->pids[PIDTYPE_PID].pid;
1971}
1972
e868171a 1973static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1974{
1975 return task->group_leader->pids[PIDTYPE_PID].pid;
1976}
1977
6dda81f4
ON
1978/*
1979 * Without tasklist or rcu lock it is not safe to dereference
1980 * the result of task_pgrp/task_session even if task == current,
1981 * we can race with another thread doing sys_setsid/sys_setpgid.
1982 */
e868171a 1983static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1984{
1985 return task->group_leader->pids[PIDTYPE_PGID].pid;
1986}
1987
e868171a 1988static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1989{
1990 return task->group_leader->pids[PIDTYPE_SID].pid;
1991}
1992
7af57294
PE
1993struct pid_namespace;
1994
1995/*
1996 * the helpers to get the task's different pids as they are seen
1997 * from various namespaces
1998 *
1999 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2000 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2001 * current.
7af57294
PE
2002 * task_xid_nr_ns() : id seen from the ns specified;
2003 *
2004 * set_task_vxid() : assigns a virtual id to a task;
2005 *
7af57294
PE
2006 * see also pid_nr() etc in include/linux/pid.h
2007 */
52ee2dfd
ON
2008pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2009 struct pid_namespace *ns);
7af57294 2010
e868171a 2011static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2012{
2013 return tsk->pid;
2014}
2015
52ee2dfd
ON
2016static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2017 struct pid_namespace *ns)
2018{
2019 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2020}
7af57294
PE
2021
2022static inline pid_t task_pid_vnr(struct task_struct *tsk)
2023{
52ee2dfd 2024 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2025}
2026
2027
e868171a 2028static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2029{
2030 return tsk->tgid;
2031}
2032
2f2a3a46 2033pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2034
2035static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2036{
2037 return pid_vnr(task_tgid(tsk));
2038}
2039
2040
80e0b6e8 2041static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2042static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2043{
2044 pid_t pid = 0;
2045
2046 rcu_read_lock();
2047 if (pid_alive(tsk))
2048 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2049 rcu_read_unlock();
2050
2051 return pid;
2052}
2053
2054static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2055{
2056 return task_ppid_nr_ns(tsk, &init_pid_ns);
2057}
2058
52ee2dfd
ON
2059static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2060 struct pid_namespace *ns)
7af57294 2061{
52ee2dfd 2062 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2063}
2064
7af57294
PE
2065static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2066{
52ee2dfd 2067 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2068}
2069
2070
52ee2dfd
ON
2071static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2072 struct pid_namespace *ns)
7af57294 2073{
52ee2dfd 2074 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2075}
2076
7af57294
PE
2077static inline pid_t task_session_vnr(struct task_struct *tsk)
2078{
52ee2dfd 2079 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2080}
2081
1b0f7ffd
ON
2082/* obsolete, do not use */
2083static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2084{
2085 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2086}
7af57294 2087
1da177e4
LT
2088/**
2089 * pid_alive - check that a task structure is not stale
2090 * @p: Task structure to be checked.
2091 *
2092 * Test if a process is not yet dead (at most zombie state)
2093 * If pid_alive fails, then pointers within the task structure
2094 * can be stale and must not be dereferenced.
e69f6186
YB
2095 *
2096 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2097 */
ad36d282 2098static inline int pid_alive(const struct task_struct *p)
1da177e4 2099{
92476d7f 2100 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2101}
2102
f400e198 2103/**
570f5241
SS
2104 * is_global_init - check if a task structure is init. Since init
2105 * is free to have sub-threads we need to check tgid.
3260259f
H
2106 * @tsk: Task structure to be checked.
2107 *
2108 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2109 *
2110 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2111 */
e868171a 2112static inline int is_global_init(struct task_struct *tsk)
b461cc03 2113{
570f5241 2114 return task_tgid_nr(tsk) == 1;
b461cc03 2115}
b460cbc5 2116
9ec52099
CLG
2117extern struct pid *cad_pid;
2118
1da177e4 2119extern void free_task(struct task_struct *tsk);
1da177e4 2120#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2121
158d9ebd 2122extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2123
2124static inline void put_task_struct(struct task_struct *t)
2125{
2126 if (atomic_dec_and_test(&t->usage))
8c7904a0 2127 __put_task_struct(t);
e56d0903 2128}
1da177e4 2129
6a61671b
FW
2130#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2131extern void task_cputime(struct task_struct *t,
2132 cputime_t *utime, cputime_t *stime);
2133extern void task_cputime_scaled(struct task_struct *t,
2134 cputime_t *utimescaled, cputime_t *stimescaled);
2135extern cputime_t task_gtime(struct task_struct *t);
2136#else
6fac4829
FW
2137static inline void task_cputime(struct task_struct *t,
2138 cputime_t *utime, cputime_t *stime)
2139{
2140 if (utime)
2141 *utime = t->utime;
2142 if (stime)
2143 *stime = t->stime;
2144}
2145
2146static inline void task_cputime_scaled(struct task_struct *t,
2147 cputime_t *utimescaled,
2148 cputime_t *stimescaled)
2149{
2150 if (utimescaled)
2151 *utimescaled = t->utimescaled;
2152 if (stimescaled)
2153 *stimescaled = t->stimescaled;
2154}
6a61671b
FW
2155
2156static inline cputime_t task_gtime(struct task_struct *t)
2157{
2158 return t->gtime;
2159}
2160#endif
e80d0a1a
FW
2161extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2162extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2163
1da177e4
LT
2164/*
2165 * Per process flags
2166 */
1da177e4 2167#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2168#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2169#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2170#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2171#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2172#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2173#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2174#define PF_DUMPCORE 0x00000200 /* dumped core */
2175#define PF_SIGNALED 0x00000400 /* killed by a signal */
2176#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2177#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2178#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2179#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2180#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2181#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2182#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2183#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2184#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2185#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2186#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2187#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2188#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2189#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2190#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2191#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2192#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2193#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2194
2195/*
2196 * Only the _current_ task can read/write to tsk->flags, but other
2197 * tasks can access tsk->flags in readonly mode for example
2198 * with tsk_used_math (like during threaded core dumping).
2199 * There is however an exception to this rule during ptrace
2200 * or during fork: the ptracer task is allowed to write to the
2201 * child->flags of its traced child (same goes for fork, the parent
2202 * can write to the child->flags), because we're guaranteed the
2203 * child is not running and in turn not changing child->flags
2204 * at the same time the parent does it.
2205 */
2206#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2207#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2208#define clear_used_math() clear_stopped_child_used_math(current)
2209#define set_used_math() set_stopped_child_used_math(current)
2210#define conditional_stopped_child_used_math(condition, child) \
2211 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2212#define conditional_used_math(condition) \
2213 conditional_stopped_child_used_math(condition, current)
2214#define copy_to_stopped_child_used_math(child) \
2215 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2216/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2217#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2218#define used_math() tsk_used_math(current)
2219
934f3072
JB
2220/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2221 * __GFP_FS is also cleared as it implies __GFP_IO.
2222 */
21caf2fc
ML
2223static inline gfp_t memalloc_noio_flags(gfp_t flags)
2224{
2225 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2226 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2227 return flags;
2228}
2229
2230static inline unsigned int memalloc_noio_save(void)
2231{
2232 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2233 current->flags |= PF_MEMALLOC_NOIO;
2234 return flags;
2235}
2236
2237static inline void memalloc_noio_restore(unsigned int flags)
2238{
2239 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2240}
2241
1d4457f9 2242/* Per-process atomic flags. */
a2b86f77 2243#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2244#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2245#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2246
1d4457f9 2247
e0e5070b
ZL
2248#define TASK_PFA_TEST(name, func) \
2249 static inline bool task_##func(struct task_struct *p) \
2250 { return test_bit(PFA_##name, &p->atomic_flags); }
2251#define TASK_PFA_SET(name, func) \
2252 static inline void task_set_##func(struct task_struct *p) \
2253 { set_bit(PFA_##name, &p->atomic_flags); }
2254#define TASK_PFA_CLEAR(name, func) \
2255 static inline void task_clear_##func(struct task_struct *p) \
2256 { clear_bit(PFA_##name, &p->atomic_flags); }
2257
2258TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2259TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2260
2ad654bc
ZL
2261TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2262TASK_PFA_SET(SPREAD_PAGE, spread_page)
2263TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2264
2265TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2266TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2267TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2268
e5c1902e 2269/*
a8f072c1 2270 * task->jobctl flags
e5c1902e 2271 */
a8f072c1 2272#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2273
a8f072c1
TH
2274#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2275#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2276#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2277#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2278#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2279#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2280#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2281
b76808e6
PD
2282#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2283#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2284#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2285#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2286#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2287#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2288#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2289
fb1d910c 2290#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2291#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2292
7dd3db54 2293extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2294 unsigned long mask);
73ddff2b 2295extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2296extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2297 unsigned long mask);
39efa3ef 2298
f41d911f
PM
2299static inline void rcu_copy_process(struct task_struct *p)
2300{
8315f422 2301#ifdef CONFIG_PREEMPT_RCU
f41d911f 2302 p->rcu_read_lock_nesting = 0;
1d082fd0 2303 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2304 p->rcu_blocked_node = NULL;
f41d911f 2305 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2306#endif /* #ifdef CONFIG_PREEMPT_RCU */
2307#ifdef CONFIG_TASKS_RCU
2308 p->rcu_tasks_holdout = false;
2309 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2310 p->rcu_tasks_idle_cpu = -1;
8315f422 2311#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2312}
2313
907aed48
MG
2314static inline void tsk_restore_flags(struct task_struct *task,
2315 unsigned long orig_flags, unsigned long flags)
2316{
2317 task->flags &= ~flags;
2318 task->flags |= orig_flags & flags;
2319}
2320
f82f8042
JL
2321extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2322 const struct cpumask *trial);
7f51412a
JL
2323extern int task_can_attach(struct task_struct *p,
2324 const struct cpumask *cs_cpus_allowed);
1da177e4 2325#ifdef CONFIG_SMP
1e1b6c51
KM
2326extern void do_set_cpus_allowed(struct task_struct *p,
2327 const struct cpumask *new_mask);
2328
cd8ba7cd 2329extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2330 const struct cpumask *new_mask);
1da177e4 2331#else
1e1b6c51
KM
2332static inline void do_set_cpus_allowed(struct task_struct *p,
2333 const struct cpumask *new_mask)
2334{
2335}
cd8ba7cd 2336static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2337 const struct cpumask *new_mask)
1da177e4 2338{
96f874e2 2339 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2340 return -EINVAL;
2341 return 0;
2342}
2343#endif
e0ad9556 2344
3451d024 2345#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2346void calc_load_enter_idle(void);
2347void calc_load_exit_idle(void);
2348#else
2349static inline void calc_load_enter_idle(void) { }
2350static inline void calc_load_exit_idle(void) { }
3451d024 2351#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2352
b342501c 2353/*
c676329a
PZ
2354 * Do not use outside of architecture code which knows its limitations.
2355 *
2356 * sched_clock() has no promise of monotonicity or bounded drift between
2357 * CPUs, use (which you should not) requires disabling IRQs.
2358 *
2359 * Please use one of the three interfaces below.
b342501c 2360 */
1bbfa6f2 2361extern unsigned long long notrace sched_clock(void);
c676329a 2362/*
489a71b0 2363 * See the comment in kernel/sched/clock.c
c676329a 2364 */
545a2bf7 2365extern u64 running_clock(void);
c676329a
PZ
2366extern u64 sched_clock_cpu(int cpu);
2367
e436d800 2368
c1955a3d 2369extern void sched_clock_init(void);
3e51f33f 2370
c1955a3d 2371#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2372static inline void sched_clock_tick(void)
2373{
2374}
2375
2376static inline void sched_clock_idle_sleep_event(void)
2377{
2378}
2379
2380static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2381{
2382}
2c923e94
DL
2383
2384static inline u64 cpu_clock(int cpu)
2385{
2386 return sched_clock();
2387}
2388
2389static inline u64 local_clock(void)
2390{
2391 return sched_clock();
2392}
3e51f33f 2393#else
c676329a
PZ
2394/*
2395 * Architectures can set this to 1 if they have specified
2396 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2397 * but then during bootup it turns out that sched_clock()
2398 * is reliable after all:
2399 */
35af99e6
PZ
2400extern int sched_clock_stable(void);
2401extern void set_sched_clock_stable(void);
2402extern void clear_sched_clock_stable(void);
c676329a 2403
3e51f33f
PZ
2404extern void sched_clock_tick(void);
2405extern void sched_clock_idle_sleep_event(void);
2406extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2407
2408/*
2409 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2410 * time source that is monotonic per cpu argument and has bounded drift
2411 * between cpus.
2412 *
2413 * ######################### BIG FAT WARNING ##########################
2414 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2415 * # go backwards !! #
2416 * ####################################################################
2417 */
2418static inline u64 cpu_clock(int cpu)
2419{
2420 return sched_clock_cpu(cpu);
2421}
2422
2423static inline u64 local_clock(void)
2424{
2425 return sched_clock_cpu(raw_smp_processor_id());
2426}
3e51f33f
PZ
2427#endif
2428
b52bfee4
VP
2429#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2430/*
2431 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2432 * The reason for this explicit opt-in is not to have perf penalty with
2433 * slow sched_clocks.
2434 */
2435extern void enable_sched_clock_irqtime(void);
2436extern void disable_sched_clock_irqtime(void);
2437#else
2438static inline void enable_sched_clock_irqtime(void) {}
2439static inline void disable_sched_clock_irqtime(void) {}
2440#endif
2441
36c8b586 2442extern unsigned long long
41b86e9c 2443task_sched_runtime(struct task_struct *task);
1da177e4
LT
2444
2445/* sched_exec is called by processes performing an exec */
2446#ifdef CONFIG_SMP
2447extern void sched_exec(void);
2448#else
2449#define sched_exec() {}
2450#endif
2451
2aa44d05
IM
2452extern void sched_clock_idle_sleep_event(void);
2453extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2454
1da177e4
LT
2455#ifdef CONFIG_HOTPLUG_CPU
2456extern void idle_task_exit(void);
2457#else
2458static inline void idle_task_exit(void) {}
2459#endif
2460
3451d024 2461#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2462extern void wake_up_nohz_cpu(int cpu);
06d8308c 2463#else
1c20091e 2464static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2465#endif
2466
ce831b38 2467#ifdef CONFIG_NO_HZ_FULL
265f22a9 2468extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2469#endif
2470
5091faa4 2471#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2472extern void sched_autogroup_create_attach(struct task_struct *p);
2473extern void sched_autogroup_detach(struct task_struct *p);
2474extern void sched_autogroup_fork(struct signal_struct *sig);
2475extern void sched_autogroup_exit(struct signal_struct *sig);
2476#ifdef CONFIG_PROC_FS
2477extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2478extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2479#endif
2480#else
2481static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2482static inline void sched_autogroup_detach(struct task_struct *p) { }
2483static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2484static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2485#endif
2486
fa93384f 2487extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2488extern void set_user_nice(struct task_struct *p, long nice);
2489extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2490/**
2491 * task_nice - return the nice value of a given task.
2492 * @p: the task in question.
2493 *
2494 * Return: The nice value [ -20 ... 0 ... 19 ].
2495 */
2496static inline int task_nice(const struct task_struct *p)
2497{
2498 return PRIO_TO_NICE((p)->static_prio);
2499}
36c8b586
IM
2500extern int can_nice(const struct task_struct *p, const int nice);
2501extern int task_curr(const struct task_struct *p);
1da177e4 2502extern int idle_cpu(int cpu);
fe7de49f
KM
2503extern int sched_setscheduler(struct task_struct *, int,
2504 const struct sched_param *);
961ccddd 2505extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2506 const struct sched_param *);
d50dde5a
DF
2507extern int sched_setattr(struct task_struct *,
2508 const struct sched_attr *);
36c8b586 2509extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2510/**
2511 * is_idle_task - is the specified task an idle task?
fa757281 2512 * @p: the task in question.
e69f6186
YB
2513 *
2514 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2515 */
7061ca3b 2516static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2517{
2518 return p->pid == 0;
2519}
36c8b586
IM
2520extern struct task_struct *curr_task(int cpu);
2521extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2522
2523void yield(void);
2524
1da177e4
LT
2525union thread_union {
2526 struct thread_info thread_info;
2527 unsigned long stack[THREAD_SIZE/sizeof(long)];
2528};
2529
2530#ifndef __HAVE_ARCH_KSTACK_END
2531static inline int kstack_end(void *addr)
2532{
2533 /* Reliable end of stack detection:
2534 * Some APM bios versions misalign the stack
2535 */
2536 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2537}
2538#endif
2539
2540extern union thread_union init_thread_union;
2541extern struct task_struct init_task;
2542
2543extern struct mm_struct init_mm;
2544
198fe21b
PE
2545extern struct pid_namespace init_pid_ns;
2546
2547/*
2548 * find a task by one of its numerical ids
2549 *
198fe21b
PE
2550 * find_task_by_pid_ns():
2551 * finds a task by its pid in the specified namespace
228ebcbe
PE
2552 * find_task_by_vpid():
2553 * finds a task by its virtual pid
198fe21b 2554 *
e49859e7 2555 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2556 */
2557
228ebcbe
PE
2558extern struct task_struct *find_task_by_vpid(pid_t nr);
2559extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2560 struct pid_namespace *ns);
198fe21b 2561
1da177e4 2562/* per-UID process charging. */
7b44ab97 2563extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2564static inline struct user_struct *get_uid(struct user_struct *u)
2565{
2566 atomic_inc(&u->__count);
2567 return u;
2568}
2569extern void free_uid(struct user_struct *);
1da177e4
LT
2570
2571#include <asm/current.h>
2572
f0af911a 2573extern void xtime_update(unsigned long ticks);
1da177e4 2574
b3c97528
HH
2575extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2576extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2577extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2578#ifdef CONFIG_SMP
2579 extern void kick_process(struct task_struct *tsk);
2580#else
2581 static inline void kick_process(struct task_struct *tsk) { }
2582#endif
aab03e05 2583extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2584extern void sched_dead(struct task_struct *p);
1da177e4 2585
1da177e4
LT
2586extern void proc_caches_init(void);
2587extern void flush_signals(struct task_struct *);
10ab825b 2588extern void ignore_signals(struct task_struct *);
1da177e4
LT
2589extern void flush_signal_handlers(struct task_struct *, int force_default);
2590extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2591
be0e6f29 2592static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2593{
be0e6f29
ON
2594 struct task_struct *tsk = current;
2595 siginfo_t __info;
1da177e4
LT
2596 int ret;
2597
be0e6f29
ON
2598 spin_lock_irq(&tsk->sighand->siglock);
2599 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2600 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2601
2602 return ret;
53c8f9f1 2603}
1da177e4 2604
9a13049e
ON
2605static inline void kernel_signal_stop(void)
2606{
2607 spin_lock_irq(&current->sighand->siglock);
2608 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2609 __set_current_state(TASK_STOPPED);
2610 spin_unlock_irq(&current->sighand->siglock);
2611
2612 schedule();
2613}
2614
1da177e4
LT
2615extern void release_task(struct task_struct * p);
2616extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2617extern int force_sigsegv(int, struct task_struct *);
2618extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2619extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2620extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2621extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2622 const struct cred *, u32);
c4b92fc1
EB
2623extern int kill_pgrp(struct pid *pid, int sig, int priv);
2624extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2625extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2626extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2627extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2628extern void force_sig(int, struct task_struct *);
1da177e4 2629extern int send_sig(int, struct task_struct *, int);
09faef11 2630extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2631extern struct sigqueue *sigqueue_alloc(void);
2632extern void sigqueue_free(struct sigqueue *);
ac5c2153 2633extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2634extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2635
51a7b448
AV
2636static inline void restore_saved_sigmask(void)
2637{
2638 if (test_and_clear_restore_sigmask())
77097ae5 2639 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2640}
2641
b7f9a11a
AV
2642static inline sigset_t *sigmask_to_save(void)
2643{
2644 sigset_t *res = &current->blocked;
2645 if (unlikely(test_restore_sigmask()))
2646 res = &current->saved_sigmask;
2647 return res;
2648}
2649
9ec52099
CLG
2650static inline int kill_cad_pid(int sig, int priv)
2651{
2652 return kill_pid(cad_pid, sig, priv);
2653}
2654
1da177e4
LT
2655/* These can be the second arg to send_sig_info/send_group_sig_info. */
2656#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2657#define SEND_SIG_PRIV ((struct siginfo *) 1)
2658#define SEND_SIG_FORCED ((struct siginfo *) 2)
2659
2a855dd0
SAS
2660/*
2661 * True if we are on the alternate signal stack.
2662 */
1da177e4
LT
2663static inline int on_sig_stack(unsigned long sp)
2664{
2a855dd0
SAS
2665#ifdef CONFIG_STACK_GROWSUP
2666 return sp >= current->sas_ss_sp &&
2667 sp - current->sas_ss_sp < current->sas_ss_size;
2668#else
2669 return sp > current->sas_ss_sp &&
2670 sp - current->sas_ss_sp <= current->sas_ss_size;
2671#endif
1da177e4
LT
2672}
2673
2674static inline int sas_ss_flags(unsigned long sp)
2675{
72f15c03
RW
2676 if (!current->sas_ss_size)
2677 return SS_DISABLE;
2678
2679 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2680}
2681
5a1b98d3
AV
2682static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2683{
2684 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2685#ifdef CONFIG_STACK_GROWSUP
2686 return current->sas_ss_sp;
2687#else
2688 return current->sas_ss_sp + current->sas_ss_size;
2689#endif
2690 return sp;
2691}
2692
1da177e4
LT
2693/*
2694 * Routines for handling mm_structs
2695 */
2696extern struct mm_struct * mm_alloc(void);
2697
2698/* mmdrop drops the mm and the page tables */
b3c97528 2699extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2700static inline void mmdrop(struct mm_struct * mm)
2701{
6fb43d7b 2702 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2703 __mmdrop(mm);
2704}
2705
2706/* mmput gets rid of the mappings and all user-space */
2707extern void mmput(struct mm_struct *);
2708/* Grab a reference to a task's mm, if it is not already going away */
2709extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2710/*
2711 * Grab a reference to a task's mm, if it is not already going away
2712 * and ptrace_may_access with the mode parameter passed to it
2713 * succeeds.
2714 */
2715extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2716/* Remove the current tasks stale references to the old mm_struct */
2717extern void mm_release(struct task_struct *, struct mm_struct *);
2718
3033f14a
JT
2719#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2720extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2721 struct task_struct *, unsigned long);
2722#else
6f2c55b8 2723extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2724 struct task_struct *);
3033f14a
JT
2725
2726/* Architectures that haven't opted into copy_thread_tls get the tls argument
2727 * via pt_regs, so ignore the tls argument passed via C. */
2728static inline int copy_thread_tls(
2729 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2730 struct task_struct *p, unsigned long tls)
2731{
2732 return copy_thread(clone_flags, sp, arg, p);
2733}
2734#endif
1da177e4
LT
2735extern void flush_thread(void);
2736extern void exit_thread(void);
2737
1da177e4 2738extern void exit_files(struct task_struct *);
a7e5328a 2739extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2740
1da177e4 2741extern void exit_itimers(struct signal_struct *);
cbaffba1 2742extern void flush_itimer_signals(void);
1da177e4 2743
9402c95f 2744extern void do_group_exit(int);
1da177e4 2745
c4ad8f98 2746extern int do_execve(struct filename *,
d7627467 2747 const char __user * const __user *,
da3d4c5f 2748 const char __user * const __user *);
51f39a1f
DD
2749extern int do_execveat(int, struct filename *,
2750 const char __user * const __user *,
2751 const char __user * const __user *,
2752 int);
3033f14a 2753extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2754extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2755struct task_struct *fork_idle(int);
2aa3a7f8 2756extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2757
82b89778
AH
2758extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2759static inline void set_task_comm(struct task_struct *tsk, const char *from)
2760{
2761 __set_task_comm(tsk, from, false);
2762}
59714d65 2763extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2764
2765#ifdef CONFIG_SMP
317f3941 2766void scheduler_ipi(void);
85ba2d86 2767extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2768#else
184748cc 2769static inline void scheduler_ipi(void) { }
85ba2d86
RM
2770static inline unsigned long wait_task_inactive(struct task_struct *p,
2771 long match_state)
2772{
2773 return 1;
2774}
1da177e4
LT
2775#endif
2776
fafe870f
FW
2777#define tasklist_empty() \
2778 list_empty(&init_task.tasks)
2779
05725f7e
JP
2780#define next_task(p) \
2781 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2782
2783#define for_each_process(p) \
2784 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2785
5bb459bb 2786extern bool current_is_single_threaded(void);
d84f4f99 2787
1da177e4
LT
2788/*
2789 * Careful: do_each_thread/while_each_thread is a double loop so
2790 * 'break' will not work as expected - use goto instead.
2791 */
2792#define do_each_thread(g, t) \
2793 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2794
2795#define while_each_thread(g, t) \
2796 while ((t = next_thread(t)) != g)
2797
0c740d0a
ON
2798#define __for_each_thread(signal, t) \
2799 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2800
2801#define for_each_thread(p, t) \
2802 __for_each_thread((p)->signal, t)
2803
2804/* Careful: this is a double loop, 'break' won't work as expected. */
2805#define for_each_process_thread(p, t) \
2806 for_each_process(p) for_each_thread(p, t)
2807
7e49827c
ON
2808static inline int get_nr_threads(struct task_struct *tsk)
2809{
b3ac022c 2810 return tsk->signal->nr_threads;
7e49827c
ON
2811}
2812
087806b1
ON
2813static inline bool thread_group_leader(struct task_struct *p)
2814{
2815 return p->exit_signal >= 0;
2816}
1da177e4 2817
0804ef4b
EB
2818/* Do to the insanities of de_thread it is possible for a process
2819 * to have the pid of the thread group leader without actually being
2820 * the thread group leader. For iteration through the pids in proc
2821 * all we care about is that we have a task with the appropriate
2822 * pid, we don't actually care if we have the right task.
2823 */
e1403b8e 2824static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2825{
e1403b8e 2826 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2827}
2828
bac0abd6 2829static inline
e1403b8e 2830bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2831{
e1403b8e 2832 return p1->signal == p2->signal;
bac0abd6
PE
2833}
2834
36c8b586 2835static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2836{
05725f7e
JP
2837 return list_entry_rcu(p->thread_group.next,
2838 struct task_struct, thread_group);
47e65328
ON
2839}
2840
e868171a 2841static inline int thread_group_empty(struct task_struct *p)
1da177e4 2842{
47e65328 2843 return list_empty(&p->thread_group);
1da177e4
LT
2844}
2845
2846#define delay_group_leader(p) \
2847 (thread_group_leader(p) && !thread_group_empty(p))
2848
1da177e4 2849/*
260ea101 2850 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2851 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2852 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2853 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2854 *
2855 * Nests both inside and outside of read_lock(&tasklist_lock).
2856 * It must not be nested with write_lock_irq(&tasklist_lock),
2857 * neither inside nor outside.
2858 */
2859static inline void task_lock(struct task_struct *p)
2860{
2861 spin_lock(&p->alloc_lock);
2862}
2863
2864static inline void task_unlock(struct task_struct *p)
2865{
2866 spin_unlock(&p->alloc_lock);
2867}
2868
b8ed374e 2869extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2870 unsigned long *flags);
2871
9388dc30
AV
2872static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2873 unsigned long *flags)
2874{
2875 struct sighand_struct *ret;
2876
2877 ret = __lock_task_sighand(tsk, flags);
2878 (void)__cond_lock(&tsk->sighand->siglock, ret);
2879 return ret;
2880}
b8ed374e 2881
f63ee72e
ON
2882static inline void unlock_task_sighand(struct task_struct *tsk,
2883 unsigned long *flags)
2884{
2885 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2886}
2887
77e4ef99 2888/**
7d7efec3
TH
2889 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2890 * @tsk: task causing the changes
77e4ef99 2891 *
7d7efec3
TH
2892 * All operations which modify a threadgroup - a new thread joining the
2893 * group, death of a member thread (the assertion of PF_EXITING) and
2894 * exec(2) dethreading the process and replacing the leader - are wrapped
2895 * by threadgroup_change_{begin|end}(). This is to provide a place which
2896 * subsystems needing threadgroup stability can hook into for
2897 * synchronization.
77e4ef99 2898 */
7d7efec3 2899static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2900{
7d7efec3
TH
2901 might_sleep();
2902 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2903}
77e4ef99
TH
2904
2905/**
7d7efec3
TH
2906 * threadgroup_change_end - mark the end of changes to a threadgroup
2907 * @tsk: task causing the changes
77e4ef99 2908 *
7d7efec3 2909 * See threadgroup_change_begin().
77e4ef99 2910 */
7d7efec3 2911static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2912{
7d7efec3 2913 cgroup_threadgroup_change_end(tsk);
4714d1d3 2914}
4714d1d3 2915
f037360f
AV
2916#ifndef __HAVE_THREAD_FUNCTIONS
2917
f7e4217b
RZ
2918#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2919#define task_stack_page(task) ((task)->stack)
a1261f54 2920
10ebffde
AV
2921static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2922{
2923 *task_thread_info(p) = *task_thread_info(org);
2924 task_thread_info(p)->task = p;
2925}
2926
6a40281a
CE
2927/*
2928 * Return the address of the last usable long on the stack.
2929 *
2930 * When the stack grows down, this is just above the thread
2931 * info struct. Going any lower will corrupt the threadinfo.
2932 *
2933 * When the stack grows up, this is the highest address.
2934 * Beyond that position, we corrupt data on the next page.
2935 */
10ebffde
AV
2936static inline unsigned long *end_of_stack(struct task_struct *p)
2937{
6a40281a
CE
2938#ifdef CONFIG_STACK_GROWSUP
2939 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2940#else
f7e4217b 2941 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2942#endif
10ebffde
AV
2943}
2944
f037360f 2945#endif
a70857e4
AT
2946#define task_stack_end_corrupted(task) \
2947 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2948
8b05c7e6
FT
2949static inline int object_is_on_stack(void *obj)
2950{
2951 void *stack = task_stack_page(current);
2952
2953 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2954}
2955
8c9843e5
BH
2956extern void thread_info_cache_init(void);
2957
7c9f8861
ES
2958#ifdef CONFIG_DEBUG_STACK_USAGE
2959static inline unsigned long stack_not_used(struct task_struct *p)
2960{
2961 unsigned long *n = end_of_stack(p);
2962
2963 do { /* Skip over canary */
6c31da34
HD
2964# ifdef CONFIG_STACK_GROWSUP
2965 n--;
2966# else
7c9f8861 2967 n++;
6c31da34 2968# endif
7c9f8861
ES
2969 } while (!*n);
2970
6c31da34
HD
2971# ifdef CONFIG_STACK_GROWSUP
2972 return (unsigned long)end_of_stack(p) - (unsigned long)n;
2973# else
7c9f8861 2974 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 2975# endif
7c9f8861
ES
2976}
2977#endif
d4311ff1 2978extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2979
1da177e4
LT
2980/* set thread flags in other task's structures
2981 * - see asm/thread_info.h for TIF_xxxx flags available
2982 */
2983static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2984{
a1261f54 2985 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2986}
2987
2988static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2989{
a1261f54 2990 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2991}
2992
2993static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2994{
a1261f54 2995 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2996}
2997
2998static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2999{
a1261f54 3000 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3001}
3002
3003static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3004{
a1261f54 3005 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3006}
3007
3008static inline void set_tsk_need_resched(struct task_struct *tsk)
3009{
3010 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3011}
3012
3013static inline void clear_tsk_need_resched(struct task_struct *tsk)
3014{
3015 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3016}
3017
8ae121ac
GH
3018static inline int test_tsk_need_resched(struct task_struct *tsk)
3019{
3020 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3021}
3022
690cc3ff
EB
3023static inline int restart_syscall(void)
3024{
3025 set_tsk_thread_flag(current, TIF_SIGPENDING);
3026 return -ERESTARTNOINTR;
3027}
3028
1da177e4
LT
3029static inline int signal_pending(struct task_struct *p)
3030{
3031 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3032}
f776d12d 3033
d9588725
RM
3034static inline int __fatal_signal_pending(struct task_struct *p)
3035{
3036 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3037}
f776d12d
MW
3038
3039static inline int fatal_signal_pending(struct task_struct *p)
3040{
3041 return signal_pending(p) && __fatal_signal_pending(p);
3042}
3043
16882c1e
ON
3044static inline int signal_pending_state(long state, struct task_struct *p)
3045{
3046 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3047 return 0;
3048 if (!signal_pending(p))
3049 return 0;
3050
16882c1e
ON
3051 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3052}
3053
1da177e4
LT
3054/*
3055 * cond_resched() and cond_resched_lock(): latency reduction via
3056 * explicit rescheduling in places that are safe. The return
3057 * value indicates whether a reschedule was done in fact.
3058 * cond_resched_lock() will drop the spinlock before scheduling,
3059 * cond_resched_softirq() will enable bhs before scheduling.
3060 */
c3921ab7 3061extern int _cond_resched(void);
6f80bd98 3062
613afbf8 3063#define cond_resched() ({ \
3427445a 3064 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3065 _cond_resched(); \
3066})
6f80bd98 3067
613afbf8
FW
3068extern int __cond_resched_lock(spinlock_t *lock);
3069
3070#define cond_resched_lock(lock) ({ \
3427445a 3071 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3072 __cond_resched_lock(lock); \
3073})
3074
3075extern int __cond_resched_softirq(void);
3076
75e1056f 3077#define cond_resched_softirq() ({ \
3427445a 3078 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3079 __cond_resched_softirq(); \
613afbf8 3080})
1da177e4 3081
f6f3c437
SH
3082static inline void cond_resched_rcu(void)
3083{
3084#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3085 rcu_read_unlock();
3086 cond_resched();
3087 rcu_read_lock();
3088#endif
3089}
3090
1da177e4
LT
3091/*
3092 * Does a critical section need to be broken due to another
95c354fe
NP
3093 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3094 * but a general need for low latency)
1da177e4 3095 */
95c354fe 3096static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3097{
95c354fe
NP
3098#ifdef CONFIG_PREEMPT
3099 return spin_is_contended(lock);
3100#else
1da177e4 3101 return 0;
95c354fe 3102#endif
1da177e4
LT
3103}
3104
ee761f62
TG
3105/*
3106 * Idle thread specific functions to determine the need_resched
69dd0f84 3107 * polling state.
ee761f62 3108 */
69dd0f84 3109#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3110static inline int tsk_is_polling(struct task_struct *p)
3111{
3112 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3113}
ea811747
PZ
3114
3115static inline void __current_set_polling(void)
3a98f871
TG
3116{
3117 set_thread_flag(TIF_POLLING_NRFLAG);
3118}
3119
ea811747
PZ
3120static inline bool __must_check current_set_polling_and_test(void)
3121{
3122 __current_set_polling();
3123
3124 /*
3125 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3126 * paired by resched_curr()
ea811747 3127 */
4e857c58 3128 smp_mb__after_atomic();
ea811747
PZ
3129
3130 return unlikely(tif_need_resched());
3131}
3132
3133static inline void __current_clr_polling(void)
3a98f871
TG
3134{
3135 clear_thread_flag(TIF_POLLING_NRFLAG);
3136}
ea811747
PZ
3137
3138static inline bool __must_check current_clr_polling_and_test(void)
3139{
3140 __current_clr_polling();
3141
3142 /*
3143 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3144 * paired by resched_curr()
ea811747 3145 */
4e857c58 3146 smp_mb__after_atomic();
ea811747
PZ
3147
3148 return unlikely(tif_need_resched());
3149}
3150
ee761f62
TG
3151#else
3152static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3153static inline void __current_set_polling(void) { }
3154static inline void __current_clr_polling(void) { }
3155
3156static inline bool __must_check current_set_polling_and_test(void)
3157{
3158 return unlikely(tif_need_resched());
3159}
3160static inline bool __must_check current_clr_polling_and_test(void)
3161{
3162 return unlikely(tif_need_resched());
3163}
ee761f62
TG
3164#endif
3165
8cb75e0c
PZ
3166static inline void current_clr_polling(void)
3167{
3168 __current_clr_polling();
3169
3170 /*
3171 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3172 * Once the bit is cleared, we'll get IPIs with every new
3173 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3174 * fold.
3175 */
8875125e 3176 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3177
3178 preempt_fold_need_resched();
3179}
3180
75f93fed
PZ
3181static __always_inline bool need_resched(void)
3182{
3183 return unlikely(tif_need_resched());
3184}
3185
f06febc9
FM
3186/*
3187 * Thread group CPU time accounting.
3188 */
4cd4c1b4 3189void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3190void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3191
7bb44ade
RM
3192/*
3193 * Reevaluate whether the task has signals pending delivery.
3194 * Wake the task if so.
3195 * This is required every time the blocked sigset_t changes.
3196 * callers must hold sighand->siglock.
3197 */
3198extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3199extern void recalc_sigpending(void);
3200
910ffdb1
ON
3201extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3202
3203static inline void signal_wake_up(struct task_struct *t, bool resume)
3204{
3205 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3206}
3207static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3208{
3209 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3210}
1da177e4
LT
3211
3212/*
3213 * Wrappers for p->thread_info->cpu access. No-op on UP.
3214 */
3215#ifdef CONFIG_SMP
3216
3217static inline unsigned int task_cpu(const struct task_struct *p)
3218{
a1261f54 3219 return task_thread_info(p)->cpu;
1da177e4
LT
3220}
3221
b32e86b4
IM
3222static inline int task_node(const struct task_struct *p)
3223{
3224 return cpu_to_node(task_cpu(p));
3225}
3226
c65cc870 3227extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3228
3229#else
3230
3231static inline unsigned int task_cpu(const struct task_struct *p)
3232{
3233 return 0;
3234}
3235
3236static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3237{
3238}
3239
3240#endif /* CONFIG_SMP */
3241
96f874e2
RR
3242extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3243extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3244
7c941438 3245#ifdef CONFIG_CGROUP_SCHED
07e06b01 3246extern struct task_group root_task_group;
8323f26c 3247#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3248
54e99124
DG
3249extern int task_can_switch_user(struct user_struct *up,
3250 struct task_struct *tsk);
3251
4b98d11b
AD
3252#ifdef CONFIG_TASK_XACCT
3253static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3254{
940389b8 3255 tsk->ioac.rchar += amt;
4b98d11b
AD
3256}
3257
3258static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3259{
940389b8 3260 tsk->ioac.wchar += amt;
4b98d11b
AD
3261}
3262
3263static inline void inc_syscr(struct task_struct *tsk)
3264{
940389b8 3265 tsk->ioac.syscr++;
4b98d11b
AD
3266}
3267
3268static inline void inc_syscw(struct task_struct *tsk)
3269{
940389b8 3270 tsk->ioac.syscw++;
4b98d11b
AD
3271}
3272#else
3273static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3274{
3275}
3276
3277static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3278{
3279}
3280
3281static inline void inc_syscr(struct task_struct *tsk)
3282{
3283}
3284
3285static inline void inc_syscw(struct task_struct *tsk)
3286{
3287}
3288#endif
3289
82455257
DH
3290#ifndef TASK_SIZE_OF
3291#define TASK_SIZE_OF(tsk) TASK_SIZE
3292#endif
3293
f98bafa0 3294#ifdef CONFIG_MEMCG
cf475ad2 3295extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3296#else
3297static inline void mm_update_next_owner(struct mm_struct *mm)
3298{
3299}
f98bafa0 3300#endif /* CONFIG_MEMCG */
cf475ad2 3301
3e10e716
JS
3302static inline unsigned long task_rlimit(const struct task_struct *tsk,
3303 unsigned int limit)
3304{
316c1608 3305 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3306}
3307
3308static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3309 unsigned int limit)
3310{
316c1608 3311 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3312}
3313
3314static inline unsigned long rlimit(unsigned int limit)
3315{
3316 return task_rlimit(current, limit);
3317}
3318
3319static inline unsigned long rlimit_max(unsigned int limit)
3320{
3321 return task_rlimit_max(current, limit);
3322}
3323
adaf9fcd
RW
3324#ifdef CONFIG_CPU_FREQ
3325struct update_util_data {
3326 void (*func)(struct update_util_data *data,
3327 u64 time, unsigned long util, unsigned long max);
3328};
3329
3330void cpufreq_set_update_util_data(int cpu, struct update_util_data *data);
3331#endif /* CONFIG_CPU_FREQ */
3332
1da177e4 3333#endif
This page took 2.067267 seconds and 5 git commands to generate.