mm, slab_common: add 'unlikely' to size check of kmalloc_slab()
[deliverable/linux.git] / include / linux / slab.h
CommitLineData
1da177e4 1/*
2e892f43
CL
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
cde53535 4 * (C) SGI 2006, Christoph Lameter
2e892f43
CL
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
1da177e4
LT
7 */
8
9#ifndef _LINUX_SLAB_H
10#define _LINUX_SLAB_H
11
1b1cec4b 12#include <linux/gfp.h>
1b1cec4b 13#include <linux/types.h>
1f458cbf
GC
14#include <linux/workqueue.h>
15
1da177e4 16
2e892f43
CL
17/*
18 * Flags to pass to kmem_cache_create().
19 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
1da177e4 20 */
55935a34 21#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
55935a34
CL
22#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
23#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
24#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
2e892f43 25#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
2e892f43 26#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
2e892f43 27#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
d7de4c1d
PZ
28/*
29 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
30 *
31 * This delays freeing the SLAB page by a grace period, it does _NOT_
32 * delay object freeing. This means that if you do kmem_cache_free()
33 * that memory location is free to be reused at any time. Thus it may
34 * be possible to see another object there in the same RCU grace period.
35 *
36 * This feature only ensures the memory location backing the object
37 * stays valid, the trick to using this is relying on an independent
38 * object validation pass. Something like:
39 *
40 * rcu_read_lock()
41 * again:
42 * obj = lockless_lookup(key);
43 * if (obj) {
44 * if (!try_get_ref(obj)) // might fail for free objects
45 * goto again;
46 *
47 * if (obj->key != key) { // not the object we expected
48 * put_ref(obj);
49 * goto again;
50 * }
51 * }
52 * rcu_read_unlock();
53 *
54 * See also the comment on struct slab_rcu in mm/slab.c.
55 */
2e892f43 56#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
101a5001 57#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
81819f0f 58#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
1da177e4 59
30327acf
TG
60/* Flag to prevent checks on free */
61#ifdef CONFIG_DEBUG_OBJECTS
62# define SLAB_DEBUG_OBJECTS 0x00400000UL
63#else
64# define SLAB_DEBUG_OBJECTS 0x00000000UL
65#endif
66
d5cff635
CM
67#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
68
2dff4405
VN
69/* Don't track use of uninitialized memory */
70#ifdef CONFIG_KMEMCHECK
71# define SLAB_NOTRACK 0x01000000UL
72#else
73# define SLAB_NOTRACK 0x00000000UL
74#endif
4c13dd3b
DM
75#ifdef CONFIG_FAILSLAB
76# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
77#else
78# define SLAB_FAILSLAB 0x00000000UL
79#endif
2dff4405 80
e12ba74d
MG
81/* The following flags affect the page allocator grouping pages by mobility */
82#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
83#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
6cb8f913
CL
84/*
85 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
86 *
87 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
88 *
89 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
90 * Both make kfree a no-op.
91 */
92#define ZERO_SIZE_PTR ((void *)16)
93
1d4ec7b1 94#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
6cb8f913
CL
95 (unsigned long)ZERO_SIZE_PTR)
96
3b0efdfa 97
2633d7a0 98struct mem_cgroup;
2e892f43
CL
99/*
100 * struct kmem_cache related prototypes
101 */
102void __init kmem_cache_init(void);
81819f0f 103int slab_is_available(void);
1da177e4 104
2e892f43 105struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
ebe29738 106 unsigned long,
51cc5068 107 void (*)(void *));
2633d7a0
GC
108struct kmem_cache *
109kmem_cache_create_memcg(struct mem_cgroup *, const char *, size_t, size_t,
943a451a 110 unsigned long, void (*)(void *), struct kmem_cache *);
2e892f43
CL
111void kmem_cache_destroy(struct kmem_cache *);
112int kmem_cache_shrink(struct kmem_cache *);
2e892f43 113void kmem_cache_free(struct kmem_cache *, void *);
2e892f43 114
0a31bd5f
CL
115/*
116 * Please use this macro to create slab caches. Simply specify the
117 * name of the structure and maybe some flags that are listed above.
118 *
119 * The alignment of the struct determines object alignment. If you
120 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
121 * then the objects will be properly aligned in SMP configurations.
122 */
123#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
124 sizeof(struct __struct), __alignof__(struct __struct),\
20c2df83 125 (__flags), NULL)
0a31bd5f 126
34504667
CL
127/*
128 * Common kmalloc functions provided by all allocators
129 */
130void * __must_check __krealloc(const void *, size_t, gfp_t);
131void * __must_check krealloc(const void *, size_t, gfp_t);
132void kfree(const void *);
133void kzfree(const void *);
134size_t ksize(const void *);
135
c601fd69
CL
136/*
137 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
138 * alignment larger than the alignment of a 64-bit integer.
139 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
140 */
141#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
142#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
143#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
144#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
145#else
146#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
147#endif
148
ce6a5026
CL
149#ifdef CONFIG_SLOB
150/*
151 * Common fields provided in kmem_cache by all slab allocators
152 * This struct is either used directly by the allocator (SLOB)
153 * or the allocator must include definitions for all fields
154 * provided in kmem_cache_common in their definition of kmem_cache.
155 *
156 * Once we can do anonymous structs (C11 standard) we could put a
157 * anonymous struct definition in these allocators so that the
158 * separate allocations in the kmem_cache structure of SLAB and
159 * SLUB is no longer needed.
160 */
161struct kmem_cache {
162 unsigned int object_size;/* The original size of the object */
163 unsigned int size; /* The aligned/padded/added on size */
164 unsigned int align; /* Alignment as calculated */
165 unsigned long flags; /* Active flags on the slab */
166 const char *name; /* Slab name for sysfs */
167 int refcount; /* Use counter */
168 void (*ctor)(void *); /* Called on object slot creation */
169 struct list_head list; /* List of all slab caches on the system */
170};
171
069e2b35 172#endif /* CONFIG_SLOB */
ce6a5026 173
0aa817f0 174/*
95a05b42
CL
175 * Kmalloc array related definitions
176 */
177
178#ifdef CONFIG_SLAB
179/*
180 * The largest kmalloc size supported by the SLAB allocators is
0aa817f0
CL
181 * 32 megabyte (2^25) or the maximum allocatable page order if that is
182 * less than 32 MB.
183 *
184 * WARNING: Its not easy to increase this value since the allocators have
185 * to do various tricks to work around compiler limitations in order to
186 * ensure proper constant folding.
187 */
debee076
CL
188#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
189 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
95a05b42 190#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
c601fd69 191#ifndef KMALLOC_SHIFT_LOW
95a05b42 192#define KMALLOC_SHIFT_LOW 5
c601fd69 193#endif
069e2b35
CL
194#endif
195
196#ifdef CONFIG_SLUB
95a05b42
CL
197/*
198 * SLUB allocates up to order 2 pages directly and otherwise
199 * passes the request to the page allocator.
200 */
201#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
202#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
c601fd69 203#ifndef KMALLOC_SHIFT_LOW
95a05b42
CL
204#define KMALLOC_SHIFT_LOW 3
205#endif
c601fd69 206#endif
0aa817f0 207
069e2b35
CL
208#ifdef CONFIG_SLOB
209/*
210 * SLOB passes all page size and larger requests to the page allocator.
211 * No kmalloc array is necessary since objects of different sizes can
212 * be allocated from the same page.
213 */
214#define KMALLOC_SHIFT_MAX 30
215#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
216#ifndef KMALLOC_SHIFT_LOW
217#define KMALLOC_SHIFT_LOW 3
218#endif
219#endif
220
95a05b42
CL
221/* Maximum allocatable size */
222#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
223/* Maximum size for which we actually use a slab cache */
224#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
225/* Maximum order allocatable via the slab allocagtor */
226#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
0aa817f0 227
ce6a5026
CL
228/*
229 * Kmalloc subsystem.
230 */
c601fd69 231#ifndef KMALLOC_MIN_SIZE
95a05b42 232#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
ce6a5026
CL
233#endif
234
069e2b35 235#ifndef CONFIG_SLOB
9425c58e
CL
236extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
237#ifdef CONFIG_ZONE_DMA
238extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
239#endif
240
ce6a5026
CL
241/*
242 * Figure out which kmalloc slab an allocation of a certain size
243 * belongs to.
244 * 0 = zero alloc
245 * 1 = 65 .. 96 bytes
246 * 2 = 120 .. 192 bytes
247 * n = 2^(n-1) .. 2^n -1
248 */
249static __always_inline int kmalloc_index(size_t size)
250{
251 if (!size)
252 return 0;
253
254 if (size <= KMALLOC_MIN_SIZE)
255 return KMALLOC_SHIFT_LOW;
256
257 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
258 return 1;
259 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
260 return 2;
261 if (size <= 8) return 3;
262 if (size <= 16) return 4;
263 if (size <= 32) return 5;
264 if (size <= 64) return 6;
265 if (size <= 128) return 7;
266 if (size <= 256) return 8;
267 if (size <= 512) return 9;
268 if (size <= 1024) return 10;
269 if (size <= 2 * 1024) return 11;
270 if (size <= 4 * 1024) return 12;
271 if (size <= 8 * 1024) return 13;
272 if (size <= 16 * 1024) return 14;
273 if (size <= 32 * 1024) return 15;
274 if (size <= 64 * 1024) return 16;
275 if (size <= 128 * 1024) return 17;
276 if (size <= 256 * 1024) return 18;
277 if (size <= 512 * 1024) return 19;
278 if (size <= 1024 * 1024) return 20;
279 if (size <= 2 * 1024 * 1024) return 21;
280 if (size <= 4 * 1024 * 1024) return 22;
281 if (size <= 8 * 1024 * 1024) return 23;
282 if (size <= 16 * 1024 * 1024) return 24;
283 if (size <= 32 * 1024 * 1024) return 25;
284 if (size <= 64 * 1024 * 1024) return 26;
285 BUG();
286
287 /* Will never be reached. Needed because the compiler may complain */
288 return -1;
289}
069e2b35 290#endif /* !CONFIG_SLOB */
ce6a5026
CL
291
292#ifdef CONFIG_SLAB
293#include <linux/slab_def.h>
069e2b35
CL
294#endif
295
296#ifdef CONFIG_SLUB
ce6a5026 297#include <linux/slub_def.h>
069e2b35
CL
298#endif
299
300#ifdef CONFIG_SLOB
301#include <linux/slob_def.h>
ce6a5026
CL
302#endif
303
304/*
305 * Determine size used for the nth kmalloc cache.
306 * return size or 0 if a kmalloc cache for that
307 * size does not exist
308 */
309static __always_inline int kmalloc_size(int n)
310{
069e2b35 311#ifndef CONFIG_SLOB
ce6a5026
CL
312 if (n > 2)
313 return 1 << n;
314
315 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
316 return 96;
317
318 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
319 return 192;
069e2b35 320#endif
ce6a5026
CL
321 return 0;
322}
ce6a5026 323
90810645
CL
324/*
325 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
326 * Intended for arches that get misalignment faults even for 64 bit integer
327 * aligned buffers.
328 */
3192b920
CL
329#ifndef ARCH_SLAB_MINALIGN
330#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
331#endif
ba6c496e
GC
332/*
333 * This is the main placeholder for memcg-related information in kmem caches.
334 * struct kmem_cache will hold a pointer to it, so the memory cost while
335 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
336 * would otherwise be if that would be bundled in kmem_cache: we'll need an
337 * extra pointer chase. But the trade off clearly lays in favor of not
338 * penalizing non-users.
339 *
340 * Both the root cache and the child caches will have it. For the root cache,
341 * this will hold a dynamically allocated array large enough to hold
342 * information about the currently limited memcgs in the system.
343 *
344 * Child caches will hold extra metadata needed for its operation. Fields are:
345 *
346 * @memcg: pointer to the memcg this cache belongs to
2633d7a0
GC
347 * @list: list_head for the list of all caches in this memcg
348 * @root_cache: pointer to the global, root cache, this cache was derived from
1f458cbf
GC
349 * @dead: set to true after the memcg dies; the cache may still be around.
350 * @nr_pages: number of pages that belongs to this cache.
351 * @destroy: worker to be called whenever we are ready, or believe we may be
352 * ready, to destroy this cache.
ba6c496e
GC
353 */
354struct memcg_cache_params {
355 bool is_root_cache;
356 union {
357 struct kmem_cache *memcg_caches[0];
2633d7a0
GC
358 struct {
359 struct mem_cgroup *memcg;
360 struct list_head list;
361 struct kmem_cache *root_cache;
1f458cbf
GC
362 bool dead;
363 atomic_t nr_pages;
364 struct work_struct destroy;
2633d7a0 365 };
ba6c496e
GC
366 };
367};
368
2633d7a0
GC
369int memcg_update_all_caches(int num_memcgs);
370
749c5415
GC
371struct seq_file;
372int cache_show(struct kmem_cache *s, struct seq_file *m);
373void print_slabinfo_header(struct seq_file *m);
374
2e892f43 375/**
e7efa615
MO
376 * kmalloc - allocate memory
377 * @size: how many bytes of memory are required.
2e892f43 378 * @flags: the type of memory to allocate.
800590f5
PD
379 *
380 * The @flags argument may be one of:
381 *
382 * %GFP_USER - Allocate memory on behalf of user. May sleep.
383 *
384 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
385 *
6193a2ff 386 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
800590f5
PD
387 * For example, use this inside interrupt handlers.
388 *
389 * %GFP_HIGHUSER - Allocate pages from high memory.
390 *
391 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
392 *
393 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
394 *
6193a2ff
PM
395 * %GFP_NOWAIT - Allocation will not sleep.
396 *
397 * %GFP_THISNODE - Allocate node-local memory only.
398 *
399 * %GFP_DMA - Allocation suitable for DMA.
400 * Should only be used for kmalloc() caches. Otherwise, use a
401 * slab created with SLAB_DMA.
402 *
800590f5
PD
403 * Also it is possible to set different flags by OR'ing
404 * in one or more of the following additional @flags:
405 *
406 * %__GFP_COLD - Request cache-cold pages instead of
407 * trying to return cache-warm pages.
408 *
800590f5
PD
409 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
410 *
800590f5
PD
411 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
412 * (think twice before using).
413 *
414 * %__GFP_NORETRY - If memory is not immediately available,
415 * then give up at once.
416 *
417 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
418 *
419 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
6193a2ff
PM
420 *
421 * There are other flags available as well, but these are not intended
422 * for general use, and so are not documented here. For a full list of
423 * potential flags, always refer to linux/gfp.h.
e7efa615
MO
424 *
425 * kmalloc is the normal method of allocating memory
426 * in the kernel.
427 */
428static __always_inline void *kmalloc(size_t size, gfp_t flags);
429
430/**
431 * kmalloc_array - allocate memory for an array.
432 * @n: number of elements.
433 * @size: element size.
434 * @flags: the type of memory to allocate (see kmalloc).
800590f5 435 */
a8203725 436static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
1da177e4 437{
a3860c1c 438 if (size != 0 && n > SIZE_MAX / size)
6193a2ff 439 return NULL;
a8203725
XW
440 return __kmalloc(n * size, flags);
441}
442
443/**
444 * kcalloc - allocate memory for an array. The memory is set to zero.
445 * @n: number of elements.
446 * @size: element size.
447 * @flags: the type of memory to allocate (see kmalloc).
448 */
449static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
450{
451 return kmalloc_array(n, size, flags | __GFP_ZERO);
1da177e4
LT
452}
453
6193a2ff
PM
454#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
455/**
456 * kmalloc_node - allocate memory from a specific node
457 * @size: how many bytes of memory are required.
e7efa615 458 * @flags: the type of memory to allocate (see kmalloc).
6193a2ff
PM
459 * @node: node to allocate from.
460 *
461 * kmalloc() for non-local nodes, used to allocate from a specific node
462 * if available. Equivalent to kmalloc() in the non-NUMA single-node
463 * case.
464 */
55935a34
CL
465static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
466{
467 return kmalloc(size, flags);
468}
469
470static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
471{
472 return __kmalloc(size, flags);
473}
6193a2ff
PM
474
475void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
476
477static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
478 gfp_t flags, int node)
479{
480 return kmem_cache_alloc(cachep, flags);
481}
482#endif /* !CONFIG_NUMA && !CONFIG_SLOB */
55935a34 483
1d2c8eea
CH
484/*
485 * kmalloc_track_caller is a special version of kmalloc that records the
486 * calling function of the routine calling it for slab leak tracking instead
487 * of just the calling function (confusing, eh?).
488 * It's useful when the call to kmalloc comes from a widely-used standard
489 * allocator where we care about the real place the memory allocation
490 * request comes from.
491 */
7adde04a 492#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
f3f74101
EG
493 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
494 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
ce71e27c 495extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
1d2c8eea 496#define kmalloc_track_caller(size, flags) \
ce71e27c 497 __kmalloc_track_caller(size, flags, _RET_IP_)
2e892f43
CL
498#else
499#define kmalloc_track_caller(size, flags) \
500 __kmalloc(size, flags)
501#endif /* DEBUG_SLAB */
1da177e4 502
97e2bde4 503#ifdef CONFIG_NUMA
8b98c169
CH
504/*
505 * kmalloc_node_track_caller is a special version of kmalloc_node that
506 * records the calling function of the routine calling it for slab leak
507 * tracking instead of just the calling function (confusing, eh?).
508 * It's useful when the call to kmalloc_node comes from a widely-used
509 * standard allocator where we care about the real place the memory
510 * allocation request comes from.
511 */
7adde04a 512#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
f3f74101
EG
513 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
514 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
ce71e27c 515extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
8b98c169
CH
516#define kmalloc_node_track_caller(size, flags, node) \
517 __kmalloc_node_track_caller(size, flags, node, \
ce71e27c 518 _RET_IP_)
2e892f43
CL
519#else
520#define kmalloc_node_track_caller(size, flags, node) \
521 __kmalloc_node(size, flags, node)
8b98c169 522#endif
2e892f43 523
8b98c169 524#else /* CONFIG_NUMA */
8b98c169
CH
525
526#define kmalloc_node_track_caller(size, flags, node) \
527 kmalloc_track_caller(size, flags)
97e2bde4 528
dfcd3610 529#endif /* CONFIG_NUMA */
10cef602 530
81cda662
CL
531/*
532 * Shortcuts
533 */
534static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
535{
536 return kmem_cache_alloc(k, flags | __GFP_ZERO);
537}
538
539/**
540 * kzalloc - allocate memory. The memory is set to zero.
541 * @size: how many bytes of memory are required.
542 * @flags: the type of memory to allocate (see kmalloc).
543 */
544static inline void *kzalloc(size_t size, gfp_t flags)
545{
546 return kmalloc(size, flags | __GFP_ZERO);
547}
548
979b0fea
JL
549/**
550 * kzalloc_node - allocate zeroed memory from a particular memory node.
551 * @size: how many bytes of memory are required.
552 * @flags: the type of memory to allocate (see kmalloc).
553 * @node: memory node from which to allocate
554 */
555static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
556{
557 return kmalloc_node(size, flags | __GFP_ZERO, node);
558}
559
242860a4
EG
560/*
561 * Determine the size of a slab object
562 */
563static inline unsigned int kmem_cache_size(struct kmem_cache *s)
564{
565 return s->object_size;
566}
567
7e85ee0c
PE
568void __init kmem_cache_init_late(void);
569
1da177e4 570#endif /* _LINUX_SLAB_H */
This page took 1.068712 seconds and 5 git commands to generate.