Merge branches 'acpica-fixes', 'acpi-pci-fixes' and 'acpi-debug-fixes'
[deliverable/linux.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
c865f246
SK
54#include <net/ipv6.h>
55#include <net/ip.h>
301a721e
MB
56#include <linux/string.h>
57#include <linux/slab.h>
e2773c06 58
50174a7f 59#include <linux/if_link.h>
60063497 60#include <linux/atomic.h>
882214e2 61#include <linux/mmu_notifier.h>
e2773c06 62#include <asm/uaccess.h>
1da177e4 63
f0626710 64extern struct workqueue_struct *ib_wq;
14d3a3b2 65extern struct workqueue_struct *ib_comp_wq;
f0626710 66
1da177e4
LT
67union ib_gid {
68 u8 raw[16];
69 struct {
97f52eb4
SH
70 __be64 subnet_prefix;
71 __be64 interface_id;
1da177e4
LT
72 } global;
73};
74
e26be1bf
MS
75extern union ib_gid zgid;
76
b39ffa1d
MB
77enum ib_gid_type {
78 /* If link layer is Ethernet, this is RoCE V1 */
79 IB_GID_TYPE_IB = 0,
80 IB_GID_TYPE_ROCE = 0,
7766a99f 81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
82 IB_GID_TYPE_SIZE
83};
84
7ead4bcb 85#define ROCE_V2_UDP_DPORT 4791
03db3a2d 86struct ib_gid_attr {
b39ffa1d 87 enum ib_gid_type gid_type;
03db3a2d
MB
88 struct net_device *ndev;
89};
90
07ebafba
TT
91enum rdma_node_type {
92 /* IB values map to NodeInfo:NodeType. */
93 RDMA_NODE_IB_CA = 1,
94 RDMA_NODE_IB_SWITCH,
95 RDMA_NODE_IB_ROUTER,
180771a3
UM
96 RDMA_NODE_RNIC,
97 RDMA_NODE_USNIC,
5db5765e 98 RDMA_NODE_USNIC_UDP,
1da177e4
LT
99};
100
a0c1b2a3
EC
101enum {
102 /* set the local administered indication */
103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
104};
105
07ebafba
TT
106enum rdma_transport_type {
107 RDMA_TRANSPORT_IB,
180771a3 108 RDMA_TRANSPORT_IWARP,
248567f7
UM
109 RDMA_TRANSPORT_USNIC,
110 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
111};
112
6b90a6d6
MW
113enum rdma_protocol_type {
114 RDMA_PROTOCOL_IB,
115 RDMA_PROTOCOL_IBOE,
116 RDMA_PROTOCOL_IWARP,
117 RDMA_PROTOCOL_USNIC_UDP
118};
119
8385fd84
RD
120__attribute_const__ enum rdma_transport_type
121rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 122
c865f246
SK
123enum rdma_network_type {
124 RDMA_NETWORK_IB,
125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
126 RDMA_NETWORK_IPV4,
127 RDMA_NETWORK_IPV6
128};
129
130static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
131{
132 if (network_type == RDMA_NETWORK_IPV4 ||
133 network_type == RDMA_NETWORK_IPV6)
134 return IB_GID_TYPE_ROCE_UDP_ENCAP;
135
136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
137 return IB_GID_TYPE_IB;
138}
139
140static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
141 union ib_gid *gid)
142{
143 if (gid_type == IB_GID_TYPE_IB)
144 return RDMA_NETWORK_IB;
145
146 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
147 return RDMA_NETWORK_IPV4;
148 else
149 return RDMA_NETWORK_IPV6;
150}
151
a3f5adaf
EC
152enum rdma_link_layer {
153 IB_LINK_LAYER_UNSPECIFIED,
154 IB_LINK_LAYER_INFINIBAND,
155 IB_LINK_LAYER_ETHERNET,
156};
157
1da177e4 158enum ib_device_cap_flags {
7ca0bc53
LR
159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
162 IB_DEVICE_RAW_MULTI = (1 << 3),
163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
168 IB_DEVICE_INIT_TYPE = (1 << 9),
169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
172 IB_DEVICE_SRQ_RESIZE = (1 << 13),
173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
174
175 /*
176 * This device supports a per-device lkey or stag that can be
177 * used without performing a memory registration for the local
178 * memory. Note that ULPs should never check this flag, but
179 * instead of use the local_dma_lkey flag in the ib_pd structure,
180 * which will always contain a usable lkey.
181 */
7ca0bc53
LR
182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
184 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
185 /*
186 * Devices should set IB_DEVICE_UD_IP_SUM if they support
187 * insertion of UDP and TCP checksum on outgoing UD IPoIB
188 * messages and can verify the validity of checksum for
189 * incoming messages. Setting this flag implies that the
190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
191 */
7ca0bc53
LR
192 IB_DEVICE_UD_IP_CSUM = (1 << 18),
193 IB_DEVICE_UD_TSO = (1 << 19),
194 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
195
196 /*
197 * This device supports the IB "base memory management extension",
198 * which includes support for fast registrations (IB_WR_REG_MR,
199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
200 * also be set by any iWarp device which must support FRs to comply
201 * to the iWarp verbs spec. iWarp devices also support the
202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
203 * stag.
204 */
7ca0bc53
LR
205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
209 IB_DEVICE_RC_IP_CSUM = (1 << 25),
210 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
211 /*
212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
213 * support execution of WQEs that involve synchronization
214 * of I/O operations with single completion queue managed
215 * by hardware.
216 */
217 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4
MG
222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
1b01d335
SG
224};
225
226enum ib_signature_prot_cap {
227 IB_PROT_T10DIF_TYPE_1 = 1,
228 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
229 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
230};
231
232enum ib_signature_guard_cap {
233 IB_GUARD_T10DIF_CRC = 1,
234 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
235};
236
237enum ib_atomic_cap {
238 IB_ATOMIC_NONE,
239 IB_ATOMIC_HCA,
240 IB_ATOMIC_GLOB
241};
242
860f10a7
SG
243enum ib_odp_general_cap_bits {
244 IB_ODP_SUPPORT = 1 << 0,
245};
246
247enum ib_odp_transport_cap_bits {
248 IB_ODP_SUPPORT_SEND = 1 << 0,
249 IB_ODP_SUPPORT_RECV = 1 << 1,
250 IB_ODP_SUPPORT_WRITE = 1 << 2,
251 IB_ODP_SUPPORT_READ = 1 << 3,
252 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
253};
254
255struct ib_odp_caps {
256 uint64_t general_caps;
257 struct {
258 uint32_t rc_odp_caps;
259 uint32_t uc_odp_caps;
260 uint32_t ud_odp_caps;
261 } per_transport_caps;
262};
263
b9926b92
MB
264enum ib_cq_creation_flags {
265 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
8a06ce59 266 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
b9926b92
MB
267};
268
bcf4c1ea
MB
269struct ib_cq_init_attr {
270 unsigned int cqe;
271 int comp_vector;
272 u32 flags;
273};
274
1da177e4
LT
275struct ib_device_attr {
276 u64 fw_ver;
97f52eb4 277 __be64 sys_image_guid;
1da177e4
LT
278 u64 max_mr_size;
279 u64 page_size_cap;
280 u32 vendor_id;
281 u32 vendor_part_id;
282 u32 hw_ver;
283 int max_qp;
284 int max_qp_wr;
fb532d6a 285 u64 device_cap_flags;
1da177e4
LT
286 int max_sge;
287 int max_sge_rd;
288 int max_cq;
289 int max_cqe;
290 int max_mr;
291 int max_pd;
292 int max_qp_rd_atom;
293 int max_ee_rd_atom;
294 int max_res_rd_atom;
295 int max_qp_init_rd_atom;
296 int max_ee_init_rd_atom;
297 enum ib_atomic_cap atomic_cap;
5e80ba8f 298 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
299 int max_ee;
300 int max_rdd;
301 int max_mw;
302 int max_raw_ipv6_qp;
303 int max_raw_ethy_qp;
304 int max_mcast_grp;
305 int max_mcast_qp_attach;
306 int max_total_mcast_qp_attach;
307 int max_ah;
308 int max_fmr;
309 int max_map_per_fmr;
310 int max_srq;
311 int max_srq_wr;
312 int max_srq_sge;
00f7ec36 313 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
314 u16 max_pkeys;
315 u8 local_ca_ack_delay;
1b01d335
SG
316 int sig_prot_cap;
317 int sig_guard_cap;
860f10a7 318 struct ib_odp_caps odp_caps;
24306dc6
MB
319 uint64_t timestamp_mask;
320 uint64_t hca_core_clock; /* in KHZ */
1da177e4
LT
321};
322
323enum ib_mtu {
324 IB_MTU_256 = 1,
325 IB_MTU_512 = 2,
326 IB_MTU_1024 = 3,
327 IB_MTU_2048 = 4,
328 IB_MTU_4096 = 5
329};
330
331static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
332{
333 switch (mtu) {
334 case IB_MTU_256: return 256;
335 case IB_MTU_512: return 512;
336 case IB_MTU_1024: return 1024;
337 case IB_MTU_2048: return 2048;
338 case IB_MTU_4096: return 4096;
339 default: return -1;
340 }
341}
342
343enum ib_port_state {
344 IB_PORT_NOP = 0,
345 IB_PORT_DOWN = 1,
346 IB_PORT_INIT = 2,
347 IB_PORT_ARMED = 3,
348 IB_PORT_ACTIVE = 4,
349 IB_PORT_ACTIVE_DEFER = 5
350};
351
352enum ib_port_cap_flags {
353 IB_PORT_SM = 1 << 1,
354 IB_PORT_NOTICE_SUP = 1 << 2,
355 IB_PORT_TRAP_SUP = 1 << 3,
356 IB_PORT_OPT_IPD_SUP = 1 << 4,
357 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
358 IB_PORT_SL_MAP_SUP = 1 << 6,
359 IB_PORT_MKEY_NVRAM = 1 << 7,
360 IB_PORT_PKEY_NVRAM = 1 << 8,
361 IB_PORT_LED_INFO_SUP = 1 << 9,
362 IB_PORT_SM_DISABLED = 1 << 10,
363 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
364 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 365 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
366 IB_PORT_CM_SUP = 1 << 16,
367 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
368 IB_PORT_REINIT_SUP = 1 << 18,
369 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
370 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
371 IB_PORT_DR_NOTICE_SUP = 1 << 21,
372 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
373 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
374 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 375 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 376 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
377};
378
379enum ib_port_width {
380 IB_WIDTH_1X = 1,
381 IB_WIDTH_4X = 2,
382 IB_WIDTH_8X = 4,
383 IB_WIDTH_12X = 8
384};
385
386static inline int ib_width_enum_to_int(enum ib_port_width width)
387{
388 switch (width) {
389 case IB_WIDTH_1X: return 1;
390 case IB_WIDTH_4X: return 4;
391 case IB_WIDTH_8X: return 8;
392 case IB_WIDTH_12X: return 12;
393 default: return -1;
394 }
395}
396
2e96691c
OG
397enum ib_port_speed {
398 IB_SPEED_SDR = 1,
399 IB_SPEED_DDR = 2,
400 IB_SPEED_QDR = 4,
401 IB_SPEED_FDR10 = 8,
402 IB_SPEED_FDR = 16,
403 IB_SPEED_EDR = 32
404};
405
b40f4757
CL
406/**
407 * struct rdma_hw_stats
408 * @timestamp - Used by the core code to track when the last update was
409 * @lifespan - Used by the core code to determine how old the counters
410 * should be before being updated again. Stored in jiffies, defaults
411 * to 10 milliseconds, drivers can override the default be specifying
412 * their own value during their allocation routine.
413 * @name - Array of pointers to static names used for the counters in
414 * directory.
415 * @num_counters - How many hardware counters there are. If name is
416 * shorter than this number, a kernel oops will result. Driver authors
417 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
418 * in their code to prevent this.
419 * @value - Array of u64 counters that are accessed by the sysfs code and
420 * filled in by the drivers get_stats routine
421 */
422struct rdma_hw_stats {
423 unsigned long timestamp;
424 unsigned long lifespan;
425 const char * const *names;
426 int num_counters;
427 u64 value[];
7f624d02
SW
428};
429
b40f4757
CL
430#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
431/**
432 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
433 * for drivers.
434 * @names - Array of static const char *
435 * @num_counters - How many elements in array
436 * @lifespan - How many milliseconds between updates
437 */
438static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
439 const char * const *names, int num_counters,
440 unsigned long lifespan)
441{
442 struct rdma_hw_stats *stats;
443
444 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
445 GFP_KERNEL);
446 if (!stats)
447 return NULL;
448 stats->names = names;
449 stats->num_counters = num_counters;
450 stats->lifespan = msecs_to_jiffies(lifespan);
451
452 return stats;
453}
454
455
f9b22e35
IW
456/* Define bits for the various functionality this port needs to be supported by
457 * the core.
458 */
459/* Management 0x00000FFF */
460#define RDMA_CORE_CAP_IB_MAD 0x00000001
461#define RDMA_CORE_CAP_IB_SMI 0x00000002
462#define RDMA_CORE_CAP_IB_CM 0x00000004
463#define RDMA_CORE_CAP_IW_CM 0x00000008
464#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 465#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
466
467/* Address format 0x000FF000 */
468#define RDMA_CORE_CAP_AF_IB 0x00001000
469#define RDMA_CORE_CAP_ETH_AH 0x00002000
470
471/* Protocol 0xFFF00000 */
472#define RDMA_CORE_CAP_PROT_IB 0x00100000
473#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
474#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 475#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
f9b22e35
IW
476
477#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
478 | RDMA_CORE_CAP_IB_MAD \
479 | RDMA_CORE_CAP_IB_SMI \
480 | RDMA_CORE_CAP_IB_CM \
481 | RDMA_CORE_CAP_IB_SA \
482 | RDMA_CORE_CAP_AF_IB)
483#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
484 | RDMA_CORE_CAP_IB_MAD \
485 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
486 | RDMA_CORE_CAP_AF_IB \
487 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
488#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
489 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
490 | RDMA_CORE_CAP_IB_MAD \
491 | RDMA_CORE_CAP_IB_CM \
492 | RDMA_CORE_CAP_AF_IB \
493 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
494#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
495 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
496#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
497 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 498
1da177e4 499struct ib_port_attr {
fad61ad4 500 u64 subnet_prefix;
1da177e4
LT
501 enum ib_port_state state;
502 enum ib_mtu max_mtu;
503 enum ib_mtu active_mtu;
504 int gid_tbl_len;
505 u32 port_cap_flags;
506 u32 max_msg_sz;
507 u32 bad_pkey_cntr;
508 u32 qkey_viol_cntr;
509 u16 pkey_tbl_len;
510 u16 lid;
511 u16 sm_lid;
512 u8 lmc;
513 u8 max_vl_num;
514 u8 sm_sl;
515 u8 subnet_timeout;
516 u8 init_type_reply;
517 u8 active_width;
518 u8 active_speed;
519 u8 phys_state;
a0c1b2a3 520 bool grh_required;
1da177e4
LT
521};
522
523enum ib_device_modify_flags {
c5bcbbb9
RD
524 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
525 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
526};
527
528struct ib_device_modify {
529 u64 sys_image_guid;
c5bcbbb9 530 char node_desc[64];
1da177e4
LT
531};
532
533enum ib_port_modify_flags {
534 IB_PORT_SHUTDOWN = 1,
535 IB_PORT_INIT_TYPE = (1<<2),
536 IB_PORT_RESET_QKEY_CNTR = (1<<3)
537};
538
539struct ib_port_modify {
540 u32 set_port_cap_mask;
541 u32 clr_port_cap_mask;
542 u8 init_type;
543};
544
545enum ib_event_type {
546 IB_EVENT_CQ_ERR,
547 IB_EVENT_QP_FATAL,
548 IB_EVENT_QP_REQ_ERR,
549 IB_EVENT_QP_ACCESS_ERR,
550 IB_EVENT_COMM_EST,
551 IB_EVENT_SQ_DRAINED,
552 IB_EVENT_PATH_MIG,
553 IB_EVENT_PATH_MIG_ERR,
554 IB_EVENT_DEVICE_FATAL,
555 IB_EVENT_PORT_ACTIVE,
556 IB_EVENT_PORT_ERR,
557 IB_EVENT_LID_CHANGE,
558 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
559 IB_EVENT_SM_CHANGE,
560 IB_EVENT_SRQ_ERR,
561 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 562 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
563 IB_EVENT_CLIENT_REREGISTER,
564 IB_EVENT_GID_CHANGE,
1da177e4
LT
565};
566
db7489e0 567const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 568
1da177e4
LT
569struct ib_event {
570 struct ib_device *device;
571 union {
572 struct ib_cq *cq;
573 struct ib_qp *qp;
d41fcc67 574 struct ib_srq *srq;
1da177e4
LT
575 u8 port_num;
576 } element;
577 enum ib_event_type event;
578};
579
580struct ib_event_handler {
581 struct ib_device *device;
582 void (*handler)(struct ib_event_handler *, struct ib_event *);
583 struct list_head list;
584};
585
586#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
587 do { \
588 (_ptr)->device = _device; \
589 (_ptr)->handler = _handler; \
590 INIT_LIST_HEAD(&(_ptr)->list); \
591 } while (0)
592
593struct ib_global_route {
594 union ib_gid dgid;
595 u32 flow_label;
596 u8 sgid_index;
597 u8 hop_limit;
598 u8 traffic_class;
599};
600
513789ed 601struct ib_grh {
97f52eb4
SH
602 __be32 version_tclass_flow;
603 __be16 paylen;
513789ed
HR
604 u8 next_hdr;
605 u8 hop_limit;
606 union ib_gid sgid;
607 union ib_gid dgid;
608};
609
c865f246
SK
610union rdma_network_hdr {
611 struct ib_grh ibgrh;
612 struct {
613 /* The IB spec states that if it's IPv4, the header
614 * is located in the last 20 bytes of the header.
615 */
616 u8 reserved[20];
617 struct iphdr roce4grh;
618 };
619};
620
1da177e4
LT
621enum {
622 IB_MULTICAST_QPN = 0xffffff
623};
624
f3a7c66b 625#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 626#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 627
1da177e4
LT
628enum ib_ah_flags {
629 IB_AH_GRH = 1
630};
631
bf6a9e31
JM
632enum ib_rate {
633 IB_RATE_PORT_CURRENT = 0,
634 IB_RATE_2_5_GBPS = 2,
635 IB_RATE_5_GBPS = 5,
636 IB_RATE_10_GBPS = 3,
637 IB_RATE_20_GBPS = 6,
638 IB_RATE_30_GBPS = 4,
639 IB_RATE_40_GBPS = 7,
640 IB_RATE_60_GBPS = 8,
641 IB_RATE_80_GBPS = 9,
71eeba16
MA
642 IB_RATE_120_GBPS = 10,
643 IB_RATE_14_GBPS = 11,
644 IB_RATE_56_GBPS = 12,
645 IB_RATE_112_GBPS = 13,
646 IB_RATE_168_GBPS = 14,
647 IB_RATE_25_GBPS = 15,
648 IB_RATE_100_GBPS = 16,
649 IB_RATE_200_GBPS = 17,
650 IB_RATE_300_GBPS = 18
bf6a9e31
JM
651};
652
653/**
654 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
655 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
656 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
657 * @rate: rate to convert.
658 */
8385fd84 659__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 660
71eeba16
MA
661/**
662 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
663 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
664 * @rate: rate to convert.
665 */
8385fd84 666__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 667
17cd3a2d
SG
668
669/**
9bee178b
SG
670 * enum ib_mr_type - memory region type
671 * @IB_MR_TYPE_MEM_REG: memory region that is used for
672 * normal registration
673 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
674 * signature operations (data-integrity
675 * capable regions)
f5aa9159
SG
676 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
677 * register any arbitrary sg lists (without
678 * the normal mr constraints - see
679 * ib_map_mr_sg)
17cd3a2d 680 */
9bee178b
SG
681enum ib_mr_type {
682 IB_MR_TYPE_MEM_REG,
683 IB_MR_TYPE_SIGNATURE,
f5aa9159 684 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
685};
686
1b01d335 687/**
78eda2bb
SG
688 * Signature types
689 * IB_SIG_TYPE_NONE: Unprotected.
690 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 691 */
78eda2bb
SG
692enum ib_signature_type {
693 IB_SIG_TYPE_NONE,
694 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
695};
696
697/**
698 * Signature T10-DIF block-guard types
699 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
700 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
701 */
702enum ib_t10_dif_bg_type {
703 IB_T10DIF_CRC,
704 IB_T10DIF_CSUM
705};
706
707/**
708 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
709 * domain.
1b01d335
SG
710 * @bg_type: T10-DIF block guard type (CRC|CSUM)
711 * @pi_interval: protection information interval.
712 * @bg: seed of guard computation.
713 * @app_tag: application tag of guard block
714 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
715 * @ref_remap: Indicate wethear the reftag increments each block
716 * @app_escape: Indicate to skip block check if apptag=0xffff
717 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
718 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
719 */
720struct ib_t10_dif_domain {
1b01d335
SG
721 enum ib_t10_dif_bg_type bg_type;
722 u16 pi_interval;
723 u16 bg;
724 u16 app_tag;
725 u32 ref_tag;
78eda2bb
SG
726 bool ref_remap;
727 bool app_escape;
728 bool ref_escape;
729 u16 apptag_check_mask;
1b01d335
SG
730};
731
732/**
733 * struct ib_sig_domain - Parameters for signature domain
734 * @sig_type: specific signauture type
735 * @sig: union of all signature domain attributes that may
736 * be used to set domain layout.
737 */
738struct ib_sig_domain {
739 enum ib_signature_type sig_type;
740 union {
741 struct ib_t10_dif_domain dif;
742 } sig;
743};
744
745/**
746 * struct ib_sig_attrs - Parameters for signature handover operation
747 * @check_mask: bitmask for signature byte check (8 bytes)
748 * @mem: memory domain layout desciptor.
749 * @wire: wire domain layout desciptor.
750 */
751struct ib_sig_attrs {
752 u8 check_mask;
753 struct ib_sig_domain mem;
754 struct ib_sig_domain wire;
755};
756
757enum ib_sig_err_type {
758 IB_SIG_BAD_GUARD,
759 IB_SIG_BAD_REFTAG,
760 IB_SIG_BAD_APPTAG,
761};
762
763/**
764 * struct ib_sig_err - signature error descriptor
765 */
766struct ib_sig_err {
767 enum ib_sig_err_type err_type;
768 u32 expected;
769 u32 actual;
770 u64 sig_err_offset;
771 u32 key;
772};
773
774enum ib_mr_status_check {
775 IB_MR_CHECK_SIG_STATUS = 1,
776};
777
778/**
779 * struct ib_mr_status - Memory region status container
780 *
781 * @fail_status: Bitmask of MR checks status. For each
782 * failed check a corresponding status bit is set.
783 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
784 * failure.
785 */
786struct ib_mr_status {
787 u32 fail_status;
788 struct ib_sig_err sig_err;
789};
790
bf6a9e31
JM
791/**
792 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
793 * enum.
794 * @mult: multiple to convert.
795 */
8385fd84 796__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 797
1da177e4
LT
798struct ib_ah_attr {
799 struct ib_global_route grh;
800 u16 dlid;
801 u8 sl;
802 u8 src_path_bits;
803 u8 static_rate;
804 u8 ah_flags;
805 u8 port_num;
dd5f03be 806 u8 dmac[ETH_ALEN];
1da177e4
LT
807};
808
809enum ib_wc_status {
810 IB_WC_SUCCESS,
811 IB_WC_LOC_LEN_ERR,
812 IB_WC_LOC_QP_OP_ERR,
813 IB_WC_LOC_EEC_OP_ERR,
814 IB_WC_LOC_PROT_ERR,
815 IB_WC_WR_FLUSH_ERR,
816 IB_WC_MW_BIND_ERR,
817 IB_WC_BAD_RESP_ERR,
818 IB_WC_LOC_ACCESS_ERR,
819 IB_WC_REM_INV_REQ_ERR,
820 IB_WC_REM_ACCESS_ERR,
821 IB_WC_REM_OP_ERR,
822 IB_WC_RETRY_EXC_ERR,
823 IB_WC_RNR_RETRY_EXC_ERR,
824 IB_WC_LOC_RDD_VIOL_ERR,
825 IB_WC_REM_INV_RD_REQ_ERR,
826 IB_WC_REM_ABORT_ERR,
827 IB_WC_INV_EECN_ERR,
828 IB_WC_INV_EEC_STATE_ERR,
829 IB_WC_FATAL_ERR,
830 IB_WC_RESP_TIMEOUT_ERR,
831 IB_WC_GENERAL_ERR
832};
833
db7489e0 834const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 835
1da177e4
LT
836enum ib_wc_opcode {
837 IB_WC_SEND,
838 IB_WC_RDMA_WRITE,
839 IB_WC_RDMA_READ,
840 IB_WC_COMP_SWAP,
841 IB_WC_FETCH_ADD,
c93570f2 842 IB_WC_LSO,
00f7ec36 843 IB_WC_LOCAL_INV,
4c67e2bf 844 IB_WC_REG_MR,
5e80ba8f
VS
845 IB_WC_MASKED_COMP_SWAP,
846 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
847/*
848 * Set value of IB_WC_RECV so consumers can test if a completion is a
849 * receive by testing (opcode & IB_WC_RECV).
850 */
851 IB_WC_RECV = 1 << 7,
852 IB_WC_RECV_RDMA_WITH_IMM
853};
854
855enum ib_wc_flags {
856 IB_WC_GRH = 1,
00f7ec36
SW
857 IB_WC_WITH_IMM = (1<<1),
858 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 859 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
860 IB_WC_WITH_SMAC = (1<<4),
861 IB_WC_WITH_VLAN = (1<<5),
c865f246 862 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
863};
864
865struct ib_wc {
14d3a3b2
CH
866 union {
867 u64 wr_id;
868 struct ib_cqe *wr_cqe;
869 };
1da177e4
LT
870 enum ib_wc_status status;
871 enum ib_wc_opcode opcode;
872 u32 vendor_err;
873 u32 byte_len;
062dbb69 874 struct ib_qp *qp;
00f7ec36
SW
875 union {
876 __be32 imm_data;
877 u32 invalidate_rkey;
878 } ex;
1da177e4
LT
879 u32 src_qp;
880 int wc_flags;
881 u16 pkey_index;
882 u16 slid;
883 u8 sl;
884 u8 dlid_path_bits;
885 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
886 u8 smac[ETH_ALEN];
887 u16 vlan_id;
c865f246 888 u8 network_hdr_type;
1da177e4
LT
889};
890
ed23a727
RD
891enum ib_cq_notify_flags {
892 IB_CQ_SOLICITED = 1 << 0,
893 IB_CQ_NEXT_COMP = 1 << 1,
894 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
895 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
896};
897
96104eda 898enum ib_srq_type {
418d5130
SH
899 IB_SRQT_BASIC,
900 IB_SRQT_XRC
96104eda
SH
901};
902
d41fcc67
RD
903enum ib_srq_attr_mask {
904 IB_SRQ_MAX_WR = 1 << 0,
905 IB_SRQ_LIMIT = 1 << 1,
906};
907
908struct ib_srq_attr {
909 u32 max_wr;
910 u32 max_sge;
911 u32 srq_limit;
912};
913
914struct ib_srq_init_attr {
915 void (*event_handler)(struct ib_event *, void *);
916 void *srq_context;
917 struct ib_srq_attr attr;
96104eda 918 enum ib_srq_type srq_type;
418d5130
SH
919
920 union {
921 struct {
922 struct ib_xrcd *xrcd;
923 struct ib_cq *cq;
924 } xrc;
925 } ext;
d41fcc67
RD
926};
927
1da177e4
LT
928struct ib_qp_cap {
929 u32 max_send_wr;
930 u32 max_recv_wr;
931 u32 max_send_sge;
932 u32 max_recv_sge;
933 u32 max_inline_data;
a060b562
CH
934
935 /*
936 * Maximum number of rdma_rw_ctx structures in flight at a time.
937 * ib_create_qp() will calculate the right amount of neededed WRs
938 * and MRs based on this.
939 */
940 u32 max_rdma_ctxs;
1da177e4
LT
941};
942
943enum ib_sig_type {
944 IB_SIGNAL_ALL_WR,
945 IB_SIGNAL_REQ_WR
946};
947
948enum ib_qp_type {
949 /*
950 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
951 * here (and in that order) since the MAD layer uses them as
952 * indices into a 2-entry table.
953 */
954 IB_QPT_SMI,
955 IB_QPT_GSI,
956
957 IB_QPT_RC,
958 IB_QPT_UC,
959 IB_QPT_UD,
960 IB_QPT_RAW_IPV6,
b42b63cf 961 IB_QPT_RAW_ETHERTYPE,
c938a616 962 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
963 IB_QPT_XRC_INI = 9,
964 IB_QPT_XRC_TGT,
0134f16b
JM
965 IB_QPT_MAX,
966 /* Reserve a range for qp types internal to the low level driver.
967 * These qp types will not be visible at the IB core layer, so the
968 * IB_QPT_MAX usages should not be affected in the core layer
969 */
970 IB_QPT_RESERVED1 = 0x1000,
971 IB_QPT_RESERVED2,
972 IB_QPT_RESERVED3,
973 IB_QPT_RESERVED4,
974 IB_QPT_RESERVED5,
975 IB_QPT_RESERVED6,
976 IB_QPT_RESERVED7,
977 IB_QPT_RESERVED8,
978 IB_QPT_RESERVED9,
979 IB_QPT_RESERVED10,
1da177e4
LT
980};
981
b846f25a 982enum ib_qp_create_flags {
47ee1b9f
RL
983 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
984 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
985 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
986 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
987 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 988 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 989 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 990 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
b531b909 991 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
d2b57063
JM
992 /* reserve bits 26-31 for low level drivers' internal use */
993 IB_QP_CREATE_RESERVED_START = 1 << 26,
994 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
995};
996
73c40c61
YH
997/*
998 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
999 * callback to destroy the passed in QP.
1000 */
1001
1da177e4
LT
1002struct ib_qp_init_attr {
1003 void (*event_handler)(struct ib_event *, void *);
1004 void *qp_context;
1005 struct ib_cq *send_cq;
1006 struct ib_cq *recv_cq;
1007 struct ib_srq *srq;
b42b63cf 1008 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1009 struct ib_qp_cap cap;
1010 enum ib_sig_type sq_sig_type;
1011 enum ib_qp_type qp_type;
b846f25a 1012 enum ib_qp_create_flags create_flags;
a060b562
CH
1013
1014 /*
1015 * Only needed for special QP types, or when using the RW API.
1016 */
1017 u8 port_num;
1da177e4
LT
1018};
1019
0e0ec7e0
SH
1020struct ib_qp_open_attr {
1021 void (*event_handler)(struct ib_event *, void *);
1022 void *qp_context;
1023 u32 qp_num;
1024 enum ib_qp_type qp_type;
1025};
1026
1da177e4
LT
1027enum ib_rnr_timeout {
1028 IB_RNR_TIMER_655_36 = 0,
1029 IB_RNR_TIMER_000_01 = 1,
1030 IB_RNR_TIMER_000_02 = 2,
1031 IB_RNR_TIMER_000_03 = 3,
1032 IB_RNR_TIMER_000_04 = 4,
1033 IB_RNR_TIMER_000_06 = 5,
1034 IB_RNR_TIMER_000_08 = 6,
1035 IB_RNR_TIMER_000_12 = 7,
1036 IB_RNR_TIMER_000_16 = 8,
1037 IB_RNR_TIMER_000_24 = 9,
1038 IB_RNR_TIMER_000_32 = 10,
1039 IB_RNR_TIMER_000_48 = 11,
1040 IB_RNR_TIMER_000_64 = 12,
1041 IB_RNR_TIMER_000_96 = 13,
1042 IB_RNR_TIMER_001_28 = 14,
1043 IB_RNR_TIMER_001_92 = 15,
1044 IB_RNR_TIMER_002_56 = 16,
1045 IB_RNR_TIMER_003_84 = 17,
1046 IB_RNR_TIMER_005_12 = 18,
1047 IB_RNR_TIMER_007_68 = 19,
1048 IB_RNR_TIMER_010_24 = 20,
1049 IB_RNR_TIMER_015_36 = 21,
1050 IB_RNR_TIMER_020_48 = 22,
1051 IB_RNR_TIMER_030_72 = 23,
1052 IB_RNR_TIMER_040_96 = 24,
1053 IB_RNR_TIMER_061_44 = 25,
1054 IB_RNR_TIMER_081_92 = 26,
1055 IB_RNR_TIMER_122_88 = 27,
1056 IB_RNR_TIMER_163_84 = 28,
1057 IB_RNR_TIMER_245_76 = 29,
1058 IB_RNR_TIMER_327_68 = 30,
1059 IB_RNR_TIMER_491_52 = 31
1060};
1061
1062enum ib_qp_attr_mask {
1063 IB_QP_STATE = 1,
1064 IB_QP_CUR_STATE = (1<<1),
1065 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1066 IB_QP_ACCESS_FLAGS = (1<<3),
1067 IB_QP_PKEY_INDEX = (1<<4),
1068 IB_QP_PORT = (1<<5),
1069 IB_QP_QKEY = (1<<6),
1070 IB_QP_AV = (1<<7),
1071 IB_QP_PATH_MTU = (1<<8),
1072 IB_QP_TIMEOUT = (1<<9),
1073 IB_QP_RETRY_CNT = (1<<10),
1074 IB_QP_RNR_RETRY = (1<<11),
1075 IB_QP_RQ_PSN = (1<<12),
1076 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1077 IB_QP_ALT_PATH = (1<<14),
1078 IB_QP_MIN_RNR_TIMER = (1<<15),
1079 IB_QP_SQ_PSN = (1<<16),
1080 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1081 IB_QP_PATH_MIG_STATE = (1<<18),
1082 IB_QP_CAP = (1<<19),
dd5f03be 1083 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1084 IB_QP_RESERVED1 = (1<<21),
1085 IB_QP_RESERVED2 = (1<<22),
1086 IB_QP_RESERVED3 = (1<<23),
1087 IB_QP_RESERVED4 = (1<<24),
1da177e4
LT
1088};
1089
1090enum ib_qp_state {
1091 IB_QPS_RESET,
1092 IB_QPS_INIT,
1093 IB_QPS_RTR,
1094 IB_QPS_RTS,
1095 IB_QPS_SQD,
1096 IB_QPS_SQE,
1097 IB_QPS_ERR
1098};
1099
1100enum ib_mig_state {
1101 IB_MIG_MIGRATED,
1102 IB_MIG_REARM,
1103 IB_MIG_ARMED
1104};
1105
7083e42e
SM
1106enum ib_mw_type {
1107 IB_MW_TYPE_1 = 1,
1108 IB_MW_TYPE_2 = 2
1109};
1110
1da177e4
LT
1111struct ib_qp_attr {
1112 enum ib_qp_state qp_state;
1113 enum ib_qp_state cur_qp_state;
1114 enum ib_mtu path_mtu;
1115 enum ib_mig_state path_mig_state;
1116 u32 qkey;
1117 u32 rq_psn;
1118 u32 sq_psn;
1119 u32 dest_qp_num;
1120 int qp_access_flags;
1121 struct ib_qp_cap cap;
1122 struct ib_ah_attr ah_attr;
1123 struct ib_ah_attr alt_ah_attr;
1124 u16 pkey_index;
1125 u16 alt_pkey_index;
1126 u8 en_sqd_async_notify;
1127 u8 sq_draining;
1128 u8 max_rd_atomic;
1129 u8 max_dest_rd_atomic;
1130 u8 min_rnr_timer;
1131 u8 port_num;
1132 u8 timeout;
1133 u8 retry_cnt;
1134 u8 rnr_retry;
1135 u8 alt_port_num;
1136 u8 alt_timeout;
1137};
1138
1139enum ib_wr_opcode {
1140 IB_WR_RDMA_WRITE,
1141 IB_WR_RDMA_WRITE_WITH_IMM,
1142 IB_WR_SEND,
1143 IB_WR_SEND_WITH_IMM,
1144 IB_WR_RDMA_READ,
1145 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1146 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1147 IB_WR_LSO,
1148 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1149 IB_WR_RDMA_READ_WITH_INV,
1150 IB_WR_LOCAL_INV,
4c67e2bf 1151 IB_WR_REG_MR,
5e80ba8f
VS
1152 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1153 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1b01d335 1154 IB_WR_REG_SIG_MR,
0134f16b
JM
1155 /* reserve values for low level drivers' internal use.
1156 * These values will not be used at all in the ib core layer.
1157 */
1158 IB_WR_RESERVED1 = 0xf0,
1159 IB_WR_RESERVED2,
1160 IB_WR_RESERVED3,
1161 IB_WR_RESERVED4,
1162 IB_WR_RESERVED5,
1163 IB_WR_RESERVED6,
1164 IB_WR_RESERVED7,
1165 IB_WR_RESERVED8,
1166 IB_WR_RESERVED9,
1167 IB_WR_RESERVED10,
1da177e4
LT
1168};
1169
1170enum ib_send_flags {
1171 IB_SEND_FENCE = 1,
1172 IB_SEND_SIGNALED = (1<<1),
1173 IB_SEND_SOLICITED = (1<<2),
e0605d91 1174 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1175 IB_SEND_IP_CSUM = (1<<4),
1176
1177 /* reserve bits 26-31 for low level drivers' internal use */
1178 IB_SEND_RESERVED_START = (1 << 26),
1179 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1180};
1181
1182struct ib_sge {
1183 u64 addr;
1184 u32 length;
1185 u32 lkey;
1186};
1187
14d3a3b2
CH
1188struct ib_cqe {
1189 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1190};
1191
1da177e4
LT
1192struct ib_send_wr {
1193 struct ib_send_wr *next;
14d3a3b2
CH
1194 union {
1195 u64 wr_id;
1196 struct ib_cqe *wr_cqe;
1197 };
1da177e4
LT
1198 struct ib_sge *sg_list;
1199 int num_sge;
1200 enum ib_wr_opcode opcode;
1201 int send_flags;
0f39cf3d
RD
1202 union {
1203 __be32 imm_data;
1204 u32 invalidate_rkey;
1205 } ex;
1da177e4
LT
1206};
1207
e622f2f4
CH
1208struct ib_rdma_wr {
1209 struct ib_send_wr wr;
1210 u64 remote_addr;
1211 u32 rkey;
1212};
1213
1214static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1215{
1216 return container_of(wr, struct ib_rdma_wr, wr);
1217}
1218
1219struct ib_atomic_wr {
1220 struct ib_send_wr wr;
1221 u64 remote_addr;
1222 u64 compare_add;
1223 u64 swap;
1224 u64 compare_add_mask;
1225 u64 swap_mask;
1226 u32 rkey;
1227};
1228
1229static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1230{
1231 return container_of(wr, struct ib_atomic_wr, wr);
1232}
1233
1234struct ib_ud_wr {
1235 struct ib_send_wr wr;
1236 struct ib_ah *ah;
1237 void *header;
1238 int hlen;
1239 int mss;
1240 u32 remote_qpn;
1241 u32 remote_qkey;
1242 u16 pkey_index; /* valid for GSI only */
1243 u8 port_num; /* valid for DR SMPs on switch only */
1244};
1245
1246static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1247{
1248 return container_of(wr, struct ib_ud_wr, wr);
1249}
1250
4c67e2bf
SG
1251struct ib_reg_wr {
1252 struct ib_send_wr wr;
1253 struct ib_mr *mr;
1254 u32 key;
1255 int access;
1256};
1257
1258static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1259{
1260 return container_of(wr, struct ib_reg_wr, wr);
1261}
1262
e622f2f4
CH
1263struct ib_sig_handover_wr {
1264 struct ib_send_wr wr;
1265 struct ib_sig_attrs *sig_attrs;
1266 struct ib_mr *sig_mr;
1267 int access_flags;
1268 struct ib_sge *prot;
1269};
1270
1271static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1272{
1273 return container_of(wr, struct ib_sig_handover_wr, wr);
1274}
1275
1da177e4
LT
1276struct ib_recv_wr {
1277 struct ib_recv_wr *next;
14d3a3b2
CH
1278 union {
1279 u64 wr_id;
1280 struct ib_cqe *wr_cqe;
1281 };
1da177e4
LT
1282 struct ib_sge *sg_list;
1283 int num_sge;
1284};
1285
1286enum ib_access_flags {
1287 IB_ACCESS_LOCAL_WRITE = 1,
1288 IB_ACCESS_REMOTE_WRITE = (1<<1),
1289 IB_ACCESS_REMOTE_READ = (1<<2),
1290 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1291 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1292 IB_ZERO_BASED = (1<<5),
1293 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1294};
1295
b7d3e0a9
CH
1296/*
1297 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1298 * are hidden here instead of a uapi header!
1299 */
1da177e4
LT
1300enum ib_mr_rereg_flags {
1301 IB_MR_REREG_TRANS = 1,
1302 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1303 IB_MR_REREG_ACCESS = (1<<2),
1304 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1305};
1306
1da177e4
LT
1307struct ib_fmr_attr {
1308 int max_pages;
1309 int max_maps;
d36f34aa 1310 u8 page_shift;
1da177e4
LT
1311};
1312
882214e2
HE
1313struct ib_umem;
1314
e2773c06
RD
1315struct ib_ucontext {
1316 struct ib_device *device;
1317 struct list_head pd_list;
1318 struct list_head mr_list;
1319 struct list_head mw_list;
1320 struct list_head cq_list;
1321 struct list_head qp_list;
1322 struct list_head srq_list;
1323 struct list_head ah_list;
53d0bd1e 1324 struct list_head xrcd_list;
436f2ad0 1325 struct list_head rule_list;
f7c6a7b5 1326 int closing;
8ada2c1c
SR
1327
1328 struct pid *tgid;
882214e2
HE
1329#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1330 struct rb_root umem_tree;
1331 /*
1332 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1333 * mmu notifiers registration.
1334 */
1335 struct rw_semaphore umem_rwsem;
1336 void (*invalidate_range)(struct ib_umem *umem,
1337 unsigned long start, unsigned long end);
1338
1339 struct mmu_notifier mn;
1340 atomic_t notifier_count;
1341 /* A list of umems that don't have private mmu notifier counters yet. */
1342 struct list_head no_private_counters;
1343 int odp_mrs_count;
1344#endif
e2773c06
RD
1345};
1346
1347struct ib_uobject {
1348 u64 user_handle; /* handle given to us by userspace */
1349 struct ib_ucontext *context; /* associated user context */
9ead190b 1350 void *object; /* containing object */
e2773c06 1351 struct list_head list; /* link to context's list */
b3d636b0 1352 int id; /* index into kernel idr */
9ead190b
RD
1353 struct kref ref;
1354 struct rw_semaphore mutex; /* protects .live */
d144da8c 1355 struct rcu_head rcu; /* kfree_rcu() overhead */
9ead190b 1356 int live;
e2773c06
RD
1357};
1358
e2773c06 1359struct ib_udata {
309243ec 1360 const void __user *inbuf;
e2773c06
RD
1361 void __user *outbuf;
1362 size_t inlen;
1363 size_t outlen;
1364};
1365
1da177e4 1366struct ib_pd {
96249d70 1367 u32 local_dma_lkey;
e2773c06
RD
1368 struct ib_device *device;
1369 struct ib_uobject *uobject;
1370 atomic_t usecnt; /* count all resources */
96249d70 1371 struct ib_mr *local_mr;
1da177e4
LT
1372};
1373
59991f94
SH
1374struct ib_xrcd {
1375 struct ib_device *device;
d3d72d90 1376 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1377 struct inode *inode;
d3d72d90
SH
1378
1379 struct mutex tgt_qp_mutex;
1380 struct list_head tgt_qp_list;
59991f94
SH
1381};
1382
1da177e4
LT
1383struct ib_ah {
1384 struct ib_device *device;
1385 struct ib_pd *pd;
e2773c06 1386 struct ib_uobject *uobject;
1da177e4
LT
1387};
1388
1389typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1390
14d3a3b2
CH
1391enum ib_poll_context {
1392 IB_POLL_DIRECT, /* caller context, no hw completions */
1393 IB_POLL_SOFTIRQ, /* poll from softirq context */
1394 IB_POLL_WORKQUEUE, /* poll from workqueue */
1395};
1396
1da177e4 1397struct ib_cq {
e2773c06
RD
1398 struct ib_device *device;
1399 struct ib_uobject *uobject;
1400 ib_comp_handler comp_handler;
1401 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1402 void *cq_context;
e2773c06
RD
1403 int cqe;
1404 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1405 enum ib_poll_context poll_ctx;
1406 struct ib_wc *wc;
1407 union {
1408 struct irq_poll iop;
1409 struct work_struct work;
1410 };
1da177e4
LT
1411};
1412
1413struct ib_srq {
d41fcc67
RD
1414 struct ib_device *device;
1415 struct ib_pd *pd;
1416 struct ib_uobject *uobject;
1417 void (*event_handler)(struct ib_event *, void *);
1418 void *srq_context;
96104eda 1419 enum ib_srq_type srq_type;
1da177e4 1420 atomic_t usecnt;
418d5130
SH
1421
1422 union {
1423 struct {
1424 struct ib_xrcd *xrcd;
1425 struct ib_cq *cq;
1426 u32 srq_num;
1427 } xrc;
1428 } ext;
1da177e4
LT
1429};
1430
1431struct ib_qp {
1432 struct ib_device *device;
1433 struct ib_pd *pd;
1434 struct ib_cq *send_cq;
1435 struct ib_cq *recv_cq;
fffb0383
CH
1436 spinlock_t mr_lock;
1437 int mrs_used;
a060b562 1438 struct list_head rdma_mrs;
0e353e34 1439 struct list_head sig_mrs;
1da177e4 1440 struct ib_srq *srq;
b42b63cf 1441 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1442 struct list_head xrcd_list;
fffb0383 1443
319a441d
HHZ
1444 /* count times opened, mcast attaches, flow attaches */
1445 atomic_t usecnt;
0e0ec7e0
SH
1446 struct list_head open_list;
1447 struct ib_qp *real_qp;
e2773c06 1448 struct ib_uobject *uobject;
1da177e4
LT
1449 void (*event_handler)(struct ib_event *, void *);
1450 void *qp_context;
1451 u32 qp_num;
1452 enum ib_qp_type qp_type;
1453};
1454
1455struct ib_mr {
e2773c06
RD
1456 struct ib_device *device;
1457 struct ib_pd *pd;
e2773c06
RD
1458 u32 lkey;
1459 u32 rkey;
4c67e2bf
SG
1460 u64 iova;
1461 u32 length;
1462 unsigned int page_size;
d4a85c30 1463 bool need_inval;
fffb0383
CH
1464 union {
1465 struct ib_uobject *uobject; /* user */
1466 struct list_head qp_entry; /* FR */
1467 };
1da177e4
LT
1468};
1469
1470struct ib_mw {
1471 struct ib_device *device;
1472 struct ib_pd *pd;
e2773c06 1473 struct ib_uobject *uobject;
1da177e4 1474 u32 rkey;
7083e42e 1475 enum ib_mw_type type;
1da177e4
LT
1476};
1477
1478struct ib_fmr {
1479 struct ib_device *device;
1480 struct ib_pd *pd;
1481 struct list_head list;
1482 u32 lkey;
1483 u32 rkey;
1484};
1485
319a441d
HHZ
1486/* Supported steering options */
1487enum ib_flow_attr_type {
1488 /* steering according to rule specifications */
1489 IB_FLOW_ATTR_NORMAL = 0x0,
1490 /* default unicast and multicast rule -
1491 * receive all Eth traffic which isn't steered to any QP
1492 */
1493 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1494 /* default multicast rule -
1495 * receive all Eth multicast traffic which isn't steered to any QP
1496 */
1497 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1498 /* sniffer rule - receive all port traffic */
1499 IB_FLOW_ATTR_SNIFFER = 0x3
1500};
1501
1502/* Supported steering header types */
1503enum ib_flow_spec_type {
1504 /* L2 headers*/
1505 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1506 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1507 /* L3 header*/
1508 IB_FLOW_SPEC_IPV4 = 0x30,
1509 /* L4 headers*/
1510 IB_FLOW_SPEC_TCP = 0x40,
1511 IB_FLOW_SPEC_UDP = 0x41
1512};
240ae00e 1513#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1514#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1515
319a441d
HHZ
1516/* Flow steering rule priority is set according to it's domain.
1517 * Lower domain value means higher priority.
1518 */
1519enum ib_flow_domain {
1520 IB_FLOW_DOMAIN_USER,
1521 IB_FLOW_DOMAIN_ETHTOOL,
1522 IB_FLOW_DOMAIN_RFS,
1523 IB_FLOW_DOMAIN_NIC,
1524 IB_FLOW_DOMAIN_NUM /* Must be last */
1525};
1526
a3100a78
MV
1527enum ib_flow_flags {
1528 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1529 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1530};
1531
319a441d
HHZ
1532struct ib_flow_eth_filter {
1533 u8 dst_mac[6];
1534 u8 src_mac[6];
1535 __be16 ether_type;
1536 __be16 vlan_tag;
1537};
1538
1539struct ib_flow_spec_eth {
1540 enum ib_flow_spec_type type;
1541 u16 size;
1542 struct ib_flow_eth_filter val;
1543 struct ib_flow_eth_filter mask;
1544};
1545
240ae00e
MB
1546struct ib_flow_ib_filter {
1547 __be16 dlid;
1548 __u8 sl;
1549};
1550
1551struct ib_flow_spec_ib {
1552 enum ib_flow_spec_type type;
1553 u16 size;
1554 struct ib_flow_ib_filter val;
1555 struct ib_flow_ib_filter mask;
1556};
1557
319a441d
HHZ
1558struct ib_flow_ipv4_filter {
1559 __be32 src_ip;
1560 __be32 dst_ip;
1561};
1562
1563struct ib_flow_spec_ipv4 {
1564 enum ib_flow_spec_type type;
1565 u16 size;
1566 struct ib_flow_ipv4_filter val;
1567 struct ib_flow_ipv4_filter mask;
1568};
1569
1570struct ib_flow_tcp_udp_filter {
1571 __be16 dst_port;
1572 __be16 src_port;
1573};
1574
1575struct ib_flow_spec_tcp_udp {
1576 enum ib_flow_spec_type type;
1577 u16 size;
1578 struct ib_flow_tcp_udp_filter val;
1579 struct ib_flow_tcp_udp_filter mask;
1580};
1581
1582union ib_flow_spec {
1583 struct {
1584 enum ib_flow_spec_type type;
1585 u16 size;
1586 };
1587 struct ib_flow_spec_eth eth;
240ae00e 1588 struct ib_flow_spec_ib ib;
319a441d
HHZ
1589 struct ib_flow_spec_ipv4 ipv4;
1590 struct ib_flow_spec_tcp_udp tcp_udp;
1591};
1592
1593struct ib_flow_attr {
1594 enum ib_flow_attr_type type;
1595 u16 size;
1596 u16 priority;
1597 u32 flags;
1598 u8 num_of_specs;
1599 u8 port;
1600 /* Following are the optional layers according to user request
1601 * struct ib_flow_spec_xxx
1602 * struct ib_flow_spec_yyy
1603 */
1604};
1605
1606struct ib_flow {
1607 struct ib_qp *qp;
1608 struct ib_uobject *uobject;
1609};
1610
4cd7c947 1611struct ib_mad_hdr;
1da177e4
LT
1612struct ib_grh;
1613
1614enum ib_process_mad_flags {
1615 IB_MAD_IGNORE_MKEY = 1,
1616 IB_MAD_IGNORE_BKEY = 2,
1617 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1618};
1619
1620enum ib_mad_result {
1621 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1622 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1623 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1624 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1625};
1626
1627#define IB_DEVICE_NAME_MAX 64
1628
1629struct ib_cache {
1630 rwlock_t lock;
1631 struct ib_event_handler event_handler;
1632 struct ib_pkey_cache **pkey_cache;
03db3a2d 1633 struct ib_gid_table **gid_cache;
6fb9cdbf 1634 u8 *lmc_cache;
1da177e4
LT
1635};
1636
9b513090
RC
1637struct ib_dma_mapping_ops {
1638 int (*mapping_error)(struct ib_device *dev,
1639 u64 dma_addr);
1640 u64 (*map_single)(struct ib_device *dev,
1641 void *ptr, size_t size,
1642 enum dma_data_direction direction);
1643 void (*unmap_single)(struct ib_device *dev,
1644 u64 addr, size_t size,
1645 enum dma_data_direction direction);
1646 u64 (*map_page)(struct ib_device *dev,
1647 struct page *page, unsigned long offset,
1648 size_t size,
1649 enum dma_data_direction direction);
1650 void (*unmap_page)(struct ib_device *dev,
1651 u64 addr, size_t size,
1652 enum dma_data_direction direction);
1653 int (*map_sg)(struct ib_device *dev,
1654 struct scatterlist *sg, int nents,
1655 enum dma_data_direction direction);
1656 void (*unmap_sg)(struct ib_device *dev,
1657 struct scatterlist *sg, int nents,
1658 enum dma_data_direction direction);
9b513090
RC
1659 void (*sync_single_for_cpu)(struct ib_device *dev,
1660 u64 dma_handle,
1661 size_t size,
4deccd6d 1662 enum dma_data_direction dir);
9b513090
RC
1663 void (*sync_single_for_device)(struct ib_device *dev,
1664 u64 dma_handle,
1665 size_t size,
1666 enum dma_data_direction dir);
1667 void *(*alloc_coherent)(struct ib_device *dev,
1668 size_t size,
1669 u64 *dma_handle,
1670 gfp_t flag);
1671 void (*free_coherent)(struct ib_device *dev,
1672 size_t size, void *cpu_addr,
1673 u64 dma_handle);
1674};
1675
07ebafba
TT
1676struct iw_cm_verbs;
1677
7738613e
IW
1678struct ib_port_immutable {
1679 int pkey_tbl_len;
1680 int gid_tbl_len;
f9b22e35 1681 u32 core_cap_flags;
337877a4 1682 u32 max_mad_size;
7738613e
IW
1683};
1684
1da177e4
LT
1685struct ib_device {
1686 struct device *dma_device;
1687
1688 char name[IB_DEVICE_NAME_MAX];
1689
1690 struct list_head event_handler_list;
1691 spinlock_t event_handler_lock;
1692
17a55f79 1693 spinlock_t client_data_lock;
1da177e4 1694 struct list_head core_list;
7c1eb45a
HE
1695 /* Access to the client_data_list is protected by the client_data_lock
1696 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 1697 struct list_head client_data_list;
1da177e4
LT
1698
1699 struct ib_cache cache;
7738613e
IW
1700 /**
1701 * port_immutable is indexed by port number
1702 */
1703 struct ib_port_immutable *port_immutable;
1da177e4 1704
f4fd0b22
MT
1705 int num_comp_vectors;
1706
07ebafba
TT
1707 struct iw_cm_verbs *iwcm;
1708
b40f4757
CL
1709 /**
1710 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1711 * driver initialized data. The struct is kfree()'ed by the sysfs
1712 * core when the device is removed. A lifespan of -1 in the return
1713 * struct tells the core to set a default lifespan.
1714 */
1715 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
1716 u8 port_num);
1717 /**
1718 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1719 * @index - The index in the value array we wish to have updated, or
1720 * num_counters if we want all stats updated
1721 * Return codes -
1722 * < 0 - Error, no counters updated
1723 * index - Updated the single counter pointed to by index
1724 * num_counters - Updated all counters (will reset the timestamp
1725 * and prevent further calls for lifespan milliseconds)
1726 * Drivers are allowed to update all counters in leiu of just the
1727 * one given in index at their option
1728 */
1729 int (*get_hw_stats)(struct ib_device *device,
1730 struct rdma_hw_stats *stats,
1731 u8 port, int index);
1da177e4 1732 int (*query_device)(struct ib_device *device,
2528e33e
MB
1733 struct ib_device_attr *device_attr,
1734 struct ib_udata *udata);
1da177e4
LT
1735 int (*query_port)(struct ib_device *device,
1736 u8 port_num,
1737 struct ib_port_attr *port_attr);
a3f5adaf
EC
1738 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1739 u8 port_num);
03db3a2d
MB
1740 /* When calling get_netdev, the HW vendor's driver should return the
1741 * net device of device @device at port @port_num or NULL if such
1742 * a net device doesn't exist. The vendor driver should call dev_hold
1743 * on this net device. The HW vendor's device driver must guarantee
1744 * that this function returns NULL before the net device reaches
1745 * NETDEV_UNREGISTER_FINAL state.
1746 */
1747 struct net_device *(*get_netdev)(struct ib_device *device,
1748 u8 port_num);
1da177e4
LT
1749 int (*query_gid)(struct ib_device *device,
1750 u8 port_num, int index,
1751 union ib_gid *gid);
03db3a2d
MB
1752 /* When calling add_gid, the HW vendor's driver should
1753 * add the gid of device @device at gid index @index of
1754 * port @port_num to be @gid. Meta-info of that gid (for example,
1755 * the network device related to this gid is available
1756 * at @attr. @context allows the HW vendor driver to store extra
1757 * information together with a GID entry. The HW vendor may allocate
1758 * memory to contain this information and store it in @context when a
1759 * new GID entry is written to. Params are consistent until the next
1760 * call of add_gid or delete_gid. The function should return 0 on
1761 * success or error otherwise. The function could be called
1762 * concurrently for different ports. This function is only called
1763 * when roce_gid_table is used.
1764 */
1765 int (*add_gid)(struct ib_device *device,
1766 u8 port_num,
1767 unsigned int index,
1768 const union ib_gid *gid,
1769 const struct ib_gid_attr *attr,
1770 void **context);
1771 /* When calling del_gid, the HW vendor's driver should delete the
1772 * gid of device @device at gid index @index of port @port_num.
1773 * Upon the deletion of a GID entry, the HW vendor must free any
1774 * allocated memory. The caller will clear @context afterwards.
1775 * This function is only called when roce_gid_table is used.
1776 */
1777 int (*del_gid)(struct ib_device *device,
1778 u8 port_num,
1779 unsigned int index,
1780 void **context);
1da177e4
LT
1781 int (*query_pkey)(struct ib_device *device,
1782 u8 port_num, u16 index, u16 *pkey);
1783 int (*modify_device)(struct ib_device *device,
1784 int device_modify_mask,
1785 struct ib_device_modify *device_modify);
1786 int (*modify_port)(struct ib_device *device,
1787 u8 port_num, int port_modify_mask,
1788 struct ib_port_modify *port_modify);
e2773c06
RD
1789 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1790 struct ib_udata *udata);
1791 int (*dealloc_ucontext)(struct ib_ucontext *context);
1792 int (*mmap)(struct ib_ucontext *context,
1793 struct vm_area_struct *vma);
1794 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1795 struct ib_ucontext *context,
1796 struct ib_udata *udata);
1da177e4
LT
1797 int (*dealloc_pd)(struct ib_pd *pd);
1798 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1799 struct ib_ah_attr *ah_attr);
1800 int (*modify_ah)(struct ib_ah *ah,
1801 struct ib_ah_attr *ah_attr);
1802 int (*query_ah)(struct ib_ah *ah,
1803 struct ib_ah_attr *ah_attr);
1804 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1805 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1806 struct ib_srq_init_attr *srq_init_attr,
1807 struct ib_udata *udata);
1808 int (*modify_srq)(struct ib_srq *srq,
1809 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1810 enum ib_srq_attr_mask srq_attr_mask,
1811 struct ib_udata *udata);
d41fcc67
RD
1812 int (*query_srq)(struct ib_srq *srq,
1813 struct ib_srq_attr *srq_attr);
1814 int (*destroy_srq)(struct ib_srq *srq);
1815 int (*post_srq_recv)(struct ib_srq *srq,
1816 struct ib_recv_wr *recv_wr,
1817 struct ib_recv_wr **bad_recv_wr);
1da177e4 1818 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1819 struct ib_qp_init_attr *qp_init_attr,
1820 struct ib_udata *udata);
1da177e4
LT
1821 int (*modify_qp)(struct ib_qp *qp,
1822 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1823 int qp_attr_mask,
1824 struct ib_udata *udata);
1da177e4
LT
1825 int (*query_qp)(struct ib_qp *qp,
1826 struct ib_qp_attr *qp_attr,
1827 int qp_attr_mask,
1828 struct ib_qp_init_attr *qp_init_attr);
1829 int (*destroy_qp)(struct ib_qp *qp);
1830 int (*post_send)(struct ib_qp *qp,
1831 struct ib_send_wr *send_wr,
1832 struct ib_send_wr **bad_send_wr);
1833 int (*post_recv)(struct ib_qp *qp,
1834 struct ib_recv_wr *recv_wr,
1835 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
1836 struct ib_cq * (*create_cq)(struct ib_device *device,
1837 const struct ib_cq_init_attr *attr,
e2773c06
RD
1838 struct ib_ucontext *context,
1839 struct ib_udata *udata);
2dd57162
EC
1840 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1841 u16 cq_period);
1da177e4 1842 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1843 int (*resize_cq)(struct ib_cq *cq, int cqe,
1844 struct ib_udata *udata);
1da177e4
LT
1845 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1846 struct ib_wc *wc);
1847 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1848 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1849 enum ib_cq_notify_flags flags);
1da177e4
LT
1850 int (*req_ncomp_notif)(struct ib_cq *cq,
1851 int wc_cnt);
1852 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1853 int mr_access_flags);
e2773c06 1854 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1855 u64 start, u64 length,
1856 u64 virt_addr,
e2773c06
RD
1857 int mr_access_flags,
1858 struct ib_udata *udata);
7e6edb9b
MB
1859 int (*rereg_user_mr)(struct ib_mr *mr,
1860 int flags,
1861 u64 start, u64 length,
1862 u64 virt_addr,
1863 int mr_access_flags,
1864 struct ib_pd *pd,
1865 struct ib_udata *udata);
1da177e4 1866 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
1867 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1868 enum ib_mr_type mr_type,
1869 u32 max_num_sg);
4c67e2bf
SG
1870 int (*map_mr_sg)(struct ib_mr *mr,
1871 struct scatterlist *sg,
ff2ba993 1872 int sg_nents,
9aa8b321 1873 unsigned int *sg_offset);
7083e42e 1874 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
b2a239df
MB
1875 enum ib_mw_type type,
1876 struct ib_udata *udata);
1da177e4
LT
1877 int (*dealloc_mw)(struct ib_mw *mw);
1878 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1879 int mr_access_flags,
1880 struct ib_fmr_attr *fmr_attr);
1881 int (*map_phys_fmr)(struct ib_fmr *fmr,
1882 u64 *page_list, int list_len,
1883 u64 iova);
1884 int (*unmap_fmr)(struct list_head *fmr_list);
1885 int (*dealloc_fmr)(struct ib_fmr *fmr);
1886 int (*attach_mcast)(struct ib_qp *qp,
1887 union ib_gid *gid,
1888 u16 lid);
1889 int (*detach_mcast)(struct ib_qp *qp,
1890 union ib_gid *gid,
1891 u16 lid);
1892 int (*process_mad)(struct ib_device *device,
1893 int process_mad_flags,
1894 u8 port_num,
a97e2d86
IW
1895 const struct ib_wc *in_wc,
1896 const struct ib_grh *in_grh,
4cd7c947
IW
1897 const struct ib_mad_hdr *in_mad,
1898 size_t in_mad_size,
1899 struct ib_mad_hdr *out_mad,
1900 size_t *out_mad_size,
1901 u16 *out_mad_pkey_index);
59991f94
SH
1902 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1903 struct ib_ucontext *ucontext,
1904 struct ib_udata *udata);
1905 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1906 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1907 struct ib_flow_attr
1908 *flow_attr,
1909 int domain);
1910 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
1911 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1912 struct ib_mr_status *mr_status);
036b1063 1913 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
765d6774
SW
1914 void (*drain_rq)(struct ib_qp *qp);
1915 void (*drain_sq)(struct ib_qp *qp);
50174a7f
EC
1916 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
1917 int state);
1918 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
1919 struct ifla_vf_info *ivf);
1920 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
1921 struct ifla_vf_stats *stats);
1922 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
1923 int type);
1da177e4 1924
9b513090
RC
1925 struct ib_dma_mapping_ops *dma_ops;
1926
e2773c06 1927 struct module *owner;
f4e91eb4 1928 struct device dev;
35be0681 1929 struct kobject *ports_parent;
1da177e4
LT
1930 struct list_head port_list;
1931
1932 enum {
1933 IB_DEV_UNINITIALIZED,
1934 IB_DEV_REGISTERED,
1935 IB_DEV_UNREGISTERED
1936 } reg_state;
1937
274c0891 1938 int uverbs_abi_ver;
17a55f79 1939 u64 uverbs_cmd_mask;
f21519b2 1940 u64 uverbs_ex_cmd_mask;
274c0891 1941
c5bcbbb9 1942 char node_desc[64];
cf311cd4 1943 __be64 node_guid;
96f15c03 1944 u32 local_dma_lkey;
4139032b 1945 u16 is_switch:1;
1da177e4
LT
1946 u8 node_type;
1947 u8 phys_port_cnt;
3e153a93 1948 struct ib_device_attr attrs;
b40f4757
CL
1949 struct attribute_group *hw_stats_ag;
1950 struct rdma_hw_stats *hw_stats;
7738613e
IW
1951
1952 /**
1953 * The following mandatory functions are used only at device
1954 * registration. Keep functions such as these at the end of this
1955 * structure to avoid cache line misses when accessing struct ib_device
1956 * in fast paths.
1957 */
1958 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1da177e4
LT
1959};
1960
1961struct ib_client {
1962 char *name;
1963 void (*add) (struct ib_device *);
7c1eb45a 1964 void (*remove)(struct ib_device *, void *client_data);
1da177e4 1965
9268f72d
YK
1966 /* Returns the net_dev belonging to this ib_client and matching the
1967 * given parameters.
1968 * @dev: An RDMA device that the net_dev use for communication.
1969 * @port: A physical port number on the RDMA device.
1970 * @pkey: P_Key that the net_dev uses if applicable.
1971 * @gid: A GID that the net_dev uses to communicate.
1972 * @addr: An IP address the net_dev is configured with.
1973 * @client_data: The device's client data set by ib_set_client_data().
1974 *
1975 * An ib_client that implements a net_dev on top of RDMA devices
1976 * (such as IP over IB) should implement this callback, allowing the
1977 * rdma_cm module to find the right net_dev for a given request.
1978 *
1979 * The caller is responsible for calling dev_put on the returned
1980 * netdev. */
1981 struct net_device *(*get_net_dev_by_params)(
1982 struct ib_device *dev,
1983 u8 port,
1984 u16 pkey,
1985 const union ib_gid *gid,
1986 const struct sockaddr *addr,
1987 void *client_data);
1da177e4
LT
1988 struct list_head list;
1989};
1990
1991struct ib_device *ib_alloc_device(size_t size);
1992void ib_dealloc_device(struct ib_device *device);
1993
9a6edb60
RC
1994int ib_register_device(struct ib_device *device,
1995 int (*port_callback)(struct ib_device *,
1996 u8, struct kobject *));
1da177e4
LT
1997void ib_unregister_device(struct ib_device *device);
1998
1999int ib_register_client (struct ib_client *client);
2000void ib_unregister_client(struct ib_client *client);
2001
2002void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2003void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2004 void *data);
2005
e2773c06
RD
2006static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2007{
2008 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2009}
2010
2011static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2012{
43c61165 2013 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2014}
2015
301a721e
MB
2016static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2017 size_t offset,
2018 size_t len)
2019{
2020 const void __user *p = udata->inbuf + offset;
2021 bool ret = false;
2022 u8 *buf;
2023
2024 if (len > USHRT_MAX)
2025 return false;
2026
2027 buf = kmalloc(len, GFP_KERNEL);
2028 if (!buf)
2029 return false;
2030
2031 if (copy_from_user(buf, p, len))
2032 goto free;
2033
2034 ret = !memchr_inv(buf, 0, len);
2035
2036free:
2037 kfree(buf);
2038 return ret;
2039}
2040
8a51866f
RD
2041/**
2042 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2043 * contains all required attributes and no attributes not allowed for
2044 * the given QP state transition.
2045 * @cur_state: Current QP state
2046 * @next_state: Next QP state
2047 * @type: QP type
2048 * @mask: Mask of supplied QP attributes
dd5f03be 2049 * @ll : link layer of port
8a51866f
RD
2050 *
2051 * This function is a helper function that a low-level driver's
2052 * modify_qp method can use to validate the consumer's input. It
2053 * checks that cur_state and next_state are valid QP states, that a
2054 * transition from cur_state to next_state is allowed by the IB spec,
2055 * and that the attribute mask supplied is allowed for the transition.
2056 */
2057int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
2058 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2059 enum rdma_link_layer ll);
8a51866f 2060
1da177e4
LT
2061int ib_register_event_handler (struct ib_event_handler *event_handler);
2062int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2063void ib_dispatch_event(struct ib_event *event);
2064
1da177e4
LT
2065int ib_query_port(struct ib_device *device,
2066 u8 port_num, struct ib_port_attr *port_attr);
2067
a3f5adaf
EC
2068enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2069 u8 port_num);
2070
4139032b
HR
2071/**
2072 * rdma_cap_ib_switch - Check if the device is IB switch
2073 * @device: Device to check
2074 *
2075 * Device driver is responsible for setting is_switch bit on
2076 * in ib_device structure at init time.
2077 *
2078 * Return: true if the device is IB switch.
2079 */
2080static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2081{
2082 return device->is_switch;
2083}
2084
0cf18d77
IW
2085/**
2086 * rdma_start_port - Return the first valid port number for the device
2087 * specified
2088 *
2089 * @device: Device to be checked
2090 *
2091 * Return start port number
2092 */
2093static inline u8 rdma_start_port(const struct ib_device *device)
2094{
4139032b 2095 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2096}
2097
2098/**
2099 * rdma_end_port - Return the last valid port number for the device
2100 * specified
2101 *
2102 * @device: Device to be checked
2103 *
2104 * Return last port number
2105 */
2106static inline u8 rdma_end_port(const struct ib_device *device)
2107{
4139032b 2108 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2109}
2110
5ede9289 2111static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2112{
f9b22e35 2113 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2114}
2115
5ede9289 2116static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2117{
2118 return device->port_immutable[port_num].core_cap_flags &
2119 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2120}
2121
2122static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2123{
2124 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2125}
2126
2127static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2128{
f9b22e35 2129 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2130}
2131
5ede9289 2132static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2133{
f9b22e35 2134 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2135}
2136
5ede9289 2137static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2138{
7766a99f
MB
2139 return rdma_protocol_ib(device, port_num) ||
2140 rdma_protocol_roce(device, port_num);
de66be94
MW
2141}
2142
c757dea8 2143/**
296ec009 2144 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2145 * Management Datagrams.
296ec009
MW
2146 * @device: Device to check
2147 * @port_num: Port number to check
c757dea8 2148 *
296ec009
MW
2149 * Management Datagrams (MAD) are a required part of the InfiniBand
2150 * specification and are supported on all InfiniBand devices. A slightly
2151 * extended version are also supported on OPA interfaces.
c757dea8 2152 *
296ec009 2153 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2154 */
5ede9289 2155static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2156{
f9b22e35 2157 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2158}
2159
65995fee
IW
2160/**
2161 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2162 * Management Datagrams.
2163 * @device: Device to check
2164 * @port_num: Port number to check
2165 *
2166 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2167 * datagrams with their own versions. These OPA MADs share many but not all of
2168 * the characteristics of InfiniBand MADs.
2169 *
2170 * OPA MADs differ in the following ways:
2171 *
2172 * 1) MADs are variable size up to 2K
2173 * IBTA defined MADs remain fixed at 256 bytes
2174 * 2) OPA SMPs must carry valid PKeys
2175 * 3) OPA SMP packets are a different format
2176 *
2177 * Return: true if the port supports OPA MAD packet formats.
2178 */
2179static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2180{
2181 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2182 == RDMA_CORE_CAP_OPA_MAD;
2183}
2184
29541e3a 2185/**
296ec009
MW
2186 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2187 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2188 * @device: Device to check
2189 * @port_num: Port number to check
29541e3a 2190 *
296ec009
MW
2191 * Each InfiniBand node is required to provide a Subnet Management Agent
2192 * that the subnet manager can access. Prior to the fabric being fully
2193 * configured by the subnet manager, the SMA is accessed via a well known
2194 * interface called the Subnet Management Interface (SMI). This interface
2195 * uses directed route packets to communicate with the SM to get around the
2196 * chicken and egg problem of the SM needing to know what's on the fabric
2197 * in order to configure the fabric, and needing to configure the fabric in
2198 * order to send packets to the devices on the fabric. These directed
2199 * route packets do not need the fabric fully configured in order to reach
2200 * their destination. The SMI is the only method allowed to send
2201 * directed route packets on an InfiniBand fabric.
29541e3a 2202 *
296ec009 2203 * Return: true if the port provides an SMI.
29541e3a 2204 */
5ede9289 2205static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2206{
f9b22e35 2207 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2208}
2209
72219cea
MW
2210/**
2211 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2212 * Communication Manager.
296ec009
MW
2213 * @device: Device to check
2214 * @port_num: Port number to check
72219cea 2215 *
296ec009
MW
2216 * The InfiniBand Communication Manager is one of many pre-defined General
2217 * Service Agents (GSA) that are accessed via the General Service
2218 * Interface (GSI). It's role is to facilitate establishment of connections
2219 * between nodes as well as other management related tasks for established
2220 * connections.
72219cea 2221 *
296ec009
MW
2222 * Return: true if the port supports an IB CM (this does not guarantee that
2223 * a CM is actually running however).
72219cea 2224 */
5ede9289 2225static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2226{
f9b22e35 2227 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2228}
2229
04215330
MW
2230/**
2231 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2232 * Communication Manager.
296ec009
MW
2233 * @device: Device to check
2234 * @port_num: Port number to check
04215330 2235 *
296ec009
MW
2236 * Similar to above, but specific to iWARP connections which have a different
2237 * managment protocol than InfiniBand.
04215330 2238 *
296ec009
MW
2239 * Return: true if the port supports an iWARP CM (this does not guarantee that
2240 * a CM is actually running however).
04215330 2241 */
5ede9289 2242static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2243{
f9b22e35 2244 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2245}
2246
fe53ba2f
MW
2247/**
2248 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2249 * Subnet Administration.
296ec009
MW
2250 * @device: Device to check
2251 * @port_num: Port number to check
fe53ba2f 2252 *
296ec009
MW
2253 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2254 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2255 * fabrics, devices should resolve routes to other hosts by contacting the
2256 * SA to query the proper route.
fe53ba2f 2257 *
296ec009
MW
2258 * Return: true if the port should act as a client to the fabric Subnet
2259 * Administration interface. This does not imply that the SA service is
2260 * running locally.
fe53ba2f 2261 */
5ede9289 2262static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2263{
f9b22e35 2264 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2265}
2266
a31ad3b0
MW
2267/**
2268 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2269 * Multicast.
296ec009
MW
2270 * @device: Device to check
2271 * @port_num: Port number to check
a31ad3b0 2272 *
296ec009
MW
2273 * InfiniBand multicast registration is more complex than normal IPv4 or
2274 * IPv6 multicast registration. Each Host Channel Adapter must register
2275 * with the Subnet Manager when it wishes to join a multicast group. It
2276 * should do so only once regardless of how many queue pairs it subscribes
2277 * to this group. And it should leave the group only after all queue pairs
2278 * attached to the group have been detached.
a31ad3b0 2279 *
296ec009
MW
2280 * Return: true if the port must undertake the additional adminstrative
2281 * overhead of registering/unregistering with the SM and tracking of the
2282 * total number of queue pairs attached to the multicast group.
a31ad3b0 2283 */
5ede9289 2284static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2285{
2286 return rdma_cap_ib_sa(device, port_num);
2287}
2288
30a74ef4
MW
2289/**
2290 * rdma_cap_af_ib - Check if the port of device has the capability
2291 * Native Infiniband Address.
296ec009
MW
2292 * @device: Device to check
2293 * @port_num: Port number to check
30a74ef4 2294 *
296ec009
MW
2295 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2296 * GID. RoCE uses a different mechanism, but still generates a GID via
2297 * a prescribed mechanism and port specific data.
30a74ef4 2298 *
296ec009
MW
2299 * Return: true if the port uses a GID address to identify devices on the
2300 * network.
30a74ef4 2301 */
5ede9289 2302static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2303{
f9b22e35 2304 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2305}
2306
227128fc
MW
2307/**
2308 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2309 * Ethernet Address Handle.
2310 * @device: Device to check
2311 * @port_num: Port number to check
227128fc 2312 *
296ec009
MW
2313 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2314 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2315 * port. Normally, packet headers are generated by the sending host
2316 * adapter, but when sending connectionless datagrams, we must manually
2317 * inject the proper headers for the fabric we are communicating over.
227128fc 2318 *
296ec009
MW
2319 * Return: true if we are running as a RoCE port and must force the
2320 * addition of a Global Route Header built from our Ethernet Address
2321 * Handle into our header list for connectionless packets.
227128fc 2322 */
5ede9289 2323static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2324{
f9b22e35 2325 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2326}
2327
337877a4
IW
2328/**
2329 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2330 *
2331 * @device: Device
2332 * @port_num: Port number
2333 *
2334 * This MAD size includes the MAD headers and MAD payload. No other headers
2335 * are included.
2336 *
2337 * Return the max MAD size required by the Port. Will return 0 if the port
2338 * does not support MADs
2339 */
2340static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2341{
2342 return device->port_immutable[port_num].max_mad_size;
2343}
2344
03db3a2d
MB
2345/**
2346 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2347 * @device: Device to check
2348 * @port_num: Port number to check
2349 *
2350 * RoCE GID table mechanism manages the various GIDs for a device.
2351 *
2352 * NOTE: if allocating the port's GID table has failed, this call will still
2353 * return true, but any RoCE GID table API will fail.
2354 *
2355 * Return: true if the port uses RoCE GID table mechanism in order to manage
2356 * its GIDs.
2357 */
2358static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2359 u8 port_num)
2360{
2361 return rdma_protocol_roce(device, port_num) &&
2362 device->add_gid && device->del_gid;
2363}
2364
002516ed
CH
2365/*
2366 * Check if the device supports READ W/ INVALIDATE.
2367 */
2368static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2369{
2370 /*
2371 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2372 * has support for it yet.
2373 */
2374 return rdma_protocol_iwarp(dev, port_num);
2375}
2376
1da177e4 2377int ib_query_gid(struct ib_device *device,
55ee3ab2
MB
2378 u8 port_num, int index, union ib_gid *gid,
2379 struct ib_gid_attr *attr);
1da177e4 2380
50174a7f
EC
2381int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2382 int state);
2383int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2384 struct ifla_vf_info *info);
2385int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2386 struct ifla_vf_stats *stats);
2387int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2388 int type);
2389
1da177e4
LT
2390int ib_query_pkey(struct ib_device *device,
2391 u8 port_num, u16 index, u16 *pkey);
2392
2393int ib_modify_device(struct ib_device *device,
2394 int device_modify_mask,
2395 struct ib_device_modify *device_modify);
2396
2397int ib_modify_port(struct ib_device *device,
2398 u8 port_num, int port_modify_mask,
2399 struct ib_port_modify *port_modify);
2400
5eb620c8 2401int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b39ffa1d
MB
2402 enum ib_gid_type gid_type, struct net_device *ndev,
2403 u8 *port_num, u16 *index);
5eb620c8
YE
2404
2405int ib_find_pkey(struct ib_device *device,
2406 u8 port_num, u16 pkey, u16 *index);
2407
1da177e4
LT
2408struct ib_pd *ib_alloc_pd(struct ib_device *device);
2409
7dd78647 2410void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
2411
2412/**
2413 * ib_create_ah - Creates an address handle for the given address vector.
2414 * @pd: The protection domain associated with the address handle.
2415 * @ah_attr: The attributes of the address vector.
2416 *
2417 * The address handle is used to reference a local or global destination
2418 * in all UD QP post sends.
2419 */
2420struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2421
4e00d694
SH
2422/**
2423 * ib_init_ah_from_wc - Initializes address handle attributes from a
2424 * work completion.
2425 * @device: Device on which the received message arrived.
2426 * @port_num: Port on which the received message arrived.
2427 * @wc: Work completion associated with the received message.
2428 * @grh: References the received global route header. This parameter is
2429 * ignored unless the work completion indicates that the GRH is valid.
2430 * @ah_attr: Returned attributes that can be used when creating an address
2431 * handle for replying to the message.
2432 */
73cdaaee
IW
2433int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2434 const struct ib_wc *wc, const struct ib_grh *grh,
2435 struct ib_ah_attr *ah_attr);
4e00d694 2436
513789ed
HR
2437/**
2438 * ib_create_ah_from_wc - Creates an address handle associated with the
2439 * sender of the specified work completion.
2440 * @pd: The protection domain associated with the address handle.
2441 * @wc: Work completion information associated with a received message.
2442 * @grh: References the received global route header. This parameter is
2443 * ignored unless the work completion indicates that the GRH is valid.
2444 * @port_num: The outbound port number to associate with the address.
2445 *
2446 * The address handle is used to reference a local or global destination
2447 * in all UD QP post sends.
2448 */
73cdaaee
IW
2449struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2450 const struct ib_grh *grh, u8 port_num);
513789ed 2451
1da177e4
LT
2452/**
2453 * ib_modify_ah - Modifies the address vector associated with an address
2454 * handle.
2455 * @ah: The address handle to modify.
2456 * @ah_attr: The new address vector attributes to associate with the
2457 * address handle.
2458 */
2459int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2460
2461/**
2462 * ib_query_ah - Queries the address vector associated with an address
2463 * handle.
2464 * @ah: The address handle to query.
2465 * @ah_attr: The address vector attributes associated with the address
2466 * handle.
2467 */
2468int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2469
2470/**
2471 * ib_destroy_ah - Destroys an address handle.
2472 * @ah: The address handle to destroy.
2473 */
2474int ib_destroy_ah(struct ib_ah *ah);
2475
d41fcc67
RD
2476/**
2477 * ib_create_srq - Creates a SRQ associated with the specified protection
2478 * domain.
2479 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2480 * @srq_init_attr: A list of initial attributes required to create the
2481 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2482 * the actual capabilities of the created SRQ.
d41fcc67
RD
2483 *
2484 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2485 * requested size of the SRQ, and set to the actual values allocated
2486 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2487 * will always be at least as large as the requested values.
2488 */
2489struct ib_srq *ib_create_srq(struct ib_pd *pd,
2490 struct ib_srq_init_attr *srq_init_attr);
2491
2492/**
2493 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2494 * @srq: The SRQ to modify.
2495 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2496 * the current values of selected SRQ attributes are returned.
2497 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2498 * are being modified.
2499 *
2500 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2501 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2502 * the number of receives queued drops below the limit.
2503 */
2504int ib_modify_srq(struct ib_srq *srq,
2505 struct ib_srq_attr *srq_attr,
2506 enum ib_srq_attr_mask srq_attr_mask);
2507
2508/**
2509 * ib_query_srq - Returns the attribute list and current values for the
2510 * specified SRQ.
2511 * @srq: The SRQ to query.
2512 * @srq_attr: The attributes of the specified SRQ.
2513 */
2514int ib_query_srq(struct ib_srq *srq,
2515 struct ib_srq_attr *srq_attr);
2516
2517/**
2518 * ib_destroy_srq - Destroys the specified SRQ.
2519 * @srq: The SRQ to destroy.
2520 */
2521int ib_destroy_srq(struct ib_srq *srq);
2522
2523/**
2524 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2525 * @srq: The SRQ to post the work request on.
2526 * @recv_wr: A list of work requests to post on the receive queue.
2527 * @bad_recv_wr: On an immediate failure, this parameter will reference
2528 * the work request that failed to be posted on the QP.
2529 */
2530static inline int ib_post_srq_recv(struct ib_srq *srq,
2531 struct ib_recv_wr *recv_wr,
2532 struct ib_recv_wr **bad_recv_wr)
2533{
2534 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2535}
2536
1da177e4
LT
2537/**
2538 * ib_create_qp - Creates a QP associated with the specified protection
2539 * domain.
2540 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2541 * @qp_init_attr: A list of initial attributes required to create the
2542 * QP. If QP creation succeeds, then the attributes are updated to
2543 * the actual capabilities of the created QP.
1da177e4
LT
2544 */
2545struct ib_qp *ib_create_qp(struct ib_pd *pd,
2546 struct ib_qp_init_attr *qp_init_attr);
2547
2548/**
2549 * ib_modify_qp - Modifies the attributes for the specified QP and then
2550 * transitions the QP to the given state.
2551 * @qp: The QP to modify.
2552 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2553 * the current values of selected QP attributes are returned.
2554 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2555 * are being modified.
2556 */
2557int ib_modify_qp(struct ib_qp *qp,
2558 struct ib_qp_attr *qp_attr,
2559 int qp_attr_mask);
2560
2561/**
2562 * ib_query_qp - Returns the attribute list and current values for the
2563 * specified QP.
2564 * @qp: The QP to query.
2565 * @qp_attr: The attributes of the specified QP.
2566 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2567 * @qp_init_attr: Additional attributes of the selected QP.
2568 *
2569 * The qp_attr_mask may be used to limit the query to gathering only the
2570 * selected attributes.
2571 */
2572int ib_query_qp(struct ib_qp *qp,
2573 struct ib_qp_attr *qp_attr,
2574 int qp_attr_mask,
2575 struct ib_qp_init_attr *qp_init_attr);
2576
2577/**
2578 * ib_destroy_qp - Destroys the specified QP.
2579 * @qp: The QP to destroy.
2580 */
2581int ib_destroy_qp(struct ib_qp *qp);
2582
d3d72d90 2583/**
0e0ec7e0
SH
2584 * ib_open_qp - Obtain a reference to an existing sharable QP.
2585 * @xrcd - XRC domain
2586 * @qp_open_attr: Attributes identifying the QP to open.
2587 *
2588 * Returns a reference to a sharable QP.
2589 */
2590struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2591 struct ib_qp_open_attr *qp_open_attr);
2592
2593/**
2594 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2595 * @qp: The QP handle to release
2596 *
0e0ec7e0
SH
2597 * The opened QP handle is released by the caller. The underlying
2598 * shared QP is not destroyed until all internal references are released.
d3d72d90 2599 */
0e0ec7e0 2600int ib_close_qp(struct ib_qp *qp);
d3d72d90 2601
1da177e4
LT
2602/**
2603 * ib_post_send - Posts a list of work requests to the send queue of
2604 * the specified QP.
2605 * @qp: The QP to post the work request on.
2606 * @send_wr: A list of work requests to post on the send queue.
2607 * @bad_send_wr: On an immediate failure, this parameter will reference
2608 * the work request that failed to be posted on the QP.
55464d46
BVA
2609 *
2610 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2611 * error is returned, the QP state shall not be affected,
2612 * ib_post_send() will return an immediate error after queueing any
2613 * earlier work requests in the list.
1da177e4
LT
2614 */
2615static inline int ib_post_send(struct ib_qp *qp,
2616 struct ib_send_wr *send_wr,
2617 struct ib_send_wr **bad_send_wr)
2618{
2619 return qp->device->post_send(qp, send_wr, bad_send_wr);
2620}
2621
2622/**
2623 * ib_post_recv - Posts a list of work requests to the receive queue of
2624 * the specified QP.
2625 * @qp: The QP to post the work request on.
2626 * @recv_wr: A list of work requests to post on the receive queue.
2627 * @bad_recv_wr: On an immediate failure, this parameter will reference
2628 * the work request that failed to be posted on the QP.
2629 */
2630static inline int ib_post_recv(struct ib_qp *qp,
2631 struct ib_recv_wr *recv_wr,
2632 struct ib_recv_wr **bad_recv_wr)
2633{
2634 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2635}
2636
14d3a3b2
CH
2637struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2638 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2639void ib_free_cq(struct ib_cq *cq);
2640int ib_process_cq_direct(struct ib_cq *cq, int budget);
2641
1da177e4
LT
2642/**
2643 * ib_create_cq - Creates a CQ on the specified device.
2644 * @device: The device on which to create the CQ.
2645 * @comp_handler: A user-specified callback that is invoked when a
2646 * completion event occurs on the CQ.
2647 * @event_handler: A user-specified callback that is invoked when an
2648 * asynchronous event not associated with a completion occurs on the CQ.
2649 * @cq_context: Context associated with the CQ returned to the user via
2650 * the associated completion and event handlers.
8e37210b 2651 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2652 *
2653 * Users can examine the cq structure to determine the actual CQ size.
2654 */
2655struct ib_cq *ib_create_cq(struct ib_device *device,
2656 ib_comp_handler comp_handler,
2657 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2658 void *cq_context,
2659 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2660
2661/**
2662 * ib_resize_cq - Modifies the capacity of the CQ.
2663 * @cq: The CQ to resize.
2664 * @cqe: The minimum size of the CQ.
2665 *
2666 * Users can examine the cq structure to determine the actual CQ size.
2667 */
2668int ib_resize_cq(struct ib_cq *cq, int cqe);
2669
2dd57162
EC
2670/**
2671 * ib_modify_cq - Modifies moderation params of the CQ
2672 * @cq: The CQ to modify.
2673 * @cq_count: number of CQEs that will trigger an event
2674 * @cq_period: max period of time in usec before triggering an event
2675 *
2676 */
2677int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2678
1da177e4
LT
2679/**
2680 * ib_destroy_cq - Destroys the specified CQ.
2681 * @cq: The CQ to destroy.
2682 */
2683int ib_destroy_cq(struct ib_cq *cq);
2684
2685/**
2686 * ib_poll_cq - poll a CQ for completion(s)
2687 * @cq:the CQ being polled
2688 * @num_entries:maximum number of completions to return
2689 * @wc:array of at least @num_entries &struct ib_wc where completions
2690 * will be returned
2691 *
2692 * Poll a CQ for (possibly multiple) completions. If the return value
2693 * is < 0, an error occurred. If the return value is >= 0, it is the
2694 * number of completions returned. If the return value is
2695 * non-negative and < num_entries, then the CQ was emptied.
2696 */
2697static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2698 struct ib_wc *wc)
2699{
2700 return cq->device->poll_cq(cq, num_entries, wc);
2701}
2702
2703/**
2704 * ib_peek_cq - Returns the number of unreaped completions currently
2705 * on the specified CQ.
2706 * @cq: The CQ to peek.
2707 * @wc_cnt: A minimum number of unreaped completions to check for.
2708 *
2709 * If the number of unreaped completions is greater than or equal to wc_cnt,
2710 * this function returns wc_cnt, otherwise, it returns the actual number of
2711 * unreaped completions.
2712 */
2713int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2714
2715/**
2716 * ib_req_notify_cq - Request completion notification on a CQ.
2717 * @cq: The CQ to generate an event for.
ed23a727
RD
2718 * @flags:
2719 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2720 * to request an event on the next solicited event or next work
2721 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2722 * may also be |ed in to request a hint about missed events, as
2723 * described below.
2724 *
2725 * Return Value:
2726 * < 0 means an error occurred while requesting notification
2727 * == 0 means notification was requested successfully, and if
2728 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2729 * were missed and it is safe to wait for another event. In
2730 * this case is it guaranteed that any work completions added
2731 * to the CQ since the last CQ poll will trigger a completion
2732 * notification event.
2733 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2734 * in. It means that the consumer must poll the CQ again to
2735 * make sure it is empty to avoid missing an event because of a
2736 * race between requesting notification and an entry being
2737 * added to the CQ. This return value means it is possible
2738 * (but not guaranteed) that a work completion has been added
2739 * to the CQ since the last poll without triggering a
2740 * completion notification event.
1da177e4
LT
2741 */
2742static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2743 enum ib_cq_notify_flags flags)
1da177e4 2744{
ed23a727 2745 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2746}
2747
2748/**
2749 * ib_req_ncomp_notif - Request completion notification when there are
2750 * at least the specified number of unreaped completions on the CQ.
2751 * @cq: The CQ to generate an event for.
2752 * @wc_cnt: The number of unreaped completions that should be on the
2753 * CQ before an event is generated.
2754 */
2755static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2756{
2757 return cq->device->req_ncomp_notif ?
2758 cq->device->req_ncomp_notif(cq, wc_cnt) :
2759 -ENOSYS;
2760}
2761
2762/**
2763 * ib_get_dma_mr - Returns a memory region for system memory that is
2764 * usable for DMA.
2765 * @pd: The protection domain associated with the memory region.
2766 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
2767 *
2768 * Note that the ib_dma_*() functions defined below must be used
2769 * to create/destroy addresses used with the Lkey or Rkey returned
2770 * by ib_get_dma_mr().
1da177e4
LT
2771 */
2772struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2773
9b513090
RC
2774/**
2775 * ib_dma_mapping_error - check a DMA addr for error
2776 * @dev: The device for which the dma_addr was created
2777 * @dma_addr: The DMA address to check
2778 */
2779static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2780{
d1998ef3
BC
2781 if (dev->dma_ops)
2782 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2783 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2784}
2785
2786/**
2787 * ib_dma_map_single - Map a kernel virtual address to DMA address
2788 * @dev: The device for which the dma_addr is to be created
2789 * @cpu_addr: The kernel virtual address
2790 * @size: The size of the region in bytes
2791 * @direction: The direction of the DMA
2792 */
2793static inline u64 ib_dma_map_single(struct ib_device *dev,
2794 void *cpu_addr, size_t size,
2795 enum dma_data_direction direction)
2796{
d1998ef3
BC
2797 if (dev->dma_ops)
2798 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2799 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2800}
2801
2802/**
2803 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2804 * @dev: The device for which the DMA address was created
2805 * @addr: The DMA address
2806 * @size: The size of the region in bytes
2807 * @direction: The direction of the DMA
2808 */
2809static inline void ib_dma_unmap_single(struct ib_device *dev,
2810 u64 addr, size_t size,
2811 enum dma_data_direction direction)
2812{
d1998ef3
BC
2813 if (dev->dma_ops)
2814 dev->dma_ops->unmap_single(dev, addr, size, direction);
2815 else
9b513090
RC
2816 dma_unmap_single(dev->dma_device, addr, size, direction);
2817}
2818
cb9fbc5c
AK
2819static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2820 void *cpu_addr, size_t size,
2821 enum dma_data_direction direction,
2822 struct dma_attrs *attrs)
2823{
2824 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2825 direction, attrs);
2826}
2827
2828static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2829 u64 addr, size_t size,
2830 enum dma_data_direction direction,
2831 struct dma_attrs *attrs)
2832{
2833 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2834 direction, attrs);
2835}
2836
9b513090
RC
2837/**
2838 * ib_dma_map_page - Map a physical page to DMA address
2839 * @dev: The device for which the dma_addr is to be created
2840 * @page: The page to be mapped
2841 * @offset: The offset within the page
2842 * @size: The size of the region in bytes
2843 * @direction: The direction of the DMA
2844 */
2845static inline u64 ib_dma_map_page(struct ib_device *dev,
2846 struct page *page,
2847 unsigned long offset,
2848 size_t size,
2849 enum dma_data_direction direction)
2850{
d1998ef3
BC
2851 if (dev->dma_ops)
2852 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2853 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
2854}
2855
2856/**
2857 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2858 * @dev: The device for which the DMA address was created
2859 * @addr: The DMA address
2860 * @size: The size of the region in bytes
2861 * @direction: The direction of the DMA
2862 */
2863static inline void ib_dma_unmap_page(struct ib_device *dev,
2864 u64 addr, size_t size,
2865 enum dma_data_direction direction)
2866{
d1998ef3
BC
2867 if (dev->dma_ops)
2868 dev->dma_ops->unmap_page(dev, addr, size, direction);
2869 else
9b513090
RC
2870 dma_unmap_page(dev->dma_device, addr, size, direction);
2871}
2872
2873/**
2874 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2875 * @dev: The device for which the DMA addresses are to be created
2876 * @sg: The array of scatter/gather entries
2877 * @nents: The number of scatter/gather entries
2878 * @direction: The direction of the DMA
2879 */
2880static inline int ib_dma_map_sg(struct ib_device *dev,
2881 struct scatterlist *sg, int nents,
2882 enum dma_data_direction direction)
2883{
d1998ef3
BC
2884 if (dev->dma_ops)
2885 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2886 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2887}
2888
2889/**
2890 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2891 * @dev: The device for which the DMA addresses were created
2892 * @sg: The array of scatter/gather entries
2893 * @nents: The number of scatter/gather entries
2894 * @direction: The direction of the DMA
2895 */
2896static inline void ib_dma_unmap_sg(struct ib_device *dev,
2897 struct scatterlist *sg, int nents,
2898 enum dma_data_direction direction)
2899{
d1998ef3
BC
2900 if (dev->dma_ops)
2901 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2902 else
9b513090
RC
2903 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2904}
2905
cb9fbc5c
AK
2906static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2907 struct scatterlist *sg, int nents,
2908 enum dma_data_direction direction,
2909 struct dma_attrs *attrs)
2910{
2911 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2912}
2913
2914static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2915 struct scatterlist *sg, int nents,
2916 enum dma_data_direction direction,
2917 struct dma_attrs *attrs)
2918{
2919 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2920}
9b513090
RC
2921/**
2922 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2923 * @dev: The device for which the DMA addresses were created
2924 * @sg: The scatter/gather entry
ea58a595
MM
2925 *
2926 * Note: this function is obsolete. To do: change all occurrences of
2927 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
2928 */
2929static inline u64 ib_sg_dma_address(struct ib_device *dev,
2930 struct scatterlist *sg)
2931{
d1998ef3 2932 return sg_dma_address(sg);
9b513090
RC
2933}
2934
2935/**
2936 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2937 * @dev: The device for which the DMA addresses were created
2938 * @sg: The scatter/gather entry
ea58a595
MM
2939 *
2940 * Note: this function is obsolete. To do: change all occurrences of
2941 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
2942 */
2943static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2944 struct scatterlist *sg)
2945{
d1998ef3 2946 return sg_dma_len(sg);
9b513090
RC
2947}
2948
2949/**
2950 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2951 * @dev: The device for which the DMA address was created
2952 * @addr: The DMA address
2953 * @size: The size of the region in bytes
2954 * @dir: The direction of the DMA
2955 */
2956static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2957 u64 addr,
2958 size_t size,
2959 enum dma_data_direction dir)
2960{
d1998ef3
BC
2961 if (dev->dma_ops)
2962 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2963 else
9b513090
RC
2964 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2965}
2966
2967/**
2968 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2969 * @dev: The device for which the DMA address was created
2970 * @addr: The DMA address
2971 * @size: The size of the region in bytes
2972 * @dir: The direction of the DMA
2973 */
2974static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2975 u64 addr,
2976 size_t size,
2977 enum dma_data_direction dir)
2978{
d1998ef3
BC
2979 if (dev->dma_ops)
2980 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2981 else
9b513090
RC
2982 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2983}
2984
2985/**
2986 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2987 * @dev: The device for which the DMA address is requested
2988 * @size: The size of the region to allocate in bytes
2989 * @dma_handle: A pointer for returning the DMA address of the region
2990 * @flag: memory allocator flags
2991 */
2992static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2993 size_t size,
2994 u64 *dma_handle,
2995 gfp_t flag)
2996{
d1998ef3
BC
2997 if (dev->dma_ops)
2998 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2999 else {
3000 dma_addr_t handle;
3001 void *ret;
3002
3003 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3004 *dma_handle = handle;
3005 return ret;
3006 }
9b513090
RC
3007}
3008
3009/**
3010 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3011 * @dev: The device for which the DMA addresses were allocated
3012 * @size: The size of the region
3013 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3014 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3015 */
3016static inline void ib_dma_free_coherent(struct ib_device *dev,
3017 size_t size, void *cpu_addr,
3018 u64 dma_handle)
3019{
d1998ef3
BC
3020 if (dev->dma_ops)
3021 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3022 else
9b513090
RC
3023 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3024}
3025
1da177e4
LT
3026/**
3027 * ib_dereg_mr - Deregisters a memory region and removes it from the
3028 * HCA translation table.
3029 * @mr: The memory region to deregister.
7083e42e
SM
3030 *
3031 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
3032 */
3033int ib_dereg_mr(struct ib_mr *mr);
3034
9bee178b
SG
3035struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3036 enum ib_mr_type mr_type,
3037 u32 max_num_sg);
00f7ec36 3038
00f7ec36
SW
3039/**
3040 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3041 * R_Key and L_Key.
3042 * @mr - struct ib_mr pointer to be updated.
3043 * @newkey - new key to be used.
3044 */
3045static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3046{
3047 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3048 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3049}
3050
7083e42e
SM
3051/**
3052 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3053 * for calculating a new rkey for type 2 memory windows.
3054 * @rkey - the rkey to increment.
3055 */
3056static inline u32 ib_inc_rkey(u32 rkey)
3057{
3058 const u32 mask = 0x000000ff;
3059 return ((rkey + 1) & mask) | (rkey & ~mask);
3060}
3061
1da177e4
LT
3062/**
3063 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3064 * @pd: The protection domain associated with the unmapped region.
3065 * @mr_access_flags: Specifies the memory access rights.
3066 * @fmr_attr: Attributes of the unmapped region.
3067 *
3068 * A fast memory region must be mapped before it can be used as part of
3069 * a work request.
3070 */
3071struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3072 int mr_access_flags,
3073 struct ib_fmr_attr *fmr_attr);
3074
3075/**
3076 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3077 * @fmr: The fast memory region to associate with the pages.
3078 * @page_list: An array of physical pages to map to the fast memory region.
3079 * @list_len: The number of pages in page_list.
3080 * @iova: The I/O virtual address to use with the mapped region.
3081 */
3082static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3083 u64 *page_list, int list_len,
3084 u64 iova)
3085{
3086 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3087}
3088
3089/**
3090 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3091 * @fmr_list: A linked list of fast memory regions to unmap.
3092 */
3093int ib_unmap_fmr(struct list_head *fmr_list);
3094
3095/**
3096 * ib_dealloc_fmr - Deallocates a fast memory region.
3097 * @fmr: The fast memory region to deallocate.
3098 */
3099int ib_dealloc_fmr(struct ib_fmr *fmr);
3100
3101/**
3102 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3103 * @qp: QP to attach to the multicast group. The QP must be type
3104 * IB_QPT_UD.
3105 * @gid: Multicast group GID.
3106 * @lid: Multicast group LID in host byte order.
3107 *
3108 * In order to send and receive multicast packets, subnet
3109 * administration must have created the multicast group and configured
3110 * the fabric appropriately. The port associated with the specified
3111 * QP must also be a member of the multicast group.
3112 */
3113int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3114
3115/**
3116 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3117 * @qp: QP to detach from the multicast group.
3118 * @gid: Multicast group GID.
3119 * @lid: Multicast group LID in host byte order.
3120 */
3121int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3122
59991f94
SH
3123/**
3124 * ib_alloc_xrcd - Allocates an XRC domain.
3125 * @device: The device on which to allocate the XRC domain.
3126 */
3127struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3128
3129/**
3130 * ib_dealloc_xrcd - Deallocates an XRC domain.
3131 * @xrcd: The XRC domain to deallocate.
3132 */
3133int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3134
319a441d
HHZ
3135struct ib_flow *ib_create_flow(struct ib_qp *qp,
3136 struct ib_flow_attr *flow_attr, int domain);
3137int ib_destroy_flow(struct ib_flow *flow_id);
3138
1c636f80
EC
3139static inline int ib_check_mr_access(int flags)
3140{
3141 /*
3142 * Local write permission is required if remote write or
3143 * remote atomic permission is also requested.
3144 */
3145 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3146 !(flags & IB_ACCESS_LOCAL_WRITE))
3147 return -EINVAL;
3148
3149 return 0;
3150}
3151
1b01d335
SG
3152/**
3153 * ib_check_mr_status: lightweight check of MR status.
3154 * This routine may provide status checks on a selected
3155 * ib_mr. first use is for signature status check.
3156 *
3157 * @mr: A memory region.
3158 * @check_mask: Bitmask of which checks to perform from
3159 * ib_mr_status_check enumeration.
3160 * @mr_status: The container of relevant status checks.
3161 * failed checks will be indicated in the status bitmask
3162 * and the relevant info shall be in the error item.
3163 */
3164int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3165 struct ib_mr_status *mr_status);
3166
9268f72d
YK
3167struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3168 u16 pkey, const union ib_gid *gid,
3169 const struct sockaddr *addr);
3170
ff2ba993 3171int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3172 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
3173
3174static inline int
ff2ba993 3175ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3176 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
3177{
3178 int n;
3179
ff2ba993 3180 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
3181 mr->iova = 0;
3182
3183 return n;
3184}
3185
ff2ba993 3186int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 3187 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 3188
765d6774
SW
3189void ib_drain_rq(struct ib_qp *qp);
3190void ib_drain_sq(struct ib_qp *qp);
3191void ib_drain_qp(struct ib_qp *qp);
1da177e4 3192#endif /* IB_VERBS_H */
This page took 1.108876 seconds and 5 git commands to generate.