IB/mlx4: Add receive flow steering support
[deliverable/linux.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
e2773c06 51
60063497 52#include <linux/atomic.h>
e2773c06 53#include <asm/uaccess.h>
1da177e4 54
f0626710
TH
55extern struct workqueue_struct *ib_wq;
56
1da177e4
LT
57union ib_gid {
58 u8 raw[16];
59 struct {
97f52eb4
SH
60 __be64 subnet_prefix;
61 __be64 interface_id;
1da177e4
LT
62 } global;
63};
64
07ebafba
TT
65enum rdma_node_type {
66 /* IB values map to NodeInfo:NodeType. */
67 RDMA_NODE_IB_CA = 1,
68 RDMA_NODE_IB_SWITCH,
69 RDMA_NODE_IB_ROUTER,
70 RDMA_NODE_RNIC
1da177e4
LT
71};
72
07ebafba
TT
73enum rdma_transport_type {
74 RDMA_TRANSPORT_IB,
75 RDMA_TRANSPORT_IWARP
76};
77
78enum rdma_transport_type
79rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
80
a3f5adaf
EC
81enum rdma_link_layer {
82 IB_LINK_LAYER_UNSPECIFIED,
83 IB_LINK_LAYER_INFINIBAND,
84 IB_LINK_LAYER_ETHERNET,
85};
86
1da177e4
LT
87enum ib_device_cap_flags {
88 IB_DEVICE_RESIZE_MAX_WR = 1,
89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
91 IB_DEVICE_RAW_MULTI = (1<<3),
92 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
96 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
97 IB_DEVICE_INIT_TYPE = (1<<9),
98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
101 IB_DEVICE_SRQ_RESIZE = (1<<13),
102 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
96f15c03 103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
105 IB_DEVICE_MEM_WINDOW = (1<<17),
106 /*
107 * Devices should set IB_DEVICE_UD_IP_SUM if they support
108 * insertion of UDP and TCP checksum on outgoing UD IPoIB
109 * messages and can verify the validity of checksum for
110 * incoming messages. Setting this flag implies that the
111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
112 */
113 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 114 IB_DEVICE_UD_TSO = (1<<19),
59991f94 115 IB_DEVICE_XRC = (1<<20),
00f7ec36 116 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 117 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
7083e42e 118 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
319a441d
HHZ
119 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
120 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29)
1da177e4
LT
121};
122
123enum ib_atomic_cap {
124 IB_ATOMIC_NONE,
125 IB_ATOMIC_HCA,
126 IB_ATOMIC_GLOB
127};
128
129struct ib_device_attr {
130 u64 fw_ver;
97f52eb4 131 __be64 sys_image_guid;
1da177e4
LT
132 u64 max_mr_size;
133 u64 page_size_cap;
134 u32 vendor_id;
135 u32 vendor_part_id;
136 u32 hw_ver;
137 int max_qp;
138 int max_qp_wr;
139 int device_cap_flags;
140 int max_sge;
141 int max_sge_rd;
142 int max_cq;
143 int max_cqe;
144 int max_mr;
145 int max_pd;
146 int max_qp_rd_atom;
147 int max_ee_rd_atom;
148 int max_res_rd_atom;
149 int max_qp_init_rd_atom;
150 int max_ee_init_rd_atom;
151 enum ib_atomic_cap atomic_cap;
5e80ba8f 152 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
153 int max_ee;
154 int max_rdd;
155 int max_mw;
156 int max_raw_ipv6_qp;
157 int max_raw_ethy_qp;
158 int max_mcast_grp;
159 int max_mcast_qp_attach;
160 int max_total_mcast_qp_attach;
161 int max_ah;
162 int max_fmr;
163 int max_map_per_fmr;
164 int max_srq;
165 int max_srq_wr;
166 int max_srq_sge;
00f7ec36 167 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
168 u16 max_pkeys;
169 u8 local_ca_ack_delay;
170};
171
172enum ib_mtu {
173 IB_MTU_256 = 1,
174 IB_MTU_512 = 2,
175 IB_MTU_1024 = 3,
176 IB_MTU_2048 = 4,
177 IB_MTU_4096 = 5
178};
179
180static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
181{
182 switch (mtu) {
183 case IB_MTU_256: return 256;
184 case IB_MTU_512: return 512;
185 case IB_MTU_1024: return 1024;
186 case IB_MTU_2048: return 2048;
187 case IB_MTU_4096: return 4096;
188 default: return -1;
189 }
190}
191
192enum ib_port_state {
193 IB_PORT_NOP = 0,
194 IB_PORT_DOWN = 1,
195 IB_PORT_INIT = 2,
196 IB_PORT_ARMED = 3,
197 IB_PORT_ACTIVE = 4,
198 IB_PORT_ACTIVE_DEFER = 5
199};
200
201enum ib_port_cap_flags {
202 IB_PORT_SM = 1 << 1,
203 IB_PORT_NOTICE_SUP = 1 << 2,
204 IB_PORT_TRAP_SUP = 1 << 3,
205 IB_PORT_OPT_IPD_SUP = 1 << 4,
206 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
207 IB_PORT_SL_MAP_SUP = 1 << 6,
208 IB_PORT_MKEY_NVRAM = 1 << 7,
209 IB_PORT_PKEY_NVRAM = 1 << 8,
210 IB_PORT_LED_INFO_SUP = 1 << 9,
211 IB_PORT_SM_DISABLED = 1 << 10,
212 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
213 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 214 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
215 IB_PORT_CM_SUP = 1 << 16,
216 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
217 IB_PORT_REINIT_SUP = 1 << 18,
218 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
219 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
220 IB_PORT_DR_NOTICE_SUP = 1 << 21,
221 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
222 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
223 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
224 IB_PORT_CLIENT_REG_SUP = 1 << 25
225};
226
227enum ib_port_width {
228 IB_WIDTH_1X = 1,
229 IB_WIDTH_4X = 2,
230 IB_WIDTH_8X = 4,
231 IB_WIDTH_12X = 8
232};
233
234static inline int ib_width_enum_to_int(enum ib_port_width width)
235{
236 switch (width) {
237 case IB_WIDTH_1X: return 1;
238 case IB_WIDTH_4X: return 4;
239 case IB_WIDTH_8X: return 8;
240 case IB_WIDTH_12X: return 12;
241 default: return -1;
242 }
243}
244
2e96691c
OG
245enum ib_port_speed {
246 IB_SPEED_SDR = 1,
247 IB_SPEED_DDR = 2,
248 IB_SPEED_QDR = 4,
249 IB_SPEED_FDR10 = 8,
250 IB_SPEED_FDR = 16,
251 IB_SPEED_EDR = 32
252};
253
7f624d02
SW
254struct ib_protocol_stats {
255 /* TBD... */
256};
257
258struct iw_protocol_stats {
259 u64 ipInReceives;
260 u64 ipInHdrErrors;
261 u64 ipInTooBigErrors;
262 u64 ipInNoRoutes;
263 u64 ipInAddrErrors;
264 u64 ipInUnknownProtos;
265 u64 ipInTruncatedPkts;
266 u64 ipInDiscards;
267 u64 ipInDelivers;
268 u64 ipOutForwDatagrams;
269 u64 ipOutRequests;
270 u64 ipOutDiscards;
271 u64 ipOutNoRoutes;
272 u64 ipReasmTimeout;
273 u64 ipReasmReqds;
274 u64 ipReasmOKs;
275 u64 ipReasmFails;
276 u64 ipFragOKs;
277 u64 ipFragFails;
278 u64 ipFragCreates;
279 u64 ipInMcastPkts;
280 u64 ipOutMcastPkts;
281 u64 ipInBcastPkts;
282 u64 ipOutBcastPkts;
283
284 u64 tcpRtoAlgorithm;
285 u64 tcpRtoMin;
286 u64 tcpRtoMax;
287 u64 tcpMaxConn;
288 u64 tcpActiveOpens;
289 u64 tcpPassiveOpens;
290 u64 tcpAttemptFails;
291 u64 tcpEstabResets;
292 u64 tcpCurrEstab;
293 u64 tcpInSegs;
294 u64 tcpOutSegs;
295 u64 tcpRetransSegs;
296 u64 tcpInErrs;
297 u64 tcpOutRsts;
298};
299
300union rdma_protocol_stats {
301 struct ib_protocol_stats ib;
302 struct iw_protocol_stats iw;
303};
304
1da177e4
LT
305struct ib_port_attr {
306 enum ib_port_state state;
307 enum ib_mtu max_mtu;
308 enum ib_mtu active_mtu;
309 int gid_tbl_len;
310 u32 port_cap_flags;
311 u32 max_msg_sz;
312 u32 bad_pkey_cntr;
313 u32 qkey_viol_cntr;
314 u16 pkey_tbl_len;
315 u16 lid;
316 u16 sm_lid;
317 u8 lmc;
318 u8 max_vl_num;
319 u8 sm_sl;
320 u8 subnet_timeout;
321 u8 init_type_reply;
322 u8 active_width;
323 u8 active_speed;
324 u8 phys_state;
325};
326
327enum ib_device_modify_flags {
c5bcbbb9
RD
328 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
329 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
330};
331
332struct ib_device_modify {
333 u64 sys_image_guid;
c5bcbbb9 334 char node_desc[64];
1da177e4
LT
335};
336
337enum ib_port_modify_flags {
338 IB_PORT_SHUTDOWN = 1,
339 IB_PORT_INIT_TYPE = (1<<2),
340 IB_PORT_RESET_QKEY_CNTR = (1<<3)
341};
342
343struct ib_port_modify {
344 u32 set_port_cap_mask;
345 u32 clr_port_cap_mask;
346 u8 init_type;
347};
348
349enum ib_event_type {
350 IB_EVENT_CQ_ERR,
351 IB_EVENT_QP_FATAL,
352 IB_EVENT_QP_REQ_ERR,
353 IB_EVENT_QP_ACCESS_ERR,
354 IB_EVENT_COMM_EST,
355 IB_EVENT_SQ_DRAINED,
356 IB_EVENT_PATH_MIG,
357 IB_EVENT_PATH_MIG_ERR,
358 IB_EVENT_DEVICE_FATAL,
359 IB_EVENT_PORT_ACTIVE,
360 IB_EVENT_PORT_ERR,
361 IB_EVENT_LID_CHANGE,
362 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
363 IB_EVENT_SM_CHANGE,
364 IB_EVENT_SRQ_ERR,
365 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 366 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
367 IB_EVENT_CLIENT_REREGISTER,
368 IB_EVENT_GID_CHANGE,
1da177e4
LT
369};
370
371struct ib_event {
372 struct ib_device *device;
373 union {
374 struct ib_cq *cq;
375 struct ib_qp *qp;
d41fcc67 376 struct ib_srq *srq;
1da177e4
LT
377 u8 port_num;
378 } element;
379 enum ib_event_type event;
380};
381
382struct ib_event_handler {
383 struct ib_device *device;
384 void (*handler)(struct ib_event_handler *, struct ib_event *);
385 struct list_head list;
386};
387
388#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
389 do { \
390 (_ptr)->device = _device; \
391 (_ptr)->handler = _handler; \
392 INIT_LIST_HEAD(&(_ptr)->list); \
393 } while (0)
394
395struct ib_global_route {
396 union ib_gid dgid;
397 u32 flow_label;
398 u8 sgid_index;
399 u8 hop_limit;
400 u8 traffic_class;
401};
402
513789ed 403struct ib_grh {
97f52eb4
SH
404 __be32 version_tclass_flow;
405 __be16 paylen;
513789ed
HR
406 u8 next_hdr;
407 u8 hop_limit;
408 union ib_gid sgid;
409 union ib_gid dgid;
410};
411
1da177e4
LT
412enum {
413 IB_MULTICAST_QPN = 0xffffff
414};
415
f3a7c66b 416#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 417
1da177e4
LT
418enum ib_ah_flags {
419 IB_AH_GRH = 1
420};
421
bf6a9e31
JM
422enum ib_rate {
423 IB_RATE_PORT_CURRENT = 0,
424 IB_RATE_2_5_GBPS = 2,
425 IB_RATE_5_GBPS = 5,
426 IB_RATE_10_GBPS = 3,
427 IB_RATE_20_GBPS = 6,
428 IB_RATE_30_GBPS = 4,
429 IB_RATE_40_GBPS = 7,
430 IB_RATE_60_GBPS = 8,
431 IB_RATE_80_GBPS = 9,
71eeba16
MA
432 IB_RATE_120_GBPS = 10,
433 IB_RATE_14_GBPS = 11,
434 IB_RATE_56_GBPS = 12,
435 IB_RATE_112_GBPS = 13,
436 IB_RATE_168_GBPS = 14,
437 IB_RATE_25_GBPS = 15,
438 IB_RATE_100_GBPS = 16,
439 IB_RATE_200_GBPS = 17,
440 IB_RATE_300_GBPS = 18
bf6a9e31
JM
441};
442
443/**
444 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
445 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
446 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
447 * @rate: rate to convert.
448 */
449int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
450
71eeba16
MA
451/**
452 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
453 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
454 * @rate: rate to convert.
455 */
456int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
457
bf6a9e31
JM
458/**
459 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
460 * enum.
461 * @mult: multiple to convert.
462 */
463enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
464
1da177e4
LT
465struct ib_ah_attr {
466 struct ib_global_route grh;
467 u16 dlid;
468 u8 sl;
469 u8 src_path_bits;
470 u8 static_rate;
471 u8 ah_flags;
472 u8 port_num;
473};
474
475enum ib_wc_status {
476 IB_WC_SUCCESS,
477 IB_WC_LOC_LEN_ERR,
478 IB_WC_LOC_QP_OP_ERR,
479 IB_WC_LOC_EEC_OP_ERR,
480 IB_WC_LOC_PROT_ERR,
481 IB_WC_WR_FLUSH_ERR,
482 IB_WC_MW_BIND_ERR,
483 IB_WC_BAD_RESP_ERR,
484 IB_WC_LOC_ACCESS_ERR,
485 IB_WC_REM_INV_REQ_ERR,
486 IB_WC_REM_ACCESS_ERR,
487 IB_WC_REM_OP_ERR,
488 IB_WC_RETRY_EXC_ERR,
489 IB_WC_RNR_RETRY_EXC_ERR,
490 IB_WC_LOC_RDD_VIOL_ERR,
491 IB_WC_REM_INV_RD_REQ_ERR,
492 IB_WC_REM_ABORT_ERR,
493 IB_WC_INV_EECN_ERR,
494 IB_WC_INV_EEC_STATE_ERR,
495 IB_WC_FATAL_ERR,
496 IB_WC_RESP_TIMEOUT_ERR,
497 IB_WC_GENERAL_ERR
498};
499
500enum ib_wc_opcode {
501 IB_WC_SEND,
502 IB_WC_RDMA_WRITE,
503 IB_WC_RDMA_READ,
504 IB_WC_COMP_SWAP,
505 IB_WC_FETCH_ADD,
506 IB_WC_BIND_MW,
c93570f2 507 IB_WC_LSO,
00f7ec36
SW
508 IB_WC_LOCAL_INV,
509 IB_WC_FAST_REG_MR,
5e80ba8f
VS
510 IB_WC_MASKED_COMP_SWAP,
511 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
512/*
513 * Set value of IB_WC_RECV so consumers can test if a completion is a
514 * receive by testing (opcode & IB_WC_RECV).
515 */
516 IB_WC_RECV = 1 << 7,
517 IB_WC_RECV_RDMA_WITH_IMM
518};
519
520enum ib_wc_flags {
521 IB_WC_GRH = 1,
00f7ec36
SW
522 IB_WC_WITH_IMM = (1<<1),
523 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 524 IB_WC_IP_CSUM_OK = (1<<3),
1da177e4
LT
525};
526
527struct ib_wc {
528 u64 wr_id;
529 enum ib_wc_status status;
530 enum ib_wc_opcode opcode;
531 u32 vendor_err;
532 u32 byte_len;
062dbb69 533 struct ib_qp *qp;
00f7ec36
SW
534 union {
535 __be32 imm_data;
536 u32 invalidate_rkey;
537 } ex;
1da177e4
LT
538 u32 src_qp;
539 int wc_flags;
540 u16 pkey_index;
541 u16 slid;
542 u8 sl;
543 u8 dlid_path_bits;
544 u8 port_num; /* valid only for DR SMPs on switches */
545};
546
ed23a727
RD
547enum ib_cq_notify_flags {
548 IB_CQ_SOLICITED = 1 << 0,
549 IB_CQ_NEXT_COMP = 1 << 1,
550 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
551 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
552};
553
96104eda 554enum ib_srq_type {
418d5130
SH
555 IB_SRQT_BASIC,
556 IB_SRQT_XRC
96104eda
SH
557};
558
d41fcc67
RD
559enum ib_srq_attr_mask {
560 IB_SRQ_MAX_WR = 1 << 0,
561 IB_SRQ_LIMIT = 1 << 1,
562};
563
564struct ib_srq_attr {
565 u32 max_wr;
566 u32 max_sge;
567 u32 srq_limit;
568};
569
570struct ib_srq_init_attr {
571 void (*event_handler)(struct ib_event *, void *);
572 void *srq_context;
573 struct ib_srq_attr attr;
96104eda 574 enum ib_srq_type srq_type;
418d5130
SH
575
576 union {
577 struct {
578 struct ib_xrcd *xrcd;
579 struct ib_cq *cq;
580 } xrc;
581 } ext;
d41fcc67
RD
582};
583
1da177e4
LT
584struct ib_qp_cap {
585 u32 max_send_wr;
586 u32 max_recv_wr;
587 u32 max_send_sge;
588 u32 max_recv_sge;
589 u32 max_inline_data;
590};
591
592enum ib_sig_type {
593 IB_SIGNAL_ALL_WR,
594 IB_SIGNAL_REQ_WR
595};
596
597enum ib_qp_type {
598 /*
599 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
600 * here (and in that order) since the MAD layer uses them as
601 * indices into a 2-entry table.
602 */
603 IB_QPT_SMI,
604 IB_QPT_GSI,
605
606 IB_QPT_RC,
607 IB_QPT_UC,
608 IB_QPT_UD,
609 IB_QPT_RAW_IPV6,
b42b63cf 610 IB_QPT_RAW_ETHERTYPE,
c938a616 611 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
612 IB_QPT_XRC_INI = 9,
613 IB_QPT_XRC_TGT,
0134f16b
JM
614 IB_QPT_MAX,
615 /* Reserve a range for qp types internal to the low level driver.
616 * These qp types will not be visible at the IB core layer, so the
617 * IB_QPT_MAX usages should not be affected in the core layer
618 */
619 IB_QPT_RESERVED1 = 0x1000,
620 IB_QPT_RESERVED2,
621 IB_QPT_RESERVED3,
622 IB_QPT_RESERVED4,
623 IB_QPT_RESERVED5,
624 IB_QPT_RESERVED6,
625 IB_QPT_RESERVED7,
626 IB_QPT_RESERVED8,
627 IB_QPT_RESERVED9,
628 IB_QPT_RESERVED10,
1da177e4
LT
629};
630
b846f25a 631enum ib_qp_create_flags {
47ee1b9f
RL
632 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
633 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
d2b57063
JM
634 /* reserve bits 26-31 for low level drivers' internal use */
635 IB_QP_CREATE_RESERVED_START = 1 << 26,
636 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
637};
638
1da177e4
LT
639struct ib_qp_init_attr {
640 void (*event_handler)(struct ib_event *, void *);
641 void *qp_context;
642 struct ib_cq *send_cq;
643 struct ib_cq *recv_cq;
644 struct ib_srq *srq;
b42b63cf 645 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
646 struct ib_qp_cap cap;
647 enum ib_sig_type sq_sig_type;
648 enum ib_qp_type qp_type;
b846f25a 649 enum ib_qp_create_flags create_flags;
1da177e4
LT
650 u8 port_num; /* special QP types only */
651};
652
0e0ec7e0
SH
653struct ib_qp_open_attr {
654 void (*event_handler)(struct ib_event *, void *);
655 void *qp_context;
656 u32 qp_num;
657 enum ib_qp_type qp_type;
658};
659
1da177e4
LT
660enum ib_rnr_timeout {
661 IB_RNR_TIMER_655_36 = 0,
662 IB_RNR_TIMER_000_01 = 1,
663 IB_RNR_TIMER_000_02 = 2,
664 IB_RNR_TIMER_000_03 = 3,
665 IB_RNR_TIMER_000_04 = 4,
666 IB_RNR_TIMER_000_06 = 5,
667 IB_RNR_TIMER_000_08 = 6,
668 IB_RNR_TIMER_000_12 = 7,
669 IB_RNR_TIMER_000_16 = 8,
670 IB_RNR_TIMER_000_24 = 9,
671 IB_RNR_TIMER_000_32 = 10,
672 IB_RNR_TIMER_000_48 = 11,
673 IB_RNR_TIMER_000_64 = 12,
674 IB_RNR_TIMER_000_96 = 13,
675 IB_RNR_TIMER_001_28 = 14,
676 IB_RNR_TIMER_001_92 = 15,
677 IB_RNR_TIMER_002_56 = 16,
678 IB_RNR_TIMER_003_84 = 17,
679 IB_RNR_TIMER_005_12 = 18,
680 IB_RNR_TIMER_007_68 = 19,
681 IB_RNR_TIMER_010_24 = 20,
682 IB_RNR_TIMER_015_36 = 21,
683 IB_RNR_TIMER_020_48 = 22,
684 IB_RNR_TIMER_030_72 = 23,
685 IB_RNR_TIMER_040_96 = 24,
686 IB_RNR_TIMER_061_44 = 25,
687 IB_RNR_TIMER_081_92 = 26,
688 IB_RNR_TIMER_122_88 = 27,
689 IB_RNR_TIMER_163_84 = 28,
690 IB_RNR_TIMER_245_76 = 29,
691 IB_RNR_TIMER_327_68 = 30,
692 IB_RNR_TIMER_491_52 = 31
693};
694
695enum ib_qp_attr_mask {
696 IB_QP_STATE = 1,
697 IB_QP_CUR_STATE = (1<<1),
698 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
699 IB_QP_ACCESS_FLAGS = (1<<3),
700 IB_QP_PKEY_INDEX = (1<<4),
701 IB_QP_PORT = (1<<5),
702 IB_QP_QKEY = (1<<6),
703 IB_QP_AV = (1<<7),
704 IB_QP_PATH_MTU = (1<<8),
705 IB_QP_TIMEOUT = (1<<9),
706 IB_QP_RETRY_CNT = (1<<10),
707 IB_QP_RNR_RETRY = (1<<11),
708 IB_QP_RQ_PSN = (1<<12),
709 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
710 IB_QP_ALT_PATH = (1<<14),
711 IB_QP_MIN_RNR_TIMER = (1<<15),
712 IB_QP_SQ_PSN = (1<<16),
713 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
714 IB_QP_PATH_MIG_STATE = (1<<18),
715 IB_QP_CAP = (1<<19),
716 IB_QP_DEST_QPN = (1<<20)
717};
718
719enum ib_qp_state {
720 IB_QPS_RESET,
721 IB_QPS_INIT,
722 IB_QPS_RTR,
723 IB_QPS_RTS,
724 IB_QPS_SQD,
725 IB_QPS_SQE,
726 IB_QPS_ERR
727};
728
729enum ib_mig_state {
730 IB_MIG_MIGRATED,
731 IB_MIG_REARM,
732 IB_MIG_ARMED
733};
734
7083e42e
SM
735enum ib_mw_type {
736 IB_MW_TYPE_1 = 1,
737 IB_MW_TYPE_2 = 2
738};
739
1da177e4
LT
740struct ib_qp_attr {
741 enum ib_qp_state qp_state;
742 enum ib_qp_state cur_qp_state;
743 enum ib_mtu path_mtu;
744 enum ib_mig_state path_mig_state;
745 u32 qkey;
746 u32 rq_psn;
747 u32 sq_psn;
748 u32 dest_qp_num;
749 int qp_access_flags;
750 struct ib_qp_cap cap;
751 struct ib_ah_attr ah_attr;
752 struct ib_ah_attr alt_ah_attr;
753 u16 pkey_index;
754 u16 alt_pkey_index;
755 u8 en_sqd_async_notify;
756 u8 sq_draining;
757 u8 max_rd_atomic;
758 u8 max_dest_rd_atomic;
759 u8 min_rnr_timer;
760 u8 port_num;
761 u8 timeout;
762 u8 retry_cnt;
763 u8 rnr_retry;
764 u8 alt_port_num;
765 u8 alt_timeout;
766};
767
768enum ib_wr_opcode {
769 IB_WR_RDMA_WRITE,
770 IB_WR_RDMA_WRITE_WITH_IMM,
771 IB_WR_SEND,
772 IB_WR_SEND_WITH_IMM,
773 IB_WR_RDMA_READ,
774 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 775 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
776 IB_WR_LSO,
777 IB_WR_SEND_WITH_INV,
00f7ec36
SW
778 IB_WR_RDMA_READ_WITH_INV,
779 IB_WR_LOCAL_INV,
780 IB_WR_FAST_REG_MR,
5e80ba8f
VS
781 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
782 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
7083e42e 783 IB_WR_BIND_MW,
0134f16b
JM
784 /* reserve values for low level drivers' internal use.
785 * These values will not be used at all in the ib core layer.
786 */
787 IB_WR_RESERVED1 = 0xf0,
788 IB_WR_RESERVED2,
789 IB_WR_RESERVED3,
790 IB_WR_RESERVED4,
791 IB_WR_RESERVED5,
792 IB_WR_RESERVED6,
793 IB_WR_RESERVED7,
794 IB_WR_RESERVED8,
795 IB_WR_RESERVED9,
796 IB_WR_RESERVED10,
1da177e4
LT
797};
798
799enum ib_send_flags {
800 IB_SEND_FENCE = 1,
801 IB_SEND_SIGNALED = (1<<1),
802 IB_SEND_SOLICITED = (1<<2),
e0605d91 803 IB_SEND_INLINE = (1<<3),
0134f16b
JM
804 IB_SEND_IP_CSUM = (1<<4),
805
806 /* reserve bits 26-31 for low level drivers' internal use */
807 IB_SEND_RESERVED_START = (1 << 26),
808 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
809};
810
811struct ib_sge {
812 u64 addr;
813 u32 length;
814 u32 lkey;
815};
816
00f7ec36
SW
817struct ib_fast_reg_page_list {
818 struct ib_device *device;
819 u64 *page_list;
820 unsigned int max_page_list_len;
821};
822
7083e42e
SM
823/**
824 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
825 * @mr: A memory region to bind the memory window to.
826 * @addr: The address where the memory window should begin.
827 * @length: The length of the memory window, in bytes.
828 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
829 *
830 * This struct contains the shared parameters for type 1 and type 2
831 * memory window bind operations.
832 */
833struct ib_mw_bind_info {
834 struct ib_mr *mr;
835 u64 addr;
836 u64 length;
837 int mw_access_flags;
838};
839
1da177e4
LT
840struct ib_send_wr {
841 struct ib_send_wr *next;
842 u64 wr_id;
843 struct ib_sge *sg_list;
844 int num_sge;
845 enum ib_wr_opcode opcode;
846 int send_flags;
0f39cf3d
RD
847 union {
848 __be32 imm_data;
849 u32 invalidate_rkey;
850 } ex;
1da177e4
LT
851 union {
852 struct {
853 u64 remote_addr;
854 u32 rkey;
855 } rdma;
856 struct {
857 u64 remote_addr;
858 u64 compare_add;
859 u64 swap;
5e80ba8f
VS
860 u64 compare_add_mask;
861 u64 swap_mask;
1da177e4
LT
862 u32 rkey;
863 } atomic;
864 struct {
865 struct ib_ah *ah;
c93570f2
EC
866 void *header;
867 int hlen;
868 int mss;
1da177e4
LT
869 u32 remote_qpn;
870 u32 remote_qkey;
1da177e4
LT
871 u16 pkey_index; /* valid for GSI only */
872 u8 port_num; /* valid for DR SMPs on switch only */
873 } ud;
00f7ec36
SW
874 struct {
875 u64 iova_start;
876 struct ib_fast_reg_page_list *page_list;
877 unsigned int page_shift;
878 unsigned int page_list_len;
879 u32 length;
880 int access_flags;
881 u32 rkey;
882 } fast_reg;
7083e42e
SM
883 struct {
884 struct ib_mw *mw;
885 /* The new rkey for the memory window. */
886 u32 rkey;
887 struct ib_mw_bind_info bind_info;
888 } bind_mw;
1da177e4 889 } wr;
b42b63cf 890 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1da177e4
LT
891};
892
893struct ib_recv_wr {
894 struct ib_recv_wr *next;
895 u64 wr_id;
896 struct ib_sge *sg_list;
897 int num_sge;
898};
899
900enum ib_access_flags {
901 IB_ACCESS_LOCAL_WRITE = 1,
902 IB_ACCESS_REMOTE_WRITE = (1<<1),
903 IB_ACCESS_REMOTE_READ = (1<<2),
904 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e
SM
905 IB_ACCESS_MW_BIND = (1<<4),
906 IB_ZERO_BASED = (1<<5)
1da177e4
LT
907};
908
909struct ib_phys_buf {
910 u64 addr;
911 u64 size;
912};
913
914struct ib_mr_attr {
915 struct ib_pd *pd;
916 u64 device_virt_addr;
917 u64 size;
918 int mr_access_flags;
919 u32 lkey;
920 u32 rkey;
921};
922
923enum ib_mr_rereg_flags {
924 IB_MR_REREG_TRANS = 1,
925 IB_MR_REREG_PD = (1<<1),
926 IB_MR_REREG_ACCESS = (1<<2)
927};
928
7083e42e
SM
929/**
930 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
931 * @wr_id: Work request id.
932 * @send_flags: Flags from ib_send_flags enum.
933 * @bind_info: More parameters of the bind operation.
934 */
1da177e4 935struct ib_mw_bind {
7083e42e
SM
936 u64 wr_id;
937 int send_flags;
938 struct ib_mw_bind_info bind_info;
1da177e4
LT
939};
940
941struct ib_fmr_attr {
942 int max_pages;
943 int max_maps;
d36f34aa 944 u8 page_shift;
1da177e4
LT
945};
946
e2773c06
RD
947struct ib_ucontext {
948 struct ib_device *device;
949 struct list_head pd_list;
950 struct list_head mr_list;
951 struct list_head mw_list;
952 struct list_head cq_list;
953 struct list_head qp_list;
954 struct list_head srq_list;
955 struct list_head ah_list;
53d0bd1e 956 struct list_head xrcd_list;
436f2ad0 957 struct list_head rule_list;
f7c6a7b5 958 int closing;
e2773c06
RD
959};
960
961struct ib_uobject {
962 u64 user_handle; /* handle given to us by userspace */
963 struct ib_ucontext *context; /* associated user context */
9ead190b 964 void *object; /* containing object */
e2773c06 965 struct list_head list; /* link to context's list */
b3d636b0 966 int id; /* index into kernel idr */
9ead190b
RD
967 struct kref ref;
968 struct rw_semaphore mutex; /* protects .live */
969 int live;
e2773c06
RD
970};
971
e2773c06
RD
972struct ib_udata {
973 void __user *inbuf;
974 void __user *outbuf;
975 size_t inlen;
976 size_t outlen;
977};
978
1da177e4 979struct ib_pd {
e2773c06
RD
980 struct ib_device *device;
981 struct ib_uobject *uobject;
982 atomic_t usecnt; /* count all resources */
1da177e4
LT
983};
984
59991f94
SH
985struct ib_xrcd {
986 struct ib_device *device;
d3d72d90 987 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 988 struct inode *inode;
d3d72d90
SH
989
990 struct mutex tgt_qp_mutex;
991 struct list_head tgt_qp_list;
59991f94
SH
992};
993
1da177e4
LT
994struct ib_ah {
995 struct ib_device *device;
996 struct ib_pd *pd;
e2773c06 997 struct ib_uobject *uobject;
1da177e4
LT
998};
999
1000typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1001
1002struct ib_cq {
e2773c06
RD
1003 struct ib_device *device;
1004 struct ib_uobject *uobject;
1005 ib_comp_handler comp_handler;
1006 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1007 void *cq_context;
e2773c06
RD
1008 int cqe;
1009 atomic_t usecnt; /* count number of work queues */
1da177e4
LT
1010};
1011
1012struct ib_srq {
d41fcc67
RD
1013 struct ib_device *device;
1014 struct ib_pd *pd;
1015 struct ib_uobject *uobject;
1016 void (*event_handler)(struct ib_event *, void *);
1017 void *srq_context;
96104eda 1018 enum ib_srq_type srq_type;
1da177e4 1019 atomic_t usecnt;
418d5130
SH
1020
1021 union {
1022 struct {
1023 struct ib_xrcd *xrcd;
1024 struct ib_cq *cq;
1025 u32 srq_num;
1026 } xrc;
1027 } ext;
1da177e4
LT
1028};
1029
1030struct ib_qp {
1031 struct ib_device *device;
1032 struct ib_pd *pd;
1033 struct ib_cq *send_cq;
1034 struct ib_cq *recv_cq;
1035 struct ib_srq *srq;
b42b63cf 1036 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1037 struct list_head xrcd_list;
319a441d
HHZ
1038 /* count times opened, mcast attaches, flow attaches */
1039 atomic_t usecnt;
0e0ec7e0
SH
1040 struct list_head open_list;
1041 struct ib_qp *real_qp;
e2773c06 1042 struct ib_uobject *uobject;
1da177e4
LT
1043 void (*event_handler)(struct ib_event *, void *);
1044 void *qp_context;
1045 u32 qp_num;
1046 enum ib_qp_type qp_type;
1047};
1048
1049struct ib_mr {
e2773c06
RD
1050 struct ib_device *device;
1051 struct ib_pd *pd;
1052 struct ib_uobject *uobject;
1053 u32 lkey;
1054 u32 rkey;
1055 atomic_t usecnt; /* count number of MWs */
1da177e4
LT
1056};
1057
1058struct ib_mw {
1059 struct ib_device *device;
1060 struct ib_pd *pd;
e2773c06 1061 struct ib_uobject *uobject;
1da177e4 1062 u32 rkey;
7083e42e 1063 enum ib_mw_type type;
1da177e4
LT
1064};
1065
1066struct ib_fmr {
1067 struct ib_device *device;
1068 struct ib_pd *pd;
1069 struct list_head list;
1070 u32 lkey;
1071 u32 rkey;
1072};
1073
319a441d
HHZ
1074/* Supported steering options */
1075enum ib_flow_attr_type {
1076 /* steering according to rule specifications */
1077 IB_FLOW_ATTR_NORMAL = 0x0,
1078 /* default unicast and multicast rule -
1079 * receive all Eth traffic which isn't steered to any QP
1080 */
1081 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1082 /* default multicast rule -
1083 * receive all Eth multicast traffic which isn't steered to any QP
1084 */
1085 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1086 /* sniffer rule - receive all port traffic */
1087 IB_FLOW_ATTR_SNIFFER = 0x3
1088};
1089
1090/* Supported steering header types */
1091enum ib_flow_spec_type {
1092 /* L2 headers*/
1093 IB_FLOW_SPEC_ETH = 0x20,
1094 /* L3 header*/
1095 IB_FLOW_SPEC_IPV4 = 0x30,
1096 /* L4 headers*/
1097 IB_FLOW_SPEC_TCP = 0x40,
1098 IB_FLOW_SPEC_UDP = 0x41
1099};
1100
1101/* Flow steering rule priority is set according to it's domain.
1102 * Lower domain value means higher priority.
1103 */
1104enum ib_flow_domain {
1105 IB_FLOW_DOMAIN_USER,
1106 IB_FLOW_DOMAIN_ETHTOOL,
1107 IB_FLOW_DOMAIN_RFS,
1108 IB_FLOW_DOMAIN_NIC,
1109 IB_FLOW_DOMAIN_NUM /* Must be last */
1110};
1111
1112struct ib_flow_eth_filter {
1113 u8 dst_mac[6];
1114 u8 src_mac[6];
1115 __be16 ether_type;
1116 __be16 vlan_tag;
1117};
1118
1119struct ib_flow_spec_eth {
1120 enum ib_flow_spec_type type;
1121 u16 size;
1122 struct ib_flow_eth_filter val;
1123 struct ib_flow_eth_filter mask;
1124};
1125
1126struct ib_flow_ipv4_filter {
1127 __be32 src_ip;
1128 __be32 dst_ip;
1129};
1130
1131struct ib_flow_spec_ipv4 {
1132 enum ib_flow_spec_type type;
1133 u16 size;
1134 struct ib_flow_ipv4_filter val;
1135 struct ib_flow_ipv4_filter mask;
1136};
1137
1138struct ib_flow_tcp_udp_filter {
1139 __be16 dst_port;
1140 __be16 src_port;
1141};
1142
1143struct ib_flow_spec_tcp_udp {
1144 enum ib_flow_spec_type type;
1145 u16 size;
1146 struct ib_flow_tcp_udp_filter val;
1147 struct ib_flow_tcp_udp_filter mask;
1148};
1149
1150union ib_flow_spec {
1151 struct {
1152 enum ib_flow_spec_type type;
1153 u16 size;
1154 };
1155 struct ib_flow_spec_eth eth;
1156 struct ib_flow_spec_ipv4 ipv4;
1157 struct ib_flow_spec_tcp_udp tcp_udp;
1158};
1159
1160struct ib_flow_attr {
1161 enum ib_flow_attr_type type;
1162 u16 size;
1163 u16 priority;
1164 u32 flags;
1165 u8 num_of_specs;
1166 u8 port;
1167 /* Following are the optional layers according to user request
1168 * struct ib_flow_spec_xxx
1169 * struct ib_flow_spec_yyy
1170 */
1171};
1172
1173struct ib_flow {
1174 struct ib_qp *qp;
1175 struct ib_uobject *uobject;
1176};
1177
1da177e4
LT
1178struct ib_mad;
1179struct ib_grh;
1180
1181enum ib_process_mad_flags {
1182 IB_MAD_IGNORE_MKEY = 1,
1183 IB_MAD_IGNORE_BKEY = 2,
1184 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1185};
1186
1187enum ib_mad_result {
1188 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1189 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1190 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1191 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1192};
1193
1194#define IB_DEVICE_NAME_MAX 64
1195
1196struct ib_cache {
1197 rwlock_t lock;
1198 struct ib_event_handler event_handler;
1199 struct ib_pkey_cache **pkey_cache;
1200 struct ib_gid_cache **gid_cache;
6fb9cdbf 1201 u8 *lmc_cache;
1da177e4
LT
1202};
1203
9b513090
RC
1204struct ib_dma_mapping_ops {
1205 int (*mapping_error)(struct ib_device *dev,
1206 u64 dma_addr);
1207 u64 (*map_single)(struct ib_device *dev,
1208 void *ptr, size_t size,
1209 enum dma_data_direction direction);
1210 void (*unmap_single)(struct ib_device *dev,
1211 u64 addr, size_t size,
1212 enum dma_data_direction direction);
1213 u64 (*map_page)(struct ib_device *dev,
1214 struct page *page, unsigned long offset,
1215 size_t size,
1216 enum dma_data_direction direction);
1217 void (*unmap_page)(struct ib_device *dev,
1218 u64 addr, size_t size,
1219 enum dma_data_direction direction);
1220 int (*map_sg)(struct ib_device *dev,
1221 struct scatterlist *sg, int nents,
1222 enum dma_data_direction direction);
1223 void (*unmap_sg)(struct ib_device *dev,
1224 struct scatterlist *sg, int nents,
1225 enum dma_data_direction direction);
1226 u64 (*dma_address)(struct ib_device *dev,
1227 struct scatterlist *sg);
1228 unsigned int (*dma_len)(struct ib_device *dev,
1229 struct scatterlist *sg);
1230 void (*sync_single_for_cpu)(struct ib_device *dev,
1231 u64 dma_handle,
1232 size_t size,
4deccd6d 1233 enum dma_data_direction dir);
9b513090
RC
1234 void (*sync_single_for_device)(struct ib_device *dev,
1235 u64 dma_handle,
1236 size_t size,
1237 enum dma_data_direction dir);
1238 void *(*alloc_coherent)(struct ib_device *dev,
1239 size_t size,
1240 u64 *dma_handle,
1241 gfp_t flag);
1242 void (*free_coherent)(struct ib_device *dev,
1243 size_t size, void *cpu_addr,
1244 u64 dma_handle);
1245};
1246
07ebafba
TT
1247struct iw_cm_verbs;
1248
1da177e4
LT
1249struct ib_device {
1250 struct device *dma_device;
1251
1252 char name[IB_DEVICE_NAME_MAX];
1253
1254 struct list_head event_handler_list;
1255 spinlock_t event_handler_lock;
1256
17a55f79 1257 spinlock_t client_data_lock;
1da177e4
LT
1258 struct list_head core_list;
1259 struct list_head client_data_list;
1da177e4
LT
1260
1261 struct ib_cache cache;
5eb620c8
YE
1262 int *pkey_tbl_len;
1263 int *gid_tbl_len;
1da177e4 1264
f4fd0b22
MT
1265 int num_comp_vectors;
1266
07ebafba
TT
1267 struct iw_cm_verbs *iwcm;
1268
7f624d02
SW
1269 int (*get_protocol_stats)(struct ib_device *device,
1270 union rdma_protocol_stats *stats);
1da177e4
LT
1271 int (*query_device)(struct ib_device *device,
1272 struct ib_device_attr *device_attr);
1273 int (*query_port)(struct ib_device *device,
1274 u8 port_num,
1275 struct ib_port_attr *port_attr);
a3f5adaf
EC
1276 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1277 u8 port_num);
1da177e4
LT
1278 int (*query_gid)(struct ib_device *device,
1279 u8 port_num, int index,
1280 union ib_gid *gid);
1281 int (*query_pkey)(struct ib_device *device,
1282 u8 port_num, u16 index, u16 *pkey);
1283 int (*modify_device)(struct ib_device *device,
1284 int device_modify_mask,
1285 struct ib_device_modify *device_modify);
1286 int (*modify_port)(struct ib_device *device,
1287 u8 port_num, int port_modify_mask,
1288 struct ib_port_modify *port_modify);
e2773c06
RD
1289 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1290 struct ib_udata *udata);
1291 int (*dealloc_ucontext)(struct ib_ucontext *context);
1292 int (*mmap)(struct ib_ucontext *context,
1293 struct vm_area_struct *vma);
1294 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1295 struct ib_ucontext *context,
1296 struct ib_udata *udata);
1da177e4
LT
1297 int (*dealloc_pd)(struct ib_pd *pd);
1298 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1299 struct ib_ah_attr *ah_attr);
1300 int (*modify_ah)(struct ib_ah *ah,
1301 struct ib_ah_attr *ah_attr);
1302 int (*query_ah)(struct ib_ah *ah,
1303 struct ib_ah_attr *ah_attr);
1304 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1305 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1306 struct ib_srq_init_attr *srq_init_attr,
1307 struct ib_udata *udata);
1308 int (*modify_srq)(struct ib_srq *srq,
1309 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1310 enum ib_srq_attr_mask srq_attr_mask,
1311 struct ib_udata *udata);
d41fcc67
RD
1312 int (*query_srq)(struct ib_srq *srq,
1313 struct ib_srq_attr *srq_attr);
1314 int (*destroy_srq)(struct ib_srq *srq);
1315 int (*post_srq_recv)(struct ib_srq *srq,
1316 struct ib_recv_wr *recv_wr,
1317 struct ib_recv_wr **bad_recv_wr);
1da177e4 1318 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1319 struct ib_qp_init_attr *qp_init_attr,
1320 struct ib_udata *udata);
1da177e4
LT
1321 int (*modify_qp)(struct ib_qp *qp,
1322 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1323 int qp_attr_mask,
1324 struct ib_udata *udata);
1da177e4
LT
1325 int (*query_qp)(struct ib_qp *qp,
1326 struct ib_qp_attr *qp_attr,
1327 int qp_attr_mask,
1328 struct ib_qp_init_attr *qp_init_attr);
1329 int (*destroy_qp)(struct ib_qp *qp);
1330 int (*post_send)(struct ib_qp *qp,
1331 struct ib_send_wr *send_wr,
1332 struct ib_send_wr **bad_send_wr);
1333 int (*post_recv)(struct ib_qp *qp,
1334 struct ib_recv_wr *recv_wr,
1335 struct ib_recv_wr **bad_recv_wr);
e2773c06 1336 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
f4fd0b22 1337 int comp_vector,
e2773c06
RD
1338 struct ib_ucontext *context,
1339 struct ib_udata *udata);
2dd57162
EC
1340 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1341 u16 cq_period);
1da177e4 1342 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1343 int (*resize_cq)(struct ib_cq *cq, int cqe,
1344 struct ib_udata *udata);
1da177e4
LT
1345 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1346 struct ib_wc *wc);
1347 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1348 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1349 enum ib_cq_notify_flags flags);
1da177e4
LT
1350 int (*req_ncomp_notif)(struct ib_cq *cq,
1351 int wc_cnt);
1352 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1353 int mr_access_flags);
1354 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1355 struct ib_phys_buf *phys_buf_array,
1356 int num_phys_buf,
1357 int mr_access_flags,
1358 u64 *iova_start);
e2773c06 1359 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1360 u64 start, u64 length,
1361 u64 virt_addr,
e2773c06
RD
1362 int mr_access_flags,
1363 struct ib_udata *udata);
1da177e4
LT
1364 int (*query_mr)(struct ib_mr *mr,
1365 struct ib_mr_attr *mr_attr);
1366 int (*dereg_mr)(struct ib_mr *mr);
00f7ec36
SW
1367 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1368 int max_page_list_len);
1369 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1370 int page_list_len);
1371 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1da177e4
LT
1372 int (*rereg_phys_mr)(struct ib_mr *mr,
1373 int mr_rereg_mask,
1374 struct ib_pd *pd,
1375 struct ib_phys_buf *phys_buf_array,
1376 int num_phys_buf,
1377 int mr_access_flags,
1378 u64 *iova_start);
7083e42e
SM
1379 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1380 enum ib_mw_type type);
1da177e4
LT
1381 int (*bind_mw)(struct ib_qp *qp,
1382 struct ib_mw *mw,
1383 struct ib_mw_bind *mw_bind);
1384 int (*dealloc_mw)(struct ib_mw *mw);
1385 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1386 int mr_access_flags,
1387 struct ib_fmr_attr *fmr_attr);
1388 int (*map_phys_fmr)(struct ib_fmr *fmr,
1389 u64 *page_list, int list_len,
1390 u64 iova);
1391 int (*unmap_fmr)(struct list_head *fmr_list);
1392 int (*dealloc_fmr)(struct ib_fmr *fmr);
1393 int (*attach_mcast)(struct ib_qp *qp,
1394 union ib_gid *gid,
1395 u16 lid);
1396 int (*detach_mcast)(struct ib_qp *qp,
1397 union ib_gid *gid,
1398 u16 lid);
1399 int (*process_mad)(struct ib_device *device,
1400 int process_mad_flags,
1401 u8 port_num,
1402 struct ib_wc *in_wc,
1403 struct ib_grh *in_grh,
1404 struct ib_mad *in_mad,
1405 struct ib_mad *out_mad);
59991f94
SH
1406 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1407 struct ib_ucontext *ucontext,
1408 struct ib_udata *udata);
1409 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1410 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1411 struct ib_flow_attr
1412 *flow_attr,
1413 int domain);
1414 int (*destroy_flow)(struct ib_flow *flow_id);
1da177e4 1415
9b513090
RC
1416 struct ib_dma_mapping_ops *dma_ops;
1417
e2773c06 1418 struct module *owner;
f4e91eb4 1419 struct device dev;
35be0681 1420 struct kobject *ports_parent;
1da177e4
LT
1421 struct list_head port_list;
1422
1423 enum {
1424 IB_DEV_UNINITIALIZED,
1425 IB_DEV_REGISTERED,
1426 IB_DEV_UNREGISTERED
1427 } reg_state;
1428
274c0891 1429 int uverbs_abi_ver;
17a55f79 1430 u64 uverbs_cmd_mask;
274c0891 1431
c5bcbbb9 1432 char node_desc[64];
cf311cd4 1433 __be64 node_guid;
96f15c03 1434 u32 local_dma_lkey;
1da177e4
LT
1435 u8 node_type;
1436 u8 phys_port_cnt;
1437};
1438
1439struct ib_client {
1440 char *name;
1441 void (*add) (struct ib_device *);
1442 void (*remove)(struct ib_device *);
1443
1444 struct list_head list;
1445};
1446
1447struct ib_device *ib_alloc_device(size_t size);
1448void ib_dealloc_device(struct ib_device *device);
1449
9a6edb60
RC
1450int ib_register_device(struct ib_device *device,
1451 int (*port_callback)(struct ib_device *,
1452 u8, struct kobject *));
1da177e4
LT
1453void ib_unregister_device(struct ib_device *device);
1454
1455int ib_register_client (struct ib_client *client);
1456void ib_unregister_client(struct ib_client *client);
1457
1458void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1459void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1460 void *data);
1461
e2773c06
RD
1462static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1463{
1464 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1465}
1466
1467static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1468{
1469 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1470}
1471
8a51866f
RD
1472/**
1473 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1474 * contains all required attributes and no attributes not allowed for
1475 * the given QP state transition.
1476 * @cur_state: Current QP state
1477 * @next_state: Next QP state
1478 * @type: QP type
1479 * @mask: Mask of supplied QP attributes
1480 *
1481 * This function is a helper function that a low-level driver's
1482 * modify_qp method can use to validate the consumer's input. It
1483 * checks that cur_state and next_state are valid QP states, that a
1484 * transition from cur_state to next_state is allowed by the IB spec,
1485 * and that the attribute mask supplied is allowed for the transition.
1486 */
1487int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1488 enum ib_qp_type type, enum ib_qp_attr_mask mask);
1489
1da177e4
LT
1490int ib_register_event_handler (struct ib_event_handler *event_handler);
1491int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1492void ib_dispatch_event(struct ib_event *event);
1493
1494int ib_query_device(struct ib_device *device,
1495 struct ib_device_attr *device_attr);
1496
1497int ib_query_port(struct ib_device *device,
1498 u8 port_num, struct ib_port_attr *port_attr);
1499
a3f5adaf
EC
1500enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1501 u8 port_num);
1502
1da177e4
LT
1503int ib_query_gid(struct ib_device *device,
1504 u8 port_num, int index, union ib_gid *gid);
1505
1506int ib_query_pkey(struct ib_device *device,
1507 u8 port_num, u16 index, u16 *pkey);
1508
1509int ib_modify_device(struct ib_device *device,
1510 int device_modify_mask,
1511 struct ib_device_modify *device_modify);
1512
1513int ib_modify_port(struct ib_device *device,
1514 u8 port_num, int port_modify_mask,
1515 struct ib_port_modify *port_modify);
1516
5eb620c8
YE
1517int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1518 u8 *port_num, u16 *index);
1519
1520int ib_find_pkey(struct ib_device *device,
1521 u8 port_num, u16 pkey, u16 *index);
1522
1da177e4
LT
1523/**
1524 * ib_alloc_pd - Allocates an unused protection domain.
1525 * @device: The device on which to allocate the protection domain.
1526 *
1527 * A protection domain object provides an association between QPs, shared
1528 * receive queues, address handles, memory regions, and memory windows.
1529 */
1530struct ib_pd *ib_alloc_pd(struct ib_device *device);
1531
1532/**
1533 * ib_dealloc_pd - Deallocates a protection domain.
1534 * @pd: The protection domain to deallocate.
1535 */
1536int ib_dealloc_pd(struct ib_pd *pd);
1537
1538/**
1539 * ib_create_ah - Creates an address handle for the given address vector.
1540 * @pd: The protection domain associated with the address handle.
1541 * @ah_attr: The attributes of the address vector.
1542 *
1543 * The address handle is used to reference a local or global destination
1544 * in all UD QP post sends.
1545 */
1546struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1547
4e00d694
SH
1548/**
1549 * ib_init_ah_from_wc - Initializes address handle attributes from a
1550 * work completion.
1551 * @device: Device on which the received message arrived.
1552 * @port_num: Port on which the received message arrived.
1553 * @wc: Work completion associated with the received message.
1554 * @grh: References the received global route header. This parameter is
1555 * ignored unless the work completion indicates that the GRH is valid.
1556 * @ah_attr: Returned attributes that can be used when creating an address
1557 * handle for replying to the message.
1558 */
1559int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1560 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1561
513789ed
HR
1562/**
1563 * ib_create_ah_from_wc - Creates an address handle associated with the
1564 * sender of the specified work completion.
1565 * @pd: The protection domain associated with the address handle.
1566 * @wc: Work completion information associated with a received message.
1567 * @grh: References the received global route header. This parameter is
1568 * ignored unless the work completion indicates that the GRH is valid.
1569 * @port_num: The outbound port number to associate with the address.
1570 *
1571 * The address handle is used to reference a local or global destination
1572 * in all UD QP post sends.
1573 */
1574struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1575 struct ib_grh *grh, u8 port_num);
1576
1da177e4
LT
1577/**
1578 * ib_modify_ah - Modifies the address vector associated with an address
1579 * handle.
1580 * @ah: The address handle to modify.
1581 * @ah_attr: The new address vector attributes to associate with the
1582 * address handle.
1583 */
1584int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1585
1586/**
1587 * ib_query_ah - Queries the address vector associated with an address
1588 * handle.
1589 * @ah: The address handle to query.
1590 * @ah_attr: The address vector attributes associated with the address
1591 * handle.
1592 */
1593int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1594
1595/**
1596 * ib_destroy_ah - Destroys an address handle.
1597 * @ah: The address handle to destroy.
1598 */
1599int ib_destroy_ah(struct ib_ah *ah);
1600
d41fcc67
RD
1601/**
1602 * ib_create_srq - Creates a SRQ associated with the specified protection
1603 * domain.
1604 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
1605 * @srq_init_attr: A list of initial attributes required to create the
1606 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1607 * the actual capabilities of the created SRQ.
d41fcc67
RD
1608 *
1609 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1610 * requested size of the SRQ, and set to the actual values allocated
1611 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1612 * will always be at least as large as the requested values.
1613 */
1614struct ib_srq *ib_create_srq(struct ib_pd *pd,
1615 struct ib_srq_init_attr *srq_init_attr);
1616
1617/**
1618 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1619 * @srq: The SRQ to modify.
1620 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1621 * the current values of selected SRQ attributes are returned.
1622 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1623 * are being modified.
1624 *
1625 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1626 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1627 * the number of receives queued drops below the limit.
1628 */
1629int ib_modify_srq(struct ib_srq *srq,
1630 struct ib_srq_attr *srq_attr,
1631 enum ib_srq_attr_mask srq_attr_mask);
1632
1633/**
1634 * ib_query_srq - Returns the attribute list and current values for the
1635 * specified SRQ.
1636 * @srq: The SRQ to query.
1637 * @srq_attr: The attributes of the specified SRQ.
1638 */
1639int ib_query_srq(struct ib_srq *srq,
1640 struct ib_srq_attr *srq_attr);
1641
1642/**
1643 * ib_destroy_srq - Destroys the specified SRQ.
1644 * @srq: The SRQ to destroy.
1645 */
1646int ib_destroy_srq(struct ib_srq *srq);
1647
1648/**
1649 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1650 * @srq: The SRQ to post the work request on.
1651 * @recv_wr: A list of work requests to post on the receive queue.
1652 * @bad_recv_wr: On an immediate failure, this parameter will reference
1653 * the work request that failed to be posted on the QP.
1654 */
1655static inline int ib_post_srq_recv(struct ib_srq *srq,
1656 struct ib_recv_wr *recv_wr,
1657 struct ib_recv_wr **bad_recv_wr)
1658{
1659 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1660}
1661
1da177e4
LT
1662/**
1663 * ib_create_qp - Creates a QP associated with the specified protection
1664 * domain.
1665 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
1666 * @qp_init_attr: A list of initial attributes required to create the
1667 * QP. If QP creation succeeds, then the attributes are updated to
1668 * the actual capabilities of the created QP.
1da177e4
LT
1669 */
1670struct ib_qp *ib_create_qp(struct ib_pd *pd,
1671 struct ib_qp_init_attr *qp_init_attr);
1672
1673/**
1674 * ib_modify_qp - Modifies the attributes for the specified QP and then
1675 * transitions the QP to the given state.
1676 * @qp: The QP to modify.
1677 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1678 * the current values of selected QP attributes are returned.
1679 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1680 * are being modified.
1681 */
1682int ib_modify_qp(struct ib_qp *qp,
1683 struct ib_qp_attr *qp_attr,
1684 int qp_attr_mask);
1685
1686/**
1687 * ib_query_qp - Returns the attribute list and current values for the
1688 * specified QP.
1689 * @qp: The QP to query.
1690 * @qp_attr: The attributes of the specified QP.
1691 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1692 * @qp_init_attr: Additional attributes of the selected QP.
1693 *
1694 * The qp_attr_mask may be used to limit the query to gathering only the
1695 * selected attributes.
1696 */
1697int ib_query_qp(struct ib_qp *qp,
1698 struct ib_qp_attr *qp_attr,
1699 int qp_attr_mask,
1700 struct ib_qp_init_attr *qp_init_attr);
1701
1702/**
1703 * ib_destroy_qp - Destroys the specified QP.
1704 * @qp: The QP to destroy.
1705 */
1706int ib_destroy_qp(struct ib_qp *qp);
1707
d3d72d90 1708/**
0e0ec7e0
SH
1709 * ib_open_qp - Obtain a reference to an existing sharable QP.
1710 * @xrcd - XRC domain
1711 * @qp_open_attr: Attributes identifying the QP to open.
1712 *
1713 * Returns a reference to a sharable QP.
1714 */
1715struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1716 struct ib_qp_open_attr *qp_open_attr);
1717
1718/**
1719 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
1720 * @qp: The QP handle to release
1721 *
0e0ec7e0
SH
1722 * The opened QP handle is released by the caller. The underlying
1723 * shared QP is not destroyed until all internal references are released.
d3d72d90 1724 */
0e0ec7e0 1725int ib_close_qp(struct ib_qp *qp);
d3d72d90 1726
1da177e4
LT
1727/**
1728 * ib_post_send - Posts a list of work requests to the send queue of
1729 * the specified QP.
1730 * @qp: The QP to post the work request on.
1731 * @send_wr: A list of work requests to post on the send queue.
1732 * @bad_send_wr: On an immediate failure, this parameter will reference
1733 * the work request that failed to be posted on the QP.
55464d46
BVA
1734 *
1735 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1736 * error is returned, the QP state shall not be affected,
1737 * ib_post_send() will return an immediate error after queueing any
1738 * earlier work requests in the list.
1da177e4
LT
1739 */
1740static inline int ib_post_send(struct ib_qp *qp,
1741 struct ib_send_wr *send_wr,
1742 struct ib_send_wr **bad_send_wr)
1743{
1744 return qp->device->post_send(qp, send_wr, bad_send_wr);
1745}
1746
1747/**
1748 * ib_post_recv - Posts a list of work requests to the receive queue of
1749 * the specified QP.
1750 * @qp: The QP to post the work request on.
1751 * @recv_wr: A list of work requests to post on the receive queue.
1752 * @bad_recv_wr: On an immediate failure, this parameter will reference
1753 * the work request that failed to be posted on the QP.
1754 */
1755static inline int ib_post_recv(struct ib_qp *qp,
1756 struct ib_recv_wr *recv_wr,
1757 struct ib_recv_wr **bad_recv_wr)
1758{
1759 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1760}
1761
1762/**
1763 * ib_create_cq - Creates a CQ on the specified device.
1764 * @device: The device on which to create the CQ.
1765 * @comp_handler: A user-specified callback that is invoked when a
1766 * completion event occurs on the CQ.
1767 * @event_handler: A user-specified callback that is invoked when an
1768 * asynchronous event not associated with a completion occurs on the CQ.
1769 * @cq_context: Context associated with the CQ returned to the user via
1770 * the associated completion and event handlers.
1771 * @cqe: The minimum size of the CQ.
f4fd0b22
MT
1772 * @comp_vector - Completion vector used to signal completion events.
1773 * Must be >= 0 and < context->num_comp_vectors.
1da177e4
LT
1774 *
1775 * Users can examine the cq structure to determine the actual CQ size.
1776 */
1777struct ib_cq *ib_create_cq(struct ib_device *device,
1778 ib_comp_handler comp_handler,
1779 void (*event_handler)(struct ib_event *, void *),
f4fd0b22 1780 void *cq_context, int cqe, int comp_vector);
1da177e4
LT
1781
1782/**
1783 * ib_resize_cq - Modifies the capacity of the CQ.
1784 * @cq: The CQ to resize.
1785 * @cqe: The minimum size of the CQ.
1786 *
1787 * Users can examine the cq structure to determine the actual CQ size.
1788 */
1789int ib_resize_cq(struct ib_cq *cq, int cqe);
1790
2dd57162
EC
1791/**
1792 * ib_modify_cq - Modifies moderation params of the CQ
1793 * @cq: The CQ to modify.
1794 * @cq_count: number of CQEs that will trigger an event
1795 * @cq_period: max period of time in usec before triggering an event
1796 *
1797 */
1798int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1799
1da177e4
LT
1800/**
1801 * ib_destroy_cq - Destroys the specified CQ.
1802 * @cq: The CQ to destroy.
1803 */
1804int ib_destroy_cq(struct ib_cq *cq);
1805
1806/**
1807 * ib_poll_cq - poll a CQ for completion(s)
1808 * @cq:the CQ being polled
1809 * @num_entries:maximum number of completions to return
1810 * @wc:array of at least @num_entries &struct ib_wc where completions
1811 * will be returned
1812 *
1813 * Poll a CQ for (possibly multiple) completions. If the return value
1814 * is < 0, an error occurred. If the return value is >= 0, it is the
1815 * number of completions returned. If the return value is
1816 * non-negative and < num_entries, then the CQ was emptied.
1817 */
1818static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1819 struct ib_wc *wc)
1820{
1821 return cq->device->poll_cq(cq, num_entries, wc);
1822}
1823
1824/**
1825 * ib_peek_cq - Returns the number of unreaped completions currently
1826 * on the specified CQ.
1827 * @cq: The CQ to peek.
1828 * @wc_cnt: A minimum number of unreaped completions to check for.
1829 *
1830 * If the number of unreaped completions is greater than or equal to wc_cnt,
1831 * this function returns wc_cnt, otherwise, it returns the actual number of
1832 * unreaped completions.
1833 */
1834int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1835
1836/**
1837 * ib_req_notify_cq - Request completion notification on a CQ.
1838 * @cq: The CQ to generate an event for.
ed23a727
RD
1839 * @flags:
1840 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1841 * to request an event on the next solicited event or next work
1842 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1843 * may also be |ed in to request a hint about missed events, as
1844 * described below.
1845 *
1846 * Return Value:
1847 * < 0 means an error occurred while requesting notification
1848 * == 0 means notification was requested successfully, and if
1849 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1850 * were missed and it is safe to wait for another event. In
1851 * this case is it guaranteed that any work completions added
1852 * to the CQ since the last CQ poll will trigger a completion
1853 * notification event.
1854 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1855 * in. It means that the consumer must poll the CQ again to
1856 * make sure it is empty to avoid missing an event because of a
1857 * race between requesting notification and an entry being
1858 * added to the CQ. This return value means it is possible
1859 * (but not guaranteed) that a work completion has been added
1860 * to the CQ since the last poll without triggering a
1861 * completion notification event.
1da177e4
LT
1862 */
1863static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 1864 enum ib_cq_notify_flags flags)
1da177e4 1865{
ed23a727 1866 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
1867}
1868
1869/**
1870 * ib_req_ncomp_notif - Request completion notification when there are
1871 * at least the specified number of unreaped completions on the CQ.
1872 * @cq: The CQ to generate an event for.
1873 * @wc_cnt: The number of unreaped completions that should be on the
1874 * CQ before an event is generated.
1875 */
1876static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1877{
1878 return cq->device->req_ncomp_notif ?
1879 cq->device->req_ncomp_notif(cq, wc_cnt) :
1880 -ENOSYS;
1881}
1882
1883/**
1884 * ib_get_dma_mr - Returns a memory region for system memory that is
1885 * usable for DMA.
1886 * @pd: The protection domain associated with the memory region.
1887 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
1888 *
1889 * Note that the ib_dma_*() functions defined below must be used
1890 * to create/destroy addresses used with the Lkey or Rkey returned
1891 * by ib_get_dma_mr().
1da177e4
LT
1892 */
1893struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1894
9b513090
RC
1895/**
1896 * ib_dma_mapping_error - check a DMA addr for error
1897 * @dev: The device for which the dma_addr was created
1898 * @dma_addr: The DMA address to check
1899 */
1900static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1901{
d1998ef3
BC
1902 if (dev->dma_ops)
1903 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 1904 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
1905}
1906
1907/**
1908 * ib_dma_map_single - Map a kernel virtual address to DMA address
1909 * @dev: The device for which the dma_addr is to be created
1910 * @cpu_addr: The kernel virtual address
1911 * @size: The size of the region in bytes
1912 * @direction: The direction of the DMA
1913 */
1914static inline u64 ib_dma_map_single(struct ib_device *dev,
1915 void *cpu_addr, size_t size,
1916 enum dma_data_direction direction)
1917{
d1998ef3
BC
1918 if (dev->dma_ops)
1919 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1920 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
1921}
1922
1923/**
1924 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1925 * @dev: The device for which the DMA address was created
1926 * @addr: The DMA address
1927 * @size: The size of the region in bytes
1928 * @direction: The direction of the DMA
1929 */
1930static inline void ib_dma_unmap_single(struct ib_device *dev,
1931 u64 addr, size_t size,
1932 enum dma_data_direction direction)
1933{
d1998ef3
BC
1934 if (dev->dma_ops)
1935 dev->dma_ops->unmap_single(dev, addr, size, direction);
1936 else
9b513090
RC
1937 dma_unmap_single(dev->dma_device, addr, size, direction);
1938}
1939
cb9fbc5c
AK
1940static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1941 void *cpu_addr, size_t size,
1942 enum dma_data_direction direction,
1943 struct dma_attrs *attrs)
1944{
1945 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1946 direction, attrs);
1947}
1948
1949static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1950 u64 addr, size_t size,
1951 enum dma_data_direction direction,
1952 struct dma_attrs *attrs)
1953{
1954 return dma_unmap_single_attrs(dev->dma_device, addr, size,
1955 direction, attrs);
1956}
1957
9b513090
RC
1958/**
1959 * ib_dma_map_page - Map a physical page to DMA address
1960 * @dev: The device for which the dma_addr is to be created
1961 * @page: The page to be mapped
1962 * @offset: The offset within the page
1963 * @size: The size of the region in bytes
1964 * @direction: The direction of the DMA
1965 */
1966static inline u64 ib_dma_map_page(struct ib_device *dev,
1967 struct page *page,
1968 unsigned long offset,
1969 size_t size,
1970 enum dma_data_direction direction)
1971{
d1998ef3
BC
1972 if (dev->dma_ops)
1973 return dev->dma_ops->map_page(dev, page, offset, size, direction);
1974 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
1975}
1976
1977/**
1978 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1979 * @dev: The device for which the DMA address was created
1980 * @addr: The DMA address
1981 * @size: The size of the region in bytes
1982 * @direction: The direction of the DMA
1983 */
1984static inline void ib_dma_unmap_page(struct ib_device *dev,
1985 u64 addr, size_t size,
1986 enum dma_data_direction direction)
1987{
d1998ef3
BC
1988 if (dev->dma_ops)
1989 dev->dma_ops->unmap_page(dev, addr, size, direction);
1990 else
9b513090
RC
1991 dma_unmap_page(dev->dma_device, addr, size, direction);
1992}
1993
1994/**
1995 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1996 * @dev: The device for which the DMA addresses are to be created
1997 * @sg: The array of scatter/gather entries
1998 * @nents: The number of scatter/gather entries
1999 * @direction: The direction of the DMA
2000 */
2001static inline int ib_dma_map_sg(struct ib_device *dev,
2002 struct scatterlist *sg, int nents,
2003 enum dma_data_direction direction)
2004{
d1998ef3
BC
2005 if (dev->dma_ops)
2006 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2007 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2008}
2009
2010/**
2011 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2012 * @dev: The device for which the DMA addresses were created
2013 * @sg: The array of scatter/gather entries
2014 * @nents: The number of scatter/gather entries
2015 * @direction: The direction of the DMA
2016 */
2017static inline void ib_dma_unmap_sg(struct ib_device *dev,
2018 struct scatterlist *sg, int nents,
2019 enum dma_data_direction direction)
2020{
d1998ef3
BC
2021 if (dev->dma_ops)
2022 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2023 else
9b513090
RC
2024 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2025}
2026
cb9fbc5c
AK
2027static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2028 struct scatterlist *sg, int nents,
2029 enum dma_data_direction direction,
2030 struct dma_attrs *attrs)
2031{
2032 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2033}
2034
2035static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2036 struct scatterlist *sg, int nents,
2037 enum dma_data_direction direction,
2038 struct dma_attrs *attrs)
2039{
2040 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2041}
9b513090
RC
2042/**
2043 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2044 * @dev: The device for which the DMA addresses were created
2045 * @sg: The scatter/gather entry
2046 */
2047static inline u64 ib_sg_dma_address(struct ib_device *dev,
2048 struct scatterlist *sg)
2049{
d1998ef3
BC
2050 if (dev->dma_ops)
2051 return dev->dma_ops->dma_address(dev, sg);
2052 return sg_dma_address(sg);
9b513090
RC
2053}
2054
2055/**
2056 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2057 * @dev: The device for which the DMA addresses were created
2058 * @sg: The scatter/gather entry
2059 */
2060static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2061 struct scatterlist *sg)
2062{
d1998ef3
BC
2063 if (dev->dma_ops)
2064 return dev->dma_ops->dma_len(dev, sg);
2065 return sg_dma_len(sg);
9b513090
RC
2066}
2067
2068/**
2069 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2070 * @dev: The device for which the DMA address was created
2071 * @addr: The DMA address
2072 * @size: The size of the region in bytes
2073 * @dir: The direction of the DMA
2074 */
2075static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2076 u64 addr,
2077 size_t size,
2078 enum dma_data_direction dir)
2079{
d1998ef3
BC
2080 if (dev->dma_ops)
2081 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2082 else
9b513090
RC
2083 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2084}
2085
2086/**
2087 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2088 * @dev: The device for which the DMA address was created
2089 * @addr: The DMA address
2090 * @size: The size of the region in bytes
2091 * @dir: The direction of the DMA
2092 */
2093static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2094 u64 addr,
2095 size_t size,
2096 enum dma_data_direction dir)
2097{
d1998ef3
BC
2098 if (dev->dma_ops)
2099 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2100 else
9b513090
RC
2101 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2102}
2103
2104/**
2105 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2106 * @dev: The device for which the DMA address is requested
2107 * @size: The size of the region to allocate in bytes
2108 * @dma_handle: A pointer for returning the DMA address of the region
2109 * @flag: memory allocator flags
2110 */
2111static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2112 size_t size,
2113 u64 *dma_handle,
2114 gfp_t flag)
2115{
d1998ef3
BC
2116 if (dev->dma_ops)
2117 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2118 else {
2119 dma_addr_t handle;
2120 void *ret;
2121
2122 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2123 *dma_handle = handle;
2124 return ret;
2125 }
9b513090
RC
2126}
2127
2128/**
2129 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2130 * @dev: The device for which the DMA addresses were allocated
2131 * @size: The size of the region
2132 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2133 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2134 */
2135static inline void ib_dma_free_coherent(struct ib_device *dev,
2136 size_t size, void *cpu_addr,
2137 u64 dma_handle)
2138{
d1998ef3
BC
2139 if (dev->dma_ops)
2140 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2141 else
9b513090
RC
2142 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2143}
2144
1da177e4
LT
2145/**
2146 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2147 * by an HCA.
2148 * @pd: The protection domain associated assigned to the registered region.
2149 * @phys_buf_array: Specifies a list of physical buffers to use in the
2150 * memory region.
2151 * @num_phys_buf: Specifies the size of the phys_buf_array.
2152 * @mr_access_flags: Specifies the memory access rights.
2153 * @iova_start: The offset of the region's starting I/O virtual address.
2154 */
2155struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2156 struct ib_phys_buf *phys_buf_array,
2157 int num_phys_buf,
2158 int mr_access_flags,
2159 u64 *iova_start);
2160
2161/**
2162 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2163 * Conceptually, this call performs the functions deregister memory region
2164 * followed by register physical memory region. Where possible,
2165 * resources are reused instead of deallocated and reallocated.
2166 * @mr: The memory region to modify.
2167 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2168 * properties of the memory region are being modified.
2169 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2170 * the new protection domain to associated with the memory region,
2171 * otherwise, this parameter is ignored.
2172 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2173 * field specifies a list of physical buffers to use in the new
2174 * translation, otherwise, this parameter is ignored.
2175 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2176 * field specifies the size of the phys_buf_array, otherwise, this
2177 * parameter is ignored.
2178 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2179 * field specifies the new memory access rights, otherwise, this
2180 * parameter is ignored.
2181 * @iova_start: The offset of the region's starting I/O virtual address.
2182 */
2183int ib_rereg_phys_mr(struct ib_mr *mr,
2184 int mr_rereg_mask,
2185 struct ib_pd *pd,
2186 struct ib_phys_buf *phys_buf_array,
2187 int num_phys_buf,
2188 int mr_access_flags,
2189 u64 *iova_start);
2190
2191/**
2192 * ib_query_mr - Retrieves information about a specific memory region.
2193 * @mr: The memory region to retrieve information about.
2194 * @mr_attr: The attributes of the specified memory region.
2195 */
2196int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2197
2198/**
2199 * ib_dereg_mr - Deregisters a memory region and removes it from the
2200 * HCA translation table.
2201 * @mr: The memory region to deregister.
7083e42e
SM
2202 *
2203 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
2204 */
2205int ib_dereg_mr(struct ib_mr *mr);
2206
00f7ec36
SW
2207/**
2208 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2209 * IB_WR_FAST_REG_MR send work request.
2210 * @pd: The protection domain associated with the region.
2211 * @max_page_list_len: requested max physical buffer list length to be
2212 * used with fast register work requests for this MR.
2213 */
2214struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2215
2216/**
2217 * ib_alloc_fast_reg_page_list - Allocates a page list array
2218 * @device - ib device pointer.
2219 * @page_list_len - size of the page list array to be allocated.
2220 *
2221 * This allocates and returns a struct ib_fast_reg_page_list * and a
2222 * page_list array that is at least page_list_len in size. The actual
2223 * size is returned in max_page_list_len. The caller is responsible
2224 * for initializing the contents of the page_list array before posting
2225 * a send work request with the IB_WC_FAST_REG_MR opcode.
2226 *
2227 * The page_list array entries must be translated using one of the
2228 * ib_dma_*() functions just like the addresses passed to
2229 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2230 * ib_fast_reg_page_list must not be modified by the caller until the
2231 * IB_WC_FAST_REG_MR work request completes.
2232 */
2233struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2234 struct ib_device *device, int page_list_len);
2235
2236/**
2237 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2238 * page list array.
2239 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2240 */
2241void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2242
2243/**
2244 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2245 * R_Key and L_Key.
2246 * @mr - struct ib_mr pointer to be updated.
2247 * @newkey - new key to be used.
2248 */
2249static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2250{
2251 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2252 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2253}
2254
7083e42e
SM
2255/**
2256 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2257 * for calculating a new rkey for type 2 memory windows.
2258 * @rkey - the rkey to increment.
2259 */
2260static inline u32 ib_inc_rkey(u32 rkey)
2261{
2262 const u32 mask = 0x000000ff;
2263 return ((rkey + 1) & mask) | (rkey & ~mask);
2264}
2265
1da177e4
LT
2266/**
2267 * ib_alloc_mw - Allocates a memory window.
2268 * @pd: The protection domain associated with the memory window.
7083e42e 2269 * @type: The type of the memory window (1 or 2).
1da177e4 2270 */
7083e42e 2271struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
1da177e4
LT
2272
2273/**
2274 * ib_bind_mw - Posts a work request to the send queue of the specified
2275 * QP, which binds the memory window to the given address range and
2276 * remote access attributes.
2277 * @qp: QP to post the bind work request on.
2278 * @mw: The memory window to bind.
2279 * @mw_bind: Specifies information about the memory window, including
2280 * its address range, remote access rights, and associated memory region.
7083e42e
SM
2281 *
2282 * If there is no immediate error, the function will update the rkey member
2283 * of the mw parameter to its new value. The bind operation can still fail
2284 * asynchronously.
1da177e4
LT
2285 */
2286static inline int ib_bind_mw(struct ib_qp *qp,
2287 struct ib_mw *mw,
2288 struct ib_mw_bind *mw_bind)
2289{
2290 /* XXX reference counting in corresponding MR? */
2291 return mw->device->bind_mw ?
2292 mw->device->bind_mw(qp, mw, mw_bind) :
2293 -ENOSYS;
2294}
2295
2296/**
2297 * ib_dealloc_mw - Deallocates a memory window.
2298 * @mw: The memory window to deallocate.
2299 */
2300int ib_dealloc_mw(struct ib_mw *mw);
2301
2302/**
2303 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2304 * @pd: The protection domain associated with the unmapped region.
2305 * @mr_access_flags: Specifies the memory access rights.
2306 * @fmr_attr: Attributes of the unmapped region.
2307 *
2308 * A fast memory region must be mapped before it can be used as part of
2309 * a work request.
2310 */
2311struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2312 int mr_access_flags,
2313 struct ib_fmr_attr *fmr_attr);
2314
2315/**
2316 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2317 * @fmr: The fast memory region to associate with the pages.
2318 * @page_list: An array of physical pages to map to the fast memory region.
2319 * @list_len: The number of pages in page_list.
2320 * @iova: The I/O virtual address to use with the mapped region.
2321 */
2322static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2323 u64 *page_list, int list_len,
2324 u64 iova)
2325{
2326 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2327}
2328
2329/**
2330 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2331 * @fmr_list: A linked list of fast memory regions to unmap.
2332 */
2333int ib_unmap_fmr(struct list_head *fmr_list);
2334
2335/**
2336 * ib_dealloc_fmr - Deallocates a fast memory region.
2337 * @fmr: The fast memory region to deallocate.
2338 */
2339int ib_dealloc_fmr(struct ib_fmr *fmr);
2340
2341/**
2342 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2343 * @qp: QP to attach to the multicast group. The QP must be type
2344 * IB_QPT_UD.
2345 * @gid: Multicast group GID.
2346 * @lid: Multicast group LID in host byte order.
2347 *
2348 * In order to send and receive multicast packets, subnet
2349 * administration must have created the multicast group and configured
2350 * the fabric appropriately. The port associated with the specified
2351 * QP must also be a member of the multicast group.
2352 */
2353int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2354
2355/**
2356 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2357 * @qp: QP to detach from the multicast group.
2358 * @gid: Multicast group GID.
2359 * @lid: Multicast group LID in host byte order.
2360 */
2361int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2362
59991f94
SH
2363/**
2364 * ib_alloc_xrcd - Allocates an XRC domain.
2365 * @device: The device on which to allocate the XRC domain.
2366 */
2367struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2368
2369/**
2370 * ib_dealloc_xrcd - Deallocates an XRC domain.
2371 * @xrcd: The XRC domain to deallocate.
2372 */
2373int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2374
319a441d
HHZ
2375struct ib_flow *ib_create_flow(struct ib_qp *qp,
2376 struct ib_flow_attr *flow_attr, int domain);
2377int ib_destroy_flow(struct ib_flow *flow_id);
2378
1da177e4 2379#endif /* IB_VERBS_H */
This page took 0.78854 seconds and 5 git commands to generate.