KVM: nVMX: Fix nested vmexit ack intr before load vmcs01
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
0e1d768f
TH
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
86DECLARE_RWSEM(css_set_rwsem);
87EXPORT_SYMBOL_GPL(cgroup_mutex);
88EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 91static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
8353da1f 106#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
8353da1f 109 "cgroup_mutex or RCU read lock required");
780cd8b3 110
e5fca243
TH
111/*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117static struct workqueue_struct *cgroup_destroy_wq;
118
b1a21367
TH
119/*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
3ed80a62 125/* generate an array of cgroup subsystem pointers */
073219e9 126#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 127static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
128#include <linux/cgroup_subsys.h>
129};
073219e9
TH
130#undef SUBSYS
131
132/* array of cgroup subsystem names */
133#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
135#include <linux/cgroup_subsys.h>
136};
073219e9 137#undef SUBSYS
ddbcc7e8 138
ddbcc7e8 139/*
3dd06ffa 140 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
ddbcc7e8 143 */
a2dd4247 144struct cgroup_root cgrp_dfl_root;
9871bf95 145
a2dd4247
TH
146/*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150static bool cgrp_dfl_root_visible;
ddbcc7e8 151
a8ddc821
TH
152/*
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
155 */
156static bool cgroup_legacy_files_on_dfl;
157
5533e011 158/* some controllers are not supported in the default hierarchy */
5de4fa13 159static unsigned int cgrp_dfl_root_inhibit_ss_mask;
5533e011 160
ddbcc7e8
PM
161/* The list of hierarchy roots */
162
9871bf95
TH
163static LIST_HEAD(cgroup_roots);
164static int cgroup_root_count;
ddbcc7e8 165
3417ae1f 166/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 167static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 168
794611a1 169/*
0cb51d71
TH
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
794611a1 175 */
0cb51d71 176static u64 css_serial_nr_next = 1;
794611a1 177
ddbcc7e8 178/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
181 * be called.
ddbcc7e8 182 */
8947f9d5 183static int need_forkexit_callback __read_mostly;
ddbcc7e8 184
a14c6874
TH
185static struct cftype cgroup_dfl_base_files[];
186static struct cftype cgroup_legacy_base_files[];
628f7cd4 187
59f5296b 188static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 189static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 190 unsigned int ss_mask);
42809dd4 191static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
192static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
193 bool visible);
9d755d33 194static void css_release(struct percpu_ref *ref);
f8f22e53 195static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
196static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
197 bool is_add);
b1a21367 198static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 199
6fa4918d
TH
200/* IDR wrappers which synchronize using cgroup_idr_lock */
201static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
202 gfp_t gfp_mask)
203{
204 int ret;
205
206 idr_preload(gfp_mask);
54504e97 207 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 208 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 209 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
210 idr_preload_end();
211 return ret;
212}
213
214static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
215{
216 void *ret;
217
54504e97 218 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 219 ret = idr_replace(idr, ptr, id);
54504e97 220 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
221 return ret;
222}
223
224static void cgroup_idr_remove(struct idr *idr, int id)
225{
54504e97 226 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 227 idr_remove(idr, id);
54504e97 228 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
229}
230
d51f39b0
TH
231static struct cgroup *cgroup_parent(struct cgroup *cgrp)
232{
233 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
234
235 if (parent_css)
236 return container_of(parent_css, struct cgroup, self);
237 return NULL;
238}
239
95109b62
TH
240/**
241 * cgroup_css - obtain a cgroup's css for the specified subsystem
242 * @cgrp: the cgroup of interest
9d800df1 243 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 244 *
ca8bdcaf
TH
245 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
246 * function must be called either under cgroup_mutex or rcu_read_lock() and
247 * the caller is responsible for pinning the returned css if it wants to
248 * keep accessing it outside the said locks. This function may return
249 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
250 */
251static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 252 struct cgroup_subsys *ss)
95109b62 253{
ca8bdcaf 254 if (ss)
aec25020 255 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 256 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 257 else
9d800df1 258 return &cgrp->self;
95109b62 259}
42809dd4 260
aec3dfcb
TH
261/**
262 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
263 * @cgrp: the cgroup of interest
9d800df1 264 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb
TH
265 *
266 * Similar to cgroup_css() but returns the effctive css, which is defined
267 * as the matching css of the nearest ancestor including self which has @ss
268 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
269 * function is guaranteed to return non-NULL css.
270 */
271static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
272 struct cgroup_subsys *ss)
273{
274 lockdep_assert_held(&cgroup_mutex);
275
276 if (!ss)
9d800df1 277 return &cgrp->self;
aec3dfcb
TH
278
279 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
280 return NULL;
281
d51f39b0
TH
282 while (cgroup_parent(cgrp) &&
283 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
284 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
285
286 return cgroup_css(cgrp, ss);
95109b62 287}
42809dd4 288
ddbcc7e8 289/* convenient tests for these bits */
54766d4a 290static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 291{
184faf32 292 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
293}
294
b4168640 295struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 296{
2bd59d48 297 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 298 struct cftype *cft = of_cft(of);
2bd59d48
TH
299
300 /*
301 * This is open and unprotected implementation of cgroup_css().
302 * seq_css() is only called from a kernfs file operation which has
303 * an active reference on the file. Because all the subsystem
304 * files are drained before a css is disassociated with a cgroup,
305 * the matching css from the cgroup's subsys table is guaranteed to
306 * be and stay valid until the enclosing operation is complete.
307 */
308 if (cft->ss)
309 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
310 else
9d800df1 311 return &cgrp->self;
59f5296b 312}
b4168640 313EXPORT_SYMBOL_GPL(of_css);
59f5296b 314
78574cf9
LZ
315/**
316 * cgroup_is_descendant - test ancestry
317 * @cgrp: the cgroup to be tested
318 * @ancestor: possible ancestor of @cgrp
319 *
320 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
321 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
322 * and @ancestor are accessible.
323 */
324bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
325{
326 while (cgrp) {
327 if (cgrp == ancestor)
328 return true;
d51f39b0 329 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
330 }
331 return false;
332}
ddbcc7e8 333
e9685a03 334static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
335{
336 const int bits =
bd89aabc
PM
337 (1 << CGRP_RELEASABLE) |
338 (1 << CGRP_NOTIFY_ON_RELEASE);
339 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
340}
341
e9685a03 342static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 343{
bd89aabc 344 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
345}
346
1c6727af
TH
347/**
348 * for_each_css - iterate all css's of a cgroup
349 * @css: the iteration cursor
350 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
351 * @cgrp: the target cgroup to iterate css's of
352 *
aec3dfcb 353 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
354 */
355#define for_each_css(css, ssid, cgrp) \
356 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
357 if (!((css) = rcu_dereference_check( \
358 (cgrp)->subsys[(ssid)], \
359 lockdep_is_held(&cgroup_mutex)))) { } \
360 else
361
aec3dfcb
TH
362/**
363 * for_each_e_css - iterate all effective css's of a cgroup
364 * @css: the iteration cursor
365 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
366 * @cgrp: the target cgroup to iterate css's of
367 *
368 * Should be called under cgroup_[tree_]mutex.
369 */
370#define for_each_e_css(css, ssid, cgrp) \
371 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
372 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
373 ; \
374 else
375
30159ec7 376/**
3ed80a62 377 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 378 * @ss: the iteration cursor
780cd8b3 379 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 380 */
780cd8b3 381#define for_each_subsys(ss, ssid) \
3ed80a62
TH
382 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
383 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 384
985ed670
TH
385/* iterate across the hierarchies */
386#define for_each_root(root) \
5549c497 387 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 388
f8f22e53
TH
389/* iterate over child cgrps, lock should be held throughout iteration */
390#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 391 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 392 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
393 cgroup_is_dead(child); })) \
394 ; \
395 else
7ae1bad9 396
81a6a5cd
PM
397/* the list of cgroups eligible for automatic release. Protected by
398 * release_list_lock */
399static LIST_HEAD(release_list);
cdcc136f 400static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
401static void cgroup_release_agent(struct work_struct *work);
402static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 403static void check_for_release(struct cgroup *cgrp);
81a6a5cd 404
69d0206c
TH
405/*
406 * A cgroup can be associated with multiple css_sets as different tasks may
407 * belong to different cgroups on different hierarchies. In the other
408 * direction, a css_set is naturally associated with multiple cgroups.
409 * This M:N relationship is represented by the following link structure
410 * which exists for each association and allows traversing the associations
411 * from both sides.
412 */
413struct cgrp_cset_link {
414 /* the cgroup and css_set this link associates */
415 struct cgroup *cgrp;
416 struct css_set *cset;
417
418 /* list of cgrp_cset_links anchored at cgrp->cset_links */
419 struct list_head cset_link;
420
421 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
422 struct list_head cgrp_link;
817929ec
PM
423};
424
172a2c06
TH
425/*
426 * The default css_set - used by init and its children prior to any
817929ec
PM
427 * hierarchies being mounted. It contains a pointer to the root state
428 * for each subsystem. Also used to anchor the list of css_sets. Not
429 * reference-counted, to improve performance when child cgroups
430 * haven't been created.
431 */
5024ae29 432struct css_set init_css_set = {
172a2c06
TH
433 .refcount = ATOMIC_INIT(1),
434 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
435 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
436 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
437 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
438 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
439};
817929ec 440
172a2c06 441static int css_set_count = 1; /* 1 for init_css_set */
817929ec 442
842b597e
TH
443/**
444 * cgroup_update_populated - updated populated count of a cgroup
445 * @cgrp: the target cgroup
446 * @populated: inc or dec populated count
447 *
448 * @cgrp is either getting the first task (css_set) or losing the last.
449 * Update @cgrp->populated_cnt accordingly. The count is propagated
450 * towards root so that a given cgroup's populated_cnt is zero iff the
451 * cgroup and all its descendants are empty.
452 *
453 * @cgrp's interface file "cgroup.populated" is zero if
454 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
455 * changes from or to zero, userland is notified that the content of the
456 * interface file has changed. This can be used to detect when @cgrp and
457 * its descendants become populated or empty.
458 */
459static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
460{
461 lockdep_assert_held(&css_set_rwsem);
462
463 do {
464 bool trigger;
465
466 if (populated)
467 trigger = !cgrp->populated_cnt++;
468 else
469 trigger = !--cgrp->populated_cnt;
470
471 if (!trigger)
472 break;
473
474 if (cgrp->populated_kn)
475 kernfs_notify(cgrp->populated_kn);
d51f39b0 476 cgrp = cgroup_parent(cgrp);
842b597e
TH
477 } while (cgrp);
478}
479
7717f7ba
PM
480/*
481 * hash table for cgroup groups. This improves the performance to find
482 * an existing css_set. This hash doesn't (currently) take into
483 * account cgroups in empty hierarchies.
484 */
472b1053 485#define CSS_SET_HASH_BITS 7
0ac801fe 486static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 487
0ac801fe 488static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 489{
0ac801fe 490 unsigned long key = 0UL;
30159ec7
TH
491 struct cgroup_subsys *ss;
492 int i;
472b1053 493
30159ec7 494 for_each_subsys(ss, i)
0ac801fe
LZ
495 key += (unsigned long)css[i];
496 key = (key >> 16) ^ key;
472b1053 497
0ac801fe 498 return key;
472b1053
LZ
499}
500
89c5509b 501static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 502{
69d0206c 503 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
504 struct cgroup_subsys *ss;
505 int ssid;
5abb8855 506
89c5509b
TH
507 lockdep_assert_held(&css_set_rwsem);
508
509 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 510 return;
81a6a5cd 511
2c6ab6d2 512 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
513 for_each_subsys(ss, ssid)
514 list_del(&cset->e_cset_node[ssid]);
5abb8855 515 hash_del(&cset->hlist);
2c6ab6d2
PM
516 css_set_count--;
517
69d0206c 518 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 519 struct cgroup *cgrp = link->cgrp;
5abb8855 520
69d0206c
TH
521 list_del(&link->cset_link);
522 list_del(&link->cgrp_link);
71b5707e 523
96d365e0 524 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
525 if (list_empty(&cgrp->cset_links)) {
526 cgroup_update_populated(cgrp, false);
527 if (notify_on_release(cgrp)) {
528 if (taskexit)
529 set_bit(CGRP_RELEASABLE, &cgrp->flags);
530 check_for_release(cgrp);
531 }
81a6a5cd 532 }
2c6ab6d2
PM
533
534 kfree(link);
81a6a5cd 535 }
2c6ab6d2 536
5abb8855 537 kfree_rcu(cset, rcu_head);
b4f48b63
PM
538}
539
89c5509b
TH
540static void put_css_set(struct css_set *cset, bool taskexit)
541{
542 /*
543 * Ensure that the refcount doesn't hit zero while any readers
544 * can see it. Similar to atomic_dec_and_lock(), but for an
545 * rwlock
546 */
547 if (atomic_add_unless(&cset->refcount, -1, 1))
548 return;
549
550 down_write(&css_set_rwsem);
551 put_css_set_locked(cset, taskexit);
552 up_write(&css_set_rwsem);
553}
554
817929ec
PM
555/*
556 * refcounted get/put for css_set objects
557 */
5abb8855 558static inline void get_css_set(struct css_set *cset)
817929ec 559{
5abb8855 560 atomic_inc(&cset->refcount);
817929ec
PM
561}
562
b326f9d0 563/**
7717f7ba 564 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
565 * @cset: candidate css_set being tested
566 * @old_cset: existing css_set for a task
7717f7ba
PM
567 * @new_cgrp: cgroup that's being entered by the task
568 * @template: desired set of css pointers in css_set (pre-calculated)
569 *
6f4b7e63 570 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
571 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
572 */
5abb8855
TH
573static bool compare_css_sets(struct css_set *cset,
574 struct css_set *old_cset,
7717f7ba
PM
575 struct cgroup *new_cgrp,
576 struct cgroup_subsys_state *template[])
577{
578 struct list_head *l1, *l2;
579
aec3dfcb
TH
580 /*
581 * On the default hierarchy, there can be csets which are
582 * associated with the same set of cgroups but different csses.
583 * Let's first ensure that csses match.
584 */
585 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 586 return false;
7717f7ba
PM
587
588 /*
589 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
590 * different cgroups in hierarchies. As different cgroups may
591 * share the same effective css, this comparison is always
592 * necessary.
7717f7ba 593 */
69d0206c
TH
594 l1 = &cset->cgrp_links;
595 l2 = &old_cset->cgrp_links;
7717f7ba 596 while (1) {
69d0206c 597 struct cgrp_cset_link *link1, *link2;
5abb8855 598 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
599
600 l1 = l1->next;
601 l2 = l2->next;
602 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
603 if (l1 == &cset->cgrp_links) {
604 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
605 break;
606 } else {
69d0206c 607 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
608 }
609 /* Locate the cgroups associated with these links. */
69d0206c
TH
610 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
611 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
612 cgrp1 = link1->cgrp;
613 cgrp2 = link2->cgrp;
7717f7ba 614 /* Hierarchies should be linked in the same order. */
5abb8855 615 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
616
617 /*
618 * If this hierarchy is the hierarchy of the cgroup
619 * that's changing, then we need to check that this
620 * css_set points to the new cgroup; if it's any other
621 * hierarchy, then this css_set should point to the
622 * same cgroup as the old css_set.
623 */
5abb8855
TH
624 if (cgrp1->root == new_cgrp->root) {
625 if (cgrp1 != new_cgrp)
7717f7ba
PM
626 return false;
627 } else {
5abb8855 628 if (cgrp1 != cgrp2)
7717f7ba
PM
629 return false;
630 }
631 }
632 return true;
633}
634
b326f9d0
TH
635/**
636 * find_existing_css_set - init css array and find the matching css_set
637 * @old_cset: the css_set that we're using before the cgroup transition
638 * @cgrp: the cgroup that we're moving into
639 * @template: out param for the new set of csses, should be clear on entry
817929ec 640 */
5abb8855
TH
641static struct css_set *find_existing_css_set(struct css_set *old_cset,
642 struct cgroup *cgrp,
643 struct cgroup_subsys_state *template[])
b4f48b63 644{
3dd06ffa 645 struct cgroup_root *root = cgrp->root;
30159ec7 646 struct cgroup_subsys *ss;
5abb8855 647 struct css_set *cset;
0ac801fe 648 unsigned long key;
b326f9d0 649 int i;
817929ec 650
aae8aab4
BB
651 /*
652 * Build the set of subsystem state objects that we want to see in the
653 * new css_set. while subsystems can change globally, the entries here
654 * won't change, so no need for locking.
655 */
30159ec7 656 for_each_subsys(ss, i) {
f392e51c 657 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
658 /*
659 * @ss is in this hierarchy, so we want the
660 * effective css from @cgrp.
661 */
662 template[i] = cgroup_e_css(cgrp, ss);
817929ec 663 } else {
aec3dfcb
TH
664 /*
665 * @ss is not in this hierarchy, so we don't want
666 * to change the css.
667 */
5abb8855 668 template[i] = old_cset->subsys[i];
817929ec
PM
669 }
670 }
671
0ac801fe 672 key = css_set_hash(template);
5abb8855
TH
673 hash_for_each_possible(css_set_table, cset, hlist, key) {
674 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
675 continue;
676
677 /* This css_set matches what we need */
5abb8855 678 return cset;
472b1053 679 }
817929ec
PM
680
681 /* No existing cgroup group matched */
682 return NULL;
683}
684
69d0206c 685static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 686{
69d0206c 687 struct cgrp_cset_link *link, *tmp_link;
36553434 688
69d0206c
TH
689 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
690 list_del(&link->cset_link);
36553434
LZ
691 kfree(link);
692 }
693}
694
69d0206c
TH
695/**
696 * allocate_cgrp_cset_links - allocate cgrp_cset_links
697 * @count: the number of links to allocate
698 * @tmp_links: list_head the allocated links are put on
699 *
700 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
701 * through ->cset_link. Returns 0 on success or -errno.
817929ec 702 */
69d0206c 703static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 704{
69d0206c 705 struct cgrp_cset_link *link;
817929ec 706 int i;
69d0206c
TH
707
708 INIT_LIST_HEAD(tmp_links);
709
817929ec 710 for (i = 0; i < count; i++) {
f4f4be2b 711 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 712 if (!link) {
69d0206c 713 free_cgrp_cset_links(tmp_links);
817929ec
PM
714 return -ENOMEM;
715 }
69d0206c 716 list_add(&link->cset_link, tmp_links);
817929ec
PM
717 }
718 return 0;
719}
720
c12f65d4
LZ
721/**
722 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 723 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 724 * @cset: the css_set to be linked
c12f65d4
LZ
725 * @cgrp: the destination cgroup
726 */
69d0206c
TH
727static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
728 struct cgroup *cgrp)
c12f65d4 729{
69d0206c 730 struct cgrp_cset_link *link;
c12f65d4 731
69d0206c 732 BUG_ON(list_empty(tmp_links));
6803c006
TH
733
734 if (cgroup_on_dfl(cgrp))
735 cset->dfl_cgrp = cgrp;
736
69d0206c
TH
737 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
738 link->cset = cset;
7717f7ba 739 link->cgrp = cgrp;
842b597e
TH
740
741 if (list_empty(&cgrp->cset_links))
742 cgroup_update_populated(cgrp, true);
69d0206c 743 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 744
7717f7ba
PM
745 /*
746 * Always add links to the tail of the list so that the list
747 * is sorted by order of hierarchy creation
748 */
69d0206c 749 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
750}
751
b326f9d0
TH
752/**
753 * find_css_set - return a new css_set with one cgroup updated
754 * @old_cset: the baseline css_set
755 * @cgrp: the cgroup to be updated
756 *
757 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
758 * substituted into the appropriate hierarchy.
817929ec 759 */
5abb8855
TH
760static struct css_set *find_css_set(struct css_set *old_cset,
761 struct cgroup *cgrp)
817929ec 762{
b326f9d0 763 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 764 struct css_set *cset;
69d0206c
TH
765 struct list_head tmp_links;
766 struct cgrp_cset_link *link;
2d8f243a 767 struct cgroup_subsys *ss;
0ac801fe 768 unsigned long key;
2d8f243a 769 int ssid;
472b1053 770
b326f9d0
TH
771 lockdep_assert_held(&cgroup_mutex);
772
817929ec
PM
773 /* First see if we already have a cgroup group that matches
774 * the desired set */
96d365e0 775 down_read(&css_set_rwsem);
5abb8855
TH
776 cset = find_existing_css_set(old_cset, cgrp, template);
777 if (cset)
778 get_css_set(cset);
96d365e0 779 up_read(&css_set_rwsem);
817929ec 780
5abb8855
TH
781 if (cset)
782 return cset;
817929ec 783
f4f4be2b 784 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 785 if (!cset)
817929ec
PM
786 return NULL;
787
69d0206c 788 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 789 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 790 kfree(cset);
817929ec
PM
791 return NULL;
792 }
793
5abb8855 794 atomic_set(&cset->refcount, 1);
69d0206c 795 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 796 INIT_LIST_HEAD(&cset->tasks);
c7561128 797 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 798 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 799 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 800 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
801
802 /* Copy the set of subsystem state objects generated in
803 * find_existing_css_set() */
5abb8855 804 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 805
96d365e0 806 down_write(&css_set_rwsem);
817929ec 807 /* Add reference counts and links from the new css_set. */
69d0206c 808 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 809 struct cgroup *c = link->cgrp;
69d0206c 810
7717f7ba
PM
811 if (c->root == cgrp->root)
812 c = cgrp;
69d0206c 813 link_css_set(&tmp_links, cset, c);
7717f7ba 814 }
817929ec 815
69d0206c 816 BUG_ON(!list_empty(&tmp_links));
817929ec 817
817929ec 818 css_set_count++;
472b1053 819
2d8f243a 820 /* Add @cset to the hash table */
5abb8855
TH
821 key = css_set_hash(cset->subsys);
822 hash_add(css_set_table, &cset->hlist, key);
472b1053 823
2d8f243a
TH
824 for_each_subsys(ss, ssid)
825 list_add_tail(&cset->e_cset_node[ssid],
826 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
827
96d365e0 828 up_write(&css_set_rwsem);
817929ec 829
5abb8855 830 return cset;
b4f48b63
PM
831}
832
3dd06ffa 833static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 834{
3dd06ffa 835 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 836
3dd06ffa 837 return root_cgrp->root;
2bd59d48
TH
838}
839
3dd06ffa 840static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
841{
842 int id;
843
844 lockdep_assert_held(&cgroup_mutex);
845
985ed670 846 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
847 if (id < 0)
848 return id;
849
850 root->hierarchy_id = id;
851 return 0;
852}
853
3dd06ffa 854static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
855{
856 lockdep_assert_held(&cgroup_mutex);
857
858 if (root->hierarchy_id) {
859 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
860 root->hierarchy_id = 0;
861 }
862}
863
3dd06ffa 864static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
865{
866 if (root) {
867 /* hierarhcy ID shoulid already have been released */
868 WARN_ON_ONCE(root->hierarchy_id);
869
870 idr_destroy(&root->cgroup_idr);
871 kfree(root);
872 }
873}
874
3dd06ffa 875static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 876{
3dd06ffa 877 struct cgroup *cgrp = &root->cgrp;
f2e85d57 878 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 879
2bd59d48 880 mutex_lock(&cgroup_mutex);
f2e85d57 881
776f02fa 882 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 883 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 884
f2e85d57 885 /* Rebind all subsystems back to the default hierarchy */
f392e51c 886 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 887
7717f7ba 888 /*
f2e85d57
TH
889 * Release all the links from cset_links to this hierarchy's
890 * root cgroup
7717f7ba 891 */
96d365e0 892 down_write(&css_set_rwsem);
f2e85d57
TH
893
894 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
895 list_del(&link->cset_link);
896 list_del(&link->cgrp_link);
897 kfree(link);
898 }
96d365e0 899 up_write(&css_set_rwsem);
f2e85d57
TH
900
901 if (!list_empty(&root->root_list)) {
902 list_del(&root->root_list);
903 cgroup_root_count--;
904 }
905
906 cgroup_exit_root_id(root);
907
908 mutex_unlock(&cgroup_mutex);
f2e85d57 909
2bd59d48 910 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
911 cgroup_free_root(root);
912}
913
ceb6a081
TH
914/* look up cgroup associated with given css_set on the specified hierarchy */
915static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 916 struct cgroup_root *root)
7717f7ba 917{
7717f7ba
PM
918 struct cgroup *res = NULL;
919
96d365e0
TH
920 lockdep_assert_held(&cgroup_mutex);
921 lockdep_assert_held(&css_set_rwsem);
922
5abb8855 923 if (cset == &init_css_set) {
3dd06ffa 924 res = &root->cgrp;
7717f7ba 925 } else {
69d0206c
TH
926 struct cgrp_cset_link *link;
927
928 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 929 struct cgroup *c = link->cgrp;
69d0206c 930
7717f7ba
PM
931 if (c->root == root) {
932 res = c;
933 break;
934 }
935 }
936 }
96d365e0 937
7717f7ba
PM
938 BUG_ON(!res);
939 return res;
940}
941
ddbcc7e8 942/*
ceb6a081
TH
943 * Return the cgroup for "task" from the given hierarchy. Must be
944 * called with cgroup_mutex and css_set_rwsem held.
945 */
946static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 947 struct cgroup_root *root)
ceb6a081
TH
948{
949 /*
950 * No need to lock the task - since we hold cgroup_mutex the
951 * task can't change groups, so the only thing that can happen
952 * is that it exits and its css is set back to init_css_set.
953 */
954 return cset_cgroup_from_root(task_css_set(task), root);
955}
956
ddbcc7e8 957/*
ddbcc7e8
PM
958 * A task must hold cgroup_mutex to modify cgroups.
959 *
960 * Any task can increment and decrement the count field without lock.
961 * So in general, code holding cgroup_mutex can't rely on the count
962 * field not changing. However, if the count goes to zero, then only
956db3ca 963 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
964 * means that no tasks are currently attached, therefore there is no
965 * way a task attached to that cgroup can fork (the other way to
966 * increment the count). So code holding cgroup_mutex can safely
967 * assume that if the count is zero, it will stay zero. Similarly, if
968 * a task holds cgroup_mutex on a cgroup with zero count, it
969 * knows that the cgroup won't be removed, as cgroup_rmdir()
970 * needs that mutex.
971 *
ddbcc7e8
PM
972 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
973 * (usually) take cgroup_mutex. These are the two most performance
974 * critical pieces of code here. The exception occurs on cgroup_exit(),
975 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
976 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
977 * to the release agent with the name of the cgroup (path relative to
978 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
979 *
980 * A cgroup can only be deleted if both its 'count' of using tasks
981 * is zero, and its list of 'children' cgroups is empty. Since all
982 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 983 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 984 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 985 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
986 *
987 * P.S. One more locking exception. RCU is used to guard the
956db3ca 988 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
989 */
990
69dfa00c 991static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 992static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 993static const struct file_operations proc_cgroupstats_operations;
a424316c 994
8d7e6fb0
TH
995static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
996 char *buf)
ddbcc7e8 997{
8d7e6fb0
TH
998 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
999 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1000 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1001 cft->ss->name, cft->name);
1002 else
1003 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1004 return buf;
ddbcc7e8
PM
1005}
1006
f2e85d57
TH
1007/**
1008 * cgroup_file_mode - deduce file mode of a control file
1009 * @cft: the control file in question
1010 *
1011 * returns cft->mode if ->mode is not 0
1012 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1013 * returns S_IRUGO if it has only a read handler
1014 * returns S_IWUSR if it has only a write hander
1015 */
1016static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1017{
f2e85d57 1018 umode_t mode = 0;
65dff759 1019
f2e85d57
TH
1020 if (cft->mode)
1021 return cft->mode;
1022
1023 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1024 mode |= S_IRUGO;
1025
6770c64e 1026 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1027 mode |= S_IWUSR;
1028
1029 return mode;
65dff759
LZ
1030}
1031
59f5296b 1032static void cgroup_get(struct cgroup *cgrp)
be445626 1033{
2bd59d48 1034 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1035 css_get(&cgrp->self);
be445626
LZ
1036}
1037
59f5296b 1038static void cgroup_put(struct cgroup *cgrp)
be445626 1039{
9d755d33 1040 css_put(&cgrp->self);
be445626
LZ
1041}
1042
af0ba678
TH
1043/**
1044 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1045 * @cgrp: the target cgroup
1046 *
1047 * On the default hierarchy, a subsystem may request other subsystems to be
1048 * enabled together through its ->depends_on mask. In such cases, more
1049 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1050 *
1051 * This function determines which subsystems need to be enabled given the
1052 * current @cgrp->subtree_control and records it in
1053 * @cgrp->child_subsys_mask. The resulting mask is always a superset of
1054 * @cgrp->subtree_control and follows the usual hierarchy rules.
1055 */
667c2491
TH
1056static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1057{
af0ba678
TH
1058 struct cgroup *parent = cgroup_parent(cgrp);
1059 unsigned int cur_ss_mask = cgrp->subtree_control;
1060 struct cgroup_subsys *ss;
1061 int ssid;
1062
1063 lockdep_assert_held(&cgroup_mutex);
1064
1065 if (!cgroup_on_dfl(cgrp)) {
1066 cgrp->child_subsys_mask = cur_ss_mask;
1067 return;
1068 }
1069
1070 while (true) {
1071 unsigned int new_ss_mask = cur_ss_mask;
1072
1073 for_each_subsys(ss, ssid)
1074 if (cur_ss_mask & (1 << ssid))
1075 new_ss_mask |= ss->depends_on;
1076
1077 /*
1078 * Mask out subsystems which aren't available. This can
1079 * happen only if some depended-upon subsystems were bound
1080 * to non-default hierarchies.
1081 */
1082 if (parent)
1083 new_ss_mask &= parent->child_subsys_mask;
1084 else
1085 new_ss_mask &= cgrp->root->subsys_mask;
1086
1087 if (new_ss_mask == cur_ss_mask)
1088 break;
1089 cur_ss_mask = new_ss_mask;
1090 }
1091
1092 cgrp->child_subsys_mask = cur_ss_mask;
667c2491
TH
1093}
1094
a9746d8d
TH
1095/**
1096 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1097 * @kn: the kernfs_node being serviced
1098 *
1099 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1100 * the method finishes if locking succeeded. Note that once this function
1101 * returns the cgroup returned by cgroup_kn_lock_live() may become
1102 * inaccessible any time. If the caller intends to continue to access the
1103 * cgroup, it should pin it before invoking this function.
1104 */
1105static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1106{
a9746d8d
TH
1107 struct cgroup *cgrp;
1108
1109 if (kernfs_type(kn) == KERNFS_DIR)
1110 cgrp = kn->priv;
1111 else
1112 cgrp = kn->parent->priv;
1113
1114 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1115
1116 kernfs_unbreak_active_protection(kn);
1117 cgroup_put(cgrp);
ddbcc7e8
PM
1118}
1119
a9746d8d
TH
1120/**
1121 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1122 * @kn: the kernfs_node being serviced
1123 *
1124 * This helper is to be used by a cgroup kernfs method currently servicing
1125 * @kn. It breaks the active protection, performs cgroup locking and
1126 * verifies that the associated cgroup is alive. Returns the cgroup if
1127 * alive; otherwise, %NULL. A successful return should be undone by a
1128 * matching cgroup_kn_unlock() invocation.
1129 *
1130 * Any cgroup kernfs method implementation which requires locking the
1131 * associated cgroup should use this helper. It avoids nesting cgroup
1132 * locking under kernfs active protection and allows all kernfs operations
1133 * including self-removal.
1134 */
1135static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1136{
a9746d8d
TH
1137 struct cgroup *cgrp;
1138
1139 if (kernfs_type(kn) == KERNFS_DIR)
1140 cgrp = kn->priv;
1141 else
1142 cgrp = kn->parent->priv;
05ef1d7c 1143
2739d3cc 1144 /*
01f6474c 1145 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1146 * active_ref. cgroup liveliness check alone provides enough
1147 * protection against removal. Ensure @cgrp stays accessible and
1148 * break the active_ref protection.
2739d3cc 1149 */
a9746d8d
TH
1150 cgroup_get(cgrp);
1151 kernfs_break_active_protection(kn);
1152
2bd59d48 1153 mutex_lock(&cgroup_mutex);
05ef1d7c 1154
a9746d8d
TH
1155 if (!cgroup_is_dead(cgrp))
1156 return cgrp;
1157
1158 cgroup_kn_unlock(kn);
1159 return NULL;
ddbcc7e8 1160}
05ef1d7c 1161
2739d3cc 1162static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1163{
2bd59d48 1164 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1165
01f6474c 1166 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1167 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1168}
1169
13af07df 1170/**
628f7cd4 1171 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1172 * @cgrp: target cgroup
13af07df
AR
1173 * @subsys_mask: mask of the subsystem ids whose files should be removed
1174 */
69dfa00c 1175static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1176{
13af07df 1177 struct cgroup_subsys *ss;
b420ba7d 1178 int i;
05ef1d7c 1179
b420ba7d 1180 for_each_subsys(ss, i) {
0adb0704 1181 struct cftype *cfts;
b420ba7d 1182
69dfa00c 1183 if (!(subsys_mask & (1 << i)))
13af07df 1184 continue;
0adb0704
TH
1185 list_for_each_entry(cfts, &ss->cfts, node)
1186 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1187 }
ddbcc7e8
PM
1188}
1189
69dfa00c 1190static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1191{
30159ec7 1192 struct cgroup_subsys *ss;
5533e011 1193 unsigned int tmp_ss_mask;
2d8f243a 1194 int ssid, i, ret;
ddbcc7e8 1195
ace2bee8 1196 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1197
5df36032
TH
1198 for_each_subsys(ss, ssid) {
1199 if (!(ss_mask & (1 << ssid)))
1200 continue;
aae8aab4 1201
7fd8c565
TH
1202 /* if @ss has non-root csses attached to it, can't move */
1203 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1204 return -EBUSY;
1d5be6b2 1205
5df36032 1206 /* can't move between two non-dummy roots either */
7fd8c565 1207 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1208 return -EBUSY;
ddbcc7e8
PM
1209 }
1210
5533e011
TH
1211 /* skip creating root files on dfl_root for inhibited subsystems */
1212 tmp_ss_mask = ss_mask;
1213 if (dst_root == &cgrp_dfl_root)
1214 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1215
1216 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1217 if (ret) {
1218 if (dst_root != &cgrp_dfl_root)
5df36032 1219 return ret;
ddbcc7e8 1220
a2dd4247
TH
1221 /*
1222 * Rebinding back to the default root is not allowed to
1223 * fail. Using both default and non-default roots should
1224 * be rare. Moving subsystems back and forth even more so.
1225 * Just warn about it and continue.
1226 */
1227 if (cgrp_dfl_root_visible) {
69dfa00c 1228 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1229 ret, ss_mask);
ed3d261b 1230 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1231 }
5df36032 1232 }
3126121f
TH
1233
1234 /*
1235 * Nothing can fail from this point on. Remove files for the
1236 * removed subsystems and rebind each subsystem.
1237 */
5df36032 1238 for_each_subsys(ss, ssid)
a2dd4247 1239 if (ss_mask & (1 << ssid))
3dd06ffa 1240 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1241
5df36032 1242 for_each_subsys(ss, ssid) {
3dd06ffa 1243 struct cgroup_root *src_root;
5df36032 1244 struct cgroup_subsys_state *css;
2d8f243a 1245 struct css_set *cset;
a8a648c4 1246
5df36032
TH
1247 if (!(ss_mask & (1 << ssid)))
1248 continue;
a8a648c4 1249
5df36032 1250 src_root = ss->root;
3dd06ffa 1251 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1252
3dd06ffa 1253 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1254
3dd06ffa
TH
1255 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1256 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1257 ss->root = dst_root;
3dd06ffa 1258 css->cgroup = &dst_root->cgrp;
73e80ed8 1259
2d8f243a
TH
1260 down_write(&css_set_rwsem);
1261 hash_for_each(css_set_table, i, cset, hlist)
1262 list_move_tail(&cset->e_cset_node[ss->id],
1263 &dst_root->cgrp.e_csets[ss->id]);
1264 up_write(&css_set_rwsem);
1265
f392e51c 1266 src_root->subsys_mask &= ~(1 << ssid);
667c2491
TH
1267 src_root->cgrp.subtree_control &= ~(1 << ssid);
1268 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
f392e51c 1269
bd53d617 1270 /* default hierarchy doesn't enable controllers by default */
f392e51c 1271 dst_root->subsys_mask |= 1 << ssid;
667c2491
TH
1272 if (dst_root != &cgrp_dfl_root) {
1273 dst_root->cgrp.subtree_control |= 1 << ssid;
1274 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1275 }
a8a648c4 1276
5df36032
TH
1277 if (ss->bind)
1278 ss->bind(css);
ddbcc7e8 1279 }
ddbcc7e8 1280
a2dd4247 1281 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1282 return 0;
1283}
1284
2bd59d48
TH
1285static int cgroup_show_options(struct seq_file *seq,
1286 struct kernfs_root *kf_root)
ddbcc7e8 1287{
3dd06ffa 1288 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1289 struct cgroup_subsys *ss;
b85d2040 1290 int ssid;
ddbcc7e8 1291
b85d2040 1292 for_each_subsys(ss, ssid)
f392e51c 1293 if (root->subsys_mask & (1 << ssid))
b85d2040 1294 seq_printf(seq, ",%s", ss->name);
93438629 1295 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1296 seq_puts(seq, ",noprefix");
93438629 1297 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1298 seq_puts(seq, ",xattr");
69e943b7
TH
1299
1300 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1301 if (strlen(root->release_agent_path))
1302 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1303 spin_unlock(&release_agent_path_lock);
1304
3dd06ffa 1305 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1306 seq_puts(seq, ",clone_children");
c6d57f33
PM
1307 if (strlen(root->name))
1308 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1309 return 0;
1310}
1311
1312struct cgroup_sb_opts {
69dfa00c
TH
1313 unsigned int subsys_mask;
1314 unsigned int flags;
81a6a5cd 1315 char *release_agent;
2260e7fc 1316 bool cpuset_clone_children;
c6d57f33 1317 char *name;
2c6ab6d2
PM
1318 /* User explicitly requested empty subsystem */
1319 bool none;
ddbcc7e8
PM
1320};
1321
cf5d5941 1322static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1323{
32a8cf23
DL
1324 char *token, *o = data;
1325 bool all_ss = false, one_ss = false;
69dfa00c 1326 unsigned int mask = -1U;
30159ec7 1327 struct cgroup_subsys *ss;
7b9a6ba5 1328 int nr_opts = 0;
30159ec7 1329 int i;
f9ab5b5b
LZ
1330
1331#ifdef CONFIG_CPUSETS
69dfa00c 1332 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1333#endif
ddbcc7e8 1334
c6d57f33 1335 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1336
1337 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1338 nr_opts++;
1339
ddbcc7e8
PM
1340 if (!*token)
1341 return -EINVAL;
32a8cf23 1342 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1343 /* Explicitly have no subsystems */
1344 opts->none = true;
32a8cf23
DL
1345 continue;
1346 }
1347 if (!strcmp(token, "all")) {
1348 /* Mutually exclusive option 'all' + subsystem name */
1349 if (one_ss)
1350 return -EINVAL;
1351 all_ss = true;
1352 continue;
1353 }
873fe09e
TH
1354 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1355 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1356 continue;
1357 }
32a8cf23 1358 if (!strcmp(token, "noprefix")) {
93438629 1359 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1360 continue;
1361 }
1362 if (!strcmp(token, "clone_children")) {
2260e7fc 1363 opts->cpuset_clone_children = true;
32a8cf23
DL
1364 continue;
1365 }
03b1cde6 1366 if (!strcmp(token, "xattr")) {
93438629 1367 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1368 continue;
1369 }
32a8cf23 1370 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1371 /* Specifying two release agents is forbidden */
1372 if (opts->release_agent)
1373 return -EINVAL;
c6d57f33 1374 opts->release_agent =
e400c285 1375 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1376 if (!opts->release_agent)
1377 return -ENOMEM;
32a8cf23
DL
1378 continue;
1379 }
1380 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1381 const char *name = token + 5;
1382 /* Can't specify an empty name */
1383 if (!strlen(name))
1384 return -EINVAL;
1385 /* Must match [\w.-]+ */
1386 for (i = 0; i < strlen(name); i++) {
1387 char c = name[i];
1388 if (isalnum(c))
1389 continue;
1390 if ((c == '.') || (c == '-') || (c == '_'))
1391 continue;
1392 return -EINVAL;
1393 }
1394 /* Specifying two names is forbidden */
1395 if (opts->name)
1396 return -EINVAL;
1397 opts->name = kstrndup(name,
e400c285 1398 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1399 GFP_KERNEL);
1400 if (!opts->name)
1401 return -ENOMEM;
32a8cf23
DL
1402
1403 continue;
1404 }
1405
30159ec7 1406 for_each_subsys(ss, i) {
32a8cf23
DL
1407 if (strcmp(token, ss->name))
1408 continue;
1409 if (ss->disabled)
1410 continue;
1411
1412 /* Mutually exclusive option 'all' + subsystem name */
1413 if (all_ss)
1414 return -EINVAL;
69dfa00c 1415 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1416 one_ss = true;
1417
1418 break;
1419 }
1420 if (i == CGROUP_SUBSYS_COUNT)
1421 return -ENOENT;
1422 }
1423
873fe09e 1424 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1425 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1426 if (nr_opts != 1) {
1427 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1428 return -EINVAL;
1429 }
7b9a6ba5 1430 return 0;
873fe09e
TH
1431 }
1432
7b9a6ba5
TH
1433 /*
1434 * If the 'all' option was specified select all the subsystems,
1435 * otherwise if 'none', 'name=' and a subsystem name options were
1436 * not specified, let's default to 'all'
1437 */
1438 if (all_ss || (!one_ss && !opts->none && !opts->name))
1439 for_each_subsys(ss, i)
1440 if (!ss->disabled)
1441 opts->subsys_mask |= (1 << i);
1442
1443 /*
1444 * We either have to specify by name or by subsystems. (So all
1445 * empty hierarchies must have a name).
1446 */
1447 if (!opts->subsys_mask && !opts->name)
1448 return -EINVAL;
1449
f9ab5b5b
LZ
1450 /*
1451 * Option noprefix was introduced just for backward compatibility
1452 * with the old cpuset, so we allow noprefix only if mounting just
1453 * the cpuset subsystem.
1454 */
93438629 1455 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1456 return -EINVAL;
1457
2c6ab6d2 1458 /* Can't specify "none" and some subsystems */
a1a71b45 1459 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1460 return -EINVAL;
1461
ddbcc7e8
PM
1462 return 0;
1463}
1464
2bd59d48 1465static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1466{
1467 int ret = 0;
3dd06ffa 1468 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1469 struct cgroup_sb_opts opts;
69dfa00c 1470 unsigned int added_mask, removed_mask;
ddbcc7e8 1471
aa6ec29b
TH
1472 if (root == &cgrp_dfl_root) {
1473 pr_err("remount is not allowed\n");
873fe09e
TH
1474 return -EINVAL;
1475 }
1476
ddbcc7e8
PM
1477 mutex_lock(&cgroup_mutex);
1478
1479 /* See what subsystems are wanted */
1480 ret = parse_cgroupfs_options(data, &opts);
1481 if (ret)
1482 goto out_unlock;
1483
f392e51c 1484 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1485 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1486 task_tgid_nr(current), current->comm);
8b5a5a9d 1487
f392e51c
TH
1488 added_mask = opts.subsys_mask & ~root->subsys_mask;
1489 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1490
cf5d5941 1491 /* Don't allow flags or name to change at remount */
7450e90b 1492 if ((opts.flags ^ root->flags) ||
cf5d5941 1493 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1494 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1495 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1496 ret = -EINVAL;
1497 goto out_unlock;
1498 }
1499
f172e67c 1500 /* remounting is not allowed for populated hierarchies */
d5c419b6 1501 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1502 ret = -EBUSY;
0670e08b 1503 goto out_unlock;
cf5d5941 1504 }
ddbcc7e8 1505
5df36032 1506 ret = rebind_subsystems(root, added_mask);
3126121f 1507 if (ret)
0670e08b 1508 goto out_unlock;
ddbcc7e8 1509
3dd06ffa 1510 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1511
69e943b7
TH
1512 if (opts.release_agent) {
1513 spin_lock(&release_agent_path_lock);
81a6a5cd 1514 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1515 spin_unlock(&release_agent_path_lock);
1516 }
ddbcc7e8 1517 out_unlock:
66bdc9cf 1518 kfree(opts.release_agent);
c6d57f33 1519 kfree(opts.name);
ddbcc7e8 1520 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1521 return ret;
1522}
1523
afeb0f9f
TH
1524/*
1525 * To reduce the fork() overhead for systems that are not actually using
1526 * their cgroups capability, we don't maintain the lists running through
1527 * each css_set to its tasks until we see the list actually used - in other
1528 * words after the first mount.
1529 */
1530static bool use_task_css_set_links __read_mostly;
1531
1532static void cgroup_enable_task_cg_lists(void)
1533{
1534 struct task_struct *p, *g;
1535
96d365e0 1536 down_write(&css_set_rwsem);
afeb0f9f
TH
1537
1538 if (use_task_css_set_links)
1539 goto out_unlock;
1540
1541 use_task_css_set_links = true;
1542
1543 /*
1544 * We need tasklist_lock because RCU is not safe against
1545 * while_each_thread(). Besides, a forking task that has passed
1546 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1547 * is not guaranteed to have its child immediately visible in the
1548 * tasklist if we walk through it with RCU.
1549 */
1550 read_lock(&tasklist_lock);
1551 do_each_thread(g, p) {
afeb0f9f
TH
1552 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1553 task_css_set(p) != &init_css_set);
1554
1555 /*
1556 * We should check if the process is exiting, otherwise
1557 * it will race with cgroup_exit() in that the list
1558 * entry won't be deleted though the process has exited.
f153ad11
TH
1559 * Do it while holding siglock so that we don't end up
1560 * racing against cgroup_exit().
afeb0f9f 1561 */
f153ad11 1562 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1563 if (!(p->flags & PF_EXITING)) {
1564 struct css_set *cset = task_css_set(p);
1565
1566 list_add(&p->cg_list, &cset->tasks);
1567 get_css_set(cset);
1568 }
f153ad11 1569 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1570 } while_each_thread(g, p);
1571 read_unlock(&tasklist_lock);
1572out_unlock:
96d365e0 1573 up_write(&css_set_rwsem);
afeb0f9f 1574}
ddbcc7e8 1575
cc31edce
PM
1576static void init_cgroup_housekeeping(struct cgroup *cgrp)
1577{
2d8f243a
TH
1578 struct cgroup_subsys *ss;
1579 int ssid;
1580
d5c419b6
TH
1581 INIT_LIST_HEAD(&cgrp->self.sibling);
1582 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1583 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1584 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1585 INIT_LIST_HEAD(&cgrp->pidlists);
1586 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1587 cgrp->self.cgroup = cgrp;
184faf32 1588 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1589
1590 for_each_subsys(ss, ssid)
1591 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1592
1593 init_waitqueue_head(&cgrp->offline_waitq);
cc31edce 1594}
c6d57f33 1595
3dd06ffa 1596static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1597 struct cgroup_sb_opts *opts)
ddbcc7e8 1598{
3dd06ffa 1599 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1600
ddbcc7e8 1601 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1602 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1603 cgrp->root = root;
cc31edce 1604 init_cgroup_housekeeping(cgrp);
4e96ee8e 1605 idr_init(&root->cgroup_idr);
c6d57f33 1606
c6d57f33
PM
1607 root->flags = opts->flags;
1608 if (opts->release_agent)
1609 strcpy(root->release_agent_path, opts->release_agent);
1610 if (opts->name)
1611 strcpy(root->name, opts->name);
2260e7fc 1612 if (opts->cpuset_clone_children)
3dd06ffa 1613 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1614}
1615
69dfa00c 1616static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1617{
d427dfeb 1618 LIST_HEAD(tmp_links);
3dd06ffa 1619 struct cgroup *root_cgrp = &root->cgrp;
a14c6874 1620 struct cftype *base_files;
d427dfeb 1621 struct css_set *cset;
d427dfeb 1622 int i, ret;
2c6ab6d2 1623
d427dfeb 1624 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1625
6fa4918d 1626 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1627 if (ret < 0)
2bd59d48 1628 goto out;
d427dfeb 1629 root_cgrp->id = ret;
c6d57f33 1630
9d755d33
TH
1631 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1632 if (ret)
1633 goto out;
1634
d427dfeb 1635 /*
96d365e0 1636 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1637 * but that's OK - it can only be increased by someone holding
1638 * cgroup_lock, and that's us. The worst that can happen is that we
1639 * have some link structures left over
1640 */
1641 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1642 if (ret)
9d755d33 1643 goto cancel_ref;
ddbcc7e8 1644
985ed670 1645 ret = cgroup_init_root_id(root);
ddbcc7e8 1646 if (ret)
9d755d33 1647 goto cancel_ref;
ddbcc7e8 1648
2bd59d48
TH
1649 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1650 KERNFS_ROOT_CREATE_DEACTIVATED,
1651 root_cgrp);
1652 if (IS_ERR(root->kf_root)) {
1653 ret = PTR_ERR(root->kf_root);
1654 goto exit_root_id;
1655 }
1656 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1657
a14c6874
TH
1658 if (root == &cgrp_dfl_root)
1659 base_files = cgroup_dfl_base_files;
1660 else
1661 base_files = cgroup_legacy_base_files;
1662
1663 ret = cgroup_addrm_files(root_cgrp, base_files, true);
d427dfeb 1664 if (ret)
2bd59d48 1665 goto destroy_root;
ddbcc7e8 1666
5df36032 1667 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1668 if (ret)
2bd59d48 1669 goto destroy_root;
ddbcc7e8 1670
d427dfeb
TH
1671 /*
1672 * There must be no failure case after here, since rebinding takes
1673 * care of subsystems' refcounts, which are explicitly dropped in
1674 * the failure exit path.
1675 */
1676 list_add(&root->root_list, &cgroup_roots);
1677 cgroup_root_count++;
0df6a63f 1678
d427dfeb 1679 /*
3dd06ffa 1680 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1681 * objects.
1682 */
96d365e0 1683 down_write(&css_set_rwsem);
d427dfeb
TH
1684 hash_for_each(css_set_table, i, cset, hlist)
1685 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1686 up_write(&css_set_rwsem);
ddbcc7e8 1687
d5c419b6 1688 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1689 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1690
2bd59d48 1691 kernfs_activate(root_cgrp->kn);
d427dfeb 1692 ret = 0;
2bd59d48 1693 goto out;
d427dfeb 1694
2bd59d48
TH
1695destroy_root:
1696 kernfs_destroy_root(root->kf_root);
1697 root->kf_root = NULL;
1698exit_root_id:
d427dfeb 1699 cgroup_exit_root_id(root);
9d755d33 1700cancel_ref:
9a1049da 1701 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1702out:
d427dfeb
TH
1703 free_cgrp_cset_links(&tmp_links);
1704 return ret;
ddbcc7e8
PM
1705}
1706
f7e83571 1707static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1708 int flags, const char *unused_dev_name,
f7e83571 1709 void *data)
ddbcc7e8 1710{
3a32bd72 1711 struct super_block *pinned_sb = NULL;
970317aa 1712 struct cgroup_subsys *ss;
3dd06ffa 1713 struct cgroup_root *root;
ddbcc7e8 1714 struct cgroup_sb_opts opts;
2bd59d48 1715 struct dentry *dentry;
8e30e2b8 1716 int ret;
970317aa 1717 int i;
c6b3d5bc 1718 bool new_sb;
ddbcc7e8 1719
56fde9e0
TH
1720 /*
1721 * The first time anyone tries to mount a cgroup, enable the list
1722 * linking each css_set to its tasks and fix up all existing tasks.
1723 */
1724 if (!use_task_css_set_links)
1725 cgroup_enable_task_cg_lists();
e37a06f1 1726
aae8aab4 1727 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1728
1729 /* First find the desired set of subsystems */
ddbcc7e8 1730 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1731 if (ret)
8e30e2b8 1732 goto out_unlock;
a015edd2 1733
2bd59d48 1734 /* look for a matching existing root */
7b9a6ba5 1735 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1736 cgrp_dfl_root_visible = true;
1737 root = &cgrp_dfl_root;
1738 cgroup_get(&root->cgrp);
1739 ret = 0;
1740 goto out_unlock;
ddbcc7e8
PM
1741 }
1742
970317aa
LZ
1743 /*
1744 * Destruction of cgroup root is asynchronous, so subsystems may
1745 * still be dying after the previous unmount. Let's drain the
1746 * dying subsystems. We just need to ensure that the ones
1747 * unmounted previously finish dying and don't care about new ones
1748 * starting. Testing ref liveliness is good enough.
1749 */
1750 for_each_subsys(ss, i) {
1751 if (!(opts.subsys_mask & (1 << i)) ||
1752 ss->root == &cgrp_dfl_root)
1753 continue;
1754
1755 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1756 mutex_unlock(&cgroup_mutex);
1757 msleep(10);
1758 ret = restart_syscall();
1759 goto out_free;
1760 }
1761 cgroup_put(&ss->root->cgrp);
1762 }
1763
985ed670 1764 for_each_root(root) {
2bd59d48 1765 bool name_match = false;
3126121f 1766
3dd06ffa 1767 if (root == &cgrp_dfl_root)
985ed670 1768 continue;
3126121f 1769
cf5d5941 1770 /*
2bd59d48
TH
1771 * If we asked for a name then it must match. Also, if
1772 * name matches but sybsys_mask doesn't, we should fail.
1773 * Remember whether name matched.
cf5d5941 1774 */
2bd59d48
TH
1775 if (opts.name) {
1776 if (strcmp(opts.name, root->name))
1777 continue;
1778 name_match = true;
1779 }
ddbcc7e8 1780
c6d57f33 1781 /*
2bd59d48
TH
1782 * If we asked for subsystems (or explicitly for no
1783 * subsystems) then they must match.
c6d57f33 1784 */
2bd59d48 1785 if ((opts.subsys_mask || opts.none) &&
f392e51c 1786 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1787 if (!name_match)
1788 continue;
1789 ret = -EBUSY;
1790 goto out_unlock;
1791 }
873fe09e 1792
7b9a6ba5
TH
1793 if (root->flags ^ opts.flags)
1794 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1795
776f02fa 1796 /*
3a32bd72
LZ
1797 * We want to reuse @root whose lifetime is governed by its
1798 * ->cgrp. Let's check whether @root is alive and keep it
1799 * that way. As cgroup_kill_sb() can happen anytime, we
1800 * want to block it by pinning the sb so that @root doesn't
1801 * get killed before mount is complete.
1802 *
1803 * With the sb pinned, tryget_live can reliably indicate
1804 * whether @root can be reused. If it's being killed,
1805 * drain it. We can use wait_queue for the wait but this
1806 * path is super cold. Let's just sleep a bit and retry.
776f02fa 1807 */
3a32bd72
LZ
1808 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1809 if (IS_ERR(pinned_sb) ||
1810 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1811 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
1812 if (!IS_ERR_OR_NULL(pinned_sb))
1813 deactivate_super(pinned_sb);
776f02fa 1814 msleep(10);
a015edd2
TH
1815 ret = restart_syscall();
1816 goto out_free;
776f02fa 1817 }
ddbcc7e8 1818
776f02fa 1819 ret = 0;
2bd59d48 1820 goto out_unlock;
ddbcc7e8 1821 }
ddbcc7e8 1822
817929ec 1823 /*
172a2c06
TH
1824 * No such thing, create a new one. name= matching without subsys
1825 * specification is allowed for already existing hierarchies but we
1826 * can't create new one without subsys specification.
817929ec 1827 */
172a2c06
TH
1828 if (!opts.subsys_mask && !opts.none) {
1829 ret = -EINVAL;
1830 goto out_unlock;
817929ec 1831 }
817929ec 1832
172a2c06
TH
1833 root = kzalloc(sizeof(*root), GFP_KERNEL);
1834 if (!root) {
1835 ret = -ENOMEM;
2bd59d48 1836 goto out_unlock;
839ec545 1837 }
e5f6a860 1838
172a2c06
TH
1839 init_cgroup_root(root, &opts);
1840
35585573 1841 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1842 if (ret)
1843 cgroup_free_root(root);
fa3ca07e 1844
8e30e2b8 1845out_unlock:
ddbcc7e8 1846 mutex_unlock(&cgroup_mutex);
a015edd2 1847out_free:
c6d57f33
PM
1848 kfree(opts.release_agent);
1849 kfree(opts.name);
03b1cde6 1850
2bd59d48 1851 if (ret)
8e30e2b8 1852 return ERR_PTR(ret);
2bd59d48 1853
c9482a5b
JZ
1854 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1855 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1856 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1857 cgroup_put(&root->cgrp);
3a32bd72
LZ
1858
1859 /*
1860 * If @pinned_sb, we're reusing an existing root and holding an
1861 * extra ref on its sb. Mount is complete. Put the extra ref.
1862 */
1863 if (pinned_sb) {
1864 WARN_ON(new_sb);
1865 deactivate_super(pinned_sb);
1866 }
1867
2bd59d48
TH
1868 return dentry;
1869}
1870
1871static void cgroup_kill_sb(struct super_block *sb)
1872{
1873 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1874 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1875
9d755d33
TH
1876 /*
1877 * If @root doesn't have any mounts or children, start killing it.
1878 * This prevents new mounts by disabling percpu_ref_tryget_live().
1879 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1880 *
1881 * And don't kill the default root.
9d755d33 1882 */
1f779fb2
LZ
1883 if (css_has_online_children(&root->cgrp.self) ||
1884 root == &cgrp_dfl_root)
9d755d33
TH
1885 cgroup_put(&root->cgrp);
1886 else
1887 percpu_ref_kill(&root->cgrp.self.refcnt);
1888
2bd59d48 1889 kernfs_kill_sb(sb);
ddbcc7e8
PM
1890}
1891
1892static struct file_system_type cgroup_fs_type = {
1893 .name = "cgroup",
f7e83571 1894 .mount = cgroup_mount,
ddbcc7e8
PM
1895 .kill_sb = cgroup_kill_sb,
1896};
1897
676db4af
GK
1898static struct kobject *cgroup_kobj;
1899
857a2beb 1900/**
913ffdb5 1901 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1902 * @task: target task
857a2beb
TH
1903 * @buf: the buffer to write the path into
1904 * @buflen: the length of the buffer
1905 *
913ffdb5
TH
1906 * Determine @task's cgroup on the first (the one with the lowest non-zero
1907 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1908 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1909 * cgroup controller callbacks.
1910 *
e61734c5 1911 * Return value is the same as kernfs_path().
857a2beb 1912 */
e61734c5 1913char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1914{
3dd06ffa 1915 struct cgroup_root *root;
913ffdb5 1916 struct cgroup *cgrp;
e61734c5
TH
1917 int hierarchy_id = 1;
1918 char *path = NULL;
857a2beb
TH
1919
1920 mutex_lock(&cgroup_mutex);
96d365e0 1921 down_read(&css_set_rwsem);
857a2beb 1922
913ffdb5
TH
1923 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1924
857a2beb
TH
1925 if (root) {
1926 cgrp = task_cgroup_from_root(task, root);
e61734c5 1927 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1928 } else {
1929 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1930 if (strlcpy(buf, "/", buflen) < buflen)
1931 path = buf;
857a2beb
TH
1932 }
1933
96d365e0 1934 up_read(&css_set_rwsem);
857a2beb 1935 mutex_unlock(&cgroup_mutex);
e61734c5 1936 return path;
857a2beb 1937}
913ffdb5 1938EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1939
b3dc094e 1940/* used to track tasks and other necessary states during migration */
2f7ee569 1941struct cgroup_taskset {
b3dc094e
TH
1942 /* the src and dst cset list running through cset->mg_node */
1943 struct list_head src_csets;
1944 struct list_head dst_csets;
1945
1946 /*
1947 * Fields for cgroup_taskset_*() iteration.
1948 *
1949 * Before migration is committed, the target migration tasks are on
1950 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1951 * the csets on ->dst_csets. ->csets point to either ->src_csets
1952 * or ->dst_csets depending on whether migration is committed.
1953 *
1954 * ->cur_csets and ->cur_task point to the current task position
1955 * during iteration.
1956 */
1957 struct list_head *csets;
1958 struct css_set *cur_cset;
1959 struct task_struct *cur_task;
2f7ee569
TH
1960};
1961
1962/**
1963 * cgroup_taskset_first - reset taskset and return the first task
1964 * @tset: taskset of interest
1965 *
1966 * @tset iteration is initialized and the first task is returned.
1967 */
1968struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1969{
b3dc094e
TH
1970 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1971 tset->cur_task = NULL;
1972
1973 return cgroup_taskset_next(tset);
2f7ee569 1974}
2f7ee569
TH
1975
1976/**
1977 * cgroup_taskset_next - iterate to the next task in taskset
1978 * @tset: taskset of interest
1979 *
1980 * Return the next task in @tset. Iteration must have been initialized
1981 * with cgroup_taskset_first().
1982 */
1983struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1984{
b3dc094e
TH
1985 struct css_set *cset = tset->cur_cset;
1986 struct task_struct *task = tset->cur_task;
2f7ee569 1987
b3dc094e
TH
1988 while (&cset->mg_node != tset->csets) {
1989 if (!task)
1990 task = list_first_entry(&cset->mg_tasks,
1991 struct task_struct, cg_list);
1992 else
1993 task = list_next_entry(task, cg_list);
2f7ee569 1994
b3dc094e
TH
1995 if (&task->cg_list != &cset->mg_tasks) {
1996 tset->cur_cset = cset;
1997 tset->cur_task = task;
1998 return task;
1999 }
2f7ee569 2000
b3dc094e
TH
2001 cset = list_next_entry(cset, mg_node);
2002 task = NULL;
2003 }
2f7ee569 2004
b3dc094e 2005 return NULL;
2f7ee569 2006}
2f7ee569 2007
cb0f1fe9 2008/**
74a1166d 2009 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 2010 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
2011 * @tsk: the task being migrated
2012 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2013 *
cb0f1fe9 2014 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2015 */
5abb8855
TH
2016static void cgroup_task_migrate(struct cgroup *old_cgrp,
2017 struct task_struct *tsk,
2018 struct css_set *new_cset)
74a1166d 2019{
5abb8855 2020 struct css_set *old_cset;
74a1166d 2021
cb0f1fe9
TH
2022 lockdep_assert_held(&cgroup_mutex);
2023 lockdep_assert_held(&css_set_rwsem);
2024
74a1166d 2025 /*
026085ef
MSB
2026 * We are synchronized through threadgroup_lock() against PF_EXITING
2027 * setting such that we can't race against cgroup_exit() changing the
2028 * css_set to init_css_set and dropping the old one.
74a1166d 2029 */
c84cdf75 2030 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2031 old_cset = task_css_set(tsk);
74a1166d 2032
b3dc094e 2033 get_css_set(new_cset);
5abb8855 2034 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 2035
1b9aba49
TH
2036 /*
2037 * Use move_tail so that cgroup_taskset_first() still returns the
2038 * leader after migration. This works because cgroup_migrate()
2039 * ensures that the dst_cset of the leader is the first on the
2040 * tset's dst_csets list.
2041 */
2042 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2043
2044 /*
5abb8855
TH
2045 * We just gained a reference on old_cset by taking it from the
2046 * task. As trading it for new_cset is protected by cgroup_mutex,
2047 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2048 */
5abb8855 2049 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 2050 put_css_set_locked(old_cset, false);
74a1166d
BB
2051}
2052
a043e3b2 2053/**
1958d2d5
TH
2054 * cgroup_migrate_finish - cleanup after attach
2055 * @preloaded_csets: list of preloaded css_sets
74a1166d 2056 *
1958d2d5
TH
2057 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2058 * those functions for details.
74a1166d 2059 */
1958d2d5 2060static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2061{
1958d2d5 2062 struct css_set *cset, *tmp_cset;
74a1166d 2063
1958d2d5
TH
2064 lockdep_assert_held(&cgroup_mutex);
2065
2066 down_write(&css_set_rwsem);
2067 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2068 cset->mg_src_cgrp = NULL;
2069 cset->mg_dst_cset = NULL;
2070 list_del_init(&cset->mg_preload_node);
2071 put_css_set_locked(cset, false);
2072 }
2073 up_write(&css_set_rwsem);
2074}
2075
2076/**
2077 * cgroup_migrate_add_src - add a migration source css_set
2078 * @src_cset: the source css_set to add
2079 * @dst_cgrp: the destination cgroup
2080 * @preloaded_csets: list of preloaded css_sets
2081 *
2082 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2083 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2084 * up by cgroup_migrate_finish().
2085 *
2086 * This function may be called without holding threadgroup_lock even if the
2087 * target is a process. Threads may be created and destroyed but as long
2088 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2089 * the preloaded css_sets are guaranteed to cover all migrations.
2090 */
2091static void cgroup_migrate_add_src(struct css_set *src_cset,
2092 struct cgroup *dst_cgrp,
2093 struct list_head *preloaded_csets)
2094{
2095 struct cgroup *src_cgrp;
2096
2097 lockdep_assert_held(&cgroup_mutex);
2098 lockdep_assert_held(&css_set_rwsem);
2099
2100 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2101
1958d2d5
TH
2102 if (!list_empty(&src_cset->mg_preload_node))
2103 return;
2104
2105 WARN_ON(src_cset->mg_src_cgrp);
2106 WARN_ON(!list_empty(&src_cset->mg_tasks));
2107 WARN_ON(!list_empty(&src_cset->mg_node));
2108
2109 src_cset->mg_src_cgrp = src_cgrp;
2110 get_css_set(src_cset);
2111 list_add(&src_cset->mg_preload_node, preloaded_csets);
2112}
2113
2114/**
2115 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2116 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2117 * @preloaded_csets: list of preloaded source css_sets
2118 *
2119 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2120 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2121 * pins all destination css_sets, links each to its source, and append them
2122 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2123 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2124 *
2125 * This function must be called after cgroup_migrate_add_src() has been
2126 * called on each migration source css_set. After migration is performed
2127 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2128 * @preloaded_csets.
2129 */
2130static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2131 struct list_head *preloaded_csets)
2132{
2133 LIST_HEAD(csets);
f817de98 2134 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2135
2136 lockdep_assert_held(&cgroup_mutex);
2137
f8f22e53
TH
2138 /*
2139 * Except for the root, child_subsys_mask must be zero for a cgroup
2140 * with tasks so that child cgroups don't compete against tasks.
2141 */
d51f39b0 2142 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2143 dst_cgrp->child_subsys_mask)
2144 return -EBUSY;
2145
1958d2d5 2146 /* look up the dst cset for each src cset and link it to src */
f817de98 2147 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2148 struct css_set *dst_cset;
2149
f817de98
TH
2150 dst_cset = find_css_set(src_cset,
2151 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2152 if (!dst_cset)
2153 goto err;
2154
2155 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2156
2157 /*
2158 * If src cset equals dst, it's noop. Drop the src.
2159 * cgroup_migrate() will skip the cset too. Note that we
2160 * can't handle src == dst as some nodes are used by both.
2161 */
2162 if (src_cset == dst_cset) {
2163 src_cset->mg_src_cgrp = NULL;
2164 list_del_init(&src_cset->mg_preload_node);
2165 put_css_set(src_cset, false);
2166 put_css_set(dst_cset, false);
2167 continue;
2168 }
2169
1958d2d5
TH
2170 src_cset->mg_dst_cset = dst_cset;
2171
2172 if (list_empty(&dst_cset->mg_preload_node))
2173 list_add(&dst_cset->mg_preload_node, &csets);
2174 else
2175 put_css_set(dst_cset, false);
2176 }
2177
f817de98 2178 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2179 return 0;
2180err:
2181 cgroup_migrate_finish(&csets);
2182 return -ENOMEM;
2183}
2184
2185/**
2186 * cgroup_migrate - migrate a process or task to a cgroup
2187 * @cgrp: the destination cgroup
2188 * @leader: the leader of the process or the task to migrate
2189 * @threadgroup: whether @leader points to the whole process or a single task
2190 *
2191 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2192 * process, the caller must be holding threadgroup_lock of @leader. The
2193 * caller is also responsible for invoking cgroup_migrate_add_src() and
2194 * cgroup_migrate_prepare_dst() on the targets before invoking this
2195 * function and following up with cgroup_migrate_finish().
2196 *
2197 * As long as a controller's ->can_attach() doesn't fail, this function is
2198 * guaranteed to succeed. This means that, excluding ->can_attach()
2199 * failure, when migrating multiple targets, the success or failure can be
2200 * decided for all targets by invoking group_migrate_prepare_dst() before
2201 * actually starting migrating.
2202 */
2203static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2204 bool threadgroup)
74a1166d 2205{
b3dc094e
TH
2206 struct cgroup_taskset tset = {
2207 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2208 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2209 .csets = &tset.src_csets,
2210 };
1c6727af 2211 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2212 struct css_set *cset, *tmp_cset;
2213 struct task_struct *task, *tmp_task;
2214 int i, ret;
74a1166d 2215
fb5d2b4c
MSB
2216 /*
2217 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2218 * already PF_EXITING could be freed from underneath us unless we
2219 * take an rcu_read_lock.
2220 */
b3dc094e 2221 down_write(&css_set_rwsem);
fb5d2b4c 2222 rcu_read_lock();
9db8de37 2223 task = leader;
74a1166d 2224 do {
9db8de37
TH
2225 /* @task either already exited or can't exit until the end */
2226 if (task->flags & PF_EXITING)
ea84753c 2227 goto next;
134d3373 2228
eaf797ab
TH
2229 /* leave @task alone if post_fork() hasn't linked it yet */
2230 if (list_empty(&task->cg_list))
ea84753c 2231 goto next;
cd3d0952 2232
b3dc094e 2233 cset = task_css_set(task);
1958d2d5 2234 if (!cset->mg_src_cgrp)
ea84753c 2235 goto next;
b3dc094e 2236
61d1d219 2237 /*
1b9aba49
TH
2238 * cgroup_taskset_first() must always return the leader.
2239 * Take care to avoid disturbing the ordering.
61d1d219 2240 */
1b9aba49
TH
2241 list_move_tail(&task->cg_list, &cset->mg_tasks);
2242 if (list_empty(&cset->mg_node))
2243 list_add_tail(&cset->mg_node, &tset.src_csets);
2244 if (list_empty(&cset->mg_dst_cset->mg_node))
2245 list_move_tail(&cset->mg_dst_cset->mg_node,
2246 &tset.dst_csets);
ea84753c 2247 next:
081aa458
LZ
2248 if (!threadgroup)
2249 break;
9db8de37 2250 } while_each_thread(leader, task);
fb5d2b4c 2251 rcu_read_unlock();
b3dc094e 2252 up_write(&css_set_rwsem);
74a1166d 2253
134d3373 2254 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2255 if (list_empty(&tset.src_csets))
2256 return 0;
134d3373 2257
1958d2d5 2258 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2259 for_each_e_css(css, i, cgrp) {
1c6727af 2260 if (css->ss->can_attach) {
9db8de37
TH
2261 ret = css->ss->can_attach(css, &tset);
2262 if (ret) {
1c6727af 2263 failed_css = css;
74a1166d
BB
2264 goto out_cancel_attach;
2265 }
2266 }
74a1166d
BB
2267 }
2268
2269 /*
1958d2d5
TH
2270 * Now that we're guaranteed success, proceed to move all tasks to
2271 * the new cgroup. There are no failure cases after here, so this
2272 * is the commit point.
74a1166d 2273 */
cb0f1fe9 2274 down_write(&css_set_rwsem);
b3dc094e
TH
2275 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2276 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2277 cgroup_task_migrate(cset->mg_src_cgrp, task,
2278 cset->mg_dst_cset);
74a1166d 2279 }
cb0f1fe9 2280 up_write(&css_set_rwsem);
74a1166d
BB
2281
2282 /*
1958d2d5
TH
2283 * Migration is committed, all target tasks are now on dst_csets.
2284 * Nothing is sensitive to fork() after this point. Notify
2285 * controllers that migration is complete.
74a1166d 2286 */
1958d2d5 2287 tset.csets = &tset.dst_csets;
74a1166d 2288
aec3dfcb 2289 for_each_e_css(css, i, cgrp)
1c6727af
TH
2290 if (css->ss->attach)
2291 css->ss->attach(css, &tset);
74a1166d 2292
9db8de37 2293 ret = 0;
b3dc094e
TH
2294 goto out_release_tset;
2295
74a1166d 2296out_cancel_attach:
aec3dfcb 2297 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2298 if (css == failed_css)
2299 break;
2300 if (css->ss->cancel_attach)
2301 css->ss->cancel_attach(css, &tset);
74a1166d 2302 }
b3dc094e
TH
2303out_release_tset:
2304 down_write(&css_set_rwsem);
2305 list_splice_init(&tset.dst_csets, &tset.src_csets);
2306 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2307 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2308 list_del_init(&cset->mg_node);
b3dc094e
TH
2309 }
2310 up_write(&css_set_rwsem);
9db8de37 2311 return ret;
74a1166d
BB
2312}
2313
1958d2d5
TH
2314/**
2315 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2316 * @dst_cgrp: the cgroup to attach to
2317 * @leader: the task or the leader of the threadgroup to be attached
2318 * @threadgroup: attach the whole threadgroup?
2319 *
0e1d768f 2320 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2321 */
2322static int cgroup_attach_task(struct cgroup *dst_cgrp,
2323 struct task_struct *leader, bool threadgroup)
2324{
2325 LIST_HEAD(preloaded_csets);
2326 struct task_struct *task;
2327 int ret;
2328
2329 /* look up all src csets */
2330 down_read(&css_set_rwsem);
2331 rcu_read_lock();
2332 task = leader;
2333 do {
2334 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2335 &preloaded_csets);
2336 if (!threadgroup)
2337 break;
2338 } while_each_thread(leader, task);
2339 rcu_read_unlock();
2340 up_read(&css_set_rwsem);
2341
2342 /* prepare dst csets and commit */
2343 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2344 if (!ret)
2345 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2346
2347 cgroup_migrate_finish(&preloaded_csets);
2348 return ret;
74a1166d
BB
2349}
2350
2351/*
2352 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2353 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2354 * cgroup_mutex and threadgroup.
bbcb81d0 2355 */
acbef755
TH
2356static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2357 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2358{
bbcb81d0 2359 struct task_struct *tsk;
c69e8d9c 2360 const struct cred *cred = current_cred(), *tcred;
e76ecaee 2361 struct cgroup *cgrp;
acbef755 2362 pid_t pid;
bbcb81d0
PM
2363 int ret;
2364
acbef755
TH
2365 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2366 return -EINVAL;
2367
e76ecaee
TH
2368 cgrp = cgroup_kn_lock_live(of->kn);
2369 if (!cgrp)
74a1166d
BB
2370 return -ENODEV;
2371
b78949eb
MSB
2372retry_find_task:
2373 rcu_read_lock();
bbcb81d0 2374 if (pid) {
73507f33 2375 tsk = find_task_by_vpid(pid);
74a1166d
BB
2376 if (!tsk) {
2377 rcu_read_unlock();
dd4b0a46 2378 ret = -ESRCH;
b78949eb 2379 goto out_unlock_cgroup;
bbcb81d0 2380 }
74a1166d
BB
2381 /*
2382 * even if we're attaching all tasks in the thread group, we
2383 * only need to check permissions on one of them.
2384 */
c69e8d9c 2385 tcred = __task_cred(tsk);
14a590c3
EB
2386 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2387 !uid_eq(cred->euid, tcred->uid) &&
2388 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2389 rcu_read_unlock();
b78949eb
MSB
2390 ret = -EACCES;
2391 goto out_unlock_cgroup;
bbcb81d0 2392 }
b78949eb
MSB
2393 } else
2394 tsk = current;
cd3d0952
TH
2395
2396 if (threadgroup)
b78949eb 2397 tsk = tsk->group_leader;
c4c27fbd
MG
2398
2399 /*
14a40ffc 2400 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2401 * trapped in a cpuset, or RT worker may be born in a cgroup
2402 * with no rt_runtime allocated. Just say no.
2403 */
14a40ffc 2404 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2405 ret = -EINVAL;
2406 rcu_read_unlock();
2407 goto out_unlock_cgroup;
2408 }
2409
b78949eb
MSB
2410 get_task_struct(tsk);
2411 rcu_read_unlock();
2412
2413 threadgroup_lock(tsk);
2414 if (threadgroup) {
2415 if (!thread_group_leader(tsk)) {
2416 /*
2417 * a race with de_thread from another thread's exec()
2418 * may strip us of our leadership, if this happens,
2419 * there is no choice but to throw this task away and
2420 * try again; this is
2421 * "double-double-toil-and-trouble-check locking".
2422 */
2423 threadgroup_unlock(tsk);
2424 put_task_struct(tsk);
2425 goto retry_find_task;
2426 }
081aa458
LZ
2427 }
2428
2429 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2430
cd3d0952
TH
2431 threadgroup_unlock(tsk);
2432
bbcb81d0 2433 put_task_struct(tsk);
b78949eb 2434out_unlock_cgroup:
e76ecaee 2435 cgroup_kn_unlock(of->kn);
acbef755 2436 return ret ?: nbytes;
bbcb81d0
PM
2437}
2438
7ae1bad9
TH
2439/**
2440 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2441 * @from: attach to all cgroups of a given task
2442 * @tsk: the task to be attached
2443 */
2444int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2445{
3dd06ffa 2446 struct cgroup_root *root;
7ae1bad9
TH
2447 int retval = 0;
2448
47cfcd09 2449 mutex_lock(&cgroup_mutex);
985ed670 2450 for_each_root(root) {
96d365e0
TH
2451 struct cgroup *from_cgrp;
2452
3dd06ffa 2453 if (root == &cgrp_dfl_root)
985ed670
TH
2454 continue;
2455
96d365e0
TH
2456 down_read(&css_set_rwsem);
2457 from_cgrp = task_cgroup_from_root(from, root);
2458 up_read(&css_set_rwsem);
7ae1bad9 2459
6f4b7e63 2460 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2461 if (retval)
2462 break;
2463 }
47cfcd09 2464 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2465
2466 return retval;
2467}
2468EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2469
acbef755
TH
2470static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2471 char *buf, size_t nbytes, loff_t off)
74a1166d 2472{
acbef755 2473 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2474}
2475
acbef755
TH
2476static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2477 char *buf, size_t nbytes, loff_t off)
af351026 2478{
acbef755 2479 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2480}
2481
451af504
TH
2482static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2483 char *buf, size_t nbytes, loff_t off)
e788e066 2484{
e76ecaee 2485 struct cgroup *cgrp;
5f469907 2486
e76ecaee 2487 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2488
e76ecaee
TH
2489 cgrp = cgroup_kn_lock_live(of->kn);
2490 if (!cgrp)
e788e066 2491 return -ENODEV;
69e943b7 2492 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2493 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2494 sizeof(cgrp->root->release_agent_path));
69e943b7 2495 spin_unlock(&release_agent_path_lock);
e76ecaee 2496 cgroup_kn_unlock(of->kn);
451af504 2497 return nbytes;
e788e066
PM
2498}
2499
2da8ca82 2500static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2501{
2da8ca82 2502 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2503
46cfeb04 2504 spin_lock(&release_agent_path_lock);
e788e066 2505 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2506 spin_unlock(&release_agent_path_lock);
e788e066 2507 seq_putc(seq, '\n');
e788e066
PM
2508 return 0;
2509}
2510
2da8ca82 2511static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2512{
c1d5d42e 2513 seq_puts(seq, "0\n");
e788e066
PM
2514 return 0;
2515}
2516
f8f22e53 2517static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
355e0c48 2518{
f8f22e53
TH
2519 struct cgroup_subsys *ss;
2520 bool printed = false;
2521 int ssid;
a742c59d 2522
f8f22e53
TH
2523 for_each_subsys(ss, ssid) {
2524 if (ss_mask & (1 << ssid)) {
2525 if (printed)
2526 seq_putc(seq, ' ');
2527 seq_printf(seq, "%s", ss->name);
2528 printed = true;
2529 }
e73d2c61 2530 }
f8f22e53
TH
2531 if (printed)
2532 seq_putc(seq, '\n');
355e0c48
PM
2533}
2534
f8f22e53
TH
2535/* show controllers which are currently attached to the default hierarchy */
2536static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2537{
f8f22e53
TH
2538 struct cgroup *cgrp = seq_css(seq)->cgroup;
2539
5533e011
TH
2540 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2541 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2542 return 0;
db3b1497
PM
2543}
2544
f8f22e53
TH
2545/* show controllers which are enabled from the parent */
2546static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2547{
f8f22e53
TH
2548 struct cgroup *cgrp = seq_css(seq)->cgroup;
2549
667c2491 2550 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2551 return 0;
ddbcc7e8
PM
2552}
2553
f8f22e53
TH
2554/* show controllers which are enabled for a given cgroup's children */
2555static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2556{
f8f22e53
TH
2557 struct cgroup *cgrp = seq_css(seq)->cgroup;
2558
667c2491 2559 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2560 return 0;
2561}
2562
2563/**
2564 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2565 * @cgrp: root of the subtree to update csses for
2566 *
2567 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2568 * css associations need to be updated accordingly. This function looks up
2569 * all css_sets which are attached to the subtree, creates the matching
2570 * updated css_sets and migrates the tasks to the new ones.
2571 */
2572static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2573{
2574 LIST_HEAD(preloaded_csets);
2575 struct cgroup_subsys_state *css;
2576 struct css_set *src_cset;
2577 int ret;
2578
f8f22e53
TH
2579 lockdep_assert_held(&cgroup_mutex);
2580
2581 /* look up all csses currently attached to @cgrp's subtree */
2582 down_read(&css_set_rwsem);
2583 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2584 struct cgrp_cset_link *link;
2585
2586 /* self is not affected by child_subsys_mask change */
2587 if (css->cgroup == cgrp)
2588 continue;
2589
2590 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2591 cgroup_migrate_add_src(link->cset, cgrp,
2592 &preloaded_csets);
2593 }
2594 up_read(&css_set_rwsem);
2595
2596 /* NULL dst indicates self on default hierarchy */
2597 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2598 if (ret)
2599 goto out_finish;
2600
2601 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2602 struct task_struct *last_task = NULL, *task;
2603
2604 /* src_csets precede dst_csets, break on the first dst_cset */
2605 if (!src_cset->mg_src_cgrp)
2606 break;
2607
2608 /*
2609 * All tasks in src_cset need to be migrated to the
2610 * matching dst_cset. Empty it process by process. We
2611 * walk tasks but migrate processes. The leader might even
2612 * belong to a different cset but such src_cset would also
2613 * be among the target src_csets because the default
2614 * hierarchy enforces per-process membership.
2615 */
2616 while (true) {
2617 down_read(&css_set_rwsem);
2618 task = list_first_entry_or_null(&src_cset->tasks,
2619 struct task_struct, cg_list);
2620 if (task) {
2621 task = task->group_leader;
2622 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2623 get_task_struct(task);
2624 }
2625 up_read(&css_set_rwsem);
2626
2627 if (!task)
2628 break;
2629
2630 /* guard against possible infinite loop */
2631 if (WARN(last_task == task,
2632 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2633 goto out_finish;
2634 last_task = task;
2635
2636 threadgroup_lock(task);
2637 /* raced against de_thread() from another thread? */
2638 if (!thread_group_leader(task)) {
2639 threadgroup_unlock(task);
2640 put_task_struct(task);
2641 continue;
2642 }
2643
2644 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2645
2646 threadgroup_unlock(task);
2647 put_task_struct(task);
2648
2649 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2650 goto out_finish;
2651 }
2652 }
2653
2654out_finish:
2655 cgroup_migrate_finish(&preloaded_csets);
2656 return ret;
2657}
2658
2659/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2660static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2661 char *buf, size_t nbytes,
2662 loff_t off)
f8f22e53 2663{
7d331fa9 2664 unsigned int enable = 0, disable = 0;
f63070d3 2665 unsigned int css_enable, css_disable, old_ctrl, new_ctrl;
a9746d8d 2666 struct cgroup *cgrp, *child;
f8f22e53 2667 struct cgroup_subsys *ss;
451af504 2668 char *tok;
f8f22e53
TH
2669 int ssid, ret;
2670
2671 /*
d37167ab
TH
2672 * Parse input - space separated list of subsystem names prefixed
2673 * with either + or -.
f8f22e53 2674 */
451af504
TH
2675 buf = strstrip(buf);
2676 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2677 if (tok[0] == '\0')
2678 continue;
f8f22e53 2679 for_each_subsys(ss, ssid) {
5533e011
TH
2680 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2681 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
f8f22e53
TH
2682 continue;
2683
2684 if (*tok == '+') {
7d331fa9
TH
2685 enable |= 1 << ssid;
2686 disable &= ~(1 << ssid);
f8f22e53 2687 } else if (*tok == '-') {
7d331fa9
TH
2688 disable |= 1 << ssid;
2689 enable &= ~(1 << ssid);
f8f22e53
TH
2690 } else {
2691 return -EINVAL;
2692 }
2693 break;
2694 }
2695 if (ssid == CGROUP_SUBSYS_COUNT)
2696 return -EINVAL;
2697 }
2698
a9746d8d
TH
2699 cgrp = cgroup_kn_lock_live(of->kn);
2700 if (!cgrp)
2701 return -ENODEV;
f8f22e53
TH
2702
2703 for_each_subsys(ss, ssid) {
2704 if (enable & (1 << ssid)) {
667c2491 2705 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2706 enable &= ~(1 << ssid);
2707 continue;
2708 }
2709
c29adf24
TH
2710 /* unavailable or not enabled on the parent? */
2711 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2712 (cgroup_parent(cgrp) &&
667c2491 2713 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2714 ret = -ENOENT;
2715 goto out_unlock;
2716 }
2717
f63070d3
TH
2718 /*
2719 * @ss is already enabled through dependency and
2720 * we'll just make it visible. Skip draining.
2721 */
2722 if (cgrp->child_subsys_mask & (1 << ssid))
2723 continue;
2724
f8f22e53
TH
2725 /*
2726 * Because css offlining is asynchronous, userland
2727 * might try to re-enable the same controller while
2728 * the previous instance is still around. In such
2729 * cases, wait till it's gone using offline_waitq.
2730 */
2731 cgroup_for_each_live_child(child, cgrp) {
0cee8b77 2732 DEFINE_WAIT(wait);
f8f22e53
TH
2733
2734 if (!cgroup_css(child, ss))
2735 continue;
2736
0cee8b77 2737 cgroup_get(child);
f8f22e53
TH
2738 prepare_to_wait(&child->offline_waitq, &wait,
2739 TASK_UNINTERRUPTIBLE);
a9746d8d 2740 cgroup_kn_unlock(of->kn);
f8f22e53
TH
2741 schedule();
2742 finish_wait(&child->offline_waitq, &wait);
0cee8b77 2743 cgroup_put(child);
7d331fa9 2744
a9746d8d 2745 return restart_syscall();
f8f22e53 2746 }
f8f22e53 2747 } else if (disable & (1 << ssid)) {
667c2491 2748 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2749 disable &= ~(1 << ssid);
2750 continue;
2751 }
2752
2753 /* a child has it enabled? */
2754 cgroup_for_each_live_child(child, cgrp) {
667c2491 2755 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2756 ret = -EBUSY;
ddab2b6e 2757 goto out_unlock;
f8f22e53
TH
2758 }
2759 }
2760 }
2761 }
2762
2763 if (!enable && !disable) {
2764 ret = 0;
ddab2b6e 2765 goto out_unlock;
f8f22e53
TH
2766 }
2767
2768 /*
667c2491 2769 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2770 * with tasks so that child cgroups don't compete against tasks.
2771 */
d51f39b0 2772 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2773 ret = -EBUSY;
2774 goto out_unlock;
2775 }
2776
2777 /*
f63070d3
TH
2778 * Update subsys masks and calculate what needs to be done. More
2779 * subsystems than specified may need to be enabled or disabled
2780 * depending on subsystem dependencies.
2781 */
667c2491
TH
2782 cgrp->subtree_control |= enable;
2783 cgrp->subtree_control &= ~disable;
f63070d3
TH
2784
2785 old_ctrl = cgrp->child_subsys_mask;
667c2491 2786 cgroup_refresh_child_subsys_mask(cgrp);
f63070d3
TH
2787 new_ctrl = cgrp->child_subsys_mask;
2788
2789 css_enable = ~old_ctrl & new_ctrl;
2790 css_disable = old_ctrl & ~new_ctrl;
2791 enable |= css_enable;
2792 disable |= css_disable;
c29adf24 2793
f63070d3
TH
2794 /*
2795 * Create new csses or make the existing ones visible. A css is
2796 * created invisible if it's being implicitly enabled through
2797 * dependency. An invisible css is made visible when the userland
2798 * explicitly enables it.
f8f22e53
TH
2799 */
2800 for_each_subsys(ss, ssid) {
2801 if (!(enable & (1 << ssid)))
2802 continue;
2803
2804 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2805 if (css_enable & (1 << ssid))
2806 ret = create_css(child, ss,
2807 cgrp->subtree_control & (1 << ssid));
2808 else
2809 ret = cgroup_populate_dir(child, 1 << ssid);
f8f22e53
TH
2810 if (ret)
2811 goto err_undo_css;
2812 }
2813 }
2814
c29adf24
TH
2815 /*
2816 * At this point, cgroup_e_css() results reflect the new csses
2817 * making the following cgroup_update_dfl_csses() properly update
2818 * css associations of all tasks in the subtree.
2819 */
f8f22e53
TH
2820 ret = cgroup_update_dfl_csses(cgrp);
2821 if (ret)
2822 goto err_undo_css;
2823
f63070d3
TH
2824 /*
2825 * All tasks are migrated out of disabled csses. Kill or hide
2826 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
2827 * disabled while other subsystems are still depending on it. The
2828 * css must not actively control resources and be in the vanilla
2829 * state if it's made visible again later. Controllers which may
2830 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 2831 */
f8f22e53
TH
2832 for_each_subsys(ss, ssid) {
2833 if (!(disable & (1 << ssid)))
2834 continue;
2835
f63070d3 2836 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
2837 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2838
2839 if (css_disable & (1 << ssid)) {
2840 kill_css(css);
2841 } else {
f63070d3 2842 cgroup_clear_dir(child, 1 << ssid);
b4536f0c
TH
2843 if (ss->css_reset)
2844 ss->css_reset(css);
2845 }
f63070d3 2846 }
f8f22e53
TH
2847 }
2848
2849 kernfs_activate(cgrp->kn);
2850 ret = 0;
2851out_unlock:
a9746d8d 2852 cgroup_kn_unlock(of->kn);
451af504 2853 return ret ?: nbytes;
f8f22e53
TH
2854
2855err_undo_css:
667c2491
TH
2856 cgrp->subtree_control &= ~enable;
2857 cgrp->subtree_control |= disable;
2858 cgroup_refresh_child_subsys_mask(cgrp);
f8f22e53
TH
2859
2860 for_each_subsys(ss, ssid) {
2861 if (!(enable & (1 << ssid)))
2862 continue;
2863
2864 cgroup_for_each_live_child(child, cgrp) {
2865 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
2866
2867 if (!css)
2868 continue;
2869
2870 if (css_enable & (1 << ssid))
f8f22e53 2871 kill_css(css);
f63070d3
TH
2872 else
2873 cgroup_clear_dir(child, 1 << ssid);
f8f22e53
TH
2874 }
2875 }
2876 goto out_unlock;
2877}
2878
842b597e
TH
2879static int cgroup_populated_show(struct seq_file *seq, void *v)
2880{
2881 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2882 return 0;
2883}
2884
2bd59d48
TH
2885static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2886 size_t nbytes, loff_t off)
355e0c48 2887{
2bd59d48
TH
2888 struct cgroup *cgrp = of->kn->parent->priv;
2889 struct cftype *cft = of->kn->priv;
2890 struct cgroup_subsys_state *css;
a742c59d 2891 int ret;
355e0c48 2892
b4168640
TH
2893 if (cft->write)
2894 return cft->write(of, buf, nbytes, off);
2895
2bd59d48
TH
2896 /*
2897 * kernfs guarantees that a file isn't deleted with operations in
2898 * flight, which means that the matching css is and stays alive and
2899 * doesn't need to be pinned. The RCU locking is not necessary
2900 * either. It's just for the convenience of using cgroup_css().
2901 */
2902 rcu_read_lock();
2903 css = cgroup_css(cgrp, cft->ss);
2904 rcu_read_unlock();
a742c59d 2905
451af504 2906 if (cft->write_u64) {
a742c59d
TH
2907 unsigned long long v;
2908 ret = kstrtoull(buf, 0, &v);
2909 if (!ret)
2910 ret = cft->write_u64(css, cft, v);
2911 } else if (cft->write_s64) {
2912 long long v;
2913 ret = kstrtoll(buf, 0, &v);
2914 if (!ret)
2915 ret = cft->write_s64(css, cft, v);
e73d2c61 2916 } else {
a742c59d 2917 ret = -EINVAL;
e73d2c61 2918 }
2bd59d48 2919
a742c59d 2920 return ret ?: nbytes;
355e0c48
PM
2921}
2922
6612f05b 2923static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2924{
2bd59d48 2925 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2926}
2927
6612f05b 2928static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2929{
2bd59d48 2930 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2931}
2932
6612f05b 2933static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2934{
2bd59d48 2935 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2936}
2937
91796569 2938static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2939{
7da11279
TH
2940 struct cftype *cft = seq_cft(m);
2941 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2942
2da8ca82
TH
2943 if (cft->seq_show)
2944 return cft->seq_show(m, arg);
e73d2c61 2945
f4c753b7 2946 if (cft->read_u64)
896f5199
TH
2947 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2948 else if (cft->read_s64)
2949 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2950 else
2951 return -EINVAL;
2952 return 0;
91796569
PM
2953}
2954
2bd59d48
TH
2955static struct kernfs_ops cgroup_kf_single_ops = {
2956 .atomic_write_len = PAGE_SIZE,
2957 .write = cgroup_file_write,
2958 .seq_show = cgroup_seqfile_show,
91796569
PM
2959};
2960
2bd59d48
TH
2961static struct kernfs_ops cgroup_kf_ops = {
2962 .atomic_write_len = PAGE_SIZE,
2963 .write = cgroup_file_write,
2964 .seq_start = cgroup_seqfile_start,
2965 .seq_next = cgroup_seqfile_next,
2966 .seq_stop = cgroup_seqfile_stop,
2967 .seq_show = cgroup_seqfile_show,
2968};
ddbcc7e8
PM
2969
2970/*
2971 * cgroup_rename - Only allow simple rename of directories in place.
2972 */
2bd59d48
TH
2973static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2974 const char *new_name_str)
ddbcc7e8 2975{
2bd59d48 2976 struct cgroup *cgrp = kn->priv;
65dff759 2977 int ret;
65dff759 2978
2bd59d48 2979 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2980 return -ENOTDIR;
2bd59d48 2981 if (kn->parent != new_parent)
ddbcc7e8 2982 return -EIO;
65dff759 2983
6db8e85c
TH
2984 /*
2985 * This isn't a proper migration and its usefulness is very
aa6ec29b 2986 * limited. Disallow on the default hierarchy.
6db8e85c 2987 */
aa6ec29b 2988 if (cgroup_on_dfl(cgrp))
6db8e85c 2989 return -EPERM;
099fca32 2990
e1b2dc17 2991 /*
8353da1f 2992 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 2993 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 2994 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
2995 */
2996 kernfs_break_active_protection(new_parent);
2997 kernfs_break_active_protection(kn);
099fca32 2998
2bd59d48 2999 mutex_lock(&cgroup_mutex);
099fca32 3000
2bd59d48 3001 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3002
2bd59d48 3003 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3004
3005 kernfs_unbreak_active_protection(kn);
3006 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3007 return ret;
099fca32
LZ
3008}
3009
49957f8e
TH
3010/* set uid and gid of cgroup dirs and files to that of the creator */
3011static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3012{
3013 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3014 .ia_uid = current_fsuid(),
3015 .ia_gid = current_fsgid(), };
3016
3017 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3018 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3019 return 0;
3020
3021 return kernfs_setattr(kn, &iattr);
3022}
3023
2bb566cb 3024static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 3025{
8d7e6fb0 3026 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3027 struct kernfs_node *kn;
3028 struct lock_class_key *key = NULL;
49957f8e 3029 int ret;
05ef1d7c 3030
2bd59d48
TH
3031#ifdef CONFIG_DEBUG_LOCK_ALLOC
3032 key = &cft->lockdep_key;
3033#endif
3034 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3035 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3036 NULL, false, key);
49957f8e
TH
3037 if (IS_ERR(kn))
3038 return PTR_ERR(kn);
3039
3040 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3041 if (ret) {
49957f8e 3042 kernfs_remove(kn);
f8f22e53
TH
3043 return ret;
3044 }
3045
b7fc5ad2 3046 if (cft->seq_show == cgroup_populated_show)
842b597e 3047 cgrp->populated_kn = kn;
f8f22e53 3048 return 0;
ddbcc7e8
PM
3049}
3050
b1f28d31
TH
3051/**
3052 * cgroup_addrm_files - add or remove files to a cgroup directory
3053 * @cgrp: the target cgroup
b1f28d31
TH
3054 * @cfts: array of cftypes to be added
3055 * @is_add: whether to add or remove
3056 *
3057 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
3058 * For removals, this function never fails. If addition fails, this
3059 * function doesn't remove files already added. The caller is responsible
3060 * for cleaning up.
b1f28d31 3061 */
2bb566cb
TH
3062static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3063 bool is_add)
ddbcc7e8 3064{
03b1cde6 3065 struct cftype *cft;
b1f28d31
TH
3066 int ret;
3067
01f6474c 3068 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
3069
3070 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 3071 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3072 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3073 continue;
05ebb6e6 3074 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3075 continue;
d51f39b0 3076 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3077 continue;
d51f39b0 3078 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3079 continue;
3080
2739d3cc 3081 if (is_add) {
2bb566cb 3082 ret = cgroup_add_file(cgrp, cft);
b1f28d31 3083 if (ret) {
ed3d261b
JP
3084 pr_warn("%s: failed to add %s, err=%d\n",
3085 __func__, cft->name, ret);
b1f28d31
TH
3086 return ret;
3087 }
2739d3cc
LZ
3088 } else {
3089 cgroup_rm_file(cgrp, cft);
db0416b6 3090 }
ddbcc7e8 3091 }
b1f28d31 3092 return 0;
ddbcc7e8
PM
3093}
3094
21a2d343 3095static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3096{
3097 LIST_HEAD(pending);
2bb566cb 3098 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3099 struct cgroup *root = &ss->root->cgrp;
492eb21b 3100 struct cgroup_subsys_state *css;
9ccece80 3101 int ret = 0;
8e3f6541 3102
01f6474c 3103 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3104
e8c82d20 3105 /* add/rm files for all cgroups created before */
ca8bdcaf 3106 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3107 struct cgroup *cgrp = css->cgroup;
3108
e8c82d20
LZ
3109 if (cgroup_is_dead(cgrp))
3110 continue;
3111
21a2d343 3112 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
3113 if (ret)
3114 break;
8e3f6541 3115 }
21a2d343
TH
3116
3117 if (is_add && !ret)
3118 kernfs_activate(root->kn);
9ccece80 3119 return ret;
8e3f6541
TH
3120}
3121
2da440a2 3122static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3123{
2bb566cb 3124 struct cftype *cft;
8e3f6541 3125
2bd59d48
TH
3126 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3127 /* free copy for custom atomic_write_len, see init_cftypes() */
3128 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3129 kfree(cft->kf_ops);
3130 cft->kf_ops = NULL;
2da440a2 3131 cft->ss = NULL;
a8ddc821
TH
3132
3133 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3134 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3135 }
2da440a2
TH
3136}
3137
2bd59d48 3138static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3139{
3140 struct cftype *cft;
3141
2bd59d48
TH
3142 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3143 struct kernfs_ops *kf_ops;
3144
0adb0704
TH
3145 WARN_ON(cft->ss || cft->kf_ops);
3146
2bd59d48
TH
3147 if (cft->seq_start)
3148 kf_ops = &cgroup_kf_ops;
3149 else
3150 kf_ops = &cgroup_kf_single_ops;
3151
3152 /*
3153 * Ugh... if @cft wants a custom max_write_len, we need to
3154 * make a copy of kf_ops to set its atomic_write_len.
3155 */
3156 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3157 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3158 if (!kf_ops) {
3159 cgroup_exit_cftypes(cfts);
3160 return -ENOMEM;
3161 }
3162 kf_ops->atomic_write_len = cft->max_write_len;
3163 }
8e3f6541 3164
2bd59d48 3165 cft->kf_ops = kf_ops;
2bb566cb 3166 cft->ss = ss;
2bd59d48 3167 }
2bb566cb 3168
2bd59d48 3169 return 0;
2da440a2
TH
3170}
3171
21a2d343
TH
3172static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3173{
01f6474c 3174 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3175
3176 if (!cfts || !cfts[0].ss)
3177 return -ENOENT;
3178
3179 list_del(&cfts->node);
3180 cgroup_apply_cftypes(cfts, false);
3181 cgroup_exit_cftypes(cfts);
3182 return 0;
8e3f6541 3183}
8e3f6541 3184
79578621
TH
3185/**
3186 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3187 * @cfts: zero-length name terminated array of cftypes
3188 *
2bb566cb
TH
3189 * Unregister @cfts. Files described by @cfts are removed from all
3190 * existing cgroups and all future cgroups won't have them either. This
3191 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3192 *
3193 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3194 * registered.
79578621 3195 */
2bb566cb 3196int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3197{
21a2d343 3198 int ret;
79578621 3199
01f6474c 3200 mutex_lock(&cgroup_mutex);
21a2d343 3201 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3202 mutex_unlock(&cgroup_mutex);
21a2d343 3203 return ret;
80b13586
TH
3204}
3205
8e3f6541
TH
3206/**
3207 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3208 * @ss: target cgroup subsystem
3209 * @cfts: zero-length name terminated array of cftypes
3210 *
3211 * Register @cfts to @ss. Files described by @cfts are created for all
3212 * existing cgroups to which @ss is attached and all future cgroups will
3213 * have them too. This function can be called anytime whether @ss is
3214 * attached or not.
3215 *
3216 * Returns 0 on successful registration, -errno on failure. Note that this
3217 * function currently returns 0 as long as @cfts registration is successful
3218 * even if some file creation attempts on existing cgroups fail.
3219 */
2cf669a5 3220static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3221{
9ccece80 3222 int ret;
8e3f6541 3223
c731ae1d
LZ
3224 if (ss->disabled)
3225 return 0;
3226
dc5736ed
LZ
3227 if (!cfts || cfts[0].name[0] == '\0')
3228 return 0;
2bb566cb 3229
2bd59d48
TH
3230 ret = cgroup_init_cftypes(ss, cfts);
3231 if (ret)
3232 return ret;
79578621 3233
01f6474c 3234 mutex_lock(&cgroup_mutex);
21a2d343 3235
0adb0704 3236 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3237 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3238 if (ret)
21a2d343 3239 cgroup_rm_cftypes_locked(cfts);
79578621 3240
01f6474c 3241 mutex_unlock(&cgroup_mutex);
9ccece80 3242 return ret;
79578621
TH
3243}
3244
a8ddc821
TH
3245/**
3246 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3247 * @ss: target cgroup subsystem
3248 * @cfts: zero-length name terminated array of cftypes
3249 *
3250 * Similar to cgroup_add_cftypes() but the added files are only used for
3251 * the default hierarchy.
3252 */
3253int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3254{
3255 struct cftype *cft;
3256
3257 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3258 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3259 return cgroup_add_cftypes(ss, cfts);
3260}
3261
3262/**
3263 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3264 * @ss: target cgroup subsystem
3265 * @cfts: zero-length name terminated array of cftypes
3266 *
3267 * Similar to cgroup_add_cftypes() but the added files are only used for
3268 * the legacy hierarchies.
3269 */
2cf669a5
TH
3270int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3271{
a8ddc821
TH
3272 struct cftype *cft;
3273
3274 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3275 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3276 return cgroup_add_cftypes(ss, cfts);
3277}
3278
a043e3b2
LZ
3279/**
3280 * cgroup_task_count - count the number of tasks in a cgroup.
3281 * @cgrp: the cgroup in question
3282 *
3283 * Return the number of tasks in the cgroup.
3284 */
07bc356e 3285static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3286{
3287 int count = 0;
69d0206c 3288 struct cgrp_cset_link *link;
817929ec 3289
96d365e0 3290 down_read(&css_set_rwsem);
69d0206c
TH
3291 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3292 count += atomic_read(&link->cset->refcount);
96d365e0 3293 up_read(&css_set_rwsem);
bbcb81d0
PM
3294 return count;
3295}
3296
53fa5261 3297/**
492eb21b 3298 * css_next_child - find the next child of a given css
c2931b70
TH
3299 * @pos: the current position (%NULL to initiate traversal)
3300 * @parent: css whose children to walk
53fa5261 3301 *
c2931b70 3302 * This function returns the next child of @parent and should be called
87fb54f1 3303 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3304 * that @parent and @pos are accessible. The next sibling is guaranteed to
3305 * be returned regardless of their states.
3306 *
3307 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3308 * css which finished ->css_online() is guaranteed to be visible in the
3309 * future iterations and will stay visible until the last reference is put.
3310 * A css which hasn't finished ->css_online() or already finished
3311 * ->css_offline() may show up during traversal. It's each subsystem's
3312 * responsibility to synchronize against on/offlining.
53fa5261 3313 */
c2931b70
TH
3314struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3315 struct cgroup_subsys_state *parent)
53fa5261 3316{
c2931b70 3317 struct cgroup_subsys_state *next;
53fa5261 3318
8353da1f 3319 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3320
3321 /*
de3f0341
TH
3322 * @pos could already have been unlinked from the sibling list.
3323 * Once a cgroup is removed, its ->sibling.next is no longer
3324 * updated when its next sibling changes. CSS_RELEASED is set when
3325 * @pos is taken off list, at which time its next pointer is valid,
3326 * and, as releases are serialized, the one pointed to by the next
3327 * pointer is guaranteed to not have started release yet. This
3328 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3329 * critical section, the one pointed to by its next pointer is
3330 * guaranteed to not have finished its RCU grace period even if we
3331 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3332 *
de3f0341
TH
3333 * If @pos has CSS_RELEASED set, its next pointer can't be
3334 * dereferenced; however, as each css is given a monotonically
3335 * increasing unique serial number and always appended to the
3336 * sibling list, the next one can be found by walking the parent's
3337 * children until the first css with higher serial number than
3338 * @pos's. While this path can be slower, it happens iff iteration
3339 * races against release and the race window is very small.
53fa5261 3340 */
3b287a50 3341 if (!pos) {
c2931b70
TH
3342 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3343 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3344 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3345 } else {
c2931b70 3346 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3347 if (next->serial_nr > pos->serial_nr)
3348 break;
53fa5261
TH
3349 }
3350
3b281afb
TH
3351 /*
3352 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3353 * the next sibling.
3b281afb 3354 */
c2931b70
TH
3355 if (&next->sibling != &parent->children)
3356 return next;
3b281afb 3357 return NULL;
53fa5261 3358}
53fa5261 3359
574bd9f7 3360/**
492eb21b 3361 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3362 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3363 * @root: css whose descendants to walk
574bd9f7 3364 *
492eb21b 3365 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3366 * to visit for pre-order traversal of @root's descendants. @root is
3367 * included in the iteration and the first node to be visited.
75501a6d 3368 *
87fb54f1
TH
3369 * While this function requires cgroup_mutex or RCU read locking, it
3370 * doesn't require the whole traversal to be contained in a single critical
3371 * section. This function will return the correct next descendant as long
3372 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3373 *
3374 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3375 * css which finished ->css_online() is guaranteed to be visible in the
3376 * future iterations and will stay visible until the last reference is put.
3377 * A css which hasn't finished ->css_online() or already finished
3378 * ->css_offline() may show up during traversal. It's each subsystem's
3379 * responsibility to synchronize against on/offlining.
574bd9f7 3380 */
492eb21b
TH
3381struct cgroup_subsys_state *
3382css_next_descendant_pre(struct cgroup_subsys_state *pos,
3383 struct cgroup_subsys_state *root)
574bd9f7 3384{
492eb21b 3385 struct cgroup_subsys_state *next;
574bd9f7 3386
8353da1f 3387 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3388
bd8815a6 3389 /* if first iteration, visit @root */
7805d000 3390 if (!pos)
bd8815a6 3391 return root;
574bd9f7
TH
3392
3393 /* visit the first child if exists */
492eb21b 3394 next = css_next_child(NULL, pos);
574bd9f7
TH
3395 if (next)
3396 return next;
3397
3398 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3399 while (pos != root) {
5c9d535b 3400 next = css_next_child(pos, pos->parent);
75501a6d 3401 if (next)
574bd9f7 3402 return next;
5c9d535b 3403 pos = pos->parent;
7805d000 3404 }
574bd9f7
TH
3405
3406 return NULL;
3407}
574bd9f7 3408
12a9d2fe 3409/**
492eb21b
TH
3410 * css_rightmost_descendant - return the rightmost descendant of a css
3411 * @pos: css of interest
12a9d2fe 3412 *
492eb21b
TH
3413 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3414 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3415 * subtree of @pos.
75501a6d 3416 *
87fb54f1
TH
3417 * While this function requires cgroup_mutex or RCU read locking, it
3418 * doesn't require the whole traversal to be contained in a single critical
3419 * section. This function will return the correct rightmost descendant as
3420 * long as @pos is accessible.
12a9d2fe 3421 */
492eb21b
TH
3422struct cgroup_subsys_state *
3423css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3424{
492eb21b 3425 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3426
8353da1f 3427 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3428
3429 do {
3430 last = pos;
3431 /* ->prev isn't RCU safe, walk ->next till the end */
3432 pos = NULL;
492eb21b 3433 css_for_each_child(tmp, last)
12a9d2fe
TH
3434 pos = tmp;
3435 } while (pos);
3436
3437 return last;
3438}
12a9d2fe 3439
492eb21b
TH
3440static struct cgroup_subsys_state *
3441css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3442{
492eb21b 3443 struct cgroup_subsys_state *last;
574bd9f7
TH
3444
3445 do {
3446 last = pos;
492eb21b 3447 pos = css_next_child(NULL, pos);
574bd9f7
TH
3448 } while (pos);
3449
3450 return last;
3451}
3452
3453/**
492eb21b 3454 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3455 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3456 * @root: css whose descendants to walk
574bd9f7 3457 *
492eb21b 3458 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3459 * to visit for post-order traversal of @root's descendants. @root is
3460 * included in the iteration and the last node to be visited.
75501a6d 3461 *
87fb54f1
TH
3462 * While this function requires cgroup_mutex or RCU read locking, it
3463 * doesn't require the whole traversal to be contained in a single critical
3464 * section. This function will return the correct next descendant as long
3465 * as both @pos and @cgroup are accessible and @pos is a descendant of
3466 * @cgroup.
c2931b70
TH
3467 *
3468 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3469 * css which finished ->css_online() is guaranteed to be visible in the
3470 * future iterations and will stay visible until the last reference is put.
3471 * A css which hasn't finished ->css_online() or already finished
3472 * ->css_offline() may show up during traversal. It's each subsystem's
3473 * responsibility to synchronize against on/offlining.
574bd9f7 3474 */
492eb21b
TH
3475struct cgroup_subsys_state *
3476css_next_descendant_post(struct cgroup_subsys_state *pos,
3477 struct cgroup_subsys_state *root)
574bd9f7 3478{
492eb21b 3479 struct cgroup_subsys_state *next;
574bd9f7 3480
8353da1f 3481 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3482
58b79a91
TH
3483 /* if first iteration, visit leftmost descendant which may be @root */
3484 if (!pos)
3485 return css_leftmost_descendant(root);
574bd9f7 3486
bd8815a6
TH
3487 /* if we visited @root, we're done */
3488 if (pos == root)
3489 return NULL;
3490
574bd9f7 3491 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3492 next = css_next_child(pos, pos->parent);
75501a6d 3493 if (next)
492eb21b 3494 return css_leftmost_descendant(next);
574bd9f7
TH
3495
3496 /* no sibling left, visit parent */
5c9d535b 3497 return pos->parent;
574bd9f7 3498}
574bd9f7 3499
f3d46500
TH
3500/**
3501 * css_has_online_children - does a css have online children
3502 * @css: the target css
3503 *
3504 * Returns %true if @css has any online children; otherwise, %false. This
3505 * function can be called from any context but the caller is responsible
3506 * for synchronizing against on/offlining as necessary.
3507 */
3508bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3509{
f3d46500
TH
3510 struct cgroup_subsys_state *child;
3511 bool ret = false;
cbc125ef
TH
3512
3513 rcu_read_lock();
f3d46500 3514 css_for_each_child(child, css) {
99bae5f9 3515 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3516 ret = true;
3517 break;
cbc125ef
TH
3518 }
3519 }
3520 rcu_read_unlock();
f3d46500 3521 return ret;
574bd9f7 3522}
574bd9f7 3523
0942eeee 3524/**
72ec7029 3525 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3526 * @it: the iterator to advance
3527 *
3528 * Advance @it to the next css_set to walk.
d515876e 3529 */
72ec7029 3530static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3531{
0f0a2b4f 3532 struct list_head *l = it->cset_pos;
d515876e
TH
3533 struct cgrp_cset_link *link;
3534 struct css_set *cset;
3535
3536 /* Advance to the next non-empty css_set */
3537 do {
3538 l = l->next;
0f0a2b4f
TH
3539 if (l == it->cset_head) {
3540 it->cset_pos = NULL;
d515876e
TH
3541 return;
3542 }
3ebb2b6e
TH
3543
3544 if (it->ss) {
3545 cset = container_of(l, struct css_set,
3546 e_cset_node[it->ss->id]);
3547 } else {
3548 link = list_entry(l, struct cgrp_cset_link, cset_link);
3549 cset = link->cset;
3550 }
c7561128
TH
3551 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3552
0f0a2b4f 3553 it->cset_pos = l;
c7561128
TH
3554
3555 if (!list_empty(&cset->tasks))
0f0a2b4f 3556 it->task_pos = cset->tasks.next;
c7561128 3557 else
0f0a2b4f
TH
3558 it->task_pos = cset->mg_tasks.next;
3559
3560 it->tasks_head = &cset->tasks;
3561 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3562}
3563
0942eeee 3564/**
72ec7029
TH
3565 * css_task_iter_start - initiate task iteration
3566 * @css: the css to walk tasks of
0942eeee
TH
3567 * @it: the task iterator to use
3568 *
72ec7029
TH
3569 * Initiate iteration through the tasks of @css. The caller can call
3570 * css_task_iter_next() to walk through the tasks until the function
3571 * returns NULL. On completion of iteration, css_task_iter_end() must be
3572 * called.
0942eeee
TH
3573 *
3574 * Note that this function acquires a lock which is released when the
3575 * iteration finishes. The caller can't sleep while iteration is in
3576 * progress.
3577 */
72ec7029
TH
3578void css_task_iter_start(struct cgroup_subsys_state *css,
3579 struct css_task_iter *it)
96d365e0 3580 __acquires(css_set_rwsem)
817929ec 3581{
56fde9e0
TH
3582 /* no one should try to iterate before mounting cgroups */
3583 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3584
96d365e0 3585 down_read(&css_set_rwsem);
c59cd3d8 3586
3ebb2b6e
TH
3587 it->ss = css->ss;
3588
3589 if (it->ss)
3590 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3591 else
3592 it->cset_pos = &css->cgroup->cset_links;
3593
0f0a2b4f 3594 it->cset_head = it->cset_pos;
c59cd3d8 3595
72ec7029 3596 css_advance_task_iter(it);
817929ec
PM
3597}
3598
0942eeee 3599/**
72ec7029 3600 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3601 * @it: the task iterator being iterated
3602 *
3603 * The "next" function for task iteration. @it should have been
72ec7029
TH
3604 * initialized via css_task_iter_start(). Returns NULL when the iteration
3605 * reaches the end.
0942eeee 3606 */
72ec7029 3607struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3608{
3609 struct task_struct *res;
0f0a2b4f 3610 struct list_head *l = it->task_pos;
817929ec
PM
3611
3612 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3613 if (!it->cset_pos)
817929ec
PM
3614 return NULL;
3615 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3616
3617 /*
3618 * Advance iterator to find next entry. cset->tasks is consumed
3619 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3620 * next cset.
3621 */
817929ec 3622 l = l->next;
c7561128 3623
0f0a2b4f
TH
3624 if (l == it->tasks_head)
3625 l = it->mg_tasks_head->next;
c7561128 3626
0f0a2b4f 3627 if (l == it->mg_tasks_head)
72ec7029 3628 css_advance_task_iter(it);
c7561128 3629 else
0f0a2b4f 3630 it->task_pos = l;
c7561128 3631
817929ec
PM
3632 return res;
3633}
3634
0942eeee 3635/**
72ec7029 3636 * css_task_iter_end - finish task iteration
0942eeee
TH
3637 * @it: the task iterator to finish
3638 *
72ec7029 3639 * Finish task iteration started by css_task_iter_start().
0942eeee 3640 */
72ec7029 3641void css_task_iter_end(struct css_task_iter *it)
96d365e0 3642 __releases(css_set_rwsem)
31a7df01 3643{
96d365e0 3644 up_read(&css_set_rwsem);
31a7df01
CW
3645}
3646
3647/**
8cc99345
TH
3648 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3649 * @to: cgroup to which the tasks will be moved
3650 * @from: cgroup in which the tasks currently reside
31a7df01 3651 *
eaf797ab
TH
3652 * Locking rules between cgroup_post_fork() and the migration path
3653 * guarantee that, if a task is forking while being migrated, the new child
3654 * is guaranteed to be either visible in the source cgroup after the
3655 * parent's migration is complete or put into the target cgroup. No task
3656 * can slip out of migration through forking.
31a7df01 3657 */
8cc99345 3658int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3659{
952aaa12
TH
3660 LIST_HEAD(preloaded_csets);
3661 struct cgrp_cset_link *link;
72ec7029 3662 struct css_task_iter it;
e406d1cf 3663 struct task_struct *task;
952aaa12 3664 int ret;
31a7df01 3665
952aaa12 3666 mutex_lock(&cgroup_mutex);
31a7df01 3667
952aaa12
TH
3668 /* all tasks in @from are being moved, all csets are source */
3669 down_read(&css_set_rwsem);
3670 list_for_each_entry(link, &from->cset_links, cset_link)
3671 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3672 up_read(&css_set_rwsem);
31a7df01 3673
952aaa12
TH
3674 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3675 if (ret)
3676 goto out_err;
8cc99345 3677
952aaa12
TH
3678 /*
3679 * Migrate tasks one-by-one until @form is empty. This fails iff
3680 * ->can_attach() fails.
3681 */
e406d1cf 3682 do {
9d800df1 3683 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3684 task = css_task_iter_next(&it);
3685 if (task)
3686 get_task_struct(task);
3687 css_task_iter_end(&it);
3688
3689 if (task) {
952aaa12 3690 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3691 put_task_struct(task);
3692 }
3693 } while (task && !ret);
952aaa12
TH
3694out_err:
3695 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3696 mutex_unlock(&cgroup_mutex);
e406d1cf 3697 return ret;
8cc99345
TH
3698}
3699
bbcb81d0 3700/*
102a775e 3701 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3702 *
3703 * Reading this file can return large amounts of data if a cgroup has
3704 * *lots* of attached tasks. So it may need several calls to read(),
3705 * but we cannot guarantee that the information we produce is correct
3706 * unless we produce it entirely atomically.
3707 *
bbcb81d0 3708 */
bbcb81d0 3709
24528255
LZ
3710/* which pidlist file are we talking about? */
3711enum cgroup_filetype {
3712 CGROUP_FILE_PROCS,
3713 CGROUP_FILE_TASKS,
3714};
3715
3716/*
3717 * A pidlist is a list of pids that virtually represents the contents of one
3718 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3719 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3720 * to the cgroup.
3721 */
3722struct cgroup_pidlist {
3723 /*
3724 * used to find which pidlist is wanted. doesn't change as long as
3725 * this particular list stays in the list.
3726 */
3727 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3728 /* array of xids */
3729 pid_t *list;
3730 /* how many elements the above list has */
3731 int length;
24528255
LZ
3732 /* each of these stored in a list by its cgroup */
3733 struct list_head links;
3734 /* pointer to the cgroup we belong to, for list removal purposes */
3735 struct cgroup *owner;
b1a21367
TH
3736 /* for delayed destruction */
3737 struct delayed_work destroy_dwork;
24528255
LZ
3738};
3739
d1d9fd33
BB
3740/*
3741 * The following two functions "fix" the issue where there are more pids
3742 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3743 * TODO: replace with a kernel-wide solution to this problem
3744 */
3745#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3746static void *pidlist_allocate(int count)
3747{
3748 if (PIDLIST_TOO_LARGE(count))
3749 return vmalloc(count * sizeof(pid_t));
3750 else
3751 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3752}
b1a21367 3753
d1d9fd33
BB
3754static void pidlist_free(void *p)
3755{
3756 if (is_vmalloc_addr(p))
3757 vfree(p);
3758 else
3759 kfree(p);
3760}
d1d9fd33 3761
b1a21367
TH
3762/*
3763 * Used to destroy all pidlists lingering waiting for destroy timer. None
3764 * should be left afterwards.
3765 */
3766static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3767{
3768 struct cgroup_pidlist *l, *tmp_l;
3769
3770 mutex_lock(&cgrp->pidlist_mutex);
3771 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3772 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3773 mutex_unlock(&cgrp->pidlist_mutex);
3774
3775 flush_workqueue(cgroup_pidlist_destroy_wq);
3776 BUG_ON(!list_empty(&cgrp->pidlists));
3777}
3778
3779static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3780{
3781 struct delayed_work *dwork = to_delayed_work(work);
3782 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3783 destroy_dwork);
3784 struct cgroup_pidlist *tofree = NULL;
3785
3786 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3787
3788 /*
04502365
TH
3789 * Destroy iff we didn't get queued again. The state won't change
3790 * as destroy_dwork can only be queued while locked.
b1a21367 3791 */
04502365 3792 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3793 list_del(&l->links);
3794 pidlist_free(l->list);
3795 put_pid_ns(l->key.ns);
3796 tofree = l;
3797 }
3798
b1a21367
TH
3799 mutex_unlock(&l->owner->pidlist_mutex);
3800 kfree(tofree);
3801}
3802
bbcb81d0 3803/*
102a775e 3804 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3805 * Returns the number of unique elements.
bbcb81d0 3806 */
6ee211ad 3807static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3808{
102a775e 3809 int src, dest = 1;
102a775e
BB
3810
3811 /*
3812 * we presume the 0th element is unique, so i starts at 1. trivial
3813 * edge cases first; no work needs to be done for either
3814 */
3815 if (length == 0 || length == 1)
3816 return length;
3817 /* src and dest walk down the list; dest counts unique elements */
3818 for (src = 1; src < length; src++) {
3819 /* find next unique element */
3820 while (list[src] == list[src-1]) {
3821 src++;
3822 if (src == length)
3823 goto after;
3824 }
3825 /* dest always points to where the next unique element goes */
3826 list[dest] = list[src];
3827 dest++;
3828 }
3829after:
102a775e
BB
3830 return dest;
3831}
3832
afb2bc14
TH
3833/*
3834 * The two pid files - task and cgroup.procs - guaranteed that the result
3835 * is sorted, which forced this whole pidlist fiasco. As pid order is
3836 * different per namespace, each namespace needs differently sorted list,
3837 * making it impossible to use, for example, single rbtree of member tasks
3838 * sorted by task pointer. As pidlists can be fairly large, allocating one
3839 * per open file is dangerous, so cgroup had to implement shared pool of
3840 * pidlists keyed by cgroup and namespace.
3841 *
3842 * All this extra complexity was caused by the original implementation
3843 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
3844 * want to do away with it. Explicitly scramble sort order if on the
3845 * default hierarchy so that no such expectation exists in the new
3846 * interface.
afb2bc14
TH
3847 *
3848 * Scrambling is done by swapping every two consecutive bits, which is
3849 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3850 */
3851static pid_t pid_fry(pid_t pid)
3852{
3853 unsigned a = pid & 0x55555555;
3854 unsigned b = pid & 0xAAAAAAAA;
3855
3856 return (a << 1) | (b >> 1);
3857}
3858
3859static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3860{
aa6ec29b 3861 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3862 return pid_fry(pid);
3863 else
3864 return pid;
3865}
3866
102a775e
BB
3867static int cmppid(const void *a, const void *b)
3868{
3869 return *(pid_t *)a - *(pid_t *)b;
3870}
3871
afb2bc14
TH
3872static int fried_cmppid(const void *a, const void *b)
3873{
3874 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3875}
3876
e6b81710
TH
3877static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3878 enum cgroup_filetype type)
3879{
3880 struct cgroup_pidlist *l;
3881 /* don't need task_nsproxy() if we're looking at ourself */
3882 struct pid_namespace *ns = task_active_pid_ns(current);
3883
3884 lockdep_assert_held(&cgrp->pidlist_mutex);
3885
3886 list_for_each_entry(l, &cgrp->pidlists, links)
3887 if (l->key.type == type && l->key.ns == ns)
3888 return l;
3889 return NULL;
3890}
3891
72a8cb30
BB
3892/*
3893 * find the appropriate pidlist for our purpose (given procs vs tasks)
3894 * returns with the lock on that pidlist already held, and takes care
3895 * of the use count, or returns NULL with no locks held if we're out of
3896 * memory.
3897 */
e6b81710
TH
3898static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3899 enum cgroup_filetype type)
72a8cb30
BB
3900{
3901 struct cgroup_pidlist *l;
b70cc5fd 3902
e6b81710
TH
3903 lockdep_assert_held(&cgrp->pidlist_mutex);
3904
3905 l = cgroup_pidlist_find(cgrp, type);
3906 if (l)
3907 return l;
3908
72a8cb30 3909 /* entry not found; create a new one */
f4f4be2b 3910 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3911 if (!l)
72a8cb30 3912 return l;
e6b81710 3913
b1a21367 3914 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3915 l->key.type = type;
e6b81710
TH
3916 /* don't need task_nsproxy() if we're looking at ourself */
3917 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3918 l->owner = cgrp;
3919 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3920 return l;
3921}
3922
102a775e
BB
3923/*
3924 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3925 */
72a8cb30
BB
3926static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3927 struct cgroup_pidlist **lp)
102a775e
BB
3928{
3929 pid_t *array;
3930 int length;
3931 int pid, n = 0; /* used for populating the array */
72ec7029 3932 struct css_task_iter it;
817929ec 3933 struct task_struct *tsk;
102a775e
BB
3934 struct cgroup_pidlist *l;
3935
4bac00d1
TH
3936 lockdep_assert_held(&cgrp->pidlist_mutex);
3937
102a775e
BB
3938 /*
3939 * If cgroup gets more users after we read count, we won't have
3940 * enough space - tough. This race is indistinguishable to the
3941 * caller from the case that the additional cgroup users didn't
3942 * show up until sometime later on.
3943 */
3944 length = cgroup_task_count(cgrp);
d1d9fd33 3945 array = pidlist_allocate(length);
102a775e
BB
3946 if (!array)
3947 return -ENOMEM;
3948 /* now, populate the array */
9d800df1 3949 css_task_iter_start(&cgrp->self, &it);
72ec7029 3950 while ((tsk = css_task_iter_next(&it))) {
102a775e 3951 if (unlikely(n == length))
817929ec 3952 break;
102a775e 3953 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3954 if (type == CGROUP_FILE_PROCS)
3955 pid = task_tgid_vnr(tsk);
3956 else
3957 pid = task_pid_vnr(tsk);
102a775e
BB
3958 if (pid > 0) /* make sure to only use valid results */
3959 array[n++] = pid;
817929ec 3960 }
72ec7029 3961 css_task_iter_end(&it);
102a775e
BB
3962 length = n;
3963 /* now sort & (if procs) strip out duplicates */
aa6ec29b 3964 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3965 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3966 else
3967 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3968 if (type == CGROUP_FILE_PROCS)
6ee211ad 3969 length = pidlist_uniq(array, length);
e6b81710 3970
e6b81710 3971 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3972 if (!l) {
e6b81710 3973 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3974 pidlist_free(array);
72a8cb30 3975 return -ENOMEM;
102a775e 3976 }
e6b81710
TH
3977
3978 /* store array, freeing old if necessary */
d1d9fd33 3979 pidlist_free(l->list);
102a775e
BB
3980 l->list = array;
3981 l->length = length;
72a8cb30 3982 *lp = l;
102a775e 3983 return 0;
bbcb81d0
PM
3984}
3985
846c7bb0 3986/**
a043e3b2 3987 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3988 * @stats: cgroupstats to fill information into
3989 * @dentry: A dentry entry belonging to the cgroup for which stats have
3990 * been requested.
a043e3b2
LZ
3991 *
3992 * Build and fill cgroupstats so that taskstats can export it to user
3993 * space.
846c7bb0
BS
3994 */
3995int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3996{
2bd59d48 3997 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3998 struct cgroup *cgrp;
72ec7029 3999 struct css_task_iter it;
846c7bb0 4000 struct task_struct *tsk;
33d283be 4001
2bd59d48
TH
4002 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4003 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4004 kernfs_type(kn) != KERNFS_DIR)
4005 return -EINVAL;
4006
bad34660
LZ
4007 mutex_lock(&cgroup_mutex);
4008
846c7bb0 4009 /*
2bd59d48 4010 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4011 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4012 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4013 */
2bd59d48
TH
4014 rcu_read_lock();
4015 cgrp = rcu_dereference(kn->priv);
bad34660 4016 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4017 rcu_read_unlock();
bad34660 4018 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4019 return -ENOENT;
4020 }
bad34660 4021 rcu_read_unlock();
846c7bb0 4022
9d800df1 4023 css_task_iter_start(&cgrp->self, &it);
72ec7029 4024 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4025 switch (tsk->state) {
4026 case TASK_RUNNING:
4027 stats->nr_running++;
4028 break;
4029 case TASK_INTERRUPTIBLE:
4030 stats->nr_sleeping++;
4031 break;
4032 case TASK_UNINTERRUPTIBLE:
4033 stats->nr_uninterruptible++;
4034 break;
4035 case TASK_STOPPED:
4036 stats->nr_stopped++;
4037 break;
4038 default:
4039 if (delayacct_is_task_waiting_on_io(tsk))
4040 stats->nr_io_wait++;
4041 break;
4042 }
4043 }
72ec7029 4044 css_task_iter_end(&it);
846c7bb0 4045
bad34660 4046 mutex_unlock(&cgroup_mutex);
2bd59d48 4047 return 0;
846c7bb0
BS
4048}
4049
8f3ff208 4050
bbcb81d0 4051/*
102a775e 4052 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4053 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4054 * in the cgroup->l->list array.
bbcb81d0 4055 */
cc31edce 4056
102a775e 4057static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4058{
cc31edce
PM
4059 /*
4060 * Initially we receive a position value that corresponds to
4061 * one more than the last pid shown (or 0 on the first call or
4062 * after a seek to the start). Use a binary-search to find the
4063 * next pid to display, if any
4064 */
2bd59d48 4065 struct kernfs_open_file *of = s->private;
7da11279 4066 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4067 struct cgroup_pidlist *l;
7da11279 4068 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4069 int index = 0, pid = *pos;
4bac00d1
TH
4070 int *iter, ret;
4071
4072 mutex_lock(&cgrp->pidlist_mutex);
4073
4074 /*
5d22444f 4075 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4076 * after open. If the matching pidlist is around, we can use that.
5d22444f 4077 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4078 * could already have been destroyed.
4079 */
5d22444f
TH
4080 if (of->priv)
4081 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4082
4083 /*
4084 * Either this is the first start() after open or the matching
4085 * pidlist has been destroyed inbetween. Create a new one.
4086 */
5d22444f
TH
4087 if (!of->priv) {
4088 ret = pidlist_array_load(cgrp, type,
4089 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4090 if (ret)
4091 return ERR_PTR(ret);
4092 }
5d22444f 4093 l = of->priv;
cc31edce 4094
cc31edce 4095 if (pid) {
102a775e 4096 int end = l->length;
20777766 4097
cc31edce
PM
4098 while (index < end) {
4099 int mid = (index + end) / 2;
afb2bc14 4100 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4101 index = mid;
4102 break;
afb2bc14 4103 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4104 index = mid + 1;
4105 else
4106 end = mid;
4107 }
4108 }
4109 /* If we're off the end of the array, we're done */
102a775e 4110 if (index >= l->length)
cc31edce
PM
4111 return NULL;
4112 /* Update the abstract position to be the actual pid that we found */
102a775e 4113 iter = l->list + index;
afb2bc14 4114 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4115 return iter;
4116}
4117
102a775e 4118static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4119{
2bd59d48 4120 struct kernfs_open_file *of = s->private;
5d22444f 4121 struct cgroup_pidlist *l = of->priv;
62236858 4122
5d22444f
TH
4123 if (l)
4124 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4125 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4126 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4127}
4128
102a775e 4129static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4130{
2bd59d48 4131 struct kernfs_open_file *of = s->private;
5d22444f 4132 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4133 pid_t *p = v;
4134 pid_t *end = l->list + l->length;
cc31edce
PM
4135 /*
4136 * Advance to the next pid in the array. If this goes off the
4137 * end, we're done
4138 */
4139 p++;
4140 if (p >= end) {
4141 return NULL;
4142 } else {
7da11279 4143 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4144 return p;
4145 }
4146}
4147
102a775e 4148static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
4149{
4150 return seq_printf(s, "%d\n", *(int *)v);
4151}
bbcb81d0 4152
182446d0
TH
4153static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4154 struct cftype *cft)
81a6a5cd 4155{
182446d0 4156 return notify_on_release(css->cgroup);
81a6a5cd
PM
4157}
4158
182446d0
TH
4159static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4160 struct cftype *cft, u64 val)
6379c106 4161{
182446d0 4162 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 4163 if (val)
182446d0 4164 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4165 else
182446d0 4166 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4167 return 0;
4168}
4169
182446d0
TH
4170static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4171 struct cftype *cft)
97978e6d 4172{
182446d0 4173 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4174}
4175
182446d0
TH
4176static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4177 struct cftype *cft, u64 val)
97978e6d
DL
4178{
4179 if (val)
182446d0 4180 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4181 else
182446d0 4182 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4183 return 0;
4184}
4185
a14c6874
TH
4186/* cgroup core interface files for the default hierarchy */
4187static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4188 {
d5c56ced 4189 .name = "cgroup.procs",
6612f05b
TH
4190 .seq_start = cgroup_pidlist_start,
4191 .seq_next = cgroup_pidlist_next,
4192 .seq_stop = cgroup_pidlist_stop,
4193 .seq_show = cgroup_pidlist_show,
5d22444f 4194 .private = CGROUP_FILE_PROCS,
acbef755 4195 .write = cgroup_procs_write,
74a1166d 4196 .mode = S_IRUGO | S_IWUSR,
102a775e 4197 },
f8f22e53
TH
4198 {
4199 .name = "cgroup.controllers",
a14c6874 4200 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4201 .seq_show = cgroup_root_controllers_show,
4202 },
4203 {
4204 .name = "cgroup.controllers",
a14c6874 4205 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4206 .seq_show = cgroup_controllers_show,
4207 },
4208 {
4209 .name = "cgroup.subtree_control",
f8f22e53 4210 .seq_show = cgroup_subtree_control_show,
451af504 4211 .write = cgroup_subtree_control_write,
f8f22e53 4212 },
842b597e
TH
4213 {
4214 .name = "cgroup.populated",
a14c6874 4215 .flags = CFTYPE_NOT_ON_ROOT,
842b597e
TH
4216 .seq_show = cgroup_populated_show,
4217 },
a14c6874
TH
4218 { } /* terminate */
4219};
d5c56ced 4220
a14c6874
TH
4221/* cgroup core interface files for the legacy hierarchies */
4222static struct cftype cgroup_legacy_base_files[] = {
4223 {
4224 .name = "cgroup.procs",
4225 .seq_start = cgroup_pidlist_start,
4226 .seq_next = cgroup_pidlist_next,
4227 .seq_stop = cgroup_pidlist_stop,
4228 .seq_show = cgroup_pidlist_show,
4229 .private = CGROUP_FILE_PROCS,
4230 .write = cgroup_procs_write,
4231 .mode = S_IRUGO | S_IWUSR,
4232 },
4233 {
4234 .name = "cgroup.clone_children",
4235 .read_u64 = cgroup_clone_children_read,
4236 .write_u64 = cgroup_clone_children_write,
4237 },
4238 {
4239 .name = "cgroup.sane_behavior",
4240 .flags = CFTYPE_ONLY_ON_ROOT,
4241 .seq_show = cgroup_sane_behavior_show,
4242 },
d5c56ced
TH
4243 {
4244 .name = "tasks",
6612f05b
TH
4245 .seq_start = cgroup_pidlist_start,
4246 .seq_next = cgroup_pidlist_next,
4247 .seq_stop = cgroup_pidlist_stop,
4248 .seq_show = cgroup_pidlist_show,
5d22444f 4249 .private = CGROUP_FILE_TASKS,
acbef755 4250 .write = cgroup_tasks_write,
d5c56ced
TH
4251 .mode = S_IRUGO | S_IWUSR,
4252 },
4253 {
4254 .name = "notify_on_release",
d5c56ced
TH
4255 .read_u64 = cgroup_read_notify_on_release,
4256 .write_u64 = cgroup_write_notify_on_release,
4257 },
6e6ff25b
TH
4258 {
4259 .name = "release_agent",
a14c6874 4260 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4261 .seq_show = cgroup_release_agent_show,
451af504 4262 .write = cgroup_release_agent_write,
5f469907 4263 .max_write_len = PATH_MAX - 1,
6e6ff25b 4264 },
db0416b6 4265 { } /* terminate */
bbcb81d0
PM
4266};
4267
13af07df 4268/**
628f7cd4 4269 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4270 * @cgrp: target cgroup
13af07df 4271 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4272 *
4273 * On failure, no file is added.
13af07df 4274 */
69dfa00c 4275static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4276{
ddbcc7e8 4277 struct cgroup_subsys *ss;
b420ba7d 4278 int i, ret = 0;
bbcb81d0 4279
8e3f6541 4280 /* process cftsets of each subsystem */
b420ba7d 4281 for_each_subsys(ss, i) {
0adb0704 4282 struct cftype *cfts;
b420ba7d 4283
69dfa00c 4284 if (!(subsys_mask & (1 << i)))
13af07df 4285 continue;
8e3f6541 4286
0adb0704
TH
4287 list_for_each_entry(cfts, &ss->cfts, node) {
4288 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4289 if (ret < 0)
4290 goto err;
4291 }
ddbcc7e8 4292 }
ddbcc7e8 4293 return 0;
bee55099
TH
4294err:
4295 cgroup_clear_dir(cgrp, subsys_mask);
4296 return ret;
ddbcc7e8
PM
4297}
4298
0c21ead1
TH
4299/*
4300 * css destruction is four-stage process.
4301 *
4302 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4303 * Implemented in kill_css().
4304 *
4305 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4306 * and thus css_tryget_online() is guaranteed to fail, the css can be
4307 * offlined by invoking offline_css(). After offlining, the base ref is
4308 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4309 *
4310 * 3. When the percpu_ref reaches zero, the only possible remaining
4311 * accessors are inside RCU read sections. css_release() schedules the
4312 * RCU callback.
4313 *
4314 * 4. After the grace period, the css can be freed. Implemented in
4315 * css_free_work_fn().
4316 *
4317 * It is actually hairier because both step 2 and 4 require process context
4318 * and thus involve punting to css->destroy_work adding two additional
4319 * steps to the already complex sequence.
4320 */
35ef10da 4321static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4322{
4323 struct cgroup_subsys_state *css =
35ef10da 4324 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4325 struct cgroup *cgrp = css->cgroup;
48ddbe19 4326
9a1049da
TH
4327 percpu_ref_exit(&css->refcnt);
4328
9d755d33
TH
4329 if (css->ss) {
4330 /* css free path */
4331 if (css->parent)
4332 css_put(css->parent);
0ae78e0b 4333
9d755d33
TH
4334 css->ss->css_free(css);
4335 cgroup_put(cgrp);
4336 } else {
4337 /* cgroup free path */
4338 atomic_dec(&cgrp->root->nr_cgrps);
4339 cgroup_pidlist_destroy_all(cgrp);
4340
d51f39b0 4341 if (cgroup_parent(cgrp)) {
9d755d33
TH
4342 /*
4343 * We get a ref to the parent, and put the ref when
4344 * this cgroup is being freed, so it's guaranteed
4345 * that the parent won't be destroyed before its
4346 * children.
4347 */
d51f39b0 4348 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4349 kernfs_put(cgrp->kn);
4350 kfree(cgrp);
4351 } else {
4352 /*
4353 * This is root cgroup's refcnt reaching zero,
4354 * which indicates that the root should be
4355 * released.
4356 */
4357 cgroup_destroy_root(cgrp->root);
4358 }
4359 }
48ddbe19
TH
4360}
4361
0c21ead1 4362static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4363{
4364 struct cgroup_subsys_state *css =
0c21ead1 4365 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4366
35ef10da 4367 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4368 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4369}
4370
25e15d83 4371static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4372{
4373 struct cgroup_subsys_state *css =
25e15d83 4374 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4375 struct cgroup_subsys *ss = css->ss;
9d755d33 4376 struct cgroup *cgrp = css->cgroup;
15a4c835 4377
1fed1b2e
TH
4378 mutex_lock(&cgroup_mutex);
4379
de3f0341 4380 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4381 list_del_rcu(&css->sibling);
4382
9d755d33
TH
4383 if (ss) {
4384 /* css release path */
4385 cgroup_idr_remove(&ss->css_idr, css->id);
4386 } else {
4387 /* cgroup release path */
9d755d33
TH
4388 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4389 cgrp->id = -1;
4390 }
d3daf28d 4391
1fed1b2e
TH
4392 mutex_unlock(&cgroup_mutex);
4393
0c21ead1 4394 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4395}
4396
d3daf28d
TH
4397static void css_release(struct percpu_ref *ref)
4398{
4399 struct cgroup_subsys_state *css =
4400 container_of(ref, struct cgroup_subsys_state, refcnt);
4401
25e15d83
TH
4402 INIT_WORK(&css->destroy_work, css_release_work_fn);
4403 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4404}
4405
ddfcadab
TH
4406static void init_and_link_css(struct cgroup_subsys_state *css,
4407 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4408{
0cb51d71
TH
4409 lockdep_assert_held(&cgroup_mutex);
4410
ddfcadab
TH
4411 cgroup_get(cgrp);
4412
d5c419b6 4413 memset(css, 0, sizeof(*css));
bd89aabc 4414 css->cgroup = cgrp;
72c97e54 4415 css->ss = ss;
d5c419b6
TH
4416 INIT_LIST_HEAD(&css->sibling);
4417 INIT_LIST_HEAD(&css->children);
0cb51d71 4418 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4419
d51f39b0
TH
4420 if (cgroup_parent(cgrp)) {
4421 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4422 css_get(css->parent);
ddfcadab 4423 }
48ddbe19 4424
ca8bdcaf 4425 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4426}
4427
2a4ac633 4428/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4429static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4430{
623f926b 4431 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4432 int ret = 0;
4433
a31f2d3f
TH
4434 lockdep_assert_held(&cgroup_mutex);
4435
92fb9748 4436 if (ss->css_online)
eb95419b 4437 ret = ss->css_online(css);
ae7f164a 4438 if (!ret) {
eb95419b 4439 css->flags |= CSS_ONLINE;
aec25020 4440 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4441 }
b1929db4 4442 return ret;
a31f2d3f
TH
4443}
4444
2a4ac633 4445/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4446static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4447{
623f926b 4448 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4449
4450 lockdep_assert_held(&cgroup_mutex);
4451
4452 if (!(css->flags & CSS_ONLINE))
4453 return;
4454
d7eeac19 4455 if (ss->css_offline)
eb95419b 4456 ss->css_offline(css);
a31f2d3f 4457
eb95419b 4458 css->flags &= ~CSS_ONLINE;
e3297803 4459 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4460
4461 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4462}
4463
c81c925a
TH
4464/**
4465 * create_css - create a cgroup_subsys_state
4466 * @cgrp: the cgroup new css will be associated with
4467 * @ss: the subsys of new css
f63070d3 4468 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4469 *
4470 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4471 * css is online and installed in @cgrp with all interface files created if
4472 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4473 */
f63070d3
TH
4474static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4475 bool visible)
c81c925a 4476{
d51f39b0 4477 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4478 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4479 struct cgroup_subsys_state *css;
4480 int err;
4481
c81c925a
TH
4482 lockdep_assert_held(&cgroup_mutex);
4483
1fed1b2e 4484 css = ss->css_alloc(parent_css);
c81c925a
TH
4485 if (IS_ERR(css))
4486 return PTR_ERR(css);
4487
ddfcadab 4488 init_and_link_css(css, ss, cgrp);
a2bed820 4489
c81c925a
TH
4490 err = percpu_ref_init(&css->refcnt, css_release);
4491 if (err)
3eb59ec6 4492 goto err_free_css;
c81c925a 4493
15a4c835
TH
4494 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4495 if (err < 0)
4496 goto err_free_percpu_ref;
4497 css->id = err;
c81c925a 4498
f63070d3
TH
4499 if (visible) {
4500 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4501 if (err)
4502 goto err_free_id;
4503 }
15a4c835
TH
4504
4505 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4506 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4507 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4508
4509 err = online_css(css);
4510 if (err)
1fed1b2e 4511 goto err_list_del;
94419627 4512
c81c925a 4513 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4514 cgroup_parent(parent)) {
ed3d261b 4515 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4516 current->comm, current->pid, ss->name);
c81c925a 4517 if (!strcmp(ss->name, "memory"))
ed3d261b 4518 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4519 ss->warned_broken_hierarchy = true;
4520 }
4521
4522 return 0;
4523
1fed1b2e
TH
4524err_list_del:
4525 list_del_rcu(&css->sibling);
32d01dc7 4526 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4527err_free_id:
4528 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4529err_free_percpu_ref:
9a1049da 4530 percpu_ref_exit(&css->refcnt);
3eb59ec6 4531err_free_css:
a2bed820 4532 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4533 return err;
4534}
4535
b3bfd983
TH
4536static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4537 umode_t mode)
ddbcc7e8 4538{
a9746d8d
TH
4539 struct cgroup *parent, *cgrp;
4540 struct cgroup_root *root;
ddbcc7e8 4541 struct cgroup_subsys *ss;
2bd59d48 4542 struct kernfs_node *kn;
a14c6874 4543 struct cftype *base_files;
b3bfd983 4544 int ssid, ret;
ddbcc7e8 4545
a9746d8d
TH
4546 parent = cgroup_kn_lock_live(parent_kn);
4547 if (!parent)
4548 return -ENODEV;
4549 root = parent->root;
ddbcc7e8 4550
0a950f65 4551 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4552 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4553 if (!cgrp) {
4554 ret = -ENOMEM;
4555 goto out_unlock;
0ab02ca8
LZ
4556 }
4557
9d755d33
TH
4558 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4559 if (ret)
4560 goto out_free_cgrp;
4561
0ab02ca8
LZ
4562 /*
4563 * Temporarily set the pointer to NULL, so idr_find() won't return
4564 * a half-baked cgroup.
4565 */
6fa4918d 4566 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4567 if (cgrp->id < 0) {
ba0f4d76 4568 ret = -ENOMEM;
9d755d33 4569 goto out_cancel_ref;
976c06bc
TH
4570 }
4571
cc31edce 4572 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4573
9d800df1 4574 cgrp->self.parent = &parent->self;
ba0f4d76 4575 cgrp->root = root;
ddbcc7e8 4576
b6abdb0e
LZ
4577 if (notify_on_release(parent))
4578 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4579
2260e7fc
TH
4580 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4581 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4582
2bd59d48 4583 /* create the directory */
e61734c5 4584 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4585 if (IS_ERR(kn)) {
ba0f4d76
TH
4586 ret = PTR_ERR(kn);
4587 goto out_free_id;
2bd59d48
TH
4588 }
4589 cgrp->kn = kn;
ddbcc7e8 4590
4e139afc 4591 /*
6f30558f
TH
4592 * This extra ref will be put in cgroup_free_fn() and guarantees
4593 * that @cgrp->kn is always accessible.
4e139afc 4594 */
6f30558f 4595 kernfs_get(kn);
ddbcc7e8 4596
0cb51d71 4597 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4598
4e139afc 4599 /* allocation complete, commit to creation */
d5c419b6 4600 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4601 atomic_inc(&root->nr_cgrps);
59f5296b 4602 cgroup_get(parent);
415cf07a 4603
0d80255e
TH
4604 /*
4605 * @cgrp is now fully operational. If something fails after this
4606 * point, it'll be released via the normal destruction path.
4607 */
6fa4918d 4608 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4609
ba0f4d76
TH
4610 ret = cgroup_kn_set_ugid(kn);
4611 if (ret)
4612 goto out_destroy;
49957f8e 4613
a14c6874
TH
4614 if (cgroup_on_dfl(cgrp))
4615 base_files = cgroup_dfl_base_files;
4616 else
4617 base_files = cgroup_legacy_base_files;
4618
4619 ret = cgroup_addrm_files(cgrp, base_files, true);
ba0f4d76
TH
4620 if (ret)
4621 goto out_destroy;
628f7cd4 4622
9d403e99 4623 /* let's create and online css's */
b85d2040 4624 for_each_subsys(ss, ssid) {
f392e51c 4625 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4626 ret = create_css(cgrp, ss,
4627 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4628 if (ret)
4629 goto out_destroy;
b85d2040 4630 }
a8638030 4631 }
ddbcc7e8 4632
bd53d617
TH
4633 /*
4634 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4635 * subtree_control from the parent. Each is configured manually.
bd53d617 4636 */
667c2491
TH
4637 if (!cgroup_on_dfl(cgrp)) {
4638 cgrp->subtree_control = parent->subtree_control;
4639 cgroup_refresh_child_subsys_mask(cgrp);
4640 }
2bd59d48 4641
2bd59d48 4642 kernfs_activate(kn);
ddbcc7e8 4643
ba0f4d76
TH
4644 ret = 0;
4645 goto out_unlock;
ddbcc7e8 4646
ba0f4d76 4647out_free_id:
6fa4918d 4648 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4649out_cancel_ref:
9a1049da 4650 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4651out_free_cgrp:
bd89aabc 4652 kfree(cgrp);
ba0f4d76 4653out_unlock:
a9746d8d 4654 cgroup_kn_unlock(parent_kn);
ba0f4d76 4655 return ret;
4b8b47eb 4656
ba0f4d76 4657out_destroy:
4b8b47eb 4658 cgroup_destroy_locked(cgrp);
ba0f4d76 4659 goto out_unlock;
ddbcc7e8
PM
4660}
4661
223dbc38
TH
4662/*
4663 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4664 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4665 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4666 */
4667static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4668{
223dbc38
TH
4669 struct cgroup_subsys_state *css =
4670 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4671
f20104de 4672 mutex_lock(&cgroup_mutex);
09a503ea 4673 offline_css(css);
f20104de 4674 mutex_unlock(&cgroup_mutex);
09a503ea 4675
09a503ea 4676 css_put(css);
d3daf28d
TH
4677}
4678
223dbc38
TH
4679/* css kill confirmation processing requires process context, bounce */
4680static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4681{
4682 struct cgroup_subsys_state *css =
4683 container_of(ref, struct cgroup_subsys_state, refcnt);
4684
223dbc38 4685 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4686 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4687}
4688
f392e51c
TH
4689/**
4690 * kill_css - destroy a css
4691 * @css: css to destroy
4692 *
4693 * This function initiates destruction of @css by removing cgroup interface
4694 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4695 * asynchronously once css_tryget_online() is guaranteed to fail and when
4696 * the reference count reaches zero, @css will be released.
f392e51c
TH
4697 */
4698static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4699{
01f6474c 4700 lockdep_assert_held(&cgroup_mutex);
94419627 4701
2bd59d48
TH
4702 /*
4703 * This must happen before css is disassociated with its cgroup.
4704 * See seq_css() for details.
4705 */
aec25020 4706 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4707
edae0c33
TH
4708 /*
4709 * Killing would put the base ref, but we need to keep it alive
4710 * until after ->css_offline().
4711 */
4712 css_get(css);
4713
4714 /*
4715 * cgroup core guarantees that, by the time ->css_offline() is
4716 * invoked, no new css reference will be given out via
ec903c0c 4717 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4718 * proceed to offlining css's because percpu_ref_kill() doesn't
4719 * guarantee that the ref is seen as killed on all CPUs on return.
4720 *
4721 * Use percpu_ref_kill_and_confirm() to get notifications as each
4722 * css is confirmed to be seen as killed on all CPUs.
4723 */
4724 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4725}
4726
4727/**
4728 * cgroup_destroy_locked - the first stage of cgroup destruction
4729 * @cgrp: cgroup to be destroyed
4730 *
4731 * css's make use of percpu refcnts whose killing latency shouldn't be
4732 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4733 * guarantee that css_tryget_online() won't succeed by the time
4734 * ->css_offline() is invoked. To satisfy all the requirements,
4735 * destruction is implemented in the following two steps.
d3daf28d
TH
4736 *
4737 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4738 * userland visible parts and start killing the percpu refcnts of
4739 * css's. Set up so that the next stage will be kicked off once all
4740 * the percpu refcnts are confirmed to be killed.
4741 *
4742 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4743 * rest of destruction. Once all cgroup references are gone, the
4744 * cgroup is RCU-freed.
4745 *
4746 * This function implements s1. After this step, @cgrp is gone as far as
4747 * the userland is concerned and a new cgroup with the same name may be
4748 * created. As cgroup doesn't care about the names internally, this
4749 * doesn't cause any problem.
4750 */
42809dd4
TH
4751static int cgroup_destroy_locked(struct cgroup *cgrp)
4752 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4753{
2bd59d48 4754 struct cgroup_subsys_state *css;
ddd69148 4755 bool empty;
1c6727af 4756 int ssid;
ddbcc7e8 4757
42809dd4
TH
4758 lockdep_assert_held(&cgroup_mutex);
4759
ddd69148 4760 /*
96d365e0 4761 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4762 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4763 */
96d365e0 4764 down_read(&css_set_rwsem);
bb78a92f 4765 empty = list_empty(&cgrp->cset_links);
96d365e0 4766 up_read(&css_set_rwsem);
ddd69148 4767 if (!empty)
ddbcc7e8 4768 return -EBUSY;
a043e3b2 4769
bb78a92f 4770 /*
d5c419b6
TH
4771 * Make sure there's no live children. We can't test emptiness of
4772 * ->self.children as dead children linger on it while being
4773 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4774 */
f3d46500 4775 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4776 return -EBUSY;
4777
455050d2
TH
4778 /*
4779 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4780 * creation by disabling cgroup_lock_live_group().
455050d2 4781 */
184faf32 4782 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4783
249f3468 4784 /* initiate massacre of all css's */
1c6727af
TH
4785 for_each_css(css, ssid, cgrp)
4786 kill_css(css);
455050d2 4787
184faf32 4788 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
455050d2
TH
4789 raw_spin_lock(&release_list_lock);
4790 if (!list_empty(&cgrp->release_list))
4791 list_del_init(&cgrp->release_list);
4792 raw_spin_unlock(&release_list_lock);
4793
4794 /*
01f6474c
TH
4795 * Remove @cgrp directory along with the base files. @cgrp has an
4796 * extra ref on its kn.
f20104de 4797 */
01f6474c 4798 kernfs_remove(cgrp->kn);
f20104de 4799
d51f39b0
TH
4800 set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
4801 check_for_release(cgroup_parent(cgrp));
2bd59d48 4802
249f3468 4803 /* put the base reference */
9d755d33 4804 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4805
ea15f8cc
TH
4806 return 0;
4807};
4808
2bd59d48 4809static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4810{
a9746d8d 4811 struct cgroup *cgrp;
2bd59d48 4812 int ret = 0;
42809dd4 4813
a9746d8d
TH
4814 cgrp = cgroup_kn_lock_live(kn);
4815 if (!cgrp)
4816 return 0;
4817 cgroup_get(cgrp); /* for @kn->priv clearing */
42809dd4 4818
a9746d8d 4819 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4820
a9746d8d 4821 cgroup_kn_unlock(kn);
8e3f6541
TH
4822
4823 /*
cfc79d5b
TH
4824 * There are two control paths which try to determine cgroup from
4825 * dentry without going through kernfs - cgroupstats_build() and
4826 * css_tryget_online_from_dir(). Those are supported by RCU
4827 * protecting clearing of cgrp->kn->priv backpointer, which should
4828 * happen after all files under it have been removed.
8e3f6541 4829 */
cfc79d5b
TH
4830 if (!ret)
4831 RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL);
2bb566cb 4832
2bd59d48 4833 cgroup_put(cgrp);
42809dd4 4834 return ret;
8e3f6541
TH
4835}
4836
2bd59d48
TH
4837static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4838 .remount_fs = cgroup_remount,
4839 .show_options = cgroup_show_options,
4840 .mkdir = cgroup_mkdir,
4841 .rmdir = cgroup_rmdir,
4842 .rename = cgroup_rename,
4843};
4844
15a4c835 4845static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4846{
ddbcc7e8 4847 struct cgroup_subsys_state *css;
cfe36bde
DC
4848
4849 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4850
648bb56d
TH
4851 mutex_lock(&cgroup_mutex);
4852
15a4c835 4853 idr_init(&ss->css_idr);
0adb0704 4854 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4855
3dd06ffa
TH
4856 /* Create the root cgroup state for this subsystem */
4857 ss->root = &cgrp_dfl_root;
4858 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4859 /* We don't handle early failures gracefully */
4860 BUG_ON(IS_ERR(css));
ddfcadab 4861 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4862
4863 /*
4864 * Root csses are never destroyed and we can't initialize
4865 * percpu_ref during early init. Disable refcnting.
4866 */
4867 css->flags |= CSS_NO_REF;
4868
15a4c835 4869 if (early) {
9395a450 4870 /* allocation can't be done safely during early init */
15a4c835
TH
4871 css->id = 1;
4872 } else {
4873 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4874 BUG_ON(css->id < 0);
4875 }
ddbcc7e8 4876
e8d55fde 4877 /* Update the init_css_set to contain a subsys
817929ec 4878 * pointer to this state - since the subsystem is
e8d55fde 4879 * newly registered, all tasks and hence the
3dd06ffa 4880 * init_css_set is in the subsystem's root cgroup. */
aec25020 4881 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4882
4883 need_forkexit_callback |= ss->fork || ss->exit;
4884
e8d55fde
LZ
4885 /* At system boot, before all subsystems have been
4886 * registered, no tasks have been forked, so we don't
4887 * need to invoke fork callbacks here. */
4888 BUG_ON(!list_empty(&init_task.tasks));
4889
ae7f164a 4890 BUG_ON(online_css(css));
a8638030 4891
cf5d5941
BB
4892 mutex_unlock(&cgroup_mutex);
4893}
cf5d5941 4894
ddbcc7e8 4895/**
a043e3b2
LZ
4896 * cgroup_init_early - cgroup initialization at system boot
4897 *
4898 * Initialize cgroups at system boot, and initialize any
4899 * subsystems that request early init.
ddbcc7e8
PM
4900 */
4901int __init cgroup_init_early(void)
4902{
7b9a6ba5 4903 static struct cgroup_sb_opts __initdata opts;
30159ec7 4904 struct cgroup_subsys *ss;
ddbcc7e8 4905 int i;
30159ec7 4906
3dd06ffa 4907 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4908 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4909
a4ea1cc9 4910 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4911
3ed80a62 4912 for_each_subsys(ss, i) {
aec25020 4913 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4914 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4915 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4916 ss->id, ss->name);
073219e9
TH
4917 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4918 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4919
aec25020 4920 ss->id = i;
073219e9 4921 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4922
4923 if (ss->early_init)
15a4c835 4924 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4925 }
4926 return 0;
4927}
4928
4929/**
a043e3b2
LZ
4930 * cgroup_init - cgroup initialization
4931 *
4932 * Register cgroup filesystem and /proc file, and initialize
4933 * any subsystems that didn't request early init.
ddbcc7e8
PM
4934 */
4935int __init cgroup_init(void)
4936{
30159ec7 4937 struct cgroup_subsys *ss;
0ac801fe 4938 unsigned long key;
172a2c06 4939 int ssid, err;
ddbcc7e8 4940
a14c6874
TH
4941 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4942 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 4943
54e7b4eb 4944 mutex_lock(&cgroup_mutex);
54e7b4eb 4945
82fe9b0d
TH
4946 /* Add init_css_set to the hash table */
4947 key = css_set_hash(init_css_set.subsys);
4948 hash_add(css_set_table, &init_css_set.hlist, key);
4949
3dd06ffa 4950 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4951
54e7b4eb
TH
4952 mutex_unlock(&cgroup_mutex);
4953
172a2c06 4954 for_each_subsys(ss, ssid) {
15a4c835
TH
4955 if (ss->early_init) {
4956 struct cgroup_subsys_state *css =
4957 init_css_set.subsys[ss->id];
4958
4959 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4960 GFP_KERNEL);
4961 BUG_ON(css->id < 0);
4962 } else {
4963 cgroup_init_subsys(ss, false);
4964 }
172a2c06 4965
2d8f243a
TH
4966 list_add_tail(&init_css_set.e_cset_node[ssid],
4967 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
4968
4969 /*
c731ae1d
LZ
4970 * Setting dfl_root subsys_mask needs to consider the
4971 * disabled flag and cftype registration needs kmalloc,
4972 * both of which aren't available during early_init.
172a2c06 4973 */
a8ddc821
TH
4974 if (ss->disabled)
4975 continue;
4976
4977 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4978
4979 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
4980 ss->dfl_cftypes = ss->legacy_cftypes;
4981
5de4fa13
TH
4982 if (!ss->dfl_cftypes)
4983 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
4984
a8ddc821
TH
4985 if (ss->dfl_cftypes == ss->legacy_cftypes) {
4986 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
4987 } else {
4988 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
4989 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 4990 }
676db4af
GK
4991 }
4992
676db4af 4993 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4994 if (!cgroup_kobj)
4995 return -ENOMEM;
676db4af 4996
ddbcc7e8 4997 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4998 if (err < 0) {
4999 kobject_put(cgroup_kobj);
2bd59d48 5000 return err;
676db4af 5001 }
ddbcc7e8 5002
46ae220b 5003 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5004 return 0;
ddbcc7e8 5005}
b4f48b63 5006
e5fca243
TH
5007static int __init cgroup_wq_init(void)
5008{
5009 /*
5010 * There isn't much point in executing destruction path in
5011 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5012 * Use 1 for @max_active.
e5fca243
TH
5013 *
5014 * We would prefer to do this in cgroup_init() above, but that
5015 * is called before init_workqueues(): so leave this until after.
5016 */
1a11533f 5017 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5018 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5019
5020 /*
5021 * Used to destroy pidlists and separate to serve as flush domain.
5022 * Cap @max_active to 1 too.
5023 */
5024 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5025 0, 1);
5026 BUG_ON(!cgroup_pidlist_destroy_wq);
5027
e5fca243
TH
5028 return 0;
5029}
5030core_initcall(cgroup_wq_init);
5031
a424316c
PM
5032/*
5033 * proc_cgroup_show()
5034 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5035 * - Used for /proc/<pid>/cgroup.
a424316c
PM
5036 */
5037
5038/* TODO: Use a proper seq_file iterator */
8d8b97ba 5039int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
5040{
5041 struct pid *pid;
5042 struct task_struct *tsk;
e61734c5 5043 char *buf, *path;
a424316c 5044 int retval;
3dd06ffa 5045 struct cgroup_root *root;
a424316c
PM
5046
5047 retval = -ENOMEM;
e61734c5 5048 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5049 if (!buf)
5050 goto out;
5051
5052 retval = -ESRCH;
5053 pid = m->private;
5054 tsk = get_pid_task(pid, PIDTYPE_PID);
5055 if (!tsk)
5056 goto out_free;
5057
5058 retval = 0;
5059
5060 mutex_lock(&cgroup_mutex);
96d365e0 5061 down_read(&css_set_rwsem);
a424316c 5062
985ed670 5063 for_each_root(root) {
a424316c 5064 struct cgroup_subsys *ss;
bd89aabc 5065 struct cgroup *cgrp;
b85d2040 5066 int ssid, count = 0;
a424316c 5067
a2dd4247 5068 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5069 continue;
5070
2c6ab6d2 5071 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 5072 for_each_subsys(ss, ssid)
f392e51c 5073 if (root->subsys_mask & (1 << ssid))
b85d2040 5074 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5075 if (strlen(root->name))
5076 seq_printf(m, "%sname=%s", count ? "," : "",
5077 root->name);
a424316c 5078 seq_putc(m, ':');
7717f7ba 5079 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5080 path = cgroup_path(cgrp, buf, PATH_MAX);
5081 if (!path) {
5082 retval = -ENAMETOOLONG;
a424316c 5083 goto out_unlock;
e61734c5
TH
5084 }
5085 seq_puts(m, path);
a424316c
PM
5086 seq_putc(m, '\n');
5087 }
5088
5089out_unlock:
96d365e0 5090 up_read(&css_set_rwsem);
a424316c
PM
5091 mutex_unlock(&cgroup_mutex);
5092 put_task_struct(tsk);
5093out_free:
5094 kfree(buf);
5095out:
5096 return retval;
5097}
5098
a424316c
PM
5099/* Display information about each subsystem and each hierarchy */
5100static int proc_cgroupstats_show(struct seq_file *m, void *v)
5101{
30159ec7 5102 struct cgroup_subsys *ss;
a424316c 5103 int i;
a424316c 5104
8bab8dde 5105 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5106 /*
5107 * ideally we don't want subsystems moving around while we do this.
5108 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5109 * subsys/hierarchy state.
5110 */
a424316c 5111 mutex_lock(&cgroup_mutex);
30159ec7
TH
5112
5113 for_each_subsys(ss, i)
2c6ab6d2
PM
5114 seq_printf(m, "%s\t%d\t%d\t%d\n",
5115 ss->name, ss->root->hierarchy_id,
3c9c825b 5116 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 5117
a424316c
PM
5118 mutex_unlock(&cgroup_mutex);
5119 return 0;
5120}
5121
5122static int cgroupstats_open(struct inode *inode, struct file *file)
5123{
9dce07f1 5124 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5125}
5126
828c0950 5127static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5128 .open = cgroupstats_open,
5129 .read = seq_read,
5130 .llseek = seq_lseek,
5131 .release = single_release,
5132};
5133
b4f48b63 5134/**
eaf797ab 5135 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5136 * @child: pointer to task_struct of forking parent process.
b4f48b63 5137 *
eaf797ab
TH
5138 * A task is associated with the init_css_set until cgroup_post_fork()
5139 * attaches it to the parent's css_set. Empty cg_list indicates that
5140 * @child isn't holding reference to its css_set.
b4f48b63
PM
5141 */
5142void cgroup_fork(struct task_struct *child)
5143{
eaf797ab 5144 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5145 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5146}
5147
817929ec 5148/**
a043e3b2
LZ
5149 * cgroup_post_fork - called on a new task after adding it to the task list
5150 * @child: the task in question
5151 *
5edee61e
TH
5152 * Adds the task to the list running through its css_set if necessary and
5153 * call the subsystem fork() callbacks. Has to be after the task is
5154 * visible on the task list in case we race with the first call to
0942eeee 5155 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5156 * list.
a043e3b2 5157 */
817929ec
PM
5158void cgroup_post_fork(struct task_struct *child)
5159{
30159ec7 5160 struct cgroup_subsys *ss;
5edee61e
TH
5161 int i;
5162
3ce3230a 5163 /*
eaf797ab
TH
5164 * This may race against cgroup_enable_task_cg_links(). As that
5165 * function sets use_task_css_set_links before grabbing
5166 * tasklist_lock and we just went through tasklist_lock to add
5167 * @child, it's guaranteed that either we see the set
5168 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5169 * @child during its iteration.
5170 *
5171 * If we won the race, @child is associated with %current's
5172 * css_set. Grabbing css_set_rwsem guarantees both that the
5173 * association is stable, and, on completion of the parent's
5174 * migration, @child is visible in the source of migration or
5175 * already in the destination cgroup. This guarantee is necessary
5176 * when implementing operations which need to migrate all tasks of
5177 * a cgroup to another.
5178 *
5179 * Note that if we lose to cgroup_enable_task_cg_links(), @child
5180 * will remain in init_css_set. This is safe because all tasks are
5181 * in the init_css_set before cg_links is enabled and there's no
5182 * operation which transfers all tasks out of init_css_set.
3ce3230a 5183 */
817929ec 5184 if (use_task_css_set_links) {
eaf797ab
TH
5185 struct css_set *cset;
5186
96d365e0 5187 down_write(&css_set_rwsem);
0e1d768f 5188 cset = task_css_set(current);
eaf797ab
TH
5189 if (list_empty(&child->cg_list)) {
5190 rcu_assign_pointer(child->cgroups, cset);
5191 list_add(&child->cg_list, &cset->tasks);
5192 get_css_set(cset);
5193 }
96d365e0 5194 up_write(&css_set_rwsem);
817929ec 5195 }
5edee61e
TH
5196
5197 /*
5198 * Call ss->fork(). This must happen after @child is linked on
5199 * css_set; otherwise, @child might change state between ->fork()
5200 * and addition to css_set.
5201 */
5202 if (need_forkexit_callback) {
3ed80a62 5203 for_each_subsys(ss, i)
5edee61e
TH
5204 if (ss->fork)
5205 ss->fork(child);
5edee61e 5206 }
817929ec 5207}
5edee61e 5208
b4f48b63
PM
5209/**
5210 * cgroup_exit - detach cgroup from exiting task
5211 * @tsk: pointer to task_struct of exiting process
5212 *
5213 * Description: Detach cgroup from @tsk and release it.
5214 *
5215 * Note that cgroups marked notify_on_release force every task in
5216 * them to take the global cgroup_mutex mutex when exiting.
5217 * This could impact scaling on very large systems. Be reluctant to
5218 * use notify_on_release cgroups where very high task exit scaling
5219 * is required on large systems.
5220 *
0e1d768f
TH
5221 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5222 * call cgroup_exit() while the task is still competent to handle
5223 * notify_on_release(), then leave the task attached to the root cgroup in
5224 * each hierarchy for the remainder of its exit. No need to bother with
5225 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5226 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5227 */
1ec41830 5228void cgroup_exit(struct task_struct *tsk)
b4f48b63 5229{
30159ec7 5230 struct cgroup_subsys *ss;
5abb8855 5231 struct css_set *cset;
eaf797ab 5232 bool put_cset = false;
d41d5a01 5233 int i;
817929ec
PM
5234
5235 /*
0e1d768f
TH
5236 * Unlink from @tsk from its css_set. As migration path can't race
5237 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5238 */
5239 if (!list_empty(&tsk->cg_list)) {
96d365e0 5240 down_write(&css_set_rwsem);
0e1d768f 5241 list_del_init(&tsk->cg_list);
96d365e0 5242 up_write(&css_set_rwsem);
0e1d768f 5243 put_cset = true;
817929ec
PM
5244 }
5245
b4f48b63 5246 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5247 cset = task_css_set(tsk);
5248 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5249
1ec41830 5250 if (need_forkexit_callback) {
3ed80a62
TH
5251 /* see cgroup_post_fork() for details */
5252 for_each_subsys(ss, i) {
d41d5a01 5253 if (ss->exit) {
eb95419b
TH
5254 struct cgroup_subsys_state *old_css = cset->subsys[i];
5255 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5256
eb95419b 5257 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5258 }
5259 }
5260 }
d41d5a01 5261
eaf797ab
TH
5262 if (put_cset)
5263 put_css_set(cset, true);
b4f48b63 5264}
697f4161 5265
bd89aabc 5266static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5267{
f3d46500
TH
5268 if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
5269 !css_has_online_children(&cgrp->self)) {
f50daa70
LZ
5270 /*
5271 * Control Group is currently removeable. If it's not
81a6a5cd 5272 * already queued for a userspace notification, queue
f50daa70
LZ
5273 * it now
5274 */
81a6a5cd 5275 int need_schedule_work = 0;
f50daa70 5276
cdcc136f 5277 raw_spin_lock(&release_list_lock);
54766d4a 5278 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5279 list_empty(&cgrp->release_list)) {
5280 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5281 need_schedule_work = 1;
5282 }
cdcc136f 5283 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5284 if (need_schedule_work)
5285 schedule_work(&release_agent_work);
5286 }
5287}
5288
81a6a5cd
PM
5289/*
5290 * Notify userspace when a cgroup is released, by running the
5291 * configured release agent with the name of the cgroup (path
5292 * relative to the root of cgroup file system) as the argument.
5293 *
5294 * Most likely, this user command will try to rmdir this cgroup.
5295 *
5296 * This races with the possibility that some other task will be
5297 * attached to this cgroup before it is removed, or that some other
5298 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5299 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5300 * unused, and this cgroup will be reprieved from its death sentence,
5301 * to continue to serve a useful existence. Next time it's released,
5302 * we will get notified again, if it still has 'notify_on_release' set.
5303 *
5304 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5305 * means only wait until the task is successfully execve()'d. The
5306 * separate release agent task is forked by call_usermodehelper(),
5307 * then control in this thread returns here, without waiting for the
5308 * release agent task. We don't bother to wait because the caller of
5309 * this routine has no use for the exit status of the release agent
5310 * task, so no sense holding our caller up for that.
81a6a5cd 5311 */
81a6a5cd
PM
5312static void cgroup_release_agent(struct work_struct *work)
5313{
5314 BUG_ON(work != &release_agent_work);
5315 mutex_lock(&cgroup_mutex);
cdcc136f 5316 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5317 while (!list_empty(&release_list)) {
5318 char *argv[3], *envp[3];
5319 int i;
e61734c5 5320 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 5321 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5322 struct cgroup,
5323 release_list);
bd89aabc 5324 list_del_init(&cgrp->release_list);
cdcc136f 5325 raw_spin_unlock(&release_list_lock);
e61734c5 5326 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
5327 if (!pathbuf)
5328 goto continue_free;
e61734c5
TH
5329 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5330 if (!path)
e788e066
PM
5331 goto continue_free;
5332 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5333 if (!agentbuf)
5334 goto continue_free;
81a6a5cd
PM
5335
5336 i = 0;
e788e066 5337 argv[i++] = agentbuf;
e61734c5 5338 argv[i++] = path;
81a6a5cd
PM
5339 argv[i] = NULL;
5340
5341 i = 0;
5342 /* minimal command environment */
5343 envp[i++] = "HOME=/";
5344 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5345 envp[i] = NULL;
5346
5347 /* Drop the lock while we invoke the usermode helper,
5348 * since the exec could involve hitting disk and hence
5349 * be a slow process */
5350 mutex_unlock(&cgroup_mutex);
5351 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5352 mutex_lock(&cgroup_mutex);
e788e066
PM
5353 continue_free:
5354 kfree(pathbuf);
5355 kfree(agentbuf);
cdcc136f 5356 raw_spin_lock(&release_list_lock);
81a6a5cd 5357 }
cdcc136f 5358 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5359 mutex_unlock(&cgroup_mutex);
5360}
8bab8dde
PM
5361
5362static int __init cgroup_disable(char *str)
5363{
30159ec7 5364 struct cgroup_subsys *ss;
8bab8dde 5365 char *token;
30159ec7 5366 int i;
8bab8dde
PM
5367
5368 while ((token = strsep(&str, ",")) != NULL) {
5369 if (!*token)
5370 continue;
be45c900 5371
3ed80a62 5372 for_each_subsys(ss, i) {
8bab8dde
PM
5373 if (!strcmp(token, ss->name)) {
5374 ss->disabled = 1;
5375 printk(KERN_INFO "Disabling %s control group"
5376 " subsystem\n", ss->name);
5377 break;
5378 }
5379 }
5380 }
5381 return 1;
5382}
5383__setup("cgroup_disable=", cgroup_disable);
38460b48 5384
a8ddc821
TH
5385static int __init cgroup_set_legacy_files_on_dfl(char *str)
5386{
5387 printk("cgroup: using legacy files on the default hierarchy\n");
5388 cgroup_legacy_files_on_dfl = true;
5389 return 0;
5390}
5391__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5392
b77d7b60 5393/**
ec903c0c 5394 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5395 * @dentry: directory dentry of interest
5396 * @ss: subsystem of interest
b77d7b60 5397 *
5a17f543
TH
5398 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5399 * to get the corresponding css and return it. If such css doesn't exist
5400 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5401 */
ec903c0c
TH
5402struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5403 struct cgroup_subsys *ss)
e5d1367f 5404{
2bd59d48
TH
5405 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5406 struct cgroup_subsys_state *css = NULL;
e5d1367f 5407 struct cgroup *cgrp;
e5d1367f 5408
35cf0836 5409 /* is @dentry a cgroup dir? */
2bd59d48
TH
5410 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5411 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5412 return ERR_PTR(-EBADF);
5413
5a17f543
TH
5414 rcu_read_lock();
5415
2bd59d48
TH
5416 /*
5417 * This path doesn't originate from kernfs and @kn could already
5418 * have been or be removed at any point. @kn->priv is RCU
cfc79d5b 5419 * protected for this access. See cgroup_rmdir() for details.
2bd59d48
TH
5420 */
5421 cgrp = rcu_dereference(kn->priv);
5422 if (cgrp)
5423 css = cgroup_css(cgrp, ss);
5a17f543 5424
ec903c0c 5425 if (!css || !css_tryget_online(css))
5a17f543
TH
5426 css = ERR_PTR(-ENOENT);
5427
5428 rcu_read_unlock();
5429 return css;
e5d1367f 5430}
e5d1367f 5431
1cb650b9
LZ
5432/**
5433 * css_from_id - lookup css by id
5434 * @id: the cgroup id
5435 * @ss: cgroup subsys to be looked into
5436 *
5437 * Returns the css if there's valid one with @id, otherwise returns NULL.
5438 * Should be called under rcu_read_lock().
5439 */
5440struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5441{
6fa4918d 5442 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5443 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5444}
5445
fe693435 5446#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5447static struct cgroup_subsys_state *
5448debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5449{
5450 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5451
5452 if (!css)
5453 return ERR_PTR(-ENOMEM);
5454
5455 return css;
5456}
5457
eb95419b 5458static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5459{
eb95419b 5460 kfree(css);
fe693435
PM
5461}
5462
182446d0
TH
5463static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5464 struct cftype *cft)
fe693435 5465{
182446d0 5466 return cgroup_task_count(css->cgroup);
fe693435
PM
5467}
5468
182446d0
TH
5469static u64 current_css_set_read(struct cgroup_subsys_state *css,
5470 struct cftype *cft)
fe693435
PM
5471{
5472 return (u64)(unsigned long)current->cgroups;
5473}
5474
182446d0 5475static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5476 struct cftype *cft)
fe693435
PM
5477{
5478 u64 count;
5479
5480 rcu_read_lock();
a8ad805c 5481 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5482 rcu_read_unlock();
5483 return count;
5484}
5485
2da8ca82 5486static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5487{
69d0206c 5488 struct cgrp_cset_link *link;
5abb8855 5489 struct css_set *cset;
e61734c5
TH
5490 char *name_buf;
5491
5492 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5493 if (!name_buf)
5494 return -ENOMEM;
7717f7ba 5495
96d365e0 5496 down_read(&css_set_rwsem);
7717f7ba 5497 rcu_read_lock();
5abb8855 5498 cset = rcu_dereference(current->cgroups);
69d0206c 5499 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5500 struct cgroup *c = link->cgrp;
7717f7ba 5501
a2dd4247 5502 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5503 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5504 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5505 }
5506 rcu_read_unlock();
96d365e0 5507 up_read(&css_set_rwsem);
e61734c5 5508 kfree(name_buf);
7717f7ba
PM
5509 return 0;
5510}
5511
5512#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5513static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5514{
2da8ca82 5515 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5516 struct cgrp_cset_link *link;
7717f7ba 5517
96d365e0 5518 down_read(&css_set_rwsem);
182446d0 5519 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5520 struct css_set *cset = link->cset;
7717f7ba
PM
5521 struct task_struct *task;
5522 int count = 0;
c7561128 5523
5abb8855 5524 seq_printf(seq, "css_set %p\n", cset);
c7561128 5525
5abb8855 5526 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5527 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5528 goto overflow;
5529 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5530 }
5531
5532 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5533 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5534 goto overflow;
5535 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5536 }
c7561128
TH
5537 continue;
5538 overflow:
5539 seq_puts(seq, " ...\n");
7717f7ba 5540 }
96d365e0 5541 up_read(&css_set_rwsem);
7717f7ba
PM
5542 return 0;
5543}
5544
182446d0 5545static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5546{
182446d0 5547 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5548}
5549
5550static struct cftype debug_files[] = {
fe693435
PM
5551 {
5552 .name = "taskcount",
5553 .read_u64 = debug_taskcount_read,
5554 },
5555
5556 {
5557 .name = "current_css_set",
5558 .read_u64 = current_css_set_read,
5559 },
5560
5561 {
5562 .name = "current_css_set_refcount",
5563 .read_u64 = current_css_set_refcount_read,
5564 },
5565
7717f7ba
PM
5566 {
5567 .name = "current_css_set_cg_links",
2da8ca82 5568 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5569 },
5570
5571 {
5572 .name = "cgroup_css_links",
2da8ca82 5573 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5574 },
5575
fe693435
PM
5576 {
5577 .name = "releasable",
5578 .read_u64 = releasable_read,
5579 },
fe693435 5580
4baf6e33
TH
5581 { } /* terminate */
5582};
fe693435 5583
073219e9 5584struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5585 .css_alloc = debug_css_alloc,
5586 .css_free = debug_css_free,
5577964e 5587 .legacy_cftypes = debug_files,
fe693435
PM
5588};
5589#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.004453 seconds and 5 git commands to generate.