cgroup: fix cgroupfs_root early destruction path
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 99static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8 103/*
9871bf95
TH
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
ddbcc7e8 107 */
9871bf95
TH
108static struct cgroupfs_root cgroup_dummy_root;
109
110/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8 112
05ef1d7c
TH
113/*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
712317ad
LZ
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
05ef1d7c
TH
123};
124
38460b48
KH
125/*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129#define CSS_ID_MAX (65535)
130struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
38460b48 137 */
2c392b8c 138 struct cgroup_subsys_state __rcu *css;
38460b48
KH
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155};
156
0dea1168 157/*
25985edc 158 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
159 */
160struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185};
38460b48 186
ddbcc7e8
PM
187/* The list of hierarchy roots */
188
9871bf95
TH
189static LIST_HEAD(cgroup_roots);
190static int cgroup_root_count;
ddbcc7e8 191
54e7b4eb
TH
192/*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
1a574231 197static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 198
65dff759
LZ
199static struct cgroup_name root_cgroup_name = { .name = "/" };
200
794611a1
LZ
201/*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
794611a1 208 */
00356bd5 209static u64 cgroup_serial_nr_next = 1;
794611a1 210
ddbcc7e8 211/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
ddbcc7e8 215 */
8947f9d5 216static int need_forkexit_callback __read_mostly;
ddbcc7e8 217
ea15f8cc 218static void cgroup_offline_fn(struct work_struct *work);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
220static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
221 struct cftype cfts[], bool is_add);
42809dd4 222
ddbcc7e8 223/* convenient tests for these bits */
54766d4a 224static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 225{
54766d4a 226 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
227}
228
78574cf9
LZ
229/**
230 * cgroup_is_descendant - test ancestry
231 * @cgrp: the cgroup to be tested
232 * @ancestor: possible ancestor of @cgrp
233 *
234 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
235 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
236 * and @ancestor are accessible.
237 */
238bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
239{
240 while (cgrp) {
241 if (cgrp == ancestor)
242 return true;
243 cgrp = cgrp->parent;
244 }
245 return false;
246}
247EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 248
e9685a03 249static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
250{
251 const int bits =
bd89aabc
PM
252 (1 << CGRP_RELEASABLE) |
253 (1 << CGRP_NOTIFY_ON_RELEASE);
254 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
255}
256
e9685a03 257static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 258{
bd89aabc 259 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
260}
261
30159ec7
TH
262/**
263 * for_each_subsys - iterate all loaded cgroup subsystems
264 * @ss: the iteration cursor
265 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
266 *
267 * Should be called under cgroup_mutex.
268 */
269#define for_each_subsys(ss, i) \
270 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
271 if (({ lockdep_assert_held(&cgroup_mutex); \
272 !((ss) = cgroup_subsys[i]); })) { } \
273 else
274
275/**
276 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
277 * @ss: the iteration cursor
278 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
279 *
280 * Bulit-in subsystems are always present and iteration itself doesn't
281 * require any synchronization.
282 */
283#define for_each_builtin_subsys(ss, i) \
284 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
285 (((ss) = cgroup_subsys[i]) || true); (i)++)
286
5549c497
TH
287/* iterate each subsystem attached to a hierarchy */
288#define for_each_root_subsys(root, ss) \
289 list_for_each_entry((ss), &(root)->subsys_list, sibling)
ddbcc7e8 290
5549c497
TH
291/* iterate across the active hierarchies */
292#define for_each_active_root(root) \
293 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 294
f6ea9372
TH
295static inline struct cgroup *__d_cgrp(struct dentry *dentry)
296{
297 return dentry->d_fsdata;
298}
299
05ef1d7c 300static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
301{
302 return dentry->d_fsdata;
303}
304
05ef1d7c
TH
305static inline struct cftype *__d_cft(struct dentry *dentry)
306{
307 return __d_cfe(dentry)->type;
308}
309
7ae1bad9
TH
310/**
311 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
312 * @cgrp: the cgroup to be checked for liveness
313 *
47cfcd09
TH
314 * On success, returns true; the mutex should be later unlocked. On
315 * failure returns false with no lock held.
7ae1bad9 316 */
b9777cf8 317static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
318{
319 mutex_lock(&cgroup_mutex);
54766d4a 320 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
321 mutex_unlock(&cgroup_mutex);
322 return false;
323 }
324 return true;
325}
7ae1bad9 326
81a6a5cd
PM
327/* the list of cgroups eligible for automatic release. Protected by
328 * release_list_lock */
329static LIST_HEAD(release_list);
cdcc136f 330static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
331static void cgroup_release_agent(struct work_struct *work);
332static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 333static void check_for_release(struct cgroup *cgrp);
81a6a5cd 334
69d0206c
TH
335/*
336 * A cgroup can be associated with multiple css_sets as different tasks may
337 * belong to different cgroups on different hierarchies. In the other
338 * direction, a css_set is naturally associated with multiple cgroups.
339 * This M:N relationship is represented by the following link structure
340 * which exists for each association and allows traversing the associations
341 * from both sides.
342 */
343struct cgrp_cset_link {
344 /* the cgroup and css_set this link associates */
345 struct cgroup *cgrp;
346 struct css_set *cset;
347
348 /* list of cgrp_cset_links anchored at cgrp->cset_links */
349 struct list_head cset_link;
350
351 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
352 struct list_head cgrp_link;
817929ec
PM
353};
354
355/* The default css_set - used by init and its children prior to any
356 * hierarchies being mounted. It contains a pointer to the root state
357 * for each subsystem. Also used to anchor the list of css_sets. Not
358 * reference-counted, to improve performance when child cgroups
359 * haven't been created.
360 */
361
362static struct css_set init_css_set;
69d0206c 363static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 364
e6a1105b
BB
365static int cgroup_init_idr(struct cgroup_subsys *ss,
366 struct cgroup_subsys_state *css);
38460b48 367
817929ec
PM
368/* css_set_lock protects the list of css_set objects, and the
369 * chain of tasks off each css_set. Nests outside task->alloc_lock
370 * due to cgroup_iter_start() */
371static DEFINE_RWLOCK(css_set_lock);
372static int css_set_count;
373
7717f7ba
PM
374/*
375 * hash table for cgroup groups. This improves the performance to find
376 * an existing css_set. This hash doesn't (currently) take into
377 * account cgroups in empty hierarchies.
378 */
472b1053 379#define CSS_SET_HASH_BITS 7
0ac801fe 380static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 381
0ac801fe 382static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 383{
0ac801fe 384 unsigned long key = 0UL;
30159ec7
TH
385 struct cgroup_subsys *ss;
386 int i;
472b1053 387
30159ec7 388 for_each_subsys(ss, i)
0ac801fe
LZ
389 key += (unsigned long)css[i];
390 key = (key >> 16) ^ key;
472b1053 391
0ac801fe 392 return key;
472b1053
LZ
393}
394
817929ec
PM
395/* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
8947f9d5 399static int use_task_css_set_links __read_mostly;
817929ec 400
5abb8855 401static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 402{
69d0206c 403 struct cgrp_cset_link *link, *tmp_link;
5abb8855 404
146aa1bd
LJ
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
5abb8855 410 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
411 return;
412 write_lock(&css_set_lock);
5abb8855 413 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
414 write_unlock(&css_set_lock);
415 return;
416 }
81a6a5cd 417
2c6ab6d2 418 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 419 hash_del(&cset->hlist);
2c6ab6d2
PM
420 css_set_count--;
421
69d0206c 422 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 423 struct cgroup *cgrp = link->cgrp;
5abb8855 424
69d0206c
TH
425 list_del(&link->cset_link);
426 list_del(&link->cgrp_link);
71b5707e 427
ddd69148 428 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 429 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 430 if (taskexit)
bd89aabc
PM
431 set_bit(CGRP_RELEASABLE, &cgrp->flags);
432 check_for_release(cgrp);
81a6a5cd 433 }
2c6ab6d2
PM
434
435 kfree(link);
81a6a5cd 436 }
2c6ab6d2
PM
437
438 write_unlock(&css_set_lock);
5abb8855 439 kfree_rcu(cset, rcu_head);
b4f48b63
PM
440}
441
817929ec
PM
442/*
443 * refcounted get/put for css_set objects
444 */
5abb8855 445static inline void get_css_set(struct css_set *cset)
817929ec 446{
5abb8855 447 atomic_inc(&cset->refcount);
817929ec
PM
448}
449
5abb8855 450static inline void put_css_set(struct css_set *cset)
817929ec 451{
5abb8855 452 __put_css_set(cset, 0);
817929ec
PM
453}
454
5abb8855 455static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 456{
5abb8855 457 __put_css_set(cset, 1);
81a6a5cd
PM
458}
459
b326f9d0 460/**
7717f7ba 461 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
462 * @cset: candidate css_set being tested
463 * @old_cset: existing css_set for a task
7717f7ba
PM
464 * @new_cgrp: cgroup that's being entered by the task
465 * @template: desired set of css pointers in css_set (pre-calculated)
466 *
467 * Returns true if "cg" matches "old_cg" except for the hierarchy
468 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
469 */
5abb8855
TH
470static bool compare_css_sets(struct css_set *cset,
471 struct css_set *old_cset,
7717f7ba
PM
472 struct cgroup *new_cgrp,
473 struct cgroup_subsys_state *template[])
474{
475 struct list_head *l1, *l2;
476
5abb8855 477 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
478 /* Not all subsystems matched */
479 return false;
480 }
481
482 /*
483 * Compare cgroup pointers in order to distinguish between
484 * different cgroups in heirarchies with no subsystems. We
485 * could get by with just this check alone (and skip the
486 * memcmp above) but on most setups the memcmp check will
487 * avoid the need for this more expensive check on almost all
488 * candidates.
489 */
490
69d0206c
TH
491 l1 = &cset->cgrp_links;
492 l2 = &old_cset->cgrp_links;
7717f7ba 493 while (1) {
69d0206c 494 struct cgrp_cset_link *link1, *link2;
5abb8855 495 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
496
497 l1 = l1->next;
498 l2 = l2->next;
499 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
500 if (l1 == &cset->cgrp_links) {
501 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
502 break;
503 } else {
69d0206c 504 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
505 }
506 /* Locate the cgroups associated with these links. */
69d0206c
TH
507 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
508 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
509 cgrp1 = link1->cgrp;
510 cgrp2 = link2->cgrp;
7717f7ba 511 /* Hierarchies should be linked in the same order. */
5abb8855 512 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
513
514 /*
515 * If this hierarchy is the hierarchy of the cgroup
516 * that's changing, then we need to check that this
517 * css_set points to the new cgroup; if it's any other
518 * hierarchy, then this css_set should point to the
519 * same cgroup as the old css_set.
520 */
5abb8855
TH
521 if (cgrp1->root == new_cgrp->root) {
522 if (cgrp1 != new_cgrp)
7717f7ba
PM
523 return false;
524 } else {
5abb8855 525 if (cgrp1 != cgrp2)
7717f7ba
PM
526 return false;
527 }
528 }
529 return true;
530}
531
b326f9d0
TH
532/**
533 * find_existing_css_set - init css array and find the matching css_set
534 * @old_cset: the css_set that we're using before the cgroup transition
535 * @cgrp: the cgroup that we're moving into
536 * @template: out param for the new set of csses, should be clear on entry
817929ec 537 */
5abb8855
TH
538static struct css_set *find_existing_css_set(struct css_set *old_cset,
539 struct cgroup *cgrp,
540 struct cgroup_subsys_state *template[])
b4f48b63 541{
bd89aabc 542 struct cgroupfs_root *root = cgrp->root;
30159ec7 543 struct cgroup_subsys *ss;
5abb8855 544 struct css_set *cset;
0ac801fe 545 unsigned long key;
b326f9d0 546 int i;
817929ec 547
aae8aab4
BB
548 /*
549 * Build the set of subsystem state objects that we want to see in the
550 * new css_set. while subsystems can change globally, the entries here
551 * won't change, so no need for locking.
552 */
30159ec7 553 for_each_subsys(ss, i) {
a1a71b45 554 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
555 /* Subsystem is in this hierarchy. So we want
556 * the subsystem state from the new
557 * cgroup */
bd89aabc 558 template[i] = cgrp->subsys[i];
817929ec
PM
559 } else {
560 /* Subsystem is not in this hierarchy, so we
561 * don't want to change the subsystem state */
5abb8855 562 template[i] = old_cset->subsys[i];
817929ec
PM
563 }
564 }
565
0ac801fe 566 key = css_set_hash(template);
5abb8855
TH
567 hash_for_each_possible(css_set_table, cset, hlist, key) {
568 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
569 continue;
570
571 /* This css_set matches what we need */
5abb8855 572 return cset;
472b1053 573 }
817929ec
PM
574
575 /* No existing cgroup group matched */
576 return NULL;
577}
578
69d0206c 579static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 580{
69d0206c 581 struct cgrp_cset_link *link, *tmp_link;
36553434 582
69d0206c
TH
583 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
584 list_del(&link->cset_link);
36553434
LZ
585 kfree(link);
586 }
587}
588
69d0206c
TH
589/**
590 * allocate_cgrp_cset_links - allocate cgrp_cset_links
591 * @count: the number of links to allocate
592 * @tmp_links: list_head the allocated links are put on
593 *
594 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
595 * through ->cset_link. Returns 0 on success or -errno.
817929ec 596 */
69d0206c 597static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 598{
69d0206c 599 struct cgrp_cset_link *link;
817929ec 600 int i;
69d0206c
TH
601
602 INIT_LIST_HEAD(tmp_links);
603
817929ec 604 for (i = 0; i < count; i++) {
f4f4be2b 605 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 606 if (!link) {
69d0206c 607 free_cgrp_cset_links(tmp_links);
817929ec
PM
608 return -ENOMEM;
609 }
69d0206c 610 list_add(&link->cset_link, tmp_links);
817929ec
PM
611 }
612 return 0;
613}
614
c12f65d4
LZ
615/**
616 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 617 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 618 * @cset: the css_set to be linked
c12f65d4
LZ
619 * @cgrp: the destination cgroup
620 */
69d0206c
TH
621static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
622 struct cgroup *cgrp)
c12f65d4 623{
69d0206c 624 struct cgrp_cset_link *link;
c12f65d4 625
69d0206c
TH
626 BUG_ON(list_empty(tmp_links));
627 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
628 link->cset = cset;
7717f7ba 629 link->cgrp = cgrp;
69d0206c 630 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
631 /*
632 * Always add links to the tail of the list so that the list
633 * is sorted by order of hierarchy creation
634 */
69d0206c 635 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
636}
637
b326f9d0
TH
638/**
639 * find_css_set - return a new css_set with one cgroup updated
640 * @old_cset: the baseline css_set
641 * @cgrp: the cgroup to be updated
642 *
643 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
644 * substituted into the appropriate hierarchy.
817929ec 645 */
5abb8855
TH
646static struct css_set *find_css_set(struct css_set *old_cset,
647 struct cgroup *cgrp)
817929ec 648{
b326f9d0 649 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 650 struct css_set *cset;
69d0206c
TH
651 struct list_head tmp_links;
652 struct cgrp_cset_link *link;
0ac801fe 653 unsigned long key;
472b1053 654
b326f9d0
TH
655 lockdep_assert_held(&cgroup_mutex);
656
817929ec
PM
657 /* First see if we already have a cgroup group that matches
658 * the desired set */
7e9abd89 659 read_lock(&css_set_lock);
5abb8855
TH
660 cset = find_existing_css_set(old_cset, cgrp, template);
661 if (cset)
662 get_css_set(cset);
7e9abd89 663 read_unlock(&css_set_lock);
817929ec 664
5abb8855
TH
665 if (cset)
666 return cset;
817929ec 667
f4f4be2b 668 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 669 if (!cset)
817929ec
PM
670 return NULL;
671
69d0206c 672 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 673 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 674 kfree(cset);
817929ec
PM
675 return NULL;
676 }
677
5abb8855 678 atomic_set(&cset->refcount, 1);
69d0206c 679 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
680 INIT_LIST_HEAD(&cset->tasks);
681 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
682
683 /* Copy the set of subsystem state objects generated in
684 * find_existing_css_set() */
5abb8855 685 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
686
687 write_lock(&css_set_lock);
688 /* Add reference counts and links from the new css_set. */
69d0206c 689 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 690 struct cgroup *c = link->cgrp;
69d0206c 691
7717f7ba
PM
692 if (c->root == cgrp->root)
693 c = cgrp;
69d0206c 694 link_css_set(&tmp_links, cset, c);
7717f7ba 695 }
817929ec 696
69d0206c 697 BUG_ON(!list_empty(&tmp_links));
817929ec 698
817929ec 699 css_set_count++;
472b1053
LZ
700
701 /* Add this cgroup group to the hash table */
5abb8855
TH
702 key = css_set_hash(cset->subsys);
703 hash_add(css_set_table, &cset->hlist, key);
472b1053 704
817929ec
PM
705 write_unlock(&css_set_lock);
706
5abb8855 707 return cset;
b4f48b63
PM
708}
709
7717f7ba
PM
710/*
711 * Return the cgroup for "task" from the given hierarchy. Must be
712 * called with cgroup_mutex held.
713 */
714static struct cgroup *task_cgroup_from_root(struct task_struct *task,
715 struct cgroupfs_root *root)
716{
5abb8855 717 struct css_set *cset;
7717f7ba
PM
718 struct cgroup *res = NULL;
719
720 BUG_ON(!mutex_is_locked(&cgroup_mutex));
721 read_lock(&css_set_lock);
722 /*
723 * No need to lock the task - since we hold cgroup_mutex the
724 * task can't change groups, so the only thing that can happen
725 * is that it exits and its css is set back to init_css_set.
726 */
5abb8855
TH
727 cset = task->cgroups;
728 if (cset == &init_css_set) {
7717f7ba
PM
729 res = &root->top_cgroup;
730 } else {
69d0206c
TH
731 struct cgrp_cset_link *link;
732
733 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 734 struct cgroup *c = link->cgrp;
69d0206c 735
7717f7ba
PM
736 if (c->root == root) {
737 res = c;
738 break;
739 }
740 }
741 }
742 read_unlock(&css_set_lock);
743 BUG_ON(!res);
744 return res;
745}
746
ddbcc7e8
PM
747/*
748 * There is one global cgroup mutex. We also require taking
749 * task_lock() when dereferencing a task's cgroup subsys pointers.
750 * See "The task_lock() exception", at the end of this comment.
751 *
752 * A task must hold cgroup_mutex to modify cgroups.
753 *
754 * Any task can increment and decrement the count field without lock.
755 * So in general, code holding cgroup_mutex can't rely on the count
756 * field not changing. However, if the count goes to zero, then only
956db3ca 757 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
758 * means that no tasks are currently attached, therefore there is no
759 * way a task attached to that cgroup can fork (the other way to
760 * increment the count). So code holding cgroup_mutex can safely
761 * assume that if the count is zero, it will stay zero. Similarly, if
762 * a task holds cgroup_mutex on a cgroup with zero count, it
763 * knows that the cgroup won't be removed, as cgroup_rmdir()
764 * needs that mutex.
765 *
ddbcc7e8
PM
766 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
767 * (usually) take cgroup_mutex. These are the two most performance
768 * critical pieces of code here. The exception occurs on cgroup_exit(),
769 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
770 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
771 * to the release agent with the name of the cgroup (path relative to
772 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
773 *
774 * A cgroup can only be deleted if both its 'count' of using tasks
775 * is zero, and its list of 'children' cgroups is empty. Since all
776 * tasks in the system use _some_ cgroup, and since there is always at
777 * least one task in the system (init, pid == 1), therefore, top_cgroup
778 * always has either children cgroups and/or using tasks. So we don't
779 * need a special hack to ensure that top_cgroup cannot be deleted.
780 *
781 * The task_lock() exception
782 *
783 * The need for this exception arises from the action of
d0b2fdd2 784 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 785 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
786 * several performance critical places that need to reference
787 * task->cgroup without the expense of grabbing a system global
788 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 789 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
790 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
791 * the task_struct routinely used for such matters.
792 *
793 * P.S. One more locking exception. RCU is used to guard the
956db3ca 794 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
795 */
796
ddbcc7e8
PM
797/*
798 * A couple of forward declarations required, due to cyclic reference loop:
799 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
800 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
801 * -> cgroup_mkdir.
802 */
803
18bb1db3 804static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 805static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 806static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
807static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
808 unsigned long subsys_mask);
6e1d5dcc 809static const struct inode_operations cgroup_dir_inode_operations;
828c0950 810static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
811
812static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 813 .name = "cgroup",
e4ad08fe 814 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 815};
ddbcc7e8 816
38460b48
KH
817static int alloc_css_id(struct cgroup_subsys *ss,
818 struct cgroup *parent, struct cgroup *child);
819
a5e7ed32 820static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
821{
822 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
823
824 if (inode) {
85fe4025 825 inode->i_ino = get_next_ino();
ddbcc7e8 826 inode->i_mode = mode;
76aac0e9
DH
827 inode->i_uid = current_fsuid();
828 inode->i_gid = current_fsgid();
ddbcc7e8
PM
829 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
830 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
831 }
832 return inode;
833}
834
65dff759
LZ
835static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
836{
837 struct cgroup_name *name;
838
839 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
840 if (!name)
841 return NULL;
842 strcpy(name->name, dentry->d_name.name);
843 return name;
844}
845
be445626
LZ
846static void cgroup_free_fn(struct work_struct *work)
847{
ea15f8cc 848 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
849 struct cgroup_subsys *ss;
850
851 mutex_lock(&cgroup_mutex);
852 /*
853 * Release the subsystem state objects.
854 */
5549c497 855 for_each_root_subsys(cgrp->root, ss)
be445626
LZ
856 ss->css_free(cgrp);
857
858 cgrp->root->number_of_cgroups--;
859 mutex_unlock(&cgroup_mutex);
860
415cf07a
LZ
861 /*
862 * We get a ref to the parent's dentry, and put the ref when
863 * this cgroup is being freed, so it's guaranteed that the
864 * parent won't be destroyed before its children.
865 */
866 dput(cgrp->parent->dentry);
867
cc20e01c
LZ
868 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
869
be445626
LZ
870 /*
871 * Drop the active superblock reference that we took when we
cc20e01c
LZ
872 * created the cgroup. This will free cgrp->root, if we are
873 * holding the last reference to @sb.
be445626
LZ
874 */
875 deactivate_super(cgrp->root->sb);
876
877 /*
878 * if we're getting rid of the cgroup, refcount should ensure
879 * that there are no pidlists left.
880 */
881 BUG_ON(!list_empty(&cgrp->pidlists));
882
883 simple_xattrs_free(&cgrp->xattrs);
884
65dff759 885 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
886 kfree(cgrp);
887}
888
889static void cgroup_free_rcu(struct rcu_head *head)
890{
891 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
892
ea15f8cc
TH
893 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
894 schedule_work(&cgrp->destroy_work);
be445626
LZ
895}
896
ddbcc7e8
PM
897static void cgroup_diput(struct dentry *dentry, struct inode *inode)
898{
899 /* is dentry a directory ? if so, kfree() associated cgroup */
900 if (S_ISDIR(inode->i_mode)) {
bd89aabc 901 struct cgroup *cgrp = dentry->d_fsdata;
be445626 902
54766d4a 903 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 904 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
905 } else {
906 struct cfent *cfe = __d_cfe(dentry);
907 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
908
909 WARN_ONCE(!list_empty(&cfe->node) &&
910 cgrp != &cgrp->root->top_cgroup,
911 "cfe still linked for %s\n", cfe->type->name);
712317ad 912 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 913 kfree(cfe);
ddbcc7e8
PM
914 }
915 iput(inode);
916}
917
c72a04e3
AV
918static int cgroup_delete(const struct dentry *d)
919{
920 return 1;
921}
922
ddbcc7e8
PM
923static void remove_dir(struct dentry *d)
924{
925 struct dentry *parent = dget(d->d_parent);
926
927 d_delete(d);
928 simple_rmdir(parent->d_inode, d);
929 dput(parent);
930}
931
2739d3cc 932static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
933{
934 struct cfent *cfe;
935
936 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
937 lockdep_assert_held(&cgroup_mutex);
938
2739d3cc
LZ
939 /*
940 * If we're doing cleanup due to failure of cgroup_create(),
941 * the corresponding @cfe may not exist.
942 */
05ef1d7c
TH
943 list_for_each_entry(cfe, &cgrp->files, node) {
944 struct dentry *d = cfe->dentry;
945
946 if (cft && cfe->type != cft)
947 continue;
948
949 dget(d);
950 d_delete(d);
ce27e317 951 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
952 list_del_init(&cfe->node);
953 dput(d);
954
2739d3cc 955 break;
ddbcc7e8 956 }
05ef1d7c
TH
957}
958
13af07df
AR
959/**
960 * cgroup_clear_directory - selective removal of base and subsystem files
961 * @dir: directory containing the files
962 * @base_files: true if the base files should be removed
963 * @subsys_mask: mask of the subsystem ids whose files should be removed
964 */
965static void cgroup_clear_directory(struct dentry *dir, bool base_files,
966 unsigned long subsys_mask)
05ef1d7c
TH
967{
968 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 969 struct cgroup_subsys *ss;
05ef1d7c 970
5549c497 971 for_each_root_subsys(cgrp->root, ss) {
13af07df
AR
972 struct cftype_set *set;
973 if (!test_bit(ss->subsys_id, &subsys_mask))
974 continue;
975 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 976 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
977 }
978 if (base_files) {
979 while (!list_empty(&cgrp->files))
980 cgroup_rm_file(cgrp, NULL);
981 }
ddbcc7e8
PM
982}
983
984/*
985 * NOTE : the dentry must have been dget()'ed
986 */
987static void cgroup_d_remove_dir(struct dentry *dentry)
988{
2fd6b7f5 989 struct dentry *parent;
13af07df 990 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 991
a1a71b45 992 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 993
2fd6b7f5
NP
994 parent = dentry->d_parent;
995 spin_lock(&parent->d_lock);
3ec762ad 996 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 997 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
998 spin_unlock(&dentry->d_lock);
999 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
1000 remove_dir(dentry);
1001}
1002
aae8aab4 1003/*
cf5d5941
BB
1004 * Call with cgroup_mutex held. Drops reference counts on modules, including
1005 * any duplicate ones that parse_cgroupfs_options took. If this function
1006 * returns an error, no reference counts are touched.
aae8aab4 1007 */
ddbcc7e8 1008static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 1009 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 1010{
bd89aabc 1011 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1012 struct cgroup_subsys *ss;
ddbcc7e8
PM
1013 int i;
1014
aae8aab4 1015 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1016 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1017
ddbcc7e8 1018 /* Check that any added subsystems are currently free */
30159ec7 1019 for_each_subsys(ss, i) {
8d53d55d 1020 unsigned long bit = 1UL << i;
30159ec7 1021
a1a71b45 1022 if (!(bit & added_mask))
ddbcc7e8 1023 continue;
30159ec7 1024
9871bf95 1025 if (ss->root != &cgroup_dummy_root) {
ddbcc7e8
PM
1026 /* Subsystem isn't free */
1027 return -EBUSY;
1028 }
1029 }
1030
1031 /* Currently we don't handle adding/removing subsystems when
1032 * any child cgroups exist. This is theoretically supportable
1033 * but involves complex error handling, so it's being left until
1034 * later */
307257cf 1035 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1036 return -EBUSY;
1037
1038 /* Process each subsystem */
30159ec7 1039 for_each_subsys(ss, i) {
ddbcc7e8 1040 unsigned long bit = 1UL << i;
30159ec7 1041
a1a71b45 1042 if (bit & added_mask) {
ddbcc7e8 1043 /* We're binding this subsystem to this hierarchy */
bd89aabc 1044 BUG_ON(cgrp->subsys[i]);
9871bf95
TH
1045 BUG_ON(!cgroup_dummy_top->subsys[i]);
1046 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
a8a648c4 1047
9871bf95 1048 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
bd89aabc 1049 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1050 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1051 ss->root = root;
ddbcc7e8 1052 if (ss->bind)
761b3ef5 1053 ss->bind(cgrp);
a8a648c4 1054
cf5d5941 1055 /* refcount was already taken, and we're keeping it */
a8a648c4 1056 root->subsys_mask |= bit;
a1a71b45 1057 } else if (bit & removed_mask) {
ddbcc7e8 1058 /* We're removing this subsystem */
9871bf95 1059 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
bd89aabc 1060 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
a8a648c4 1061
ddbcc7e8 1062 if (ss->bind)
9871bf95
TH
1063 ss->bind(cgroup_dummy_top);
1064 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
bd89aabc 1065 cgrp->subsys[i] = NULL;
9871bf95
TH
1066 cgroup_subsys[i]->root = &cgroup_dummy_root;
1067 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1068
cf5d5941
BB
1069 /* subsystem is now free - drop reference on module */
1070 module_put(ss->module);
a8a648c4
TH
1071 root->subsys_mask &= ~bit;
1072 } else if (bit & root->subsys_mask) {
ddbcc7e8 1073 /* Subsystem state should already exist */
bd89aabc 1074 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1075 /*
1076 * a refcount was taken, but we already had one, so
1077 * drop the extra reference.
1078 */
1079 module_put(ss->module);
1080#ifdef CONFIG_MODULE_UNLOAD
1081 BUG_ON(ss->module && !module_refcount(ss->module));
1082#endif
ddbcc7e8
PM
1083 } else {
1084 /* Subsystem state shouldn't exist */
bd89aabc 1085 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1086 }
1087 }
ddbcc7e8 1088
1672d040
TH
1089 /*
1090 * Mark @root has finished binding subsystems. @root->subsys_mask
1091 * now matches the bound subsystems.
1092 */
1093 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1094
ddbcc7e8
PM
1095 return 0;
1096}
1097
34c80b1d 1098static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1099{
34c80b1d 1100 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1101 struct cgroup_subsys *ss;
1102
e25e2cbb 1103 mutex_lock(&cgroup_root_mutex);
5549c497 1104 for_each_root_subsys(root, ss)
ddbcc7e8 1105 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1106 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1107 seq_puts(seq, ",sane_behavior");
93438629 1108 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1109 seq_puts(seq, ",noprefix");
93438629 1110 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1111 seq_puts(seq, ",xattr");
81a6a5cd
PM
1112 if (strlen(root->release_agent_path))
1113 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1114 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1115 seq_puts(seq, ",clone_children");
c6d57f33
PM
1116 if (strlen(root->name))
1117 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1118 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1119 return 0;
1120}
1121
1122struct cgroup_sb_opts {
a1a71b45 1123 unsigned long subsys_mask;
ddbcc7e8 1124 unsigned long flags;
81a6a5cd 1125 char *release_agent;
2260e7fc 1126 bool cpuset_clone_children;
c6d57f33 1127 char *name;
2c6ab6d2
PM
1128 /* User explicitly requested empty subsystem */
1129 bool none;
c6d57f33
PM
1130
1131 struct cgroupfs_root *new_root;
2c6ab6d2 1132
ddbcc7e8
PM
1133};
1134
aae8aab4 1135/*
9871bf95
TH
1136 * Convert a hierarchy specifier into a bitmask of subsystems and
1137 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1138 * array. This function takes refcounts on subsystems to be used, unless it
1139 * returns error, in which case no refcounts are taken.
aae8aab4 1140 */
cf5d5941 1141static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1142{
32a8cf23
DL
1143 char *token, *o = data;
1144 bool all_ss = false, one_ss = false;
f9ab5b5b 1145 unsigned long mask = (unsigned long)-1;
cf5d5941 1146 bool module_pin_failed = false;
30159ec7
TH
1147 struct cgroup_subsys *ss;
1148 int i;
f9ab5b5b 1149
aae8aab4
BB
1150 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1151
f9ab5b5b
LZ
1152#ifdef CONFIG_CPUSETS
1153 mask = ~(1UL << cpuset_subsys_id);
1154#endif
ddbcc7e8 1155
c6d57f33 1156 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1157
1158 while ((token = strsep(&o, ",")) != NULL) {
1159 if (!*token)
1160 return -EINVAL;
32a8cf23 1161 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1162 /* Explicitly have no subsystems */
1163 opts->none = true;
32a8cf23
DL
1164 continue;
1165 }
1166 if (!strcmp(token, "all")) {
1167 /* Mutually exclusive option 'all' + subsystem name */
1168 if (one_ss)
1169 return -EINVAL;
1170 all_ss = true;
1171 continue;
1172 }
873fe09e
TH
1173 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1174 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1175 continue;
1176 }
32a8cf23 1177 if (!strcmp(token, "noprefix")) {
93438629 1178 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1179 continue;
1180 }
1181 if (!strcmp(token, "clone_children")) {
2260e7fc 1182 opts->cpuset_clone_children = true;
32a8cf23
DL
1183 continue;
1184 }
03b1cde6 1185 if (!strcmp(token, "xattr")) {
93438629 1186 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1187 continue;
1188 }
32a8cf23 1189 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1190 /* Specifying two release agents is forbidden */
1191 if (opts->release_agent)
1192 return -EINVAL;
c6d57f33 1193 opts->release_agent =
e400c285 1194 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1195 if (!opts->release_agent)
1196 return -ENOMEM;
32a8cf23
DL
1197 continue;
1198 }
1199 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1200 const char *name = token + 5;
1201 /* Can't specify an empty name */
1202 if (!strlen(name))
1203 return -EINVAL;
1204 /* Must match [\w.-]+ */
1205 for (i = 0; i < strlen(name); i++) {
1206 char c = name[i];
1207 if (isalnum(c))
1208 continue;
1209 if ((c == '.') || (c == '-') || (c == '_'))
1210 continue;
1211 return -EINVAL;
1212 }
1213 /* Specifying two names is forbidden */
1214 if (opts->name)
1215 return -EINVAL;
1216 opts->name = kstrndup(name,
e400c285 1217 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1218 GFP_KERNEL);
1219 if (!opts->name)
1220 return -ENOMEM;
32a8cf23
DL
1221
1222 continue;
1223 }
1224
30159ec7 1225 for_each_subsys(ss, i) {
32a8cf23
DL
1226 if (strcmp(token, ss->name))
1227 continue;
1228 if (ss->disabled)
1229 continue;
1230
1231 /* Mutually exclusive option 'all' + subsystem name */
1232 if (all_ss)
1233 return -EINVAL;
a1a71b45 1234 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1235 one_ss = true;
1236
1237 break;
1238 }
1239 if (i == CGROUP_SUBSYS_COUNT)
1240 return -ENOENT;
1241 }
1242
1243 /*
1244 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1245 * otherwise if 'none', 'name=' and a subsystem name options
1246 * were not specified, let's default to 'all'
32a8cf23 1247 */
30159ec7
TH
1248 if (all_ss || (!one_ss && !opts->none && !opts->name))
1249 for_each_subsys(ss, i)
1250 if (!ss->disabled)
1251 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1252
2c6ab6d2
PM
1253 /* Consistency checks */
1254
873fe09e
TH
1255 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1256 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1257
1258 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1259 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1260 return -EINVAL;
1261 }
1262
1263 if (opts->cpuset_clone_children) {
1264 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1265 return -EINVAL;
1266 }
1267 }
1268
f9ab5b5b
LZ
1269 /*
1270 * Option noprefix was introduced just for backward compatibility
1271 * with the old cpuset, so we allow noprefix only if mounting just
1272 * the cpuset subsystem.
1273 */
93438629 1274 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1275 return -EINVAL;
1276
2c6ab6d2
PM
1277
1278 /* Can't specify "none" and some subsystems */
a1a71b45 1279 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1280 return -EINVAL;
1281
1282 /*
1283 * We either have to specify by name or by subsystems. (So all
1284 * empty hierarchies must have a name).
1285 */
a1a71b45 1286 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1287 return -EINVAL;
1288
cf5d5941
BB
1289 /*
1290 * Grab references on all the modules we'll need, so the subsystems
1291 * don't dance around before rebind_subsystems attaches them. This may
1292 * take duplicate reference counts on a subsystem that's already used,
1293 * but rebind_subsystems handles this case.
1294 */
30159ec7
TH
1295 for_each_subsys(ss, i) {
1296 if (!(opts->subsys_mask & (1UL << i)))
cf5d5941 1297 continue;
9871bf95 1298 if (!try_module_get(cgroup_subsys[i]->module)) {
cf5d5941
BB
1299 module_pin_failed = true;
1300 break;
1301 }
1302 }
1303 if (module_pin_failed) {
1304 /*
1305 * oops, one of the modules was going away. this means that we
1306 * raced with a module_delete call, and to the user this is
1307 * essentially a "subsystem doesn't exist" case.
1308 */
be45c900 1309 for (i--; i >= 0; i--) {
cf5d5941
BB
1310 /* drop refcounts only on the ones we took */
1311 unsigned long bit = 1UL << i;
1312
a1a71b45 1313 if (!(bit & opts->subsys_mask))
cf5d5941 1314 continue;
9871bf95 1315 module_put(cgroup_subsys[i]->module);
cf5d5941
BB
1316 }
1317 return -ENOENT;
1318 }
1319
ddbcc7e8
PM
1320 return 0;
1321}
1322
a1a71b45 1323static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941 1324{
30159ec7 1325 struct cgroup_subsys *ss;
cf5d5941 1326 int i;
cf5d5941 1327
30159ec7
TH
1328 for_each_subsys(ss, i) {
1329 if (!(subsys_mask & (1UL << i)))
cf5d5941 1330 continue;
9871bf95 1331 module_put(cgroup_subsys[i]->module);
cf5d5941
BB
1332 }
1333}
1334
ddbcc7e8
PM
1335static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1336{
1337 int ret = 0;
1338 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1339 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1340 struct cgroup_sb_opts opts;
a1a71b45 1341 unsigned long added_mask, removed_mask;
ddbcc7e8 1342
873fe09e
TH
1343 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1344 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1345 return -EINVAL;
1346 }
1347
bd89aabc 1348 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1349 mutex_lock(&cgroup_mutex);
e25e2cbb 1350 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1351
1352 /* See what subsystems are wanted */
1353 ret = parse_cgroupfs_options(data, &opts);
1354 if (ret)
1355 goto out_unlock;
1356
a8a648c4 1357 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1358 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1359 task_tgid_nr(current), current->comm);
1360
a1a71b45
AR
1361 added_mask = opts.subsys_mask & ~root->subsys_mask;
1362 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1363
cf5d5941
BB
1364 /* Don't allow flags or name to change at remount */
1365 if (opts.flags != root->flags ||
1366 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1367 ret = -EINVAL;
a1a71b45 1368 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1369 goto out_unlock;
1370 }
1371
7083d037
G
1372 /*
1373 * Clear out the files of subsystems that should be removed, do
1374 * this before rebind_subsystems, since rebind_subsystems may
1375 * change this hierarchy's subsys_list.
1376 */
1377 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1378
a8a648c4 1379 ret = rebind_subsystems(root, added_mask, removed_mask);
cf5d5941 1380 if (ret) {
7083d037
G
1381 /* rebind_subsystems failed, re-populate the removed files */
1382 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1383 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1384 goto out_unlock;
cf5d5941 1385 }
ddbcc7e8 1386
13af07df 1387 /* re-populate subsystem files */
a1a71b45 1388 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1389
81a6a5cd
PM
1390 if (opts.release_agent)
1391 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1392 out_unlock:
66bdc9cf 1393 kfree(opts.release_agent);
c6d57f33 1394 kfree(opts.name);
e25e2cbb 1395 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1396 mutex_unlock(&cgroup_mutex);
bd89aabc 1397 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1398 return ret;
1399}
1400
b87221de 1401static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1402 .statfs = simple_statfs,
1403 .drop_inode = generic_delete_inode,
1404 .show_options = cgroup_show_options,
1405 .remount_fs = cgroup_remount,
1406};
1407
cc31edce
PM
1408static void init_cgroup_housekeeping(struct cgroup *cgrp)
1409{
1410 INIT_LIST_HEAD(&cgrp->sibling);
1411 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1412 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1413 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1414 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1415 INIT_LIST_HEAD(&cgrp->pidlists);
1416 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1417 INIT_LIST_HEAD(&cgrp->event_list);
1418 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1419 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1420}
c6d57f33 1421
ddbcc7e8
PM
1422static void init_cgroup_root(struct cgroupfs_root *root)
1423{
bd89aabc 1424 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1425
ddbcc7e8
PM
1426 INIT_LIST_HEAD(&root->subsys_list);
1427 INIT_LIST_HEAD(&root->root_list);
1428 root->number_of_cgroups = 1;
bd89aabc 1429 cgrp->root = root;
65dff759 1430 cgrp->name = &root_cgroup_name;
cc31edce 1431 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1432}
1433
fc76df70 1434static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1435{
1a574231 1436 int id;
2c6ab6d2 1437
54e7b4eb
TH
1438 lockdep_assert_held(&cgroup_mutex);
1439 lockdep_assert_held(&cgroup_root_mutex);
1440
fc76df70
TH
1441 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1442 GFP_KERNEL);
1a574231
TH
1443 if (id < 0)
1444 return id;
1445
1446 root->hierarchy_id = id;
fa3ca07e
TH
1447 return 0;
1448}
1449
1450static void cgroup_exit_root_id(struct cgroupfs_root *root)
1451{
54e7b4eb
TH
1452 lockdep_assert_held(&cgroup_mutex);
1453 lockdep_assert_held(&cgroup_root_mutex);
1454
fa3ca07e 1455 if (root->hierarchy_id) {
1a574231 1456 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1457 root->hierarchy_id = 0;
1458 }
2c6ab6d2
PM
1459}
1460
ddbcc7e8
PM
1461static int cgroup_test_super(struct super_block *sb, void *data)
1462{
c6d57f33 1463 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1464 struct cgroupfs_root *root = sb->s_fs_info;
1465
c6d57f33
PM
1466 /* If we asked for a name then it must match */
1467 if (opts->name && strcmp(opts->name, root->name))
1468 return 0;
ddbcc7e8 1469
2c6ab6d2
PM
1470 /*
1471 * If we asked for subsystems (or explicitly for no
1472 * subsystems) then they must match
1473 */
a1a71b45
AR
1474 if ((opts->subsys_mask || opts->none)
1475 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1476 return 0;
1477
1478 return 1;
1479}
1480
c6d57f33
PM
1481static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1482{
1483 struct cgroupfs_root *root;
1484
a1a71b45 1485 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1486 return NULL;
1487
1488 root = kzalloc(sizeof(*root), GFP_KERNEL);
1489 if (!root)
1490 return ERR_PTR(-ENOMEM);
1491
1492 init_cgroup_root(root);
2c6ab6d2 1493
1672d040
TH
1494 /*
1495 * We need to set @root->subsys_mask now so that @root can be
1496 * matched by cgroup_test_super() before it finishes
1497 * initialization; otherwise, competing mounts with the same
1498 * options may try to bind the same subsystems instead of waiting
1499 * for the first one leading to unexpected mount errors.
1500 * SUBSYS_BOUND will be set once actual binding is complete.
1501 */
a1a71b45 1502 root->subsys_mask = opts->subsys_mask;
c6d57f33 1503 root->flags = opts->flags;
0a950f65 1504 ida_init(&root->cgroup_ida);
c6d57f33
PM
1505 if (opts->release_agent)
1506 strcpy(root->release_agent_path, opts->release_agent);
1507 if (opts->name)
1508 strcpy(root->name, opts->name);
2260e7fc
TH
1509 if (opts->cpuset_clone_children)
1510 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1511 return root;
1512}
1513
fa3ca07e 1514static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1515{
fa3ca07e
TH
1516 if (root) {
1517 /* hierarhcy ID shoulid already have been released */
1518 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1519
fa3ca07e
TH
1520 ida_destroy(&root->cgroup_ida);
1521 kfree(root);
1522 }
2c6ab6d2
PM
1523}
1524
ddbcc7e8
PM
1525static int cgroup_set_super(struct super_block *sb, void *data)
1526{
1527 int ret;
c6d57f33
PM
1528 struct cgroup_sb_opts *opts = data;
1529
1530 /* If we don't have a new root, we can't set up a new sb */
1531 if (!opts->new_root)
1532 return -EINVAL;
1533
a1a71b45 1534 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1535
1536 ret = set_anon_super(sb, NULL);
1537 if (ret)
1538 return ret;
1539
c6d57f33
PM
1540 sb->s_fs_info = opts->new_root;
1541 opts->new_root->sb = sb;
ddbcc7e8
PM
1542
1543 sb->s_blocksize = PAGE_CACHE_SIZE;
1544 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1545 sb->s_magic = CGROUP_SUPER_MAGIC;
1546 sb->s_op = &cgroup_ops;
1547
1548 return 0;
1549}
1550
1551static int cgroup_get_rootdir(struct super_block *sb)
1552{
0df6a63f
AV
1553 static const struct dentry_operations cgroup_dops = {
1554 .d_iput = cgroup_diput,
c72a04e3 1555 .d_delete = cgroup_delete,
0df6a63f
AV
1556 };
1557
ddbcc7e8
PM
1558 struct inode *inode =
1559 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1560
1561 if (!inode)
1562 return -ENOMEM;
1563
ddbcc7e8
PM
1564 inode->i_fop = &simple_dir_operations;
1565 inode->i_op = &cgroup_dir_inode_operations;
1566 /* directories start off with i_nlink == 2 (for "." entry) */
1567 inc_nlink(inode);
48fde701
AV
1568 sb->s_root = d_make_root(inode);
1569 if (!sb->s_root)
ddbcc7e8 1570 return -ENOMEM;
0df6a63f
AV
1571 /* for everything else we want ->d_op set */
1572 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1573 return 0;
1574}
1575
f7e83571 1576static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1577 int flags, const char *unused_dev_name,
f7e83571 1578 void *data)
ddbcc7e8
PM
1579{
1580 struct cgroup_sb_opts opts;
c6d57f33 1581 struct cgroupfs_root *root;
ddbcc7e8
PM
1582 int ret = 0;
1583 struct super_block *sb;
c6d57f33 1584 struct cgroupfs_root *new_root;
e25e2cbb 1585 struct inode *inode;
ddbcc7e8
PM
1586
1587 /* First find the desired set of subsystems */
aae8aab4 1588 mutex_lock(&cgroup_mutex);
ddbcc7e8 1589 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1590 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1591 if (ret)
1592 goto out_err;
ddbcc7e8 1593
c6d57f33
PM
1594 /*
1595 * Allocate a new cgroup root. We may not need it if we're
1596 * reusing an existing hierarchy.
1597 */
1598 new_root = cgroup_root_from_opts(&opts);
1599 if (IS_ERR(new_root)) {
1600 ret = PTR_ERR(new_root);
cf5d5941 1601 goto drop_modules;
81a6a5cd 1602 }
c6d57f33 1603 opts.new_root = new_root;
ddbcc7e8 1604
c6d57f33 1605 /* Locate an existing or new sb for this hierarchy */
9249e17f 1606 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1607 if (IS_ERR(sb)) {
c6d57f33 1608 ret = PTR_ERR(sb);
fa3ca07e 1609 cgroup_free_root(opts.new_root);
cf5d5941 1610 goto drop_modules;
ddbcc7e8
PM
1611 }
1612
c6d57f33
PM
1613 root = sb->s_fs_info;
1614 BUG_ON(!root);
1615 if (root == opts.new_root) {
1616 /* We used the new root structure, so this is a new hierarchy */
69d0206c 1617 struct list_head tmp_links;
c12f65d4 1618 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1619 struct cgroupfs_root *existing_root;
2ce9738b 1620 const struct cred *cred;
28fd5dfc 1621 int i;
5abb8855 1622 struct css_set *cset;
ddbcc7e8
PM
1623
1624 BUG_ON(sb->s_root != NULL);
1625
1626 ret = cgroup_get_rootdir(sb);
1627 if (ret)
1628 goto drop_new_super;
817929ec 1629 inode = sb->s_root->d_inode;
ddbcc7e8 1630
817929ec 1631 mutex_lock(&inode->i_mutex);
ddbcc7e8 1632 mutex_lock(&cgroup_mutex);
e25e2cbb 1633 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1634
e25e2cbb
TH
1635 /* Check for name clashes with existing mounts */
1636 ret = -EBUSY;
1637 if (strlen(root->name))
1638 for_each_active_root(existing_root)
1639 if (!strcmp(existing_root->name, root->name))
1640 goto unlock_drop;
c6d57f33 1641
817929ec
PM
1642 /*
1643 * We're accessing css_set_count without locking
1644 * css_set_lock here, but that's OK - it can only be
1645 * increased by someone holding cgroup_lock, and
1646 * that's us. The worst that can happen is that we
1647 * have some link structures left over
1648 */
69d0206c 1649 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1650 if (ret)
1651 goto unlock_drop;
817929ec 1652
fc76df70
TH
1653 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1654 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1655 if (ret)
1656 goto unlock_drop;
1657
a8a648c4 1658 ret = rebind_subsystems(root, root->subsys_mask, 0);
ddbcc7e8 1659 if (ret == -EBUSY) {
69d0206c 1660 free_cgrp_cset_links(&tmp_links);
e25e2cbb 1661 goto unlock_drop;
ddbcc7e8 1662 }
cf5d5941
BB
1663 /*
1664 * There must be no failure case after here, since rebinding
1665 * takes care of subsystems' refcounts, which are explicitly
1666 * dropped in the failure exit path.
1667 */
ddbcc7e8
PM
1668
1669 /* EBUSY should be the only error here */
1670 BUG_ON(ret);
1671
9871bf95
TH
1672 list_add(&root->root_list, &cgroup_roots);
1673 cgroup_root_count++;
ddbcc7e8 1674
c12f65d4 1675 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1676 root->top_cgroup.dentry = sb->s_root;
1677
817929ec
PM
1678 /* Link the top cgroup in this hierarchy into all
1679 * the css_set objects */
1680 write_lock(&css_set_lock);
5abb8855 1681 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1682 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1683 write_unlock(&css_set_lock);
1684
69d0206c 1685 free_cgrp_cset_links(&tmp_links);
817929ec 1686
c12f65d4 1687 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1688 BUG_ON(root->number_of_cgroups != 1);
1689
2ce9738b 1690 cred = override_creds(&init_cred);
a1a71b45 1691 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1692 revert_creds(cred);
e25e2cbb 1693 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1694 mutex_unlock(&cgroup_mutex);
34f77a90 1695 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1696 } else {
1697 /*
1698 * We re-used an existing hierarchy - the new root (if
1699 * any) is not needed
1700 */
fa3ca07e 1701 cgroup_free_root(opts.new_root);
873fe09e 1702
2a0ff3fb
JL
1703 if (root->flags != opts.flags) {
1704 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1705 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1706 ret = -EINVAL;
1707 goto drop_new_super;
1708 } else {
1709 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1710 }
873fe09e
TH
1711 }
1712
cf5d5941 1713 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1714 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1715 }
1716
c6d57f33
PM
1717 kfree(opts.release_agent);
1718 kfree(opts.name);
f7e83571 1719 return dget(sb->s_root);
ddbcc7e8 1720
e25e2cbb 1721 unlock_drop:
fa3ca07e 1722 cgroup_exit_root_id(root);
e25e2cbb
TH
1723 mutex_unlock(&cgroup_root_mutex);
1724 mutex_unlock(&cgroup_mutex);
1725 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1726 drop_new_super:
6f5bbff9 1727 deactivate_locked_super(sb);
cf5d5941 1728 drop_modules:
a1a71b45 1729 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1730 out_err:
1731 kfree(opts.release_agent);
1732 kfree(opts.name);
f7e83571 1733 return ERR_PTR(ret);
ddbcc7e8
PM
1734}
1735
1736static void cgroup_kill_sb(struct super_block *sb) {
1737 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1738 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1739 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1740 int ret;
1741
1742 BUG_ON(!root);
1743
1744 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1745 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1746
1747 mutex_lock(&cgroup_mutex);
e25e2cbb 1748 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1749
1750 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1751 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1752 ret = rebind_subsystems(root, 0, root->subsys_mask);
1753 /* Shouldn't be able to fail ... */
1754 BUG_ON(ret);
1755 }
ddbcc7e8 1756
817929ec 1757 /*
69d0206c 1758 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1759 * root cgroup
1760 */
1761 write_lock(&css_set_lock);
71cbb949 1762
69d0206c
TH
1763 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1764 list_del(&link->cset_link);
1765 list_del(&link->cgrp_link);
817929ec
PM
1766 kfree(link);
1767 }
1768 write_unlock(&css_set_lock);
1769
839ec545
PM
1770 if (!list_empty(&root->root_list)) {
1771 list_del(&root->root_list);
9871bf95 1772 cgroup_root_count--;
839ec545 1773 }
e5f6a860 1774
fa3ca07e
TH
1775 cgroup_exit_root_id(root);
1776
e25e2cbb 1777 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1778 mutex_unlock(&cgroup_mutex);
1779
03b1cde6
AR
1780 simple_xattrs_free(&cgrp->xattrs);
1781
ddbcc7e8 1782 kill_litter_super(sb);
fa3ca07e 1783 cgroup_free_root(root);
ddbcc7e8
PM
1784}
1785
1786static struct file_system_type cgroup_fs_type = {
1787 .name = "cgroup",
f7e83571 1788 .mount = cgroup_mount,
ddbcc7e8
PM
1789 .kill_sb = cgroup_kill_sb,
1790};
1791
676db4af
GK
1792static struct kobject *cgroup_kobj;
1793
a043e3b2
LZ
1794/**
1795 * cgroup_path - generate the path of a cgroup
1796 * @cgrp: the cgroup in question
1797 * @buf: the buffer to write the path into
1798 * @buflen: the length of the buffer
1799 *
65dff759
LZ
1800 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1801 *
1802 * We can't generate cgroup path using dentry->d_name, as accessing
1803 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1804 * inode's i_mutex, while on the other hand cgroup_path() can be called
1805 * with some irq-safe spinlocks held.
ddbcc7e8 1806 */
bd89aabc 1807int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1808{
65dff759 1809 int ret = -ENAMETOOLONG;
ddbcc7e8 1810 char *start;
febfcef6 1811
da1f296f
TH
1812 if (!cgrp->parent) {
1813 if (strlcpy(buf, "/", buflen) >= buflen)
1814 return -ENAMETOOLONG;
ddbcc7e8
PM
1815 return 0;
1816 }
1817
316eb661 1818 start = buf + buflen - 1;
316eb661 1819 *start = '\0';
9a9686b6 1820
65dff759 1821 rcu_read_lock();
da1f296f 1822 do {
65dff759
LZ
1823 const char *name = cgroup_name(cgrp);
1824 int len;
1825
1826 len = strlen(name);
ddbcc7e8 1827 if ((start -= len) < buf)
65dff759
LZ
1828 goto out;
1829 memcpy(start, name, len);
9a9686b6 1830
ddbcc7e8 1831 if (--start < buf)
65dff759 1832 goto out;
ddbcc7e8 1833 *start = '/';
65dff759
LZ
1834
1835 cgrp = cgrp->parent;
da1f296f 1836 } while (cgrp->parent);
65dff759 1837 ret = 0;
ddbcc7e8 1838 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1839out:
1840 rcu_read_unlock();
1841 return ret;
ddbcc7e8 1842}
67523c48 1843EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1844
857a2beb
TH
1845/**
1846 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1847 * @task: target task
1848 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1849 * @buf: the buffer to write the path into
1850 * @buflen: the length of the buffer
1851 *
1852 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1853 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1854 * be used inside locks used by cgroup controller callbacks.
1855 */
1856int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1857 char *buf, size_t buflen)
1858{
1859 struct cgroupfs_root *root;
1860 struct cgroup *cgrp = NULL;
1861 int ret = -ENOENT;
1862
1863 mutex_lock(&cgroup_mutex);
1864
1865 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1866 if (root) {
1867 cgrp = task_cgroup_from_root(task, root);
1868 ret = cgroup_path(cgrp, buf, buflen);
1869 }
1870
1871 mutex_unlock(&cgroup_mutex);
1872
1873 return ret;
1874}
1875EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1876
2f7ee569
TH
1877/*
1878 * Control Group taskset
1879 */
134d3373
TH
1880struct task_and_cgroup {
1881 struct task_struct *task;
1882 struct cgroup *cgrp;
61d1d219 1883 struct css_set *cg;
134d3373
TH
1884};
1885
2f7ee569
TH
1886struct cgroup_taskset {
1887 struct task_and_cgroup single;
1888 struct flex_array *tc_array;
1889 int tc_array_len;
1890 int idx;
1891 struct cgroup *cur_cgrp;
1892};
1893
1894/**
1895 * cgroup_taskset_first - reset taskset and return the first task
1896 * @tset: taskset of interest
1897 *
1898 * @tset iteration is initialized and the first task is returned.
1899 */
1900struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1901{
1902 if (tset->tc_array) {
1903 tset->idx = 0;
1904 return cgroup_taskset_next(tset);
1905 } else {
1906 tset->cur_cgrp = tset->single.cgrp;
1907 return tset->single.task;
1908 }
1909}
1910EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1911
1912/**
1913 * cgroup_taskset_next - iterate to the next task in taskset
1914 * @tset: taskset of interest
1915 *
1916 * Return the next task in @tset. Iteration must have been initialized
1917 * with cgroup_taskset_first().
1918 */
1919struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1920{
1921 struct task_and_cgroup *tc;
1922
1923 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1924 return NULL;
1925
1926 tc = flex_array_get(tset->tc_array, tset->idx++);
1927 tset->cur_cgrp = tc->cgrp;
1928 return tc->task;
1929}
1930EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1931
1932/**
1933 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1934 * @tset: taskset of interest
1935 *
1936 * Return the cgroup for the current (last returned) task of @tset. This
1937 * function must be preceded by either cgroup_taskset_first() or
1938 * cgroup_taskset_next().
1939 */
1940struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1941{
1942 return tset->cur_cgrp;
1943}
1944EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1945
1946/**
1947 * cgroup_taskset_size - return the number of tasks in taskset
1948 * @tset: taskset of interest
1949 */
1950int cgroup_taskset_size(struct cgroup_taskset *tset)
1951{
1952 return tset->tc_array ? tset->tc_array_len : 1;
1953}
1954EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1955
1956
74a1166d
BB
1957/*
1958 * cgroup_task_migrate - move a task from one cgroup to another.
1959 *
d0b2fdd2 1960 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1961 */
5abb8855
TH
1962static void cgroup_task_migrate(struct cgroup *old_cgrp,
1963 struct task_struct *tsk,
1964 struct css_set *new_cset)
74a1166d 1965{
5abb8855 1966 struct css_set *old_cset;
74a1166d
BB
1967
1968 /*
026085ef
MSB
1969 * We are synchronized through threadgroup_lock() against PF_EXITING
1970 * setting such that we can't race against cgroup_exit() changing the
1971 * css_set to init_css_set and dropping the old one.
74a1166d 1972 */
c84cdf75 1973 WARN_ON_ONCE(tsk->flags & PF_EXITING);
5abb8855 1974 old_cset = tsk->cgroups;
74a1166d 1975
74a1166d 1976 task_lock(tsk);
5abb8855 1977 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1978 task_unlock(tsk);
1979
1980 /* Update the css_set linked lists if we're using them */
1981 write_lock(&css_set_lock);
1982 if (!list_empty(&tsk->cg_list))
5abb8855 1983 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1984 write_unlock(&css_set_lock);
1985
1986 /*
5abb8855
TH
1987 * We just gained a reference on old_cset by taking it from the
1988 * task. As trading it for new_cset is protected by cgroup_mutex,
1989 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1990 */
5abb8855
TH
1991 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1992 put_css_set(old_cset);
74a1166d
BB
1993}
1994
a043e3b2 1995/**
081aa458 1996 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1997 * @cgrp: the cgroup to attach to
081aa458
LZ
1998 * @tsk: the task or the leader of the threadgroup to be attached
1999 * @threadgroup: attach the whole threadgroup?
74a1166d 2000 *
257058ae 2001 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 2002 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 2003 */
47cfcd09
TH
2004static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
2005 bool threadgroup)
74a1166d
BB
2006{
2007 int retval, i, group_size;
2008 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
2009 struct cgroupfs_root *root = cgrp->root;
2010 /* threadgroup list cursor and array */
081aa458 2011 struct task_struct *leader = tsk;
134d3373 2012 struct task_and_cgroup *tc;
d846687d 2013 struct flex_array *group;
2f7ee569 2014 struct cgroup_taskset tset = { };
74a1166d
BB
2015
2016 /*
2017 * step 0: in order to do expensive, possibly blocking operations for
2018 * every thread, we cannot iterate the thread group list, since it needs
2019 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2020 * group - group_rwsem prevents new threads from appearing, and if
2021 * threads exit, this will just be an over-estimate.
74a1166d 2022 */
081aa458
LZ
2023 if (threadgroup)
2024 group_size = get_nr_threads(tsk);
2025 else
2026 group_size = 1;
d846687d 2027 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2028 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2029 if (!group)
2030 return -ENOMEM;
d846687d 2031 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2032 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2033 if (retval)
2034 goto out_free_group_list;
74a1166d 2035
74a1166d 2036 i = 0;
fb5d2b4c
MSB
2037 /*
2038 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2039 * already PF_EXITING could be freed from underneath us unless we
2040 * take an rcu_read_lock.
2041 */
2042 rcu_read_lock();
74a1166d 2043 do {
134d3373
TH
2044 struct task_and_cgroup ent;
2045
cd3d0952
TH
2046 /* @tsk either already exited or can't exit until the end */
2047 if (tsk->flags & PF_EXITING)
2048 continue;
2049
74a1166d
BB
2050 /* as per above, nr_threads may decrease, but not increase. */
2051 BUG_ON(i >= group_size);
134d3373
TH
2052 ent.task = tsk;
2053 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2054 /* nothing to do if this task is already in the cgroup */
2055 if (ent.cgrp == cgrp)
2056 continue;
61d1d219
MSB
2057 /*
2058 * saying GFP_ATOMIC has no effect here because we did prealloc
2059 * earlier, but it's good form to communicate our expectations.
2060 */
134d3373 2061 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2062 BUG_ON(retval != 0);
74a1166d 2063 i++;
081aa458
LZ
2064
2065 if (!threadgroup)
2066 break;
74a1166d 2067 } while_each_thread(leader, tsk);
fb5d2b4c 2068 rcu_read_unlock();
74a1166d
BB
2069 /* remember the number of threads in the array for later. */
2070 group_size = i;
2f7ee569
TH
2071 tset.tc_array = group;
2072 tset.tc_array_len = group_size;
74a1166d 2073
134d3373
TH
2074 /* methods shouldn't be called if no task is actually migrating */
2075 retval = 0;
892a2b90 2076 if (!group_size)
b07ef774 2077 goto out_free_group_list;
134d3373 2078
74a1166d
BB
2079 /*
2080 * step 1: check that we can legitimately attach to the cgroup.
2081 */
5549c497 2082 for_each_root_subsys(root, ss) {
74a1166d 2083 if (ss->can_attach) {
761b3ef5 2084 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2085 if (retval) {
2086 failed_ss = ss;
2087 goto out_cancel_attach;
2088 }
2089 }
74a1166d
BB
2090 }
2091
2092 /*
2093 * step 2: make sure css_sets exist for all threads to be migrated.
2094 * we use find_css_set, which allocates a new one if necessary.
2095 */
74a1166d 2096 for (i = 0; i < group_size; i++) {
134d3373 2097 tc = flex_array_get(group, i);
61d1d219
MSB
2098 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2099 if (!tc->cg) {
2100 retval = -ENOMEM;
2101 goto out_put_css_set_refs;
74a1166d
BB
2102 }
2103 }
2104
2105 /*
494c167c
TH
2106 * step 3: now that we're guaranteed success wrt the css_sets,
2107 * proceed to move all tasks to the new cgroup. There are no
2108 * failure cases after here, so this is the commit point.
74a1166d 2109 */
74a1166d 2110 for (i = 0; i < group_size; i++) {
134d3373 2111 tc = flex_array_get(group, i);
1e2ccd1c 2112 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2113 }
2114 /* nothing is sensitive to fork() after this point. */
2115
2116 /*
494c167c 2117 * step 4: do subsystem attach callbacks.
74a1166d 2118 */
5549c497 2119 for_each_root_subsys(root, ss) {
74a1166d 2120 if (ss->attach)
761b3ef5 2121 ss->attach(cgrp, &tset);
74a1166d
BB
2122 }
2123
2124 /*
2125 * step 5: success! and cleanup
2126 */
74a1166d 2127 retval = 0;
61d1d219
MSB
2128out_put_css_set_refs:
2129 if (retval) {
2130 for (i = 0; i < group_size; i++) {
2131 tc = flex_array_get(group, i);
2132 if (!tc->cg)
2133 break;
2134 put_css_set(tc->cg);
2135 }
74a1166d
BB
2136 }
2137out_cancel_attach:
74a1166d 2138 if (retval) {
5549c497 2139 for_each_root_subsys(root, ss) {
494c167c 2140 if (ss == failed_ss)
74a1166d 2141 break;
74a1166d 2142 if (ss->cancel_attach)
761b3ef5 2143 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2144 }
2145 }
74a1166d 2146out_free_group_list:
d846687d 2147 flex_array_free(group);
74a1166d
BB
2148 return retval;
2149}
2150
2151/*
2152 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2153 * function to attach either it or all tasks in its threadgroup. Will lock
2154 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2155 */
74a1166d 2156static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2157{
bbcb81d0 2158 struct task_struct *tsk;
c69e8d9c 2159 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2160 int ret;
2161
74a1166d
BB
2162 if (!cgroup_lock_live_group(cgrp))
2163 return -ENODEV;
2164
b78949eb
MSB
2165retry_find_task:
2166 rcu_read_lock();
bbcb81d0 2167 if (pid) {
73507f33 2168 tsk = find_task_by_vpid(pid);
74a1166d
BB
2169 if (!tsk) {
2170 rcu_read_unlock();
b78949eb
MSB
2171 ret= -ESRCH;
2172 goto out_unlock_cgroup;
bbcb81d0 2173 }
74a1166d
BB
2174 /*
2175 * even if we're attaching all tasks in the thread group, we
2176 * only need to check permissions on one of them.
2177 */
c69e8d9c 2178 tcred = __task_cred(tsk);
14a590c3
EB
2179 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2180 !uid_eq(cred->euid, tcred->uid) &&
2181 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2182 rcu_read_unlock();
b78949eb
MSB
2183 ret = -EACCES;
2184 goto out_unlock_cgroup;
bbcb81d0 2185 }
b78949eb
MSB
2186 } else
2187 tsk = current;
cd3d0952
TH
2188
2189 if (threadgroup)
b78949eb 2190 tsk = tsk->group_leader;
c4c27fbd
MG
2191
2192 /*
14a40ffc 2193 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2194 * trapped in a cpuset, or RT worker may be born in a cgroup
2195 * with no rt_runtime allocated. Just say no.
2196 */
14a40ffc 2197 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2198 ret = -EINVAL;
2199 rcu_read_unlock();
2200 goto out_unlock_cgroup;
2201 }
2202
b78949eb
MSB
2203 get_task_struct(tsk);
2204 rcu_read_unlock();
2205
2206 threadgroup_lock(tsk);
2207 if (threadgroup) {
2208 if (!thread_group_leader(tsk)) {
2209 /*
2210 * a race with de_thread from another thread's exec()
2211 * may strip us of our leadership, if this happens,
2212 * there is no choice but to throw this task away and
2213 * try again; this is
2214 * "double-double-toil-and-trouble-check locking".
2215 */
2216 threadgroup_unlock(tsk);
2217 put_task_struct(tsk);
2218 goto retry_find_task;
2219 }
081aa458
LZ
2220 }
2221
2222 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2223
cd3d0952
TH
2224 threadgroup_unlock(tsk);
2225
bbcb81d0 2226 put_task_struct(tsk);
b78949eb 2227out_unlock_cgroup:
47cfcd09 2228 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2229 return ret;
2230}
2231
7ae1bad9
TH
2232/**
2233 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2234 * @from: attach to all cgroups of a given task
2235 * @tsk: the task to be attached
2236 */
2237int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2238{
2239 struct cgroupfs_root *root;
2240 int retval = 0;
2241
47cfcd09 2242 mutex_lock(&cgroup_mutex);
7ae1bad9
TH
2243 for_each_active_root(root) {
2244 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2245
2246 retval = cgroup_attach_task(from_cg, tsk, false);
2247 if (retval)
2248 break;
2249 }
47cfcd09 2250 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2251
2252 return retval;
2253}
2254EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2255
af351026 2256static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2257{
2258 return attach_task_by_pid(cgrp, pid, false);
2259}
2260
2261static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2262{
b78949eb 2263 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2264}
2265
e788e066
PM
2266static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2267 const char *buffer)
2268{
2269 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2270 if (strlen(buffer) >= PATH_MAX)
2271 return -EINVAL;
e788e066
PM
2272 if (!cgroup_lock_live_group(cgrp))
2273 return -ENODEV;
e25e2cbb 2274 mutex_lock(&cgroup_root_mutex);
e788e066 2275 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2276 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2277 mutex_unlock(&cgroup_mutex);
e788e066
PM
2278 return 0;
2279}
2280
2281static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2282 struct seq_file *seq)
2283{
2284 if (!cgroup_lock_live_group(cgrp))
2285 return -ENODEV;
2286 seq_puts(seq, cgrp->root->release_agent_path);
2287 seq_putc(seq, '\n');
47cfcd09 2288 mutex_unlock(&cgroup_mutex);
e788e066
PM
2289 return 0;
2290}
2291
873fe09e
TH
2292static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2293 struct seq_file *seq)
2294{
2295 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2296 return 0;
2297}
2298
84eea842
PM
2299/* A buffer size big enough for numbers or short strings */
2300#define CGROUP_LOCAL_BUFFER_SIZE 64
2301
e73d2c61 2302static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2303 struct file *file,
2304 const char __user *userbuf,
2305 size_t nbytes, loff_t *unused_ppos)
355e0c48 2306{
84eea842 2307 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2308 int retval = 0;
355e0c48
PM
2309 char *end;
2310
2311 if (!nbytes)
2312 return -EINVAL;
2313 if (nbytes >= sizeof(buffer))
2314 return -E2BIG;
2315 if (copy_from_user(buffer, userbuf, nbytes))
2316 return -EFAULT;
2317
2318 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2319 if (cft->write_u64) {
478988d3 2320 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2321 if (*end)
2322 return -EINVAL;
2323 retval = cft->write_u64(cgrp, cft, val);
2324 } else {
478988d3 2325 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2326 if (*end)
2327 return -EINVAL;
2328 retval = cft->write_s64(cgrp, cft, val);
2329 }
355e0c48
PM
2330 if (!retval)
2331 retval = nbytes;
2332 return retval;
2333}
2334
db3b1497
PM
2335static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2336 struct file *file,
2337 const char __user *userbuf,
2338 size_t nbytes, loff_t *unused_ppos)
2339{
84eea842 2340 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2341 int retval = 0;
2342 size_t max_bytes = cft->max_write_len;
2343 char *buffer = local_buffer;
2344
2345 if (!max_bytes)
2346 max_bytes = sizeof(local_buffer) - 1;
2347 if (nbytes >= max_bytes)
2348 return -E2BIG;
2349 /* Allocate a dynamic buffer if we need one */
2350 if (nbytes >= sizeof(local_buffer)) {
2351 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2352 if (buffer == NULL)
2353 return -ENOMEM;
2354 }
5a3eb9f6
LZ
2355 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2356 retval = -EFAULT;
2357 goto out;
2358 }
db3b1497
PM
2359
2360 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2361 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2362 if (!retval)
2363 retval = nbytes;
5a3eb9f6 2364out:
db3b1497
PM
2365 if (buffer != local_buffer)
2366 kfree(buffer);
2367 return retval;
2368}
2369
ddbcc7e8
PM
2370static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2371 size_t nbytes, loff_t *ppos)
2372{
2373 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2374 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2375
54766d4a 2376 if (cgroup_is_dead(cgrp))
ddbcc7e8 2377 return -ENODEV;
355e0c48 2378 if (cft->write)
bd89aabc 2379 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2380 if (cft->write_u64 || cft->write_s64)
2381 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2382 if (cft->write_string)
2383 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2384 if (cft->trigger) {
2385 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2386 return ret ? ret : nbytes;
2387 }
355e0c48 2388 return -EINVAL;
ddbcc7e8
PM
2389}
2390
f4c753b7
PM
2391static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2392 struct file *file,
2393 char __user *buf, size_t nbytes,
2394 loff_t *ppos)
ddbcc7e8 2395{
84eea842 2396 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2397 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2398 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2399
2400 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2401}
2402
e73d2c61
PM
2403static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2404 struct file *file,
2405 char __user *buf, size_t nbytes,
2406 loff_t *ppos)
2407{
84eea842 2408 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2409 s64 val = cft->read_s64(cgrp, cft);
2410 int len = sprintf(tmp, "%lld\n", (long long) val);
2411
2412 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2413}
2414
ddbcc7e8
PM
2415static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2416 size_t nbytes, loff_t *ppos)
2417{
2418 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2419 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2420
54766d4a 2421 if (cgroup_is_dead(cgrp))
ddbcc7e8
PM
2422 return -ENODEV;
2423
2424 if (cft->read)
bd89aabc 2425 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2426 if (cft->read_u64)
2427 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2428 if (cft->read_s64)
2429 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2430 return -EINVAL;
2431}
2432
91796569
PM
2433/*
2434 * seqfile ops/methods for returning structured data. Currently just
2435 * supports string->u64 maps, but can be extended in future.
2436 */
2437
2438struct cgroup_seqfile_state {
2439 struct cftype *cft;
2440 struct cgroup *cgroup;
2441};
2442
2443static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2444{
2445 struct seq_file *sf = cb->state;
2446 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2447}
2448
2449static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2450{
2451 struct cgroup_seqfile_state *state = m->private;
2452 struct cftype *cft = state->cft;
29486df3
SH
2453 if (cft->read_map) {
2454 struct cgroup_map_cb cb = {
2455 .fill = cgroup_map_add,
2456 .state = m,
2457 };
2458 return cft->read_map(state->cgroup, cft, &cb);
2459 }
2460 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2461}
2462
96930a63 2463static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2464{
2465 struct seq_file *seq = file->private_data;
2466 kfree(seq->private);
2467 return single_release(inode, file);
2468}
2469
828c0950 2470static const struct file_operations cgroup_seqfile_operations = {
91796569 2471 .read = seq_read,
e788e066 2472 .write = cgroup_file_write,
91796569
PM
2473 .llseek = seq_lseek,
2474 .release = cgroup_seqfile_release,
2475};
2476
ddbcc7e8
PM
2477static int cgroup_file_open(struct inode *inode, struct file *file)
2478{
2479 int err;
2480 struct cftype *cft;
2481
2482 err = generic_file_open(inode, file);
2483 if (err)
2484 return err;
ddbcc7e8 2485 cft = __d_cft(file->f_dentry);
75139b82 2486
29486df3 2487 if (cft->read_map || cft->read_seq_string) {
f4f4be2b
TH
2488 struct cgroup_seqfile_state *state;
2489
2490 state = kzalloc(sizeof(*state), GFP_USER);
91796569
PM
2491 if (!state)
2492 return -ENOMEM;
f4f4be2b 2493
91796569
PM
2494 state->cft = cft;
2495 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2496 file->f_op = &cgroup_seqfile_operations;
2497 err = single_open(file, cgroup_seqfile_show, state);
2498 if (err < 0)
2499 kfree(state);
2500 } else if (cft->open)
ddbcc7e8
PM
2501 err = cft->open(inode, file);
2502 else
2503 err = 0;
2504
2505 return err;
2506}
2507
2508static int cgroup_file_release(struct inode *inode, struct file *file)
2509{
2510 struct cftype *cft = __d_cft(file->f_dentry);
2511 if (cft->release)
2512 return cft->release(inode, file);
2513 return 0;
2514}
2515
2516/*
2517 * cgroup_rename - Only allow simple rename of directories in place.
2518 */
2519static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2520 struct inode *new_dir, struct dentry *new_dentry)
2521{
65dff759
LZ
2522 int ret;
2523 struct cgroup_name *name, *old_name;
2524 struct cgroup *cgrp;
2525
2526 /*
2527 * It's convinient to use parent dir's i_mutex to protected
2528 * cgrp->name.
2529 */
2530 lockdep_assert_held(&old_dir->i_mutex);
2531
ddbcc7e8
PM
2532 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2533 return -ENOTDIR;
2534 if (new_dentry->d_inode)
2535 return -EEXIST;
2536 if (old_dir != new_dir)
2537 return -EIO;
65dff759
LZ
2538
2539 cgrp = __d_cgrp(old_dentry);
2540
6db8e85c
TH
2541 /*
2542 * This isn't a proper migration and its usefulness is very
2543 * limited. Disallow if sane_behavior.
2544 */
2545 if (cgroup_sane_behavior(cgrp))
2546 return -EPERM;
2547
65dff759
LZ
2548 name = cgroup_alloc_name(new_dentry);
2549 if (!name)
2550 return -ENOMEM;
2551
2552 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2553 if (ret) {
2554 kfree(name);
2555 return ret;
2556 }
2557
2558 old_name = cgrp->name;
2559 rcu_assign_pointer(cgrp->name, name);
2560
2561 kfree_rcu(old_name, rcu_head);
2562 return 0;
ddbcc7e8
PM
2563}
2564
03b1cde6
AR
2565static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2566{
2567 if (S_ISDIR(dentry->d_inode->i_mode))
2568 return &__d_cgrp(dentry)->xattrs;
2569 else
712317ad 2570 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2571}
2572
2573static inline int xattr_enabled(struct dentry *dentry)
2574{
2575 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2576 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2577}
2578
2579static bool is_valid_xattr(const char *name)
2580{
2581 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2582 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2583 return true;
2584 return false;
2585}
2586
2587static int cgroup_setxattr(struct dentry *dentry, const char *name,
2588 const void *val, size_t size, int flags)
2589{
2590 if (!xattr_enabled(dentry))
2591 return -EOPNOTSUPP;
2592 if (!is_valid_xattr(name))
2593 return -EINVAL;
2594 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2595}
2596
2597static int cgroup_removexattr(struct dentry *dentry, const char *name)
2598{
2599 if (!xattr_enabled(dentry))
2600 return -EOPNOTSUPP;
2601 if (!is_valid_xattr(name))
2602 return -EINVAL;
2603 return simple_xattr_remove(__d_xattrs(dentry), name);
2604}
2605
2606static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2607 void *buf, size_t size)
2608{
2609 if (!xattr_enabled(dentry))
2610 return -EOPNOTSUPP;
2611 if (!is_valid_xattr(name))
2612 return -EINVAL;
2613 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2614}
2615
2616static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2617{
2618 if (!xattr_enabled(dentry))
2619 return -EOPNOTSUPP;
2620 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2621}
2622
828c0950 2623static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2624 .read = cgroup_file_read,
2625 .write = cgroup_file_write,
2626 .llseek = generic_file_llseek,
2627 .open = cgroup_file_open,
2628 .release = cgroup_file_release,
2629};
2630
03b1cde6
AR
2631static const struct inode_operations cgroup_file_inode_operations = {
2632 .setxattr = cgroup_setxattr,
2633 .getxattr = cgroup_getxattr,
2634 .listxattr = cgroup_listxattr,
2635 .removexattr = cgroup_removexattr,
2636};
2637
6e1d5dcc 2638static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2639 .lookup = cgroup_lookup,
ddbcc7e8
PM
2640 .mkdir = cgroup_mkdir,
2641 .rmdir = cgroup_rmdir,
2642 .rename = cgroup_rename,
03b1cde6
AR
2643 .setxattr = cgroup_setxattr,
2644 .getxattr = cgroup_getxattr,
2645 .listxattr = cgroup_listxattr,
2646 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2647};
2648
00cd8dd3 2649static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2650{
2651 if (dentry->d_name.len > NAME_MAX)
2652 return ERR_PTR(-ENAMETOOLONG);
2653 d_add(dentry, NULL);
2654 return NULL;
2655}
2656
0dea1168
KS
2657/*
2658 * Check if a file is a control file
2659 */
2660static inline struct cftype *__file_cft(struct file *file)
2661{
496ad9aa 2662 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2663 return ERR_PTR(-EINVAL);
2664 return __d_cft(file->f_dentry);
2665}
2666
a5e7ed32 2667static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2668 struct super_block *sb)
2669{
ddbcc7e8
PM
2670 struct inode *inode;
2671
2672 if (!dentry)
2673 return -ENOENT;
2674 if (dentry->d_inode)
2675 return -EEXIST;
2676
2677 inode = cgroup_new_inode(mode, sb);
2678 if (!inode)
2679 return -ENOMEM;
2680
2681 if (S_ISDIR(mode)) {
2682 inode->i_op = &cgroup_dir_inode_operations;
2683 inode->i_fop = &simple_dir_operations;
2684
2685 /* start off with i_nlink == 2 (for "." entry) */
2686 inc_nlink(inode);
28fd6f30 2687 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2688
b8a2df6a
TH
2689 /*
2690 * Control reaches here with cgroup_mutex held.
2691 * @inode->i_mutex should nest outside cgroup_mutex but we
2692 * want to populate it immediately without releasing
2693 * cgroup_mutex. As @inode isn't visible to anyone else
2694 * yet, trylock will always succeed without affecting
2695 * lockdep checks.
2696 */
2697 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2698 } else if (S_ISREG(mode)) {
2699 inode->i_size = 0;
2700 inode->i_fop = &cgroup_file_operations;
03b1cde6 2701 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2702 }
ddbcc7e8
PM
2703 d_instantiate(dentry, inode);
2704 dget(dentry); /* Extra count - pin the dentry in core */
2705 return 0;
2706}
2707
099fca32
LZ
2708/**
2709 * cgroup_file_mode - deduce file mode of a control file
2710 * @cft: the control file in question
2711 *
2712 * returns cft->mode if ->mode is not 0
2713 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2714 * returns S_IRUGO if it has only a read handler
2715 * returns S_IWUSR if it has only a write hander
2716 */
a5e7ed32 2717static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2718{
a5e7ed32 2719 umode_t mode = 0;
099fca32
LZ
2720
2721 if (cft->mode)
2722 return cft->mode;
2723
2724 if (cft->read || cft->read_u64 || cft->read_s64 ||
2725 cft->read_map || cft->read_seq_string)
2726 mode |= S_IRUGO;
2727
2728 if (cft->write || cft->write_u64 || cft->write_s64 ||
2729 cft->write_string || cft->trigger)
2730 mode |= S_IWUSR;
2731
2732 return mode;
2733}
2734
db0416b6 2735static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2736 struct cftype *cft)
ddbcc7e8 2737{
bd89aabc 2738 struct dentry *dir = cgrp->dentry;
05ef1d7c 2739 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2740 struct dentry *dentry;
05ef1d7c 2741 struct cfent *cfe;
ddbcc7e8 2742 int error;
a5e7ed32 2743 umode_t mode;
ddbcc7e8 2744 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2745
93438629 2746 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
ddbcc7e8
PM
2747 strcpy(name, subsys->name);
2748 strcat(name, ".");
2749 }
2750 strcat(name, cft->name);
05ef1d7c 2751
ddbcc7e8 2752 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2753
2754 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2755 if (!cfe)
2756 return -ENOMEM;
2757
ddbcc7e8 2758 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2759 if (IS_ERR(dentry)) {
ddbcc7e8 2760 error = PTR_ERR(dentry);
05ef1d7c
TH
2761 goto out;
2762 }
2763
d6cbf35d
LZ
2764 cfe->type = (void *)cft;
2765 cfe->dentry = dentry;
2766 dentry->d_fsdata = cfe;
2767 simple_xattrs_init(&cfe->xattrs);
2768
05ef1d7c
TH
2769 mode = cgroup_file_mode(cft);
2770 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2771 if (!error) {
05ef1d7c
TH
2772 list_add_tail(&cfe->node, &parent->files);
2773 cfe = NULL;
2774 }
2775 dput(dentry);
2776out:
2777 kfree(cfe);
ddbcc7e8
PM
2778 return error;
2779}
2780
79578621 2781static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2782 struct cftype cfts[], bool is_add)
ddbcc7e8 2783{
03b1cde6 2784 struct cftype *cft;
db0416b6
TH
2785 int err, ret = 0;
2786
2787 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2788 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2789 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2790 continue;
f33fddc2
G
2791 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2792 continue;
2793 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2794 continue;
2795
2739d3cc 2796 if (is_add) {
79578621 2797 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2798 if (err)
2799 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2800 cft->name, err);
db0416b6 2801 ret = err;
2739d3cc
LZ
2802 } else {
2803 cgroup_rm_file(cgrp, cft);
db0416b6 2804 }
ddbcc7e8 2805 }
db0416b6 2806 return ret;
ddbcc7e8
PM
2807}
2808
8e3f6541 2809static void cgroup_cfts_prepare(void)
e8c82d20 2810 __acquires(&cgroup_mutex)
8e3f6541
TH
2811{
2812 /*
2813 * Thanks to the entanglement with vfs inode locking, we can't walk
2814 * the existing cgroups under cgroup_mutex and create files.
e8c82d20
LZ
2815 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
2816 * read lock before calling cgroup_addrm_files().
8e3f6541 2817 */
8e3f6541
TH
2818 mutex_lock(&cgroup_mutex);
2819}
2820
2821static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2822 struct cftype *cfts, bool is_add)
e8c82d20 2823 __releases(&cgroup_mutex)
8e3f6541
TH
2824{
2825 LIST_HEAD(pending);
e8c82d20 2826 struct cgroup *cgrp, *root = &ss->root->top_cgroup;
084457f2 2827 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2828 struct dentry *prev = NULL;
2829 struct inode *inode;
00356bd5 2830 u64 update_before;
8e3f6541
TH
2831
2832 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2833 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2834 !atomic_inc_not_zero(&sb->s_active)) {
2835 mutex_unlock(&cgroup_mutex);
2836 return;
8e3f6541
TH
2837 }
2838
8e3f6541 2839 /*
e8c82d20
LZ
2840 * All cgroups which are created after we drop cgroup_mutex will
2841 * have the updated set of files, so we only need to update the
00356bd5 2842 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2843 */
00356bd5 2844 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2845
2846 mutex_unlock(&cgroup_mutex);
2847
2848 /* @root always needs to be updated */
2849 inode = root->dentry->d_inode;
2850 mutex_lock(&inode->i_mutex);
2851 mutex_lock(&cgroup_mutex);
2852 cgroup_addrm_files(root, ss, cfts, is_add);
2853 mutex_unlock(&cgroup_mutex);
2854 mutex_unlock(&inode->i_mutex);
2855
2856 /* add/rm files for all cgroups created before */
2857 rcu_read_lock();
2858 cgroup_for_each_descendant_pre(cgrp, root) {
2859 if (cgroup_is_dead(cgrp))
2860 continue;
2861
2862 inode = cgrp->dentry->d_inode;
2863 dget(cgrp->dentry);
2864 rcu_read_unlock();
2865
2866 dput(prev);
2867 prev = cgrp->dentry;
8e3f6541
TH
2868
2869 mutex_lock(&inode->i_mutex);
2870 mutex_lock(&cgroup_mutex);
00356bd5 2871 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
79578621 2872 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2873 mutex_unlock(&cgroup_mutex);
2874 mutex_unlock(&inode->i_mutex);
2875
e8c82d20 2876 rcu_read_lock();
8e3f6541 2877 }
e8c82d20
LZ
2878 rcu_read_unlock();
2879 dput(prev);
2880 deactivate_super(sb);
8e3f6541
TH
2881}
2882
2883/**
2884 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2885 * @ss: target cgroup subsystem
2886 * @cfts: zero-length name terminated array of cftypes
2887 *
2888 * Register @cfts to @ss. Files described by @cfts are created for all
2889 * existing cgroups to which @ss is attached and all future cgroups will
2890 * have them too. This function can be called anytime whether @ss is
2891 * attached or not.
2892 *
2893 * Returns 0 on successful registration, -errno on failure. Note that this
2894 * function currently returns 0 as long as @cfts registration is successful
2895 * even if some file creation attempts on existing cgroups fail.
2896 */
03b1cde6 2897int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2898{
2899 struct cftype_set *set;
2900
2901 set = kzalloc(sizeof(*set), GFP_KERNEL);
2902 if (!set)
2903 return -ENOMEM;
2904
2905 cgroup_cfts_prepare();
2906 set->cfts = cfts;
2907 list_add_tail(&set->node, &ss->cftsets);
79578621 2908 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2909
2910 return 0;
2911}
2912EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2913
79578621
TH
2914/**
2915 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2916 * @ss: target cgroup subsystem
2917 * @cfts: zero-length name terminated array of cftypes
2918 *
2919 * Unregister @cfts from @ss. Files described by @cfts are removed from
2920 * all existing cgroups to which @ss is attached and all future cgroups
2921 * won't have them either. This function can be called anytime whether @ss
2922 * is attached or not.
2923 *
2924 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2925 * registered with @ss.
2926 */
03b1cde6 2927int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2928{
2929 struct cftype_set *set;
2930
2931 cgroup_cfts_prepare();
2932
2933 list_for_each_entry(set, &ss->cftsets, node) {
2934 if (set->cfts == cfts) {
f57947d2
LZ
2935 list_del(&set->node);
2936 kfree(set);
79578621
TH
2937 cgroup_cfts_commit(ss, cfts, false);
2938 return 0;
2939 }
2940 }
2941
2942 cgroup_cfts_commit(ss, NULL, false);
2943 return -ENOENT;
2944}
2945
a043e3b2
LZ
2946/**
2947 * cgroup_task_count - count the number of tasks in a cgroup.
2948 * @cgrp: the cgroup in question
2949 *
2950 * Return the number of tasks in the cgroup.
2951 */
bd89aabc 2952int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2953{
2954 int count = 0;
69d0206c 2955 struct cgrp_cset_link *link;
817929ec
PM
2956
2957 read_lock(&css_set_lock);
69d0206c
TH
2958 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2959 count += atomic_read(&link->cset->refcount);
817929ec 2960 read_unlock(&css_set_lock);
bbcb81d0
PM
2961 return count;
2962}
2963
817929ec
PM
2964/*
2965 * Advance a list_head iterator. The iterator should be positioned at
2966 * the start of a css_set
2967 */
69d0206c 2968static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec 2969{
69d0206c
TH
2970 struct list_head *l = it->cset_link;
2971 struct cgrp_cset_link *link;
5abb8855 2972 struct css_set *cset;
817929ec
PM
2973
2974 /* Advance to the next non-empty css_set */
2975 do {
2976 l = l->next;
69d0206c
TH
2977 if (l == &cgrp->cset_links) {
2978 it->cset_link = NULL;
817929ec
PM
2979 return;
2980 }
69d0206c
TH
2981 link = list_entry(l, struct cgrp_cset_link, cset_link);
2982 cset = link->cset;
5abb8855 2983 } while (list_empty(&cset->tasks));
69d0206c 2984 it->cset_link = l;
5abb8855 2985 it->task = cset->tasks.next;
817929ec
PM
2986}
2987
31a7df01
CW
2988/*
2989 * To reduce the fork() overhead for systems that are not actually
2990 * using their cgroups capability, we don't maintain the lists running
2991 * through each css_set to its tasks until we see the list actually
2992 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2993 */
3df91fe3 2994static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2995{
2996 struct task_struct *p, *g;
2997 write_lock(&css_set_lock);
2998 use_task_css_set_links = 1;
3ce3230a
FW
2999 /*
3000 * We need tasklist_lock because RCU is not safe against
3001 * while_each_thread(). Besides, a forking task that has passed
3002 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3003 * is not guaranteed to have its child immediately visible in the
3004 * tasklist if we walk through it with RCU.
3005 */
3006 read_lock(&tasklist_lock);
31a7df01
CW
3007 do_each_thread(g, p) {
3008 task_lock(p);
0e04388f
LZ
3009 /*
3010 * We should check if the process is exiting, otherwise
3011 * it will race with cgroup_exit() in that the list
3012 * entry won't be deleted though the process has exited.
3013 */
3014 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
3015 list_add(&p->cg_list, &p->cgroups->tasks);
3016 task_unlock(p);
3017 } while_each_thread(g, p);
3ce3230a 3018 read_unlock(&tasklist_lock);
31a7df01
CW
3019 write_unlock(&css_set_lock);
3020}
3021
53fa5261
TH
3022/**
3023 * cgroup_next_sibling - find the next sibling of a given cgroup
3024 * @pos: the current cgroup
3025 *
3026 * This function returns the next sibling of @pos and should be called
3027 * under RCU read lock. The only requirement is that @pos is accessible.
3028 * The next sibling is guaranteed to be returned regardless of @pos's
3029 * state.
3030 */
3031struct cgroup *cgroup_next_sibling(struct cgroup *pos)
3032{
3033 struct cgroup *next;
3034
3035 WARN_ON_ONCE(!rcu_read_lock_held());
3036
3037 /*
3038 * @pos could already have been removed. Once a cgroup is removed,
3039 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3040 * changes. As CGRP_DEAD assertion is serialized and happens
3041 * before the cgroup is taken off the ->sibling list, if we see it
3042 * unasserted, it's guaranteed that the next sibling hasn't
3043 * finished its grace period even if it's already removed, and thus
3044 * safe to dereference from this RCU critical section. If
3045 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3046 * to be visible as %true here.
53fa5261 3047 */
54766d4a 3048 if (likely(!cgroup_is_dead(pos))) {
53fa5261
TH
3049 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3050 if (&next->sibling != &pos->parent->children)
3051 return next;
3052 return NULL;
3053 }
3054
3055 /*
3056 * Can't dereference the next pointer. Each cgroup is given a
3057 * monotonically increasing unique serial number and always
3058 * appended to the sibling list, so the next one can be found by
3059 * walking the parent's children until we see a cgroup with higher
3060 * serial number than @pos's.
3061 *
3062 * While this path can be slow, it's taken only when either the
3063 * current cgroup is removed or iteration and removal race.
3064 */
3065 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3066 if (next->serial_nr > pos->serial_nr)
3067 return next;
3068 return NULL;
3069}
3070EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3071
574bd9f7
TH
3072/**
3073 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3074 * @pos: the current position (%NULL to initiate traversal)
3075 * @cgroup: cgroup whose descendants to walk
3076 *
3077 * To be used by cgroup_for_each_descendant_pre(). Find the next
3078 * descendant to visit for pre-order traversal of @cgroup's descendants.
75501a6d
TH
3079 *
3080 * While this function requires RCU read locking, it doesn't require the
3081 * whole traversal to be contained in a single RCU critical section. This
3082 * function will return the correct next descendant as long as both @pos
3083 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3084 */
3085struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3086 struct cgroup *cgroup)
3087{
3088 struct cgroup *next;
3089
3090 WARN_ON_ONCE(!rcu_read_lock_held());
3091
3092 /* if first iteration, pretend we just visited @cgroup */
7805d000 3093 if (!pos)
574bd9f7 3094 pos = cgroup;
574bd9f7
TH
3095
3096 /* visit the first child if exists */
3097 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3098 if (next)
3099 return next;
3100
3101 /* no child, visit my or the closest ancestor's next sibling */
7805d000 3102 while (pos != cgroup) {
75501a6d
TH
3103 next = cgroup_next_sibling(pos);
3104 if (next)
574bd9f7 3105 return next;
574bd9f7 3106 pos = pos->parent;
7805d000 3107 }
574bd9f7
TH
3108
3109 return NULL;
3110}
3111EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3112
12a9d2fe
TH
3113/**
3114 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3115 * @pos: cgroup of interest
3116 *
3117 * Return the rightmost descendant of @pos. If there's no descendant,
3118 * @pos is returned. This can be used during pre-order traversal to skip
3119 * subtree of @pos.
75501a6d
TH
3120 *
3121 * While this function requires RCU read locking, it doesn't require the
3122 * whole traversal to be contained in a single RCU critical section. This
3123 * function will return the correct rightmost descendant as long as @pos is
3124 * accessible.
12a9d2fe
TH
3125 */
3126struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3127{
3128 struct cgroup *last, *tmp;
3129
3130 WARN_ON_ONCE(!rcu_read_lock_held());
3131
3132 do {
3133 last = pos;
3134 /* ->prev isn't RCU safe, walk ->next till the end */
3135 pos = NULL;
3136 list_for_each_entry_rcu(tmp, &last->children, sibling)
3137 pos = tmp;
3138 } while (pos);
3139
3140 return last;
3141}
3142EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3143
574bd9f7
TH
3144static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3145{
3146 struct cgroup *last;
3147
3148 do {
3149 last = pos;
3150 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3151 sibling);
3152 } while (pos);
3153
3154 return last;
3155}
3156
3157/**
3158 * cgroup_next_descendant_post - find the next descendant for post-order walk
3159 * @pos: the current position (%NULL to initiate traversal)
3160 * @cgroup: cgroup whose descendants to walk
3161 *
3162 * To be used by cgroup_for_each_descendant_post(). Find the next
3163 * descendant to visit for post-order traversal of @cgroup's descendants.
75501a6d
TH
3164 *
3165 * While this function requires RCU read locking, it doesn't require the
3166 * whole traversal to be contained in a single RCU critical section. This
3167 * function will return the correct next descendant as long as both @pos
3168 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3169 */
3170struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3171 struct cgroup *cgroup)
3172{
3173 struct cgroup *next;
3174
3175 WARN_ON_ONCE(!rcu_read_lock_held());
3176
3177 /* if first iteration, visit the leftmost descendant */
3178 if (!pos) {
3179 next = cgroup_leftmost_descendant(cgroup);
3180 return next != cgroup ? next : NULL;
3181 }
3182
3183 /* if there's an unvisited sibling, visit its leftmost descendant */
75501a6d
TH
3184 next = cgroup_next_sibling(pos);
3185 if (next)
574bd9f7
TH
3186 return cgroup_leftmost_descendant(next);
3187
3188 /* no sibling left, visit parent */
3189 next = pos->parent;
3190 return next != cgroup ? next : NULL;
3191}
3192EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3193
bd89aabc 3194void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3195 __acquires(css_set_lock)
817929ec
PM
3196{
3197 /*
3198 * The first time anyone tries to iterate across a cgroup,
3199 * we need to enable the list linking each css_set to its
3200 * tasks, and fix up all existing tasks.
3201 */
31a7df01
CW
3202 if (!use_task_css_set_links)
3203 cgroup_enable_task_cg_lists();
3204
817929ec 3205 read_lock(&css_set_lock);
69d0206c 3206 it->cset_link = &cgrp->cset_links;
bd89aabc 3207 cgroup_advance_iter(cgrp, it);
817929ec
PM
3208}
3209
bd89aabc 3210struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3211 struct cgroup_iter *it)
3212{
3213 struct task_struct *res;
3214 struct list_head *l = it->task;
69d0206c 3215 struct cgrp_cset_link *link;
817929ec
PM
3216
3217 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3218 if (!it->cset_link)
817929ec
PM
3219 return NULL;
3220 res = list_entry(l, struct task_struct, cg_list);
3221 /* Advance iterator to find next entry */
3222 l = l->next;
69d0206c
TH
3223 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3224 if (l == &link->cset->tasks) {
817929ec
PM
3225 /* We reached the end of this task list - move on to
3226 * the next cg_cgroup_link */
bd89aabc 3227 cgroup_advance_iter(cgrp, it);
817929ec
PM
3228 } else {
3229 it->task = l;
3230 }
3231 return res;
3232}
3233
bd89aabc 3234void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3235 __releases(css_set_lock)
817929ec
PM
3236{
3237 read_unlock(&css_set_lock);
3238}
3239
31a7df01
CW
3240static inline int started_after_time(struct task_struct *t1,
3241 struct timespec *time,
3242 struct task_struct *t2)
3243{
3244 int start_diff = timespec_compare(&t1->start_time, time);
3245 if (start_diff > 0) {
3246 return 1;
3247 } else if (start_diff < 0) {
3248 return 0;
3249 } else {
3250 /*
3251 * Arbitrarily, if two processes started at the same
3252 * time, we'll say that the lower pointer value
3253 * started first. Note that t2 may have exited by now
3254 * so this may not be a valid pointer any longer, but
3255 * that's fine - it still serves to distinguish
3256 * between two tasks started (effectively) simultaneously.
3257 */
3258 return t1 > t2;
3259 }
3260}
3261
3262/*
3263 * This function is a callback from heap_insert() and is used to order
3264 * the heap.
3265 * In this case we order the heap in descending task start time.
3266 */
3267static inline int started_after(void *p1, void *p2)
3268{
3269 struct task_struct *t1 = p1;
3270 struct task_struct *t2 = p2;
3271 return started_after_time(t1, &t2->start_time, t2);
3272}
3273
3274/**
3275 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3276 * @scan: struct cgroup_scanner containing arguments for the scan
3277 *
3278 * Arguments include pointers to callback functions test_task() and
3279 * process_task().
3280 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3281 * and if it returns true, call process_task() for it also.
3282 * The test_task pointer may be NULL, meaning always true (select all tasks).
3283 * Effectively duplicates cgroup_iter_{start,next,end}()
3284 * but does not lock css_set_lock for the call to process_task().
3285 * The struct cgroup_scanner may be embedded in any structure of the caller's
3286 * creation.
3287 * It is guaranteed that process_task() will act on every task that
3288 * is a member of the cgroup for the duration of this call. This
3289 * function may or may not call process_task() for tasks that exit
3290 * or move to a different cgroup during the call, or are forked or
3291 * move into the cgroup during the call.
3292 *
3293 * Note that test_task() may be called with locks held, and may in some
3294 * situations be called multiple times for the same task, so it should
3295 * be cheap.
3296 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3297 * pre-allocated and will be used for heap operations (and its "gt" member will
3298 * be overwritten), else a temporary heap will be used (allocation of which
3299 * may cause this function to fail).
3300 */
3301int cgroup_scan_tasks(struct cgroup_scanner *scan)
3302{
3303 int retval, i;
3304 struct cgroup_iter it;
3305 struct task_struct *p, *dropped;
3306 /* Never dereference latest_task, since it's not refcounted */
3307 struct task_struct *latest_task = NULL;
3308 struct ptr_heap tmp_heap;
3309 struct ptr_heap *heap;
3310 struct timespec latest_time = { 0, 0 };
3311
3312 if (scan->heap) {
3313 /* The caller supplied our heap and pre-allocated its memory */
3314 heap = scan->heap;
3315 heap->gt = &started_after;
3316 } else {
3317 /* We need to allocate our own heap memory */
3318 heap = &tmp_heap;
3319 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3320 if (retval)
3321 /* cannot allocate the heap */
3322 return retval;
3323 }
3324
3325 again:
3326 /*
3327 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3328 * to determine which are of interest, and using the scanner's
3329 * "process_task" callback to process any of them that need an update.
3330 * Since we don't want to hold any locks during the task updates,
3331 * gather tasks to be processed in a heap structure.
3332 * The heap is sorted by descending task start time.
3333 * If the statically-sized heap fills up, we overflow tasks that
3334 * started later, and in future iterations only consider tasks that
3335 * started after the latest task in the previous pass. This
3336 * guarantees forward progress and that we don't miss any tasks.
3337 */
3338 heap->size = 0;
3339 cgroup_iter_start(scan->cg, &it);
3340 while ((p = cgroup_iter_next(scan->cg, &it))) {
3341 /*
3342 * Only affect tasks that qualify per the caller's callback,
3343 * if he provided one
3344 */
3345 if (scan->test_task && !scan->test_task(p, scan))
3346 continue;
3347 /*
3348 * Only process tasks that started after the last task
3349 * we processed
3350 */
3351 if (!started_after_time(p, &latest_time, latest_task))
3352 continue;
3353 dropped = heap_insert(heap, p);
3354 if (dropped == NULL) {
3355 /*
3356 * The new task was inserted; the heap wasn't
3357 * previously full
3358 */
3359 get_task_struct(p);
3360 } else if (dropped != p) {
3361 /*
3362 * The new task was inserted, and pushed out a
3363 * different task
3364 */
3365 get_task_struct(p);
3366 put_task_struct(dropped);
3367 }
3368 /*
3369 * Else the new task was newer than anything already in
3370 * the heap and wasn't inserted
3371 */
3372 }
3373 cgroup_iter_end(scan->cg, &it);
3374
3375 if (heap->size) {
3376 for (i = 0; i < heap->size; i++) {
4fe91d51 3377 struct task_struct *q = heap->ptrs[i];
31a7df01 3378 if (i == 0) {
4fe91d51
PJ
3379 latest_time = q->start_time;
3380 latest_task = q;
31a7df01
CW
3381 }
3382 /* Process the task per the caller's callback */
4fe91d51
PJ
3383 scan->process_task(q, scan);
3384 put_task_struct(q);
31a7df01
CW
3385 }
3386 /*
3387 * If we had to process any tasks at all, scan again
3388 * in case some of them were in the middle of forking
3389 * children that didn't get processed.
3390 * Not the most efficient way to do it, but it avoids
3391 * having to take callback_mutex in the fork path
3392 */
3393 goto again;
3394 }
3395 if (heap == &tmp_heap)
3396 heap_free(&tmp_heap);
3397 return 0;
3398}
3399
8cc99345
TH
3400static void cgroup_transfer_one_task(struct task_struct *task,
3401 struct cgroup_scanner *scan)
3402{
3403 struct cgroup *new_cgroup = scan->data;
3404
47cfcd09 3405 mutex_lock(&cgroup_mutex);
8cc99345 3406 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3407 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3408}
3409
3410/**
3411 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3412 * @to: cgroup to which the tasks will be moved
3413 * @from: cgroup in which the tasks currently reside
3414 */
3415int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3416{
3417 struct cgroup_scanner scan;
3418
3419 scan.cg = from;
3420 scan.test_task = NULL; /* select all tasks in cgroup */
3421 scan.process_task = cgroup_transfer_one_task;
3422 scan.heap = NULL;
3423 scan.data = to;
3424
3425 return cgroup_scan_tasks(&scan);
3426}
3427
bbcb81d0 3428/*
102a775e 3429 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3430 *
3431 * Reading this file can return large amounts of data if a cgroup has
3432 * *lots* of attached tasks. So it may need several calls to read(),
3433 * but we cannot guarantee that the information we produce is correct
3434 * unless we produce it entirely atomically.
3435 *
bbcb81d0 3436 */
bbcb81d0 3437
24528255
LZ
3438/* which pidlist file are we talking about? */
3439enum cgroup_filetype {
3440 CGROUP_FILE_PROCS,
3441 CGROUP_FILE_TASKS,
3442};
3443
3444/*
3445 * A pidlist is a list of pids that virtually represents the contents of one
3446 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3447 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3448 * to the cgroup.
3449 */
3450struct cgroup_pidlist {
3451 /*
3452 * used to find which pidlist is wanted. doesn't change as long as
3453 * this particular list stays in the list.
3454 */
3455 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3456 /* array of xids */
3457 pid_t *list;
3458 /* how many elements the above list has */
3459 int length;
3460 /* how many files are using the current array */
3461 int use_count;
3462 /* each of these stored in a list by its cgroup */
3463 struct list_head links;
3464 /* pointer to the cgroup we belong to, for list removal purposes */
3465 struct cgroup *owner;
3466 /* protects the other fields */
3467 struct rw_semaphore mutex;
3468};
3469
d1d9fd33
BB
3470/*
3471 * The following two functions "fix" the issue where there are more pids
3472 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3473 * TODO: replace with a kernel-wide solution to this problem
3474 */
3475#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3476static void *pidlist_allocate(int count)
3477{
3478 if (PIDLIST_TOO_LARGE(count))
3479 return vmalloc(count * sizeof(pid_t));
3480 else
3481 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3482}
3483static void pidlist_free(void *p)
3484{
3485 if (is_vmalloc_addr(p))
3486 vfree(p);
3487 else
3488 kfree(p);
3489}
d1d9fd33 3490
bbcb81d0 3491/*
102a775e 3492 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3493 * Returns the number of unique elements.
bbcb81d0 3494 */
6ee211ad 3495static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3496{
102a775e 3497 int src, dest = 1;
102a775e
BB
3498
3499 /*
3500 * we presume the 0th element is unique, so i starts at 1. trivial
3501 * edge cases first; no work needs to be done for either
3502 */
3503 if (length == 0 || length == 1)
3504 return length;
3505 /* src and dest walk down the list; dest counts unique elements */
3506 for (src = 1; src < length; src++) {
3507 /* find next unique element */
3508 while (list[src] == list[src-1]) {
3509 src++;
3510 if (src == length)
3511 goto after;
3512 }
3513 /* dest always points to where the next unique element goes */
3514 list[dest] = list[src];
3515 dest++;
3516 }
3517after:
102a775e
BB
3518 return dest;
3519}
3520
3521static int cmppid(const void *a, const void *b)
3522{
3523 return *(pid_t *)a - *(pid_t *)b;
3524}
3525
72a8cb30
BB
3526/*
3527 * find the appropriate pidlist for our purpose (given procs vs tasks)
3528 * returns with the lock on that pidlist already held, and takes care
3529 * of the use count, or returns NULL with no locks held if we're out of
3530 * memory.
3531 */
3532static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3533 enum cgroup_filetype type)
3534{
3535 struct cgroup_pidlist *l;
3536 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3537 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3538
72a8cb30
BB
3539 /*
3540 * We can't drop the pidlist_mutex before taking the l->mutex in case
3541 * the last ref-holder is trying to remove l from the list at the same
3542 * time. Holding the pidlist_mutex precludes somebody taking whichever
3543 * list we find out from under us - compare release_pid_array().
3544 */
3545 mutex_lock(&cgrp->pidlist_mutex);
3546 list_for_each_entry(l, &cgrp->pidlists, links) {
3547 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3548 /* make sure l doesn't vanish out from under us */
3549 down_write(&l->mutex);
3550 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3551 return l;
3552 }
3553 }
3554 /* entry not found; create a new one */
f4f4be2b 3555 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3556 if (!l) {
3557 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3558 return l;
3559 }
3560 init_rwsem(&l->mutex);
3561 down_write(&l->mutex);
3562 l->key.type = type;
b70cc5fd 3563 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3564 l->owner = cgrp;
3565 list_add(&l->links, &cgrp->pidlists);
3566 mutex_unlock(&cgrp->pidlist_mutex);
3567 return l;
3568}
3569
102a775e
BB
3570/*
3571 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3572 */
72a8cb30
BB
3573static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3574 struct cgroup_pidlist **lp)
102a775e
BB
3575{
3576 pid_t *array;
3577 int length;
3578 int pid, n = 0; /* used for populating the array */
817929ec
PM
3579 struct cgroup_iter it;
3580 struct task_struct *tsk;
102a775e
BB
3581 struct cgroup_pidlist *l;
3582
3583 /*
3584 * If cgroup gets more users after we read count, we won't have
3585 * enough space - tough. This race is indistinguishable to the
3586 * caller from the case that the additional cgroup users didn't
3587 * show up until sometime later on.
3588 */
3589 length = cgroup_task_count(cgrp);
d1d9fd33 3590 array = pidlist_allocate(length);
102a775e
BB
3591 if (!array)
3592 return -ENOMEM;
3593 /* now, populate the array */
bd89aabc
PM
3594 cgroup_iter_start(cgrp, &it);
3595 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3596 if (unlikely(n == length))
817929ec 3597 break;
102a775e 3598 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3599 if (type == CGROUP_FILE_PROCS)
3600 pid = task_tgid_vnr(tsk);
3601 else
3602 pid = task_pid_vnr(tsk);
102a775e
BB
3603 if (pid > 0) /* make sure to only use valid results */
3604 array[n++] = pid;
817929ec 3605 }
bd89aabc 3606 cgroup_iter_end(cgrp, &it);
102a775e
BB
3607 length = n;
3608 /* now sort & (if procs) strip out duplicates */
3609 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3610 if (type == CGROUP_FILE_PROCS)
6ee211ad 3611 length = pidlist_uniq(array, length);
72a8cb30
BB
3612 l = cgroup_pidlist_find(cgrp, type);
3613 if (!l) {
d1d9fd33 3614 pidlist_free(array);
72a8cb30 3615 return -ENOMEM;
102a775e 3616 }
72a8cb30 3617 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3618 pidlist_free(l->list);
102a775e
BB
3619 l->list = array;
3620 l->length = length;
3621 l->use_count++;
3622 up_write(&l->mutex);
72a8cb30 3623 *lp = l;
102a775e 3624 return 0;
bbcb81d0
PM
3625}
3626
846c7bb0 3627/**
a043e3b2 3628 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3629 * @stats: cgroupstats to fill information into
3630 * @dentry: A dentry entry belonging to the cgroup for which stats have
3631 * been requested.
a043e3b2
LZ
3632 *
3633 * Build and fill cgroupstats so that taskstats can export it to user
3634 * space.
846c7bb0
BS
3635 */
3636int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3637{
3638 int ret = -EINVAL;
bd89aabc 3639 struct cgroup *cgrp;
846c7bb0
BS
3640 struct cgroup_iter it;
3641 struct task_struct *tsk;
33d283be 3642
846c7bb0 3643 /*
33d283be
LZ
3644 * Validate dentry by checking the superblock operations,
3645 * and make sure it's a directory.
846c7bb0 3646 */
33d283be
LZ
3647 if (dentry->d_sb->s_op != &cgroup_ops ||
3648 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3649 goto err;
3650
3651 ret = 0;
bd89aabc 3652 cgrp = dentry->d_fsdata;
846c7bb0 3653
bd89aabc
PM
3654 cgroup_iter_start(cgrp, &it);
3655 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3656 switch (tsk->state) {
3657 case TASK_RUNNING:
3658 stats->nr_running++;
3659 break;
3660 case TASK_INTERRUPTIBLE:
3661 stats->nr_sleeping++;
3662 break;
3663 case TASK_UNINTERRUPTIBLE:
3664 stats->nr_uninterruptible++;
3665 break;
3666 case TASK_STOPPED:
3667 stats->nr_stopped++;
3668 break;
3669 default:
3670 if (delayacct_is_task_waiting_on_io(tsk))
3671 stats->nr_io_wait++;
3672 break;
3673 }
3674 }
bd89aabc 3675 cgroup_iter_end(cgrp, &it);
846c7bb0 3676
846c7bb0
BS
3677err:
3678 return ret;
3679}
3680
8f3ff208 3681
bbcb81d0 3682/*
102a775e 3683 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3684 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3685 * in the cgroup->l->list array.
bbcb81d0 3686 */
cc31edce 3687
102a775e 3688static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3689{
cc31edce
PM
3690 /*
3691 * Initially we receive a position value that corresponds to
3692 * one more than the last pid shown (or 0 on the first call or
3693 * after a seek to the start). Use a binary-search to find the
3694 * next pid to display, if any
3695 */
102a775e 3696 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3697 int index = 0, pid = *pos;
3698 int *iter;
3699
102a775e 3700 down_read(&l->mutex);
cc31edce 3701 if (pid) {
102a775e 3702 int end = l->length;
20777766 3703
cc31edce
PM
3704 while (index < end) {
3705 int mid = (index + end) / 2;
102a775e 3706 if (l->list[mid] == pid) {
cc31edce
PM
3707 index = mid;
3708 break;
102a775e 3709 } else if (l->list[mid] <= pid)
cc31edce
PM
3710 index = mid + 1;
3711 else
3712 end = mid;
3713 }
3714 }
3715 /* If we're off the end of the array, we're done */
102a775e 3716 if (index >= l->length)
cc31edce
PM
3717 return NULL;
3718 /* Update the abstract position to be the actual pid that we found */
102a775e 3719 iter = l->list + index;
cc31edce
PM
3720 *pos = *iter;
3721 return iter;
3722}
3723
102a775e 3724static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3725{
102a775e
BB
3726 struct cgroup_pidlist *l = s->private;
3727 up_read(&l->mutex);
cc31edce
PM
3728}
3729
102a775e 3730static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3731{
102a775e
BB
3732 struct cgroup_pidlist *l = s->private;
3733 pid_t *p = v;
3734 pid_t *end = l->list + l->length;
cc31edce
PM
3735 /*
3736 * Advance to the next pid in the array. If this goes off the
3737 * end, we're done
3738 */
3739 p++;
3740 if (p >= end) {
3741 return NULL;
3742 } else {
3743 *pos = *p;
3744 return p;
3745 }
3746}
3747
102a775e 3748static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3749{
3750 return seq_printf(s, "%d\n", *(int *)v);
3751}
bbcb81d0 3752
102a775e
BB
3753/*
3754 * seq_operations functions for iterating on pidlists through seq_file -
3755 * independent of whether it's tasks or procs
3756 */
3757static const struct seq_operations cgroup_pidlist_seq_operations = {
3758 .start = cgroup_pidlist_start,
3759 .stop = cgroup_pidlist_stop,
3760 .next = cgroup_pidlist_next,
3761 .show = cgroup_pidlist_show,
cc31edce
PM
3762};
3763
102a775e 3764static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3765{
72a8cb30
BB
3766 /*
3767 * the case where we're the last user of this particular pidlist will
3768 * have us remove it from the cgroup's list, which entails taking the
3769 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3770 * pidlist_mutex, we have to take pidlist_mutex first.
3771 */
3772 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3773 down_write(&l->mutex);
3774 BUG_ON(!l->use_count);
3775 if (!--l->use_count) {
72a8cb30
BB
3776 /* we're the last user if refcount is 0; remove and free */
3777 list_del(&l->links);
3778 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3779 pidlist_free(l->list);
72a8cb30
BB
3780 put_pid_ns(l->key.ns);
3781 up_write(&l->mutex);
3782 kfree(l);
3783 return;
cc31edce 3784 }
72a8cb30 3785 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3786 up_write(&l->mutex);
bbcb81d0
PM
3787}
3788
102a775e 3789static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3790{
102a775e 3791 struct cgroup_pidlist *l;
cc31edce
PM
3792 if (!(file->f_mode & FMODE_READ))
3793 return 0;
102a775e
BB
3794 /*
3795 * the seq_file will only be initialized if the file was opened for
3796 * reading; hence we check if it's not null only in that case.
3797 */
3798 l = ((struct seq_file *)file->private_data)->private;
3799 cgroup_release_pid_array(l);
cc31edce
PM
3800 return seq_release(inode, file);
3801}
3802
102a775e 3803static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3804 .read = seq_read,
3805 .llseek = seq_lseek,
3806 .write = cgroup_file_write,
102a775e 3807 .release = cgroup_pidlist_release,
cc31edce
PM
3808};
3809
bbcb81d0 3810/*
102a775e
BB
3811 * The following functions handle opens on a file that displays a pidlist
3812 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3813 * in the cgroup.
bbcb81d0 3814 */
102a775e 3815/* helper function for the two below it */
72a8cb30 3816static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3817{
bd89aabc 3818 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3819 struct cgroup_pidlist *l;
cc31edce 3820 int retval;
bbcb81d0 3821
cc31edce 3822 /* Nothing to do for write-only files */
bbcb81d0
PM
3823 if (!(file->f_mode & FMODE_READ))
3824 return 0;
3825
102a775e 3826 /* have the array populated */
72a8cb30 3827 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3828 if (retval)
3829 return retval;
3830 /* configure file information */
3831 file->f_op = &cgroup_pidlist_operations;
cc31edce 3832
102a775e 3833 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3834 if (retval) {
102a775e 3835 cgroup_release_pid_array(l);
cc31edce 3836 return retval;
bbcb81d0 3837 }
102a775e 3838 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3839 return 0;
3840}
102a775e
BB
3841static int cgroup_tasks_open(struct inode *unused, struct file *file)
3842{
72a8cb30 3843 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3844}
3845static int cgroup_procs_open(struct inode *unused, struct file *file)
3846{
72a8cb30 3847 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3848}
bbcb81d0 3849
bd89aabc 3850static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3851 struct cftype *cft)
3852{
bd89aabc 3853 return notify_on_release(cgrp);
81a6a5cd
PM
3854}
3855
6379c106
PM
3856static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3857 struct cftype *cft,
3858 u64 val)
3859{
3860 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3861 if (val)
3862 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3863 else
3864 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3865 return 0;
3866}
3867
1c8158ee
LZ
3868/*
3869 * When dput() is called asynchronously, if umount has been done and
3870 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3871 * there's a small window that vfs will see the root dentry with non-zero
3872 * refcnt and trigger BUG().
3873 *
3874 * That's why we hold a reference before dput() and drop it right after.
3875 */
3876static void cgroup_dput(struct cgroup *cgrp)
3877{
3878 struct super_block *sb = cgrp->root->sb;
3879
3880 atomic_inc(&sb->s_active);
3881 dput(cgrp->dentry);
3882 deactivate_super(sb);
3883}
3884
0dea1168
KS
3885/*
3886 * Unregister event and free resources.
3887 *
3888 * Gets called from workqueue.
3889 */
3890static void cgroup_event_remove(struct work_struct *work)
3891{
3892 struct cgroup_event *event = container_of(work, struct cgroup_event,
3893 remove);
3894 struct cgroup *cgrp = event->cgrp;
3895
810cbee4
LZ
3896 remove_wait_queue(event->wqh, &event->wait);
3897
0dea1168
KS
3898 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3899
810cbee4
LZ
3900 /* Notify userspace the event is going away. */
3901 eventfd_signal(event->eventfd, 1);
3902
0dea1168 3903 eventfd_ctx_put(event->eventfd);
0dea1168 3904 kfree(event);
1c8158ee 3905 cgroup_dput(cgrp);
0dea1168
KS
3906}
3907
3908/*
3909 * Gets called on POLLHUP on eventfd when user closes it.
3910 *
3911 * Called with wqh->lock held and interrupts disabled.
3912 */
3913static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3914 int sync, void *key)
3915{
3916 struct cgroup_event *event = container_of(wait,
3917 struct cgroup_event, wait);
3918 struct cgroup *cgrp = event->cgrp;
3919 unsigned long flags = (unsigned long)key;
3920
3921 if (flags & POLLHUP) {
0dea1168 3922 /*
810cbee4
LZ
3923 * If the event has been detached at cgroup removal, we
3924 * can simply return knowing the other side will cleanup
3925 * for us.
3926 *
3927 * We can't race against event freeing since the other
3928 * side will require wqh->lock via remove_wait_queue(),
3929 * which we hold.
0dea1168 3930 */
810cbee4
LZ
3931 spin_lock(&cgrp->event_list_lock);
3932 if (!list_empty(&event->list)) {
3933 list_del_init(&event->list);
3934 /*
3935 * We are in atomic context, but cgroup_event_remove()
3936 * may sleep, so we have to call it in workqueue.
3937 */
3938 schedule_work(&event->remove);
3939 }
3940 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3941 }
3942
3943 return 0;
3944}
3945
3946static void cgroup_event_ptable_queue_proc(struct file *file,
3947 wait_queue_head_t *wqh, poll_table *pt)
3948{
3949 struct cgroup_event *event = container_of(pt,
3950 struct cgroup_event, pt);
3951
3952 event->wqh = wqh;
3953 add_wait_queue(wqh, &event->wait);
3954}
3955
3956/*
3957 * Parse input and register new cgroup event handler.
3958 *
3959 * Input must be in format '<event_fd> <control_fd> <args>'.
3960 * Interpretation of args is defined by control file implementation.
3961 */
3962static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3963 const char *buffer)
3964{
3965 struct cgroup_event *event = NULL;
f169007b 3966 struct cgroup *cgrp_cfile;
0dea1168
KS
3967 unsigned int efd, cfd;
3968 struct file *efile = NULL;
3969 struct file *cfile = NULL;
3970 char *endp;
3971 int ret;
3972
3973 efd = simple_strtoul(buffer, &endp, 10);
3974 if (*endp != ' ')
3975 return -EINVAL;
3976 buffer = endp + 1;
3977
3978 cfd = simple_strtoul(buffer, &endp, 10);
3979 if ((*endp != ' ') && (*endp != '\0'))
3980 return -EINVAL;
3981 buffer = endp + 1;
3982
3983 event = kzalloc(sizeof(*event), GFP_KERNEL);
3984 if (!event)
3985 return -ENOMEM;
3986 event->cgrp = cgrp;
3987 INIT_LIST_HEAD(&event->list);
3988 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3989 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3990 INIT_WORK(&event->remove, cgroup_event_remove);
3991
3992 efile = eventfd_fget(efd);
3993 if (IS_ERR(efile)) {
3994 ret = PTR_ERR(efile);
3995 goto fail;
3996 }
3997
3998 event->eventfd = eventfd_ctx_fileget(efile);
3999 if (IS_ERR(event->eventfd)) {
4000 ret = PTR_ERR(event->eventfd);
4001 goto fail;
4002 }
4003
4004 cfile = fget(cfd);
4005 if (!cfile) {
4006 ret = -EBADF;
4007 goto fail;
4008 }
4009
4010 /* the process need read permission on control file */
3bfa784a 4011 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 4012 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
4013 if (ret < 0)
4014 goto fail;
4015
4016 event->cft = __file_cft(cfile);
4017 if (IS_ERR(event->cft)) {
4018 ret = PTR_ERR(event->cft);
4019 goto fail;
4020 }
4021
f169007b
LZ
4022 /*
4023 * The file to be monitored must be in the same cgroup as
4024 * cgroup.event_control is.
4025 */
4026 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4027 if (cgrp_cfile != cgrp) {
4028 ret = -EINVAL;
4029 goto fail;
4030 }
4031
0dea1168
KS
4032 if (!event->cft->register_event || !event->cft->unregister_event) {
4033 ret = -EINVAL;
4034 goto fail;
4035 }
4036
4037 ret = event->cft->register_event(cgrp, event->cft,
4038 event->eventfd, buffer);
4039 if (ret)
4040 goto fail;
4041
7ef70e48 4042 efile->f_op->poll(efile, &event->pt);
0dea1168 4043
a0a4db54
KS
4044 /*
4045 * Events should be removed after rmdir of cgroup directory, but before
4046 * destroying subsystem state objects. Let's take reference to cgroup
4047 * directory dentry to do that.
4048 */
4049 dget(cgrp->dentry);
4050
0dea1168
KS
4051 spin_lock(&cgrp->event_list_lock);
4052 list_add(&event->list, &cgrp->event_list);
4053 spin_unlock(&cgrp->event_list_lock);
4054
4055 fput(cfile);
4056 fput(efile);
4057
4058 return 0;
4059
4060fail:
4061 if (cfile)
4062 fput(cfile);
4063
4064 if (event && event->eventfd && !IS_ERR(event->eventfd))
4065 eventfd_ctx_put(event->eventfd);
4066
4067 if (!IS_ERR_OR_NULL(efile))
4068 fput(efile);
4069
4070 kfree(event);
4071
4072 return ret;
4073}
4074
97978e6d
DL
4075static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4076 struct cftype *cft)
4077{
2260e7fc 4078 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4079}
4080
4081static int cgroup_clone_children_write(struct cgroup *cgrp,
4082 struct cftype *cft,
4083 u64 val)
4084{
4085 if (val)
2260e7fc 4086 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4087 else
2260e7fc 4088 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4089 return 0;
4090}
4091
d5c56ced 4092static struct cftype cgroup_base_files[] = {
81a6a5cd 4093 {
d5c56ced 4094 .name = "cgroup.procs",
102a775e 4095 .open = cgroup_procs_open,
74a1166d 4096 .write_u64 = cgroup_procs_write,
102a775e 4097 .release = cgroup_pidlist_release,
74a1166d 4098 .mode = S_IRUGO | S_IWUSR,
102a775e 4099 },
81a6a5cd 4100 {
d5c56ced 4101 .name = "cgroup.event_control",
0dea1168
KS
4102 .write_string = cgroup_write_event_control,
4103 .mode = S_IWUGO,
4104 },
97978e6d
DL
4105 {
4106 .name = "cgroup.clone_children",
873fe09e 4107 .flags = CFTYPE_INSANE,
97978e6d
DL
4108 .read_u64 = cgroup_clone_children_read,
4109 .write_u64 = cgroup_clone_children_write,
4110 },
873fe09e
TH
4111 {
4112 .name = "cgroup.sane_behavior",
4113 .flags = CFTYPE_ONLY_ON_ROOT,
4114 .read_seq_string = cgroup_sane_behavior_show,
4115 },
d5c56ced
TH
4116
4117 /*
4118 * Historical crazy stuff. These don't have "cgroup." prefix and
4119 * don't exist if sane_behavior. If you're depending on these, be
4120 * prepared to be burned.
4121 */
4122 {
4123 .name = "tasks",
4124 .flags = CFTYPE_INSANE, /* use "procs" instead */
4125 .open = cgroup_tasks_open,
4126 .write_u64 = cgroup_tasks_write,
4127 .release = cgroup_pidlist_release,
4128 .mode = S_IRUGO | S_IWUSR,
4129 },
4130 {
4131 .name = "notify_on_release",
4132 .flags = CFTYPE_INSANE,
4133 .read_u64 = cgroup_read_notify_on_release,
4134 .write_u64 = cgroup_write_notify_on_release,
4135 },
6e6ff25b
TH
4136 {
4137 .name = "release_agent",
cc5943a7 4138 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4139 .read_seq_string = cgroup_release_agent_show,
4140 .write_string = cgroup_release_agent_write,
4141 .max_write_len = PATH_MAX,
4142 },
db0416b6 4143 { } /* terminate */
bbcb81d0
PM
4144};
4145
13af07df
AR
4146/**
4147 * cgroup_populate_dir - selectively creation of files in a directory
4148 * @cgrp: target cgroup
4149 * @base_files: true if the base files should be added
4150 * @subsys_mask: mask of the subsystem ids whose files should be added
4151 */
4152static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4153 unsigned long subsys_mask)
ddbcc7e8
PM
4154{
4155 int err;
4156 struct cgroup_subsys *ss;
4157
13af07df 4158 if (base_files) {
d5c56ced 4159 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
13af07df
AR
4160 if (err < 0)
4161 return err;
4162 }
bbcb81d0 4163
8e3f6541 4164 /* process cftsets of each subsystem */
5549c497 4165 for_each_root_subsys(cgrp->root, ss) {
8e3f6541 4166 struct cftype_set *set;
13af07df
AR
4167 if (!test_bit(ss->subsys_id, &subsys_mask))
4168 continue;
8e3f6541 4169
db0416b6 4170 list_for_each_entry(set, &ss->cftsets, node)
79578621 4171 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 4172 }
8e3f6541 4173
38460b48 4174 /* This cgroup is ready now */
5549c497 4175 for_each_root_subsys(cgrp->root, ss) {
38460b48
KH
4176 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4177 /*
4178 * Update id->css pointer and make this css visible from
4179 * CSS ID functions. This pointer will be dereferened
4180 * from RCU-read-side without locks.
4181 */
4182 if (css->id)
4183 rcu_assign_pointer(css->id->css, css);
4184 }
ddbcc7e8
PM
4185
4186 return 0;
4187}
4188
48ddbe19
TH
4189static void css_dput_fn(struct work_struct *work)
4190{
4191 struct cgroup_subsys_state *css =
4192 container_of(work, struct cgroup_subsys_state, dput_work);
4193
1c8158ee 4194 cgroup_dput(css->cgroup);
48ddbe19
TH
4195}
4196
d3daf28d
TH
4197static void css_release(struct percpu_ref *ref)
4198{
4199 struct cgroup_subsys_state *css =
4200 container_of(ref, struct cgroup_subsys_state, refcnt);
4201
4202 schedule_work(&css->dput_work);
4203}
4204
ddbcc7e8
PM
4205static void init_cgroup_css(struct cgroup_subsys_state *css,
4206 struct cgroup_subsys *ss,
bd89aabc 4207 struct cgroup *cgrp)
ddbcc7e8 4208{
bd89aabc 4209 css->cgroup = cgrp;
ddbcc7e8 4210 css->flags = 0;
38460b48 4211 css->id = NULL;
9871bf95 4212 if (cgrp == cgroup_dummy_top)
38b53aba 4213 css->flags |= CSS_ROOT;
bd89aabc
PM
4214 BUG_ON(cgrp->subsys[ss->subsys_id]);
4215 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4216
4217 /*
ed957793
TH
4218 * css holds an extra ref to @cgrp->dentry which is put on the last
4219 * css_put(). dput() requires process context, which css_put() may
4220 * be called without. @css->dput_work will be used to invoke
4221 * dput() asynchronously from css_put().
48ddbe19
TH
4222 */
4223 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4224}
4225
b1929db4
TH
4226/* invoke ->post_create() on a new CSS and mark it online if successful */
4227static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4228{
b1929db4
TH
4229 int ret = 0;
4230
a31f2d3f
TH
4231 lockdep_assert_held(&cgroup_mutex);
4232
92fb9748
TH
4233 if (ss->css_online)
4234 ret = ss->css_online(cgrp);
b1929db4
TH
4235 if (!ret)
4236 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4237 return ret;
a31f2d3f
TH
4238}
4239
4240/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4241static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4242 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4243{
4244 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4245
4246 lockdep_assert_held(&cgroup_mutex);
4247
4248 if (!(css->flags & CSS_ONLINE))
4249 return;
4250
d7eeac19 4251 if (ss->css_offline)
92fb9748 4252 ss->css_offline(cgrp);
a31f2d3f
TH
4253
4254 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4255}
4256
ddbcc7e8 4257/*
a043e3b2
LZ
4258 * cgroup_create - create a cgroup
4259 * @parent: cgroup that will be parent of the new cgroup
4260 * @dentry: dentry of the new cgroup
4261 * @mode: mode to set on new inode
ddbcc7e8 4262 *
a043e3b2 4263 * Must be called with the mutex on the parent inode held
ddbcc7e8 4264 */
ddbcc7e8 4265static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4266 umode_t mode)
ddbcc7e8 4267{
bd89aabc 4268 struct cgroup *cgrp;
65dff759 4269 struct cgroup_name *name;
ddbcc7e8
PM
4270 struct cgroupfs_root *root = parent->root;
4271 int err = 0;
4272 struct cgroup_subsys *ss;
4273 struct super_block *sb = root->sb;
4274
0a950f65 4275 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4276 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4277 if (!cgrp)
ddbcc7e8
PM
4278 return -ENOMEM;
4279
65dff759
LZ
4280 name = cgroup_alloc_name(dentry);
4281 if (!name)
4282 goto err_free_cgrp;
4283 rcu_assign_pointer(cgrp->name, name);
4284
0a950f65
TH
4285 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4286 if (cgrp->id < 0)
65dff759 4287 goto err_free_name;
0a950f65 4288
976c06bc
TH
4289 /*
4290 * Only live parents can have children. Note that the liveliness
4291 * check isn't strictly necessary because cgroup_mkdir() and
4292 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4293 * anyway so that locking is contained inside cgroup proper and we
4294 * don't get nasty surprises if we ever grow another caller.
4295 */
4296 if (!cgroup_lock_live_group(parent)) {
4297 err = -ENODEV;
0a950f65 4298 goto err_free_id;
976c06bc
TH
4299 }
4300
ddbcc7e8
PM
4301 /* Grab a reference on the superblock so the hierarchy doesn't
4302 * get deleted on unmount if there are child cgroups. This
4303 * can be done outside cgroup_mutex, since the sb can't
4304 * disappear while someone has an open control file on the
4305 * fs */
4306 atomic_inc(&sb->s_active);
4307
cc31edce 4308 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4309
fe1c06ca
LZ
4310 dentry->d_fsdata = cgrp;
4311 cgrp->dentry = dentry;
4312
bd89aabc
PM
4313 cgrp->parent = parent;
4314 cgrp->root = parent->root;
ddbcc7e8 4315
b6abdb0e
LZ
4316 if (notify_on_release(parent))
4317 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4318
2260e7fc
TH
4319 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4320 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4321
5549c497 4322 for_each_root_subsys(root, ss) {
8c7f6edb 4323 struct cgroup_subsys_state *css;
4528fd05 4324
92fb9748 4325 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4326 if (IS_ERR(css)) {
4327 err = PTR_ERR(css);
4b8b47eb 4328 goto err_free_all;
ddbcc7e8 4329 }
d3daf28d
TH
4330
4331 err = percpu_ref_init(&css->refcnt, css_release);
4332 if (err)
4333 goto err_free_all;
4334
bd89aabc 4335 init_cgroup_css(css, ss, cgrp);
d3daf28d 4336
4528fd05
LZ
4337 if (ss->use_id) {
4338 err = alloc_css_id(ss, parent, cgrp);
4339 if (err)
4b8b47eb 4340 goto err_free_all;
4528fd05 4341 }
ddbcc7e8
PM
4342 }
4343
4e139afc
TH
4344 /*
4345 * Create directory. cgroup_create_file() returns with the new
4346 * directory locked on success so that it can be populated without
4347 * dropping cgroup_mutex.
4348 */
28fd6f30 4349 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4350 if (err < 0)
4b8b47eb 4351 goto err_free_all;
4e139afc 4352 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4353
00356bd5 4354 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4355
4e139afc 4356 /* allocation complete, commit to creation */
4e139afc
TH
4357 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4358 root->number_of_cgroups++;
28fd6f30 4359
b1929db4 4360 /* each css holds a ref to the cgroup's dentry */
5549c497 4361 for_each_root_subsys(root, ss)
ed957793 4362 dget(dentry);
48ddbe19 4363
415cf07a
LZ
4364 /* hold a ref to the parent's dentry */
4365 dget(parent->dentry);
4366
b1929db4 4367 /* creation succeeded, notify subsystems */
5549c497 4368 for_each_root_subsys(root, ss) {
b1929db4
TH
4369 err = online_css(ss, cgrp);
4370 if (err)
4371 goto err_destroy;
1f869e87
GC
4372
4373 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4374 parent->parent) {
4375 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4376 current->comm, current->pid, ss->name);
4377 if (!strcmp(ss->name, "memory"))
4378 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4379 ss->warned_broken_hierarchy = true;
4380 }
a8638030
TH
4381 }
4382
a1a71b45 4383 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4384 if (err)
4385 goto err_destroy;
ddbcc7e8
PM
4386
4387 mutex_unlock(&cgroup_mutex);
bd89aabc 4388 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4389
4390 return 0;
4391
4b8b47eb 4392err_free_all:
5549c497 4393 for_each_root_subsys(root, ss) {
d3daf28d
TH
4394 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4395
4396 if (css) {
4397 percpu_ref_cancel_init(&css->refcnt);
92fb9748 4398 ss->css_free(cgrp);
d3daf28d 4399 }
ddbcc7e8 4400 }
ddbcc7e8 4401 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4402 /* Release the reference count that we took on the superblock */
4403 deactivate_super(sb);
0a950f65
TH
4404err_free_id:
4405 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4406err_free_name:
4407 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4408err_free_cgrp:
bd89aabc 4409 kfree(cgrp);
ddbcc7e8 4410 return err;
4b8b47eb
TH
4411
4412err_destroy:
4413 cgroup_destroy_locked(cgrp);
4414 mutex_unlock(&cgroup_mutex);
4415 mutex_unlock(&dentry->d_inode->i_mutex);
4416 return err;
ddbcc7e8
PM
4417}
4418
18bb1db3 4419static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4420{
4421 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4422
4423 /* the vfs holds inode->i_mutex already */
4424 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4425}
4426
d3daf28d
TH
4427static void cgroup_css_killed(struct cgroup *cgrp)
4428{
4429 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4430 return;
4431
4432 /* percpu ref's of all css's are killed, kick off the next step */
4433 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4434 schedule_work(&cgrp->destroy_work);
4435}
4436
4437static void css_ref_killed_fn(struct percpu_ref *ref)
4438{
4439 struct cgroup_subsys_state *css =
4440 container_of(ref, struct cgroup_subsys_state, refcnt);
4441
4442 cgroup_css_killed(css->cgroup);
4443}
4444
4445/**
4446 * cgroup_destroy_locked - the first stage of cgroup destruction
4447 * @cgrp: cgroup to be destroyed
4448 *
4449 * css's make use of percpu refcnts whose killing latency shouldn't be
4450 * exposed to userland and are RCU protected. Also, cgroup core needs to
4451 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4452 * invoked. To satisfy all the requirements, destruction is implemented in
4453 * the following two steps.
4454 *
4455 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4456 * userland visible parts and start killing the percpu refcnts of
4457 * css's. Set up so that the next stage will be kicked off once all
4458 * the percpu refcnts are confirmed to be killed.
4459 *
4460 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4461 * rest of destruction. Once all cgroup references are gone, the
4462 * cgroup is RCU-freed.
4463 *
4464 * This function implements s1. After this step, @cgrp is gone as far as
4465 * the userland is concerned and a new cgroup with the same name may be
4466 * created. As cgroup doesn't care about the names internally, this
4467 * doesn't cause any problem.
4468 */
42809dd4
TH
4469static int cgroup_destroy_locked(struct cgroup *cgrp)
4470 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4471{
42809dd4 4472 struct dentry *d = cgrp->dentry;
4ab78683 4473 struct cgroup_event *event, *tmp;
ed957793 4474 struct cgroup_subsys *ss;
ddd69148 4475 bool empty;
ddbcc7e8 4476
42809dd4
TH
4477 lockdep_assert_held(&d->d_inode->i_mutex);
4478 lockdep_assert_held(&cgroup_mutex);
4479
ddd69148 4480 /*
6f3d828f
TH
4481 * css_set_lock synchronizes access to ->cset_links and prevents
4482 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4483 */
4484 read_lock(&css_set_lock);
6f3d828f 4485 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4486 read_unlock(&css_set_lock);
4487 if (!empty)
ddbcc7e8 4488 return -EBUSY;
a043e3b2 4489
88703267 4490 /*
d3daf28d
TH
4491 * Block new css_tryget() by killing css refcnts. cgroup core
4492 * guarantees that, by the time ->css_offline() is invoked, no new
4493 * css reference will be given out via css_tryget(). We can't
4494 * simply call percpu_ref_kill() and proceed to offlining css's
4495 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4496 * as killed on all CPUs on return.
4497 *
4498 * Use percpu_ref_kill_and_confirm() to get notifications as each
4499 * css is confirmed to be seen as killed on all CPUs. The
4500 * notification callback keeps track of the number of css's to be
4501 * killed and schedules cgroup_offline_fn() to perform the rest of
4502 * destruction once the percpu refs of all css's are confirmed to
4503 * be killed.
88703267 4504 */
d3daf28d 4505 atomic_set(&cgrp->css_kill_cnt, 1);
5549c497 4506 for_each_root_subsys(cgrp->root, ss) {
ed957793 4507 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4508
d3daf28d
TH
4509 /*
4510 * Killing would put the base ref, but we need to keep it
4511 * alive until after ->css_offline.
4512 */
4513 percpu_ref_get(&css->refcnt);
4514
4515 atomic_inc(&cgrp->css_kill_cnt);
4516 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4517 }
d3daf28d 4518 cgroup_css_killed(cgrp);
455050d2
TH
4519
4520 /*
4521 * Mark @cgrp dead. This prevents further task migration and child
4522 * creation by disabling cgroup_lock_live_group(). Note that
4523 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4524 * resume iteration after dropping RCU read lock. See
4525 * cgroup_next_sibling() for details.
4526 */
54766d4a 4527 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4528
455050d2
TH
4529 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4530 raw_spin_lock(&release_list_lock);
4531 if (!list_empty(&cgrp->release_list))
4532 list_del_init(&cgrp->release_list);
4533 raw_spin_unlock(&release_list_lock);
4534
4535 /*
4536 * Remove @cgrp directory. The removal puts the base ref but we
4537 * aren't quite done with @cgrp yet, so hold onto it.
4538 */
4539 dget(d);
4540 cgroup_d_remove_dir(d);
4541
4542 /*
4543 * Unregister events and notify userspace.
4544 * Notify userspace about cgroup removing only after rmdir of cgroup
4545 * directory to avoid race between userspace and kernelspace.
4546 */
4547 spin_lock(&cgrp->event_list_lock);
4548 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4549 list_del_init(&event->list);
4550 schedule_work(&event->remove);
4551 }
4552 spin_unlock(&cgrp->event_list_lock);
4553
ea15f8cc
TH
4554 return 0;
4555};
4556
d3daf28d
TH
4557/**
4558 * cgroup_offline_fn - the second step of cgroup destruction
4559 * @work: cgroup->destroy_free_work
4560 *
4561 * This function is invoked from a work item for a cgroup which is being
4562 * destroyed after the percpu refcnts of all css's are guaranteed to be
4563 * seen as killed on all CPUs, and performs the rest of destruction. This
4564 * is the second step of destruction described in the comment above
4565 * cgroup_destroy_locked().
4566 */
ea15f8cc
TH
4567static void cgroup_offline_fn(struct work_struct *work)
4568{
4569 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4570 struct cgroup *parent = cgrp->parent;
4571 struct dentry *d = cgrp->dentry;
4572 struct cgroup_subsys *ss;
4573
4574 mutex_lock(&cgroup_mutex);
4575
d3daf28d
TH
4576 /*
4577 * css_tryget() is guaranteed to fail now. Tell subsystems to
4578 * initate destruction.
4579 */
5549c497 4580 for_each_root_subsys(cgrp->root, ss)
a31f2d3f 4581 offline_css(ss, cgrp);
ed957793
TH
4582
4583 /*
d3daf28d
TH
4584 * Put the css refs from cgroup_destroy_locked(). Each css holds
4585 * an extra reference to the cgroup's dentry and cgroup removal
4586 * proceeds regardless of css refs. On the last put of each css,
4587 * whenever that may be, the extra dentry ref is put so that dentry
4588 * destruction happens only after all css's are released.
ed957793 4589 */
5549c497 4590 for_each_root_subsys(cgrp->root, ss)
e9316080 4591 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4592
999cd8a4 4593 /* delete this cgroup from parent->children */
eb6fd504 4594 list_del_rcu(&cgrp->sibling);
b0ca5a84 4595
ddbcc7e8 4596 dput(d);
ddbcc7e8 4597
bd89aabc 4598 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4599 check_for_release(parent);
4600
ea15f8cc 4601 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4602}
4603
42809dd4
TH
4604static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4605{
4606 int ret;
4607
4608 mutex_lock(&cgroup_mutex);
4609 ret = cgroup_destroy_locked(dentry->d_fsdata);
4610 mutex_unlock(&cgroup_mutex);
4611
4612 return ret;
4613}
4614
8e3f6541
TH
4615static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4616{
4617 INIT_LIST_HEAD(&ss->cftsets);
4618
4619 /*
4620 * base_cftset is embedded in subsys itself, no need to worry about
4621 * deregistration.
4622 */
4623 if (ss->base_cftypes) {
4624 ss->base_cftset.cfts = ss->base_cftypes;
4625 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4626 }
4627}
4628
06a11920 4629static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4630{
ddbcc7e8 4631 struct cgroup_subsys_state *css;
cfe36bde
DC
4632
4633 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4634
648bb56d
TH
4635 mutex_lock(&cgroup_mutex);
4636
8e3f6541
TH
4637 /* init base cftset */
4638 cgroup_init_cftsets(ss);
4639
ddbcc7e8 4640 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4641 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4642 ss->root = &cgroup_dummy_root;
4643 css = ss->css_alloc(cgroup_dummy_top);
ddbcc7e8
PM
4644 /* We don't handle early failures gracefully */
4645 BUG_ON(IS_ERR(css));
9871bf95 4646 init_cgroup_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4647
e8d55fde 4648 /* Update the init_css_set to contain a subsys
817929ec 4649 * pointer to this state - since the subsystem is
e8d55fde
LZ
4650 * newly registered, all tasks and hence the
4651 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4652 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4653
4654 need_forkexit_callback |= ss->fork || ss->exit;
4655
e8d55fde
LZ
4656 /* At system boot, before all subsystems have been
4657 * registered, no tasks have been forked, so we don't
4658 * need to invoke fork callbacks here. */
4659 BUG_ON(!list_empty(&init_task.tasks));
4660
9871bf95 4661 BUG_ON(online_css(ss, cgroup_dummy_top));
a8638030 4662
648bb56d
TH
4663 mutex_unlock(&cgroup_mutex);
4664
e6a1105b
BB
4665 /* this function shouldn't be used with modular subsystems, since they
4666 * need to register a subsys_id, among other things */
4667 BUG_ON(ss->module);
4668}
4669
4670/**
4671 * cgroup_load_subsys: load and register a modular subsystem at runtime
4672 * @ss: the subsystem to load
4673 *
4674 * This function should be called in a modular subsystem's initcall. If the
88393161 4675 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4676 * up for use. If the subsystem is built-in anyway, work is delegated to the
4677 * simpler cgroup_init_subsys.
4678 */
4679int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4680{
e6a1105b 4681 struct cgroup_subsys_state *css;
d19e19de 4682 int i, ret;
b67bfe0d 4683 struct hlist_node *tmp;
5abb8855 4684 struct css_set *cset;
0ac801fe 4685 unsigned long key;
e6a1105b
BB
4686
4687 /* check name and function validity */
4688 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4689 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4690 return -EINVAL;
4691
4692 /*
4693 * we don't support callbacks in modular subsystems. this check is
4694 * before the ss->module check for consistency; a subsystem that could
4695 * be a module should still have no callbacks even if the user isn't
4696 * compiling it as one.
4697 */
4698 if (ss->fork || ss->exit)
4699 return -EINVAL;
4700
4701 /*
4702 * an optionally modular subsystem is built-in: we want to do nothing,
4703 * since cgroup_init_subsys will have already taken care of it.
4704 */
4705 if (ss->module == NULL) {
be45c900 4706 /* a sanity check */
9871bf95 4707 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4708 return 0;
4709 }
4710
8e3f6541
TH
4711 /* init base cftset */
4712 cgroup_init_cftsets(ss);
4713
e6a1105b 4714 mutex_lock(&cgroup_mutex);
9871bf95 4715 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4716
4717 /*
92fb9748 4718 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4719 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4720 * attachment).
e6a1105b 4721 */
9871bf95 4722 css = ss->css_alloc(cgroup_dummy_top);
e6a1105b 4723 if (IS_ERR(css)) {
9871bf95
TH
4724 /* failure case - need to deassign the cgroup_subsys[] slot. */
4725 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4726 mutex_unlock(&cgroup_mutex);
4727 return PTR_ERR(css);
4728 }
4729
9871bf95
TH
4730 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4731 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4732
4733 /* our new subsystem will be attached to the dummy hierarchy. */
9871bf95 4734 init_cgroup_css(css, ss, cgroup_dummy_top);
e6a1105b
BB
4735 /* init_idr must be after init_cgroup_css because it sets css->id. */
4736 if (ss->use_id) {
d19e19de
TH
4737 ret = cgroup_init_idr(ss, css);
4738 if (ret)
4739 goto err_unload;
e6a1105b
BB
4740 }
4741
4742 /*
4743 * Now we need to entangle the css into the existing css_sets. unlike
4744 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4745 * will need a new pointer to it; done by iterating the css_set_table.
4746 * furthermore, modifying the existing css_sets will corrupt the hash
4747 * table state, so each changed css_set will need its hash recomputed.
4748 * this is all done under the css_set_lock.
4749 */
4750 write_lock(&css_set_lock);
5abb8855 4751 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4752 /* skip entries that we already rehashed */
5abb8855 4753 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4754 continue;
4755 /* remove existing entry */
5abb8855 4756 hash_del(&cset->hlist);
0ac801fe 4757 /* set new value */
5abb8855 4758 cset->subsys[ss->subsys_id] = css;
0ac801fe 4759 /* recompute hash and restore entry */
5abb8855
TH
4760 key = css_set_hash(cset->subsys);
4761 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4762 }
4763 write_unlock(&css_set_lock);
4764
9871bf95 4765 ret = online_css(ss, cgroup_dummy_top);
b1929db4
TH
4766 if (ret)
4767 goto err_unload;
a8638030 4768
e6a1105b
BB
4769 /* success! */
4770 mutex_unlock(&cgroup_mutex);
4771 return 0;
d19e19de
TH
4772
4773err_unload:
4774 mutex_unlock(&cgroup_mutex);
4775 /* @ss can't be mounted here as try_module_get() would fail */
4776 cgroup_unload_subsys(ss);
4777 return ret;
ddbcc7e8 4778}
e6a1105b 4779EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4780
cf5d5941
BB
4781/**
4782 * cgroup_unload_subsys: unload a modular subsystem
4783 * @ss: the subsystem to unload
4784 *
4785 * This function should be called in a modular subsystem's exitcall. When this
4786 * function is invoked, the refcount on the subsystem's module will be 0, so
4787 * the subsystem will not be attached to any hierarchy.
4788 */
4789void cgroup_unload_subsys(struct cgroup_subsys *ss)
4790{
69d0206c 4791 struct cgrp_cset_link *link;
cf5d5941
BB
4792
4793 BUG_ON(ss->module == NULL);
4794
4795 /*
4796 * we shouldn't be called if the subsystem is in use, and the use of
4797 * try_module_get in parse_cgroupfs_options should ensure that it
4798 * doesn't start being used while we're killing it off.
4799 */
9871bf95 4800 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4801
4802 mutex_lock(&cgroup_mutex);
02ae7486 4803
9871bf95 4804 offline_css(ss, cgroup_dummy_top);
02ae7486 4805
c897ff68 4806 if (ss->use_id)
02ae7486 4807 idr_destroy(&ss->idr);
02ae7486 4808
cf5d5941 4809 /* deassign the subsys_id */
9871bf95 4810 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4811
9871bf95 4812 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4813 list_del_init(&ss->sibling);
cf5d5941
BB
4814
4815 /*
9871bf95
TH
4816 * disentangle the css from all css_sets attached to the dummy
4817 * top. as in loading, we need to pay our respects to the hashtable
4818 * gods.
cf5d5941
BB
4819 */
4820 write_lock(&css_set_lock);
9871bf95 4821 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 4822 struct css_set *cset = link->cset;
0ac801fe 4823 unsigned long key;
cf5d5941 4824
5abb8855
TH
4825 hash_del(&cset->hlist);
4826 cset->subsys[ss->subsys_id] = NULL;
4827 key = css_set_hash(cset->subsys);
4828 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4829 }
4830 write_unlock(&css_set_lock);
4831
4832 /*
9871bf95
TH
4833 * remove subsystem's css from the cgroup_dummy_top and free it -
4834 * need to free before marking as null because ss->css_free needs
4835 * the cgrp->subsys pointer to find their state. note that this
4836 * also takes care of freeing the css_id.
cf5d5941 4837 */
9871bf95
TH
4838 ss->css_free(cgroup_dummy_top);
4839 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
cf5d5941
BB
4840
4841 mutex_unlock(&cgroup_mutex);
4842}
4843EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4844
ddbcc7e8 4845/**
a043e3b2
LZ
4846 * cgroup_init_early - cgroup initialization at system boot
4847 *
4848 * Initialize cgroups at system boot, and initialize any
4849 * subsystems that request early init.
ddbcc7e8
PM
4850 */
4851int __init cgroup_init_early(void)
4852{
30159ec7 4853 struct cgroup_subsys *ss;
ddbcc7e8 4854 int i;
30159ec7 4855
146aa1bd 4856 atomic_set(&init_css_set.refcount, 1);
69d0206c 4857 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4858 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4859 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4860 css_set_count = 1;
9871bf95
TH
4861 init_cgroup_root(&cgroup_dummy_root);
4862 cgroup_root_count = 1;
817929ec
PM
4863 init_task.cgroups = &init_css_set;
4864
69d0206c 4865 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4866 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4867 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4868 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4869
30159ec7
TH
4870 /* at bootup time, we don't worry about modular subsystems */
4871 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4872 BUG_ON(!ss->name);
4873 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4874 BUG_ON(!ss->css_alloc);
4875 BUG_ON(!ss->css_free);
ddbcc7e8 4876 if (ss->subsys_id != i) {
cfe36bde 4877 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4878 ss->name, ss->subsys_id);
4879 BUG();
4880 }
4881
4882 if (ss->early_init)
4883 cgroup_init_subsys(ss);
4884 }
4885 return 0;
4886}
4887
4888/**
a043e3b2
LZ
4889 * cgroup_init - cgroup initialization
4890 *
4891 * Register cgroup filesystem and /proc file, and initialize
4892 * any subsystems that didn't request early init.
ddbcc7e8
PM
4893 */
4894int __init cgroup_init(void)
4895{
30159ec7 4896 struct cgroup_subsys *ss;
0ac801fe 4897 unsigned long key;
30159ec7 4898 int i, err;
a424316c
PM
4899
4900 err = bdi_init(&cgroup_backing_dev_info);
4901 if (err)
4902 return err;
ddbcc7e8 4903
30159ec7 4904 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4905 if (!ss->early_init)
4906 cgroup_init_subsys(ss);
38460b48 4907 if (ss->use_id)
e6a1105b 4908 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4909 }
4910
fa3ca07e 4911 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4912 mutex_lock(&cgroup_mutex);
4913 mutex_lock(&cgroup_root_mutex);
4914
82fe9b0d
TH
4915 /* Add init_css_set to the hash table */
4916 key = css_set_hash(init_css_set.subsys);
4917 hash_add(css_set_table, &init_css_set.hlist, key);
4918
fc76df70 4919 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4920
54e7b4eb
TH
4921 mutex_unlock(&cgroup_root_mutex);
4922 mutex_unlock(&cgroup_mutex);
4923
676db4af
GK
4924 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4925 if (!cgroup_kobj) {
4926 err = -ENOMEM;
4927 goto out;
4928 }
4929
ddbcc7e8 4930 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4931 if (err < 0) {
4932 kobject_put(cgroup_kobj);
ddbcc7e8 4933 goto out;
676db4af 4934 }
ddbcc7e8 4935
46ae220b 4936 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4937
ddbcc7e8 4938out:
a424316c
PM
4939 if (err)
4940 bdi_destroy(&cgroup_backing_dev_info);
4941
ddbcc7e8
PM
4942 return err;
4943}
b4f48b63 4944
a424316c
PM
4945/*
4946 * proc_cgroup_show()
4947 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4948 * - Used for /proc/<pid>/cgroup.
4949 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4950 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4951 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4952 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4953 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4954 * cgroup to top_cgroup.
4955 */
4956
4957/* TODO: Use a proper seq_file iterator */
8d8b97ba 4958int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4959{
4960 struct pid *pid;
4961 struct task_struct *tsk;
4962 char *buf;
4963 int retval;
4964 struct cgroupfs_root *root;
4965
4966 retval = -ENOMEM;
4967 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4968 if (!buf)
4969 goto out;
4970
4971 retval = -ESRCH;
4972 pid = m->private;
4973 tsk = get_pid_task(pid, PIDTYPE_PID);
4974 if (!tsk)
4975 goto out_free;
4976
4977 retval = 0;
4978
4979 mutex_lock(&cgroup_mutex);
4980
e5f6a860 4981 for_each_active_root(root) {
a424316c 4982 struct cgroup_subsys *ss;
bd89aabc 4983 struct cgroup *cgrp;
a424316c
PM
4984 int count = 0;
4985
2c6ab6d2 4986 seq_printf(m, "%d:", root->hierarchy_id);
5549c497 4987 for_each_root_subsys(root, ss)
a424316c 4988 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4989 if (strlen(root->name))
4990 seq_printf(m, "%sname=%s", count ? "," : "",
4991 root->name);
a424316c 4992 seq_putc(m, ':');
7717f7ba 4993 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4994 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4995 if (retval < 0)
4996 goto out_unlock;
4997 seq_puts(m, buf);
4998 seq_putc(m, '\n');
4999 }
5000
5001out_unlock:
5002 mutex_unlock(&cgroup_mutex);
5003 put_task_struct(tsk);
5004out_free:
5005 kfree(buf);
5006out:
5007 return retval;
5008}
5009
a424316c
PM
5010/* Display information about each subsystem and each hierarchy */
5011static int proc_cgroupstats_show(struct seq_file *m, void *v)
5012{
30159ec7 5013 struct cgroup_subsys *ss;
a424316c 5014 int i;
a424316c 5015
8bab8dde 5016 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5017 /*
5018 * ideally we don't want subsystems moving around while we do this.
5019 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5020 * subsys/hierarchy state.
5021 */
a424316c 5022 mutex_lock(&cgroup_mutex);
30159ec7
TH
5023
5024 for_each_subsys(ss, i)
2c6ab6d2
PM
5025 seq_printf(m, "%s\t%d\t%d\t%d\n",
5026 ss->name, ss->root->hierarchy_id,
8bab8dde 5027 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 5028
a424316c
PM
5029 mutex_unlock(&cgroup_mutex);
5030 return 0;
5031}
5032
5033static int cgroupstats_open(struct inode *inode, struct file *file)
5034{
9dce07f1 5035 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5036}
5037
828c0950 5038static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5039 .open = cgroupstats_open,
5040 .read = seq_read,
5041 .llseek = seq_lseek,
5042 .release = single_release,
5043};
5044
b4f48b63
PM
5045/**
5046 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5047 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5048 *
5049 * Description: A task inherits its parent's cgroup at fork().
5050 *
5051 * A pointer to the shared css_set was automatically copied in
5052 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5053 * it was not made under the protection of RCU or cgroup_mutex, so
5054 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5055 * have already changed current->cgroups, allowing the previously
5056 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5057 *
5058 * At the point that cgroup_fork() is called, 'current' is the parent
5059 * task, and the passed argument 'child' points to the child task.
5060 */
5061void cgroup_fork(struct task_struct *child)
5062{
9bb71308 5063 task_lock(current);
817929ec
PM
5064 child->cgroups = current->cgroups;
5065 get_css_set(child->cgroups);
9bb71308 5066 task_unlock(current);
817929ec 5067 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5068}
5069
817929ec 5070/**
a043e3b2
LZ
5071 * cgroup_post_fork - called on a new task after adding it to the task list
5072 * @child: the task in question
5073 *
5edee61e
TH
5074 * Adds the task to the list running through its css_set if necessary and
5075 * call the subsystem fork() callbacks. Has to be after the task is
5076 * visible on the task list in case we race with the first call to
5077 * cgroup_iter_start() - to guarantee that the new task ends up on its
5078 * list.
a043e3b2 5079 */
817929ec
PM
5080void cgroup_post_fork(struct task_struct *child)
5081{
30159ec7 5082 struct cgroup_subsys *ss;
5edee61e
TH
5083 int i;
5084
3ce3230a
FW
5085 /*
5086 * use_task_css_set_links is set to 1 before we walk the tasklist
5087 * under the tasklist_lock and we read it here after we added the child
5088 * to the tasklist under the tasklist_lock as well. If the child wasn't
5089 * yet in the tasklist when we walked through it from
5090 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5091 * should be visible now due to the paired locking and barriers implied
5092 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5093 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5094 * lock on fork.
5095 */
817929ec
PM
5096 if (use_task_css_set_links) {
5097 write_lock(&css_set_lock);
d8783832
TH
5098 task_lock(child);
5099 if (list_empty(&child->cg_list))
817929ec 5100 list_add(&child->cg_list, &child->cgroups->tasks);
d8783832 5101 task_unlock(child);
817929ec
PM
5102 write_unlock(&css_set_lock);
5103 }
5edee61e
TH
5104
5105 /*
5106 * Call ss->fork(). This must happen after @child is linked on
5107 * css_set; otherwise, @child might change state between ->fork()
5108 * and addition to css_set.
5109 */
5110 if (need_forkexit_callback) {
7d8e0bf5
LZ
5111 /*
5112 * fork/exit callbacks are supported only for builtin
5113 * subsystems, and the builtin section of the subsys
5114 * array is immutable, so we don't need to lock the
5115 * subsys array here. On the other hand, modular section
5116 * of the array can be freed at module unload, so we
5117 * can't touch that.
5118 */
30159ec7 5119 for_each_builtin_subsys(ss, i)
5edee61e
TH
5120 if (ss->fork)
5121 ss->fork(child);
5edee61e 5122 }
817929ec 5123}
5edee61e 5124
b4f48b63
PM
5125/**
5126 * cgroup_exit - detach cgroup from exiting task
5127 * @tsk: pointer to task_struct of exiting process
a043e3b2 5128 * @run_callback: run exit callbacks?
b4f48b63
PM
5129 *
5130 * Description: Detach cgroup from @tsk and release it.
5131 *
5132 * Note that cgroups marked notify_on_release force every task in
5133 * them to take the global cgroup_mutex mutex when exiting.
5134 * This could impact scaling on very large systems. Be reluctant to
5135 * use notify_on_release cgroups where very high task exit scaling
5136 * is required on large systems.
5137 *
5138 * the_top_cgroup_hack:
5139 *
5140 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5141 *
5142 * We call cgroup_exit() while the task is still competent to
5143 * handle notify_on_release(), then leave the task attached to the
5144 * root cgroup in each hierarchy for the remainder of its exit.
5145 *
5146 * To do this properly, we would increment the reference count on
5147 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5148 * code we would add a second cgroup function call, to drop that
5149 * reference. This would just create an unnecessary hot spot on
5150 * the top_cgroup reference count, to no avail.
5151 *
5152 * Normally, holding a reference to a cgroup without bumping its
5153 * count is unsafe. The cgroup could go away, or someone could
5154 * attach us to a different cgroup, decrementing the count on
5155 * the first cgroup that we never incremented. But in this case,
5156 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5157 * which wards off any cgroup_attach_task() attempts, or task is a failed
5158 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5159 */
5160void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5161{
30159ec7 5162 struct cgroup_subsys *ss;
5abb8855 5163 struct css_set *cset;
d41d5a01 5164 int i;
817929ec
PM
5165
5166 /*
5167 * Unlink from the css_set task list if necessary.
5168 * Optimistically check cg_list before taking
5169 * css_set_lock
5170 */
5171 if (!list_empty(&tsk->cg_list)) {
5172 write_lock(&css_set_lock);
5173 if (!list_empty(&tsk->cg_list))
8d258797 5174 list_del_init(&tsk->cg_list);
817929ec
PM
5175 write_unlock(&css_set_lock);
5176 }
5177
b4f48b63
PM
5178 /* Reassign the task to the init_css_set. */
5179 task_lock(tsk);
5abb8855 5180 cset = tsk->cgroups;
817929ec 5181 tsk->cgroups = &init_css_set;
d41d5a01
PZ
5182
5183 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5184 /*
5185 * fork/exit callbacks are supported only for builtin
5186 * subsystems, see cgroup_post_fork() for details.
5187 */
30159ec7 5188 for_each_builtin_subsys(ss, i) {
d41d5a01
PZ
5189 if (ss->exit) {
5190 struct cgroup *old_cgrp =
5abb8855 5191 rcu_dereference_raw(cset->subsys[i])->cgroup;
d41d5a01 5192 struct cgroup *cgrp = task_cgroup(tsk, i);
30159ec7 5193
761b3ef5 5194 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
5195 }
5196 }
5197 }
b4f48b63 5198 task_unlock(tsk);
d41d5a01 5199
5abb8855 5200 put_css_set_taskexit(cset);
b4f48b63 5201}
697f4161 5202
bd89aabc 5203static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5204{
f50daa70 5205 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5206 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5207 /*
5208 * Control Group is currently removeable. If it's not
81a6a5cd 5209 * already queued for a userspace notification, queue
f50daa70
LZ
5210 * it now
5211 */
81a6a5cd 5212 int need_schedule_work = 0;
f50daa70 5213
cdcc136f 5214 raw_spin_lock(&release_list_lock);
54766d4a 5215 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5216 list_empty(&cgrp->release_list)) {
5217 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5218 need_schedule_work = 1;
5219 }
cdcc136f 5220 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5221 if (need_schedule_work)
5222 schedule_work(&release_agent_work);
5223 }
5224}
5225
81a6a5cd
PM
5226/*
5227 * Notify userspace when a cgroup is released, by running the
5228 * configured release agent with the name of the cgroup (path
5229 * relative to the root of cgroup file system) as the argument.
5230 *
5231 * Most likely, this user command will try to rmdir this cgroup.
5232 *
5233 * This races with the possibility that some other task will be
5234 * attached to this cgroup before it is removed, or that some other
5235 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5236 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5237 * unused, and this cgroup will be reprieved from its death sentence,
5238 * to continue to serve a useful existence. Next time it's released,
5239 * we will get notified again, if it still has 'notify_on_release' set.
5240 *
5241 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5242 * means only wait until the task is successfully execve()'d. The
5243 * separate release agent task is forked by call_usermodehelper(),
5244 * then control in this thread returns here, without waiting for the
5245 * release agent task. We don't bother to wait because the caller of
5246 * this routine has no use for the exit status of the release agent
5247 * task, so no sense holding our caller up for that.
81a6a5cd 5248 */
81a6a5cd
PM
5249static void cgroup_release_agent(struct work_struct *work)
5250{
5251 BUG_ON(work != &release_agent_work);
5252 mutex_lock(&cgroup_mutex);
cdcc136f 5253 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5254 while (!list_empty(&release_list)) {
5255 char *argv[3], *envp[3];
5256 int i;
e788e066 5257 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5258 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5259 struct cgroup,
5260 release_list);
bd89aabc 5261 list_del_init(&cgrp->release_list);
cdcc136f 5262 raw_spin_unlock(&release_list_lock);
81a6a5cd 5263 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5264 if (!pathbuf)
5265 goto continue_free;
5266 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5267 goto continue_free;
5268 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5269 if (!agentbuf)
5270 goto continue_free;
81a6a5cd
PM
5271
5272 i = 0;
e788e066
PM
5273 argv[i++] = agentbuf;
5274 argv[i++] = pathbuf;
81a6a5cd
PM
5275 argv[i] = NULL;
5276
5277 i = 0;
5278 /* minimal command environment */
5279 envp[i++] = "HOME=/";
5280 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5281 envp[i] = NULL;
5282
5283 /* Drop the lock while we invoke the usermode helper,
5284 * since the exec could involve hitting disk and hence
5285 * be a slow process */
5286 mutex_unlock(&cgroup_mutex);
5287 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5288 mutex_lock(&cgroup_mutex);
e788e066
PM
5289 continue_free:
5290 kfree(pathbuf);
5291 kfree(agentbuf);
cdcc136f 5292 raw_spin_lock(&release_list_lock);
81a6a5cd 5293 }
cdcc136f 5294 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5295 mutex_unlock(&cgroup_mutex);
5296}
8bab8dde
PM
5297
5298static int __init cgroup_disable(char *str)
5299{
30159ec7 5300 struct cgroup_subsys *ss;
8bab8dde 5301 char *token;
30159ec7 5302 int i;
8bab8dde
PM
5303
5304 while ((token = strsep(&str, ",")) != NULL) {
5305 if (!*token)
5306 continue;
be45c900 5307
30159ec7
TH
5308 /*
5309 * cgroup_disable, being at boot time, can't know about
5310 * module subsystems, so we don't worry about them.
5311 */
5312 for_each_builtin_subsys(ss, i) {
8bab8dde
PM
5313 if (!strcmp(token, ss->name)) {
5314 ss->disabled = 1;
5315 printk(KERN_INFO "Disabling %s control group"
5316 " subsystem\n", ss->name);
5317 break;
5318 }
5319 }
5320 }
5321 return 1;
5322}
5323__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5324
5325/*
5326 * Functons for CSS ID.
5327 */
5328
54766d4a 5329/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5330unsigned short css_id(struct cgroup_subsys_state *css)
5331{
7f0f1546
KH
5332 struct css_id *cssid;
5333
5334 /*
5335 * This css_id() can return correct value when somone has refcnt
5336 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5337 * it's unchanged until freed.
5338 */
d3daf28d 5339 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5340
5341 if (cssid)
5342 return cssid->id;
5343 return 0;
5344}
67523c48 5345EXPORT_SYMBOL_GPL(css_id);
38460b48 5346
747388d7
KH
5347/**
5348 * css_is_ancestor - test "root" css is an ancestor of "child"
5349 * @child: the css to be tested.
5350 * @root: the css supporsed to be an ancestor of the child.
5351 *
5352 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5353 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5354 * But, considering usual usage, the csses should be valid objects after test.
5355 * Assuming that the caller will do some action to the child if this returns
5356 * returns true, the caller must take "child";s reference count.
5357 * If "child" is valid object and this returns true, "root" is valid, too.
5358 */
5359
38460b48 5360bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5361 const struct cgroup_subsys_state *root)
38460b48 5362{
747388d7
KH
5363 struct css_id *child_id;
5364 struct css_id *root_id;
38460b48 5365
747388d7 5366 child_id = rcu_dereference(child->id);
91c63734
JW
5367 if (!child_id)
5368 return false;
747388d7 5369 root_id = rcu_dereference(root->id);
91c63734
JW
5370 if (!root_id)
5371 return false;
5372 if (child_id->depth < root_id->depth)
5373 return false;
5374 if (child_id->stack[root_id->depth] != root_id->id)
5375 return false;
5376 return true;
38460b48
KH
5377}
5378
38460b48
KH
5379void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5380{
5381 struct css_id *id = css->id;
5382 /* When this is called before css_id initialization, id can be NULL */
5383 if (!id)
5384 return;
5385
5386 BUG_ON(!ss->use_id);
5387
5388 rcu_assign_pointer(id->css, NULL);
5389 rcu_assign_pointer(css->id, NULL);
42aee6c4 5390 spin_lock(&ss->id_lock);
38460b48 5391 idr_remove(&ss->idr, id->id);
42aee6c4 5392 spin_unlock(&ss->id_lock);
025cea99 5393 kfree_rcu(id, rcu_head);
38460b48 5394}
67523c48 5395EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5396
5397/*
5398 * This is called by init or create(). Then, calls to this function are
5399 * always serialized (By cgroup_mutex() at create()).
5400 */
5401
5402static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5403{
5404 struct css_id *newid;
d228d9ec 5405 int ret, size;
38460b48
KH
5406
5407 BUG_ON(!ss->use_id);
5408
5409 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5410 newid = kzalloc(size, GFP_KERNEL);
5411 if (!newid)
5412 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5413
5414 idr_preload(GFP_KERNEL);
42aee6c4 5415 spin_lock(&ss->id_lock);
38460b48 5416 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5417 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5418 spin_unlock(&ss->id_lock);
d228d9ec 5419 idr_preload_end();
38460b48
KH
5420
5421 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5422 if (ret < 0)
38460b48 5423 goto err_out;
38460b48 5424
d228d9ec 5425 newid->id = ret;
38460b48
KH
5426 newid->depth = depth;
5427 return newid;
38460b48
KH
5428err_out:
5429 kfree(newid);
d228d9ec 5430 return ERR_PTR(ret);
38460b48
KH
5431
5432}
5433
e6a1105b
BB
5434static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5435 struct cgroup_subsys_state *rootcss)
38460b48
KH
5436{
5437 struct css_id *newid;
38460b48 5438
42aee6c4 5439 spin_lock_init(&ss->id_lock);
38460b48
KH
5440 idr_init(&ss->idr);
5441
38460b48
KH
5442 newid = get_new_cssid(ss, 0);
5443 if (IS_ERR(newid))
5444 return PTR_ERR(newid);
5445
5446 newid->stack[0] = newid->id;
5447 newid->css = rootcss;
5448 rootcss->id = newid;
5449 return 0;
5450}
5451
5452static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5453 struct cgroup *child)
5454{
5455 int subsys_id, i, depth = 0;
5456 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5457 struct css_id *child_id, *parent_id;
38460b48
KH
5458
5459 subsys_id = ss->subsys_id;
5460 parent_css = parent->subsys[subsys_id];
5461 child_css = child->subsys[subsys_id];
38460b48 5462 parent_id = parent_css->id;
94b3dd0f 5463 depth = parent_id->depth + 1;
38460b48
KH
5464
5465 child_id = get_new_cssid(ss, depth);
5466 if (IS_ERR(child_id))
5467 return PTR_ERR(child_id);
5468
5469 for (i = 0; i < depth; i++)
5470 child_id->stack[i] = parent_id->stack[i];
5471 child_id->stack[depth] = child_id->id;
5472 /*
5473 * child_id->css pointer will be set after this cgroup is available
5474 * see cgroup_populate_dir()
5475 */
5476 rcu_assign_pointer(child_css->id, child_id);
5477
5478 return 0;
5479}
5480
5481/**
5482 * css_lookup - lookup css by id
5483 * @ss: cgroup subsys to be looked into.
5484 * @id: the id
5485 *
5486 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5487 * NULL if not. Should be called under rcu_read_lock()
5488 */
5489struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5490{
5491 struct css_id *cssid = NULL;
5492
5493 BUG_ON(!ss->use_id);
5494 cssid = idr_find(&ss->idr, id);
5495
5496 if (unlikely(!cssid))
5497 return NULL;
5498
5499 return rcu_dereference(cssid->css);
5500}
67523c48 5501EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5502
e5d1367f
SE
5503/*
5504 * get corresponding css from file open on cgroupfs directory
5505 */
5506struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5507{
5508 struct cgroup *cgrp;
5509 struct inode *inode;
5510 struct cgroup_subsys_state *css;
5511
496ad9aa 5512 inode = file_inode(f);
e5d1367f
SE
5513 /* check in cgroup filesystem dir */
5514 if (inode->i_op != &cgroup_dir_inode_operations)
5515 return ERR_PTR(-EBADF);
5516
5517 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5518 return ERR_PTR(-EINVAL);
5519
5520 /* get cgroup */
5521 cgrp = __d_cgrp(f->f_dentry);
5522 css = cgrp->subsys[id];
5523 return css ? css : ERR_PTR(-ENOENT);
5524}
5525
fe693435 5526#ifdef CONFIG_CGROUP_DEBUG
03c78cbe 5527static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
fe693435
PM
5528{
5529 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5530
5531 if (!css)
5532 return ERR_PTR(-ENOMEM);
5533
5534 return css;
5535}
5536
03c78cbe 5537static void debug_css_free(struct cgroup *cgrp)
fe693435 5538{
03c78cbe 5539 kfree(cgrp->subsys[debug_subsys_id]);
fe693435
PM
5540}
5541
03c78cbe 5542static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
fe693435 5543{
03c78cbe 5544 return cgroup_task_count(cgrp);
fe693435
PM
5545}
5546
03c78cbe 5547static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
fe693435
PM
5548{
5549 return (u64)(unsigned long)current->cgroups;
5550}
5551
03c78cbe
LZ
5552static u64 current_css_set_refcount_read(struct cgroup *cgrp,
5553 struct cftype *cft)
fe693435
PM
5554{
5555 u64 count;
5556
5557 rcu_read_lock();
5558 count = atomic_read(&current->cgroups->refcount);
5559 rcu_read_unlock();
5560 return count;
5561}
5562
03c78cbe 5563static int current_css_set_cg_links_read(struct cgroup *cgrp,
7717f7ba
PM
5564 struct cftype *cft,
5565 struct seq_file *seq)
5566{
69d0206c 5567 struct cgrp_cset_link *link;
5abb8855 5568 struct css_set *cset;
7717f7ba
PM
5569
5570 read_lock(&css_set_lock);
5571 rcu_read_lock();
5abb8855 5572 cset = rcu_dereference(current->cgroups);
69d0206c 5573 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5574 struct cgroup *c = link->cgrp;
5575 const char *name;
5576
5577 if (c->dentry)
5578 name = c->dentry->d_name.name;
5579 else
5580 name = "?";
2c6ab6d2
PM
5581 seq_printf(seq, "Root %d group %s\n",
5582 c->root->hierarchy_id, name);
7717f7ba
PM
5583 }
5584 rcu_read_unlock();
5585 read_unlock(&css_set_lock);
5586 return 0;
5587}
5588
5589#define MAX_TASKS_SHOWN_PER_CSS 25
03c78cbe 5590static int cgroup_css_links_read(struct cgroup *cgrp,
7717f7ba
PM
5591 struct cftype *cft,
5592 struct seq_file *seq)
5593{
69d0206c 5594 struct cgrp_cset_link *link;
7717f7ba
PM
5595
5596 read_lock(&css_set_lock);
03c78cbe 5597 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
69d0206c 5598 struct css_set *cset = link->cset;
7717f7ba
PM
5599 struct task_struct *task;
5600 int count = 0;
5abb8855
TH
5601 seq_printf(seq, "css_set %p\n", cset);
5602 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5603 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5604 seq_puts(seq, " ...\n");
5605 break;
5606 } else {
5607 seq_printf(seq, " task %d\n",
5608 task_pid_vnr(task));
5609 }
5610 }
5611 }
5612 read_unlock(&css_set_lock);
5613 return 0;
5614}
5615
fe693435
PM
5616static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5617{
5618 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5619}
5620
5621static struct cftype debug_files[] = {
fe693435
PM
5622 {
5623 .name = "taskcount",
5624 .read_u64 = debug_taskcount_read,
5625 },
5626
5627 {
5628 .name = "current_css_set",
5629 .read_u64 = current_css_set_read,
5630 },
5631
5632 {
5633 .name = "current_css_set_refcount",
5634 .read_u64 = current_css_set_refcount_read,
5635 },
5636
7717f7ba
PM
5637 {
5638 .name = "current_css_set_cg_links",
5639 .read_seq_string = current_css_set_cg_links_read,
5640 },
5641
5642 {
5643 .name = "cgroup_css_links",
5644 .read_seq_string = cgroup_css_links_read,
5645 },
5646
fe693435
PM
5647 {
5648 .name = "releasable",
5649 .read_u64 = releasable_read,
5650 },
fe693435 5651
4baf6e33
TH
5652 { } /* terminate */
5653};
fe693435
PM
5654
5655struct cgroup_subsys debug_subsys = {
5656 .name = "debug",
92fb9748
TH
5657 .css_alloc = debug_css_alloc,
5658 .css_free = debug_css_free,
fe693435 5659 .subsys_id = debug_subsys_id,
4baf6e33 5660 .base_cftypes = debug_files,
fe693435
PM
5661};
5662#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.053689 seconds and 5 git commands to generate.