kgdboc,kdb: Allow kdb to work on a non open console port
[deliverable/linux.git] / kernel / debug / kdb / kdb_main.c
CommitLineData
5d5314d6
JW
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/reboot.h>
18#include <linux/sched.h>
19#include <linux/sysrq.h>
20#include <linux/smp.h>
21#include <linux/utsname.h>
22#include <linux/vmalloc.h>
23#include <linux/module.h>
24#include <linux/mm.h>
25#include <linux/init.h>
26#include <linux/kallsyms.h>
27#include <linux/kgdb.h>
28#include <linux/kdb.h>
29#include <linux/notifier.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/nmi.h>
33#include <linux/time.h>
34#include <linux/ptrace.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/kdebug.h>
38#include <linux/proc_fs.h>
39#include <linux/uaccess.h>
40#include <linux/slab.h>
41#include "kdb_private.h"
42
43#define GREP_LEN 256
44char kdb_grep_string[GREP_LEN];
45int kdb_grepping_flag;
46EXPORT_SYMBOL(kdb_grepping_flag);
47int kdb_grep_leading;
48int kdb_grep_trailing;
49
50/*
51 * Kernel debugger state flags
52 */
53int kdb_flags;
54atomic_t kdb_event;
55
56/*
57 * kdb_lock protects updates to kdb_initial_cpu. Used to
58 * single thread processors through the kernel debugger.
59 */
60int kdb_initial_cpu = -1; /* cpu number that owns kdb */
61int kdb_nextline = 1;
62int kdb_state; /* General KDB state */
63
64struct task_struct *kdb_current_task;
65EXPORT_SYMBOL(kdb_current_task);
66struct pt_regs *kdb_current_regs;
67
68const char *kdb_diemsg;
69static int kdb_go_count;
70#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
71static unsigned int kdb_continue_catastrophic =
72 CONFIG_KDB_CONTINUE_CATASTROPHIC;
73#else
74static unsigned int kdb_continue_catastrophic;
75#endif
76
77/* kdb_commands describes the available commands. */
78static kdbtab_t *kdb_commands;
79#define KDB_BASE_CMD_MAX 50
80static int kdb_max_commands = KDB_BASE_CMD_MAX;
81static kdbtab_t kdb_base_commands[50];
82#define for_each_kdbcmd(cmd, num) \
83 for ((cmd) = kdb_base_commands, (num) = 0; \
84 num < kdb_max_commands; \
85 num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++, num++)
86
87typedef struct _kdbmsg {
88 int km_diag; /* kdb diagnostic */
89 char *km_msg; /* Corresponding message text */
90} kdbmsg_t;
91
92#define KDBMSG(msgnum, text) \
93 { KDB_##msgnum, text }
94
95static kdbmsg_t kdbmsgs[] = {
96 KDBMSG(NOTFOUND, "Command Not Found"),
97 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
98 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
99 "8 is only allowed on 64 bit systems"),
100 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
101 KDBMSG(NOTENV, "Cannot find environment variable"),
102 KDBMSG(NOENVVALUE, "Environment variable should have value"),
103 KDBMSG(NOTIMP, "Command not implemented"),
104 KDBMSG(ENVFULL, "Environment full"),
105 KDBMSG(ENVBUFFULL, "Environment buffer full"),
106 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
107#ifdef CONFIG_CPU_XSCALE
108 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
109#else
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
111#endif
112 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
113 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
114 KDBMSG(BADMODE, "Invalid IDMODE"),
115 KDBMSG(BADINT, "Illegal numeric value"),
116 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
117 KDBMSG(BADREG, "Invalid register name"),
118 KDBMSG(BADCPUNUM, "Invalid cpu number"),
119 KDBMSG(BADLENGTH, "Invalid length field"),
120 KDBMSG(NOBP, "No Breakpoint exists"),
121 KDBMSG(BADADDR, "Invalid address"),
122};
123#undef KDBMSG
124
125static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
126
127
128/*
129 * Initial environment. This is all kept static and local to
130 * this file. We don't want to rely on the memory allocation
131 * mechanisms in the kernel, so we use a very limited allocate-only
132 * heap for new and altered environment variables. The entire
133 * environment is limited to a fixed number of entries (add more
134 * to __env[] if required) and a fixed amount of heap (add more to
135 * KDB_ENVBUFSIZE if required).
136 */
137
138static char *__env[] = {
139#if defined(CONFIG_SMP)
140 "PROMPT=[%d]kdb> ",
141 "MOREPROMPT=[%d]more> ",
142#else
143 "PROMPT=kdb> ",
144 "MOREPROMPT=more> ",
145#endif
146 "RADIX=16",
147 "MDCOUNT=8", /* lines of md output */
148 "BTARGS=9", /* 9 possible args in bt */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175};
176
177static const int __nenv = (sizeof(__env) / sizeof(char *));
178
179struct task_struct *kdb_curr_task(int cpu)
180{
181 struct task_struct *p = curr_task(cpu);
182#ifdef _TIF_MCA_INIT
183 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
184 p = krp->p;
185#endif
186 return p;
187}
188
189/*
190 * kdbgetenv - This function will return the character string value of
191 * an environment variable.
192 * Parameters:
193 * match A character string representing an environment variable.
194 * Returns:
195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable.
197 */
198char *kdbgetenv(const char *match)
199{
200 char **ep = __env;
201 int matchlen = strlen(match);
202 int i;
203
204 for (i = 0; i < __nenv; i++) {
205 char *e = *ep++;
206
207 if (!e)
208 continue;
209
210 if ((strncmp(match, e, matchlen) == 0)
211 && ((e[matchlen] == '\0')
212 || (e[matchlen] == '='))) {
213 char *cp = strchr(e, '=');
214 return cp ? ++cp : "";
215 }
216 }
217 return NULL;
218}
219
220/*
221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries.
223 * Parameters:
224 * match A character string representing a numeric value
225 * Outputs:
226 * *value the unsigned long representation of the env variable 'match'
227 * Returns:
228 * Zero on success, a kdb diagnostic on failure.
229 * Remarks:
230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed
234 * frequently.
235 */
236static char *kdballocenv(size_t bytes)
237{
238#define KDB_ENVBUFSIZE 512
239 static char envbuffer[KDB_ENVBUFSIZE];
240 static int envbufsize;
241 char *ep = NULL;
242
243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 ep = &envbuffer[envbufsize];
245 envbufsize += bytes;
246 }
247 return ep;
248}
249
250/*
251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long represntation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 */
260static int kdbgetulenv(const char *match, unsigned long *value)
261{
262 char *ep;
263
264 ep = kdbgetenv(match);
265 if (!ep)
266 return KDB_NOTENV;
267 if (strlen(ep) == 0)
268 return KDB_NOENVVALUE;
269
270 *value = simple_strtoul(ep, NULL, 0);
271
272 return 0;
273}
274
275/*
276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable.
278 * Parameters:
279 * match A character string representing an integer-valued env variable
280 * Outputs:
281 * *value the integer representation of the environment variable 'match'
282 * Returns:
283 * Zero on success, a kdb diagnostic on failure.
284 */
285int kdbgetintenv(const char *match, int *value)
286{
287 unsigned long val;
288 int diag;
289
290 diag = kdbgetulenv(match, &val);
291 if (!diag)
292 *value = (int) val;
293 return diag;
294}
295
296/*
297 * kdbgetularg - This function will convert a numeric string into an
298 * unsigned long value.
299 * Parameters:
300 * arg A character string representing a numeric value
301 * Outputs:
302 * *value the unsigned long represntation of arg.
303 * Returns:
304 * Zero on success, a kdb diagnostic on failure.
305 */
306int kdbgetularg(const char *arg, unsigned long *value)
307{
308 char *endp;
309 unsigned long val;
310
311 val = simple_strtoul(arg, &endp, 0);
312
313 if (endp == arg) {
314 /*
315 * Try base 16, for us folks too lazy to type the
316 * leading 0x...
317 */
318 val = simple_strtoul(arg, &endp, 16);
319 if (endp == arg)
320 return KDB_BADINT;
321 }
322
323 *value = val;
324
325 return 0;
326}
327
328/*
329 * kdb_set - This function implements the 'set' command. Alter an
330 * existing environment variable or create a new one.
331 */
332int kdb_set(int argc, const char **argv)
333{
334 int i;
335 char *ep;
336 size_t varlen, vallen;
337
338 /*
339 * we can be invoked two ways:
340 * set var=value argv[1]="var", argv[2]="value"
341 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
342 * - if the latter, shift 'em down.
343 */
344 if (argc == 3) {
345 argv[2] = argv[3];
346 argc--;
347 }
348
349 if (argc != 2)
350 return KDB_ARGCOUNT;
351
352 /*
353 * Check for internal variables
354 */
355 if (strcmp(argv[1], "KDBDEBUG") == 0) {
356 unsigned int debugflags;
357 char *cp;
358
359 debugflags = simple_strtoul(argv[2], &cp, 0);
360 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
361 kdb_printf("kdb: illegal debug flags '%s'\n",
362 argv[2]);
363 return 0;
364 }
365 kdb_flags = (kdb_flags &
366 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
367 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
368
369 return 0;
370 }
371
372 /*
373 * Tokenizer squashed the '=' sign. argv[1] is variable
374 * name, argv[2] = value.
375 */
376 varlen = strlen(argv[1]);
377 vallen = strlen(argv[2]);
378 ep = kdballocenv(varlen + vallen + 2);
379 if (ep == (char *)0)
380 return KDB_ENVBUFFULL;
381
382 sprintf(ep, "%s=%s", argv[1], argv[2]);
383
384 ep[varlen+vallen+1] = '\0';
385
386 for (i = 0; i < __nenv; i++) {
387 if (__env[i]
388 && ((strncmp(__env[i], argv[1], varlen) == 0)
389 && ((__env[i][varlen] == '\0')
390 || (__env[i][varlen] == '=')))) {
391 __env[i] = ep;
392 return 0;
393 }
394 }
395
396 /*
397 * Wasn't existing variable. Fit into slot.
398 */
399 for (i = 0; i < __nenv-1; i++) {
400 if (__env[i] == (char *)0) {
401 __env[i] = ep;
402 return 0;
403 }
404 }
405
406 return KDB_ENVFULL;
407}
408
409static int kdb_check_regs(void)
410{
411 if (!kdb_current_regs) {
412 kdb_printf("No current kdb registers."
413 " You may need to select another task\n");
414 return KDB_BADREG;
415 }
416 return 0;
417}
418
419/*
420 * kdbgetaddrarg - This function is responsible for parsing an
421 * address-expression and returning the value of the expression,
422 * symbol name, and offset to the caller.
423 *
424 * The argument may consist of a numeric value (decimal or
425 * hexidecimal), a symbol name, a register name (preceeded by the
426 * percent sign), an environment variable with a numeric value
427 * (preceeded by a dollar sign) or a simple arithmetic expression
428 * consisting of a symbol name, +/-, and a numeric constant value
429 * (offset).
430 * Parameters:
431 * argc - count of arguments in argv
432 * argv - argument vector
433 * *nextarg - index to next unparsed argument in argv[]
434 * regs - Register state at time of KDB entry
435 * Outputs:
436 * *value - receives the value of the address-expression
437 * *offset - receives the offset specified, if any
438 * *name - receives the symbol name, if any
439 * *nextarg - index to next unparsed argument in argv[]
440 * Returns:
441 * zero is returned on success, a kdb diagnostic code is
442 * returned on error.
443 */
444int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
445 unsigned long *value, long *offset,
446 char **name)
447{
448 unsigned long addr;
449 unsigned long off = 0;
450 int positive;
451 int diag;
452 int found = 0;
453 char *symname;
454 char symbol = '\0';
455 char *cp;
456 kdb_symtab_t symtab;
457
458 /*
459 * Process arguments which follow the following syntax:
460 *
461 * symbol | numeric-address [+/- numeric-offset]
462 * %register
463 * $environment-variable
464 */
465
466 if (*nextarg > argc)
467 return KDB_ARGCOUNT;
468
469 symname = (char *)argv[*nextarg];
470
471 /*
472 * If there is no whitespace between the symbol
473 * or address and the '+' or '-' symbols, we
474 * remember the character and replace it with a
475 * null so the symbol/value can be properly parsed
476 */
477 cp = strpbrk(symname, "+-");
478 if (cp != NULL) {
479 symbol = *cp;
480 *cp++ = '\0';
481 }
482
483 if (symname[0] == '$') {
484 diag = kdbgetulenv(&symname[1], &addr);
485 if (diag)
486 return diag;
487 } else if (symname[0] == '%') {
488 diag = kdb_check_regs();
489 if (diag)
490 return diag;
491 /* Implement register values with % at a later time as it is
492 * arch optional.
493 */
494 return KDB_NOTIMP;
495 } else {
496 found = kdbgetsymval(symname, &symtab);
497 if (found) {
498 addr = symtab.sym_start;
499 } else {
500 diag = kdbgetularg(argv[*nextarg], &addr);
501 if (diag)
502 return diag;
503 }
504 }
505
506 if (!found)
507 found = kdbnearsym(addr, &symtab);
508
509 (*nextarg)++;
510
511 if (name)
512 *name = symname;
513 if (value)
514 *value = addr;
515 if (offset && name && *name)
516 *offset = addr - symtab.sym_start;
517
518 if ((*nextarg > argc)
519 && (symbol == '\0'))
520 return 0;
521
522 /*
523 * check for +/- and offset
524 */
525
526 if (symbol == '\0') {
527 if ((argv[*nextarg][0] != '+')
528 && (argv[*nextarg][0] != '-')) {
529 /*
530 * Not our argument. Return.
531 */
532 return 0;
533 } else {
534 positive = (argv[*nextarg][0] == '+');
535 (*nextarg)++;
536 }
537 } else
538 positive = (symbol == '+');
539
540 /*
541 * Now there must be an offset!
542 */
543 if ((*nextarg > argc)
544 && (symbol == '\0')) {
545 return KDB_INVADDRFMT;
546 }
547
548 if (!symbol) {
549 cp = (char *)argv[*nextarg];
550 (*nextarg)++;
551 }
552
553 diag = kdbgetularg(cp, &off);
554 if (diag)
555 return diag;
556
557 if (!positive)
558 off = -off;
559
560 if (offset)
561 *offset += off;
562
563 if (value)
564 *value += off;
565
566 return 0;
567}
568
569static void kdb_cmderror(int diag)
570{
571 int i;
572
573 if (diag >= 0) {
574 kdb_printf("no error detected (diagnostic is %d)\n", diag);
575 return;
576 }
577
578 for (i = 0; i < __nkdb_err; i++) {
579 if (kdbmsgs[i].km_diag == diag) {
580 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
581 return;
582 }
583 }
584
585 kdb_printf("Unknown diag %d\n", -diag);
586}
587
588/*
589 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
590 * command which defines one command as a set of other commands,
591 * terminated by endefcmd. kdb_defcmd processes the initial
592 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
593 * the following commands until 'endefcmd'.
594 * Inputs:
595 * argc argument count
596 * argv argument vector
597 * Returns:
598 * zero for success, a kdb diagnostic if error
599 */
600struct defcmd_set {
601 int count;
602 int usable;
603 char *name;
604 char *usage;
605 char *help;
606 char **command;
607};
608static struct defcmd_set *defcmd_set;
609static int defcmd_set_count;
610static int defcmd_in_progress;
611
612/* Forward references */
613static int kdb_exec_defcmd(int argc, const char **argv);
614
615static int kdb_defcmd2(const char *cmdstr, const char *argv0)
616{
617 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
618 char **save_command = s->command;
619 if (strcmp(argv0, "endefcmd") == 0) {
620 defcmd_in_progress = 0;
621 if (!s->count)
622 s->usable = 0;
623 if (s->usable)
624 kdb_register(s->name, kdb_exec_defcmd,
625 s->usage, s->help, 0);
626 return 0;
627 }
628 if (!s->usable)
629 return KDB_NOTIMP;
630 s->command = kmalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
631 if (!s->command) {
632 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
633 cmdstr);
634 s->usable = 0;
635 return KDB_NOTIMP;
636 }
637 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
638 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
639 kfree(save_command);
640 return 0;
641}
642
643static int kdb_defcmd(int argc, const char **argv)
644{
645 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
646 if (defcmd_in_progress) {
647 kdb_printf("kdb: nested defcmd detected, assuming missing "
648 "endefcmd\n");
649 kdb_defcmd2("endefcmd", "endefcmd");
650 }
651 if (argc == 0) {
652 int i;
653 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
654 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
655 s->usage, s->help);
656 for (i = 0; i < s->count; ++i)
657 kdb_printf("%s", s->command[i]);
658 kdb_printf("endefcmd\n");
659 }
660 return 0;
661 }
662 if (argc != 3)
663 return KDB_ARGCOUNT;
664 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
665 GFP_KDB);
666 if (!defcmd_set) {
667 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
668 argv[1]);
669 defcmd_set = save_defcmd_set;
670 return KDB_NOTIMP;
671 }
672 memcpy(defcmd_set, save_defcmd_set,
673 defcmd_set_count * sizeof(*defcmd_set));
674 kfree(save_defcmd_set);
675 s = defcmd_set + defcmd_set_count;
676 memset(s, 0, sizeof(*s));
677 s->usable = 1;
678 s->name = kdb_strdup(argv[1], GFP_KDB);
679 s->usage = kdb_strdup(argv[2], GFP_KDB);
680 s->help = kdb_strdup(argv[3], GFP_KDB);
681 if (s->usage[0] == '"') {
682 strcpy(s->usage, s->usage+1);
683 s->usage[strlen(s->usage)-1] = '\0';
684 }
685 if (s->help[0] == '"') {
686 strcpy(s->help, s->help+1);
687 s->help[strlen(s->help)-1] = '\0';
688 }
689 ++defcmd_set_count;
690 defcmd_in_progress = 1;
691 return 0;
692}
693
694/*
695 * kdb_exec_defcmd - Execute the set of commands associated with this
696 * defcmd name.
697 * Inputs:
698 * argc argument count
699 * argv argument vector
700 * Returns:
701 * zero for success, a kdb diagnostic if error
702 */
703static int kdb_exec_defcmd(int argc, const char **argv)
704{
705 int i, ret;
706 struct defcmd_set *s;
707 if (argc != 0)
708 return KDB_ARGCOUNT;
709 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
710 if (strcmp(s->name, argv[0]) == 0)
711 break;
712 }
713 if (i == defcmd_set_count) {
714 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
715 argv[0]);
716 return KDB_NOTIMP;
717 }
718 for (i = 0; i < s->count; ++i) {
719 /* Recursive use of kdb_parse, do not use argv after
720 * this point */
721 argv = NULL;
722 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
723 ret = kdb_parse(s->command[i]);
724 if (ret)
725 return ret;
726 }
727 return 0;
728}
729
730/* Command history */
731#define KDB_CMD_HISTORY_COUNT 32
732#define CMD_BUFLEN 200 /* kdb_printf: max printline
733 * size == 256 */
734static unsigned int cmd_head, cmd_tail;
735static unsigned int cmdptr;
736static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
737static char cmd_cur[CMD_BUFLEN];
738
739/*
740 * The "str" argument may point to something like | grep xyz
741 */
742static void parse_grep(const char *str)
743{
744 int len;
745 char *cp = (char *)str, *cp2;
746
747 /* sanity check: we should have been called with the \ first */
748 if (*cp != '|')
749 return;
750 cp++;
751 while (isspace(*cp))
752 cp++;
753 if (strncmp(cp, "grep ", 5)) {
754 kdb_printf("invalid 'pipe', see grephelp\n");
755 return;
756 }
757 cp += 5;
758 while (isspace(*cp))
759 cp++;
760 cp2 = strchr(cp, '\n');
761 if (cp2)
762 *cp2 = '\0'; /* remove the trailing newline */
763 len = strlen(cp);
764 if (len == 0) {
765 kdb_printf("invalid 'pipe', see grephelp\n");
766 return;
767 }
768 /* now cp points to a nonzero length search string */
769 if (*cp == '"') {
770 /* allow it be "x y z" by removing the "'s - there must
771 be two of them */
772 cp++;
773 cp2 = strchr(cp, '"');
774 if (!cp2) {
775 kdb_printf("invalid quoted string, see grephelp\n");
776 return;
777 }
778 *cp2 = '\0'; /* end the string where the 2nd " was */
779 }
780 kdb_grep_leading = 0;
781 if (*cp == '^') {
782 kdb_grep_leading = 1;
783 cp++;
784 }
785 len = strlen(cp);
786 kdb_grep_trailing = 0;
787 if (*(cp+len-1) == '$') {
788 kdb_grep_trailing = 1;
789 *(cp+len-1) = '\0';
790 }
791 len = strlen(cp);
792 if (!len)
793 return;
794 if (len >= GREP_LEN) {
795 kdb_printf("search string too long\n");
796 return;
797 }
798 strcpy(kdb_grep_string, cp);
799 kdb_grepping_flag++;
800 return;
801}
802
803/*
804 * kdb_parse - Parse the command line, search the command table for a
805 * matching command and invoke the command function. This
806 * function may be called recursively, if it is, the second call
807 * will overwrite argv and cbuf. It is the caller's
808 * responsibility to save their argv if they recursively call
809 * kdb_parse().
810 * Parameters:
811 * cmdstr The input command line to be parsed.
812 * regs The registers at the time kdb was entered.
813 * Returns:
814 * Zero for success, a kdb diagnostic if failure.
815 * Remarks:
816 * Limited to 20 tokens.
817 *
818 * Real rudimentary tokenization. Basically only whitespace
819 * is considered a token delimeter (but special consideration
820 * is taken of the '=' sign as used by the 'set' command).
821 *
822 * The algorithm used to tokenize the input string relies on
823 * there being at least one whitespace (or otherwise useless)
824 * character between tokens as the character immediately following
825 * the token is altered in-place to a null-byte to terminate the
826 * token string.
827 */
828
829#define MAXARGC 20
830
831int kdb_parse(const char *cmdstr)
832{
833 static char *argv[MAXARGC];
834 static int argc;
835 static char cbuf[CMD_BUFLEN+2];
836 char *cp;
837 char *cpp, quoted;
838 kdbtab_t *tp;
839 int i, escaped, ignore_errors = 0, check_grep;
840
841 /*
842 * First tokenize the command string.
843 */
844 cp = (char *)cmdstr;
845 kdb_grepping_flag = check_grep = 0;
846
847 if (KDB_FLAG(CMD_INTERRUPT)) {
848 /* Previous command was interrupted, newline must not
849 * repeat the command */
850 KDB_FLAG_CLEAR(CMD_INTERRUPT);
851 KDB_STATE_SET(PAGER);
852 argc = 0; /* no repeat */
853 }
854
855 if (*cp != '\n' && *cp != '\0') {
856 argc = 0;
857 cpp = cbuf;
858 while (*cp) {
859 /* skip whitespace */
860 while (isspace(*cp))
861 cp++;
862 if ((*cp == '\0') || (*cp == '\n') ||
863 (*cp == '#' && !defcmd_in_progress))
864 break;
865 /* special case: check for | grep pattern */
866 if (*cp == '|') {
867 check_grep++;
868 break;
869 }
870 if (cpp >= cbuf + CMD_BUFLEN) {
871 kdb_printf("kdb_parse: command buffer "
872 "overflow, command ignored\n%s\n",
873 cmdstr);
874 return KDB_NOTFOUND;
875 }
876 if (argc >= MAXARGC - 1) {
877 kdb_printf("kdb_parse: too many arguments, "
878 "command ignored\n%s\n", cmdstr);
879 return KDB_NOTFOUND;
880 }
881 argv[argc++] = cpp;
882 escaped = 0;
883 quoted = '\0';
884 /* Copy to next unquoted and unescaped
885 * whitespace or '=' */
886 while (*cp && *cp != '\n' &&
887 (escaped || quoted || !isspace(*cp))) {
888 if (cpp >= cbuf + CMD_BUFLEN)
889 break;
890 if (escaped) {
891 escaped = 0;
892 *cpp++ = *cp++;
893 continue;
894 }
895 if (*cp == '\\') {
896 escaped = 1;
897 ++cp;
898 continue;
899 }
900 if (*cp == quoted)
901 quoted = '\0';
902 else if (*cp == '\'' || *cp == '"')
903 quoted = *cp;
904 *cpp = *cp++;
905 if (*cpp == '=' && !quoted)
906 break;
907 ++cpp;
908 }
909 *cpp++ = '\0'; /* Squash a ws or '=' character */
910 }
911 }
912 if (!argc)
913 return 0;
914 if (check_grep)
915 parse_grep(cp);
916 if (defcmd_in_progress) {
917 int result = kdb_defcmd2(cmdstr, argv[0]);
918 if (!defcmd_in_progress) {
919 argc = 0; /* avoid repeat on endefcmd */
920 *(argv[0]) = '\0';
921 }
922 return result;
923 }
924 if (argv[0][0] == '-' && argv[0][1] &&
925 (argv[0][1] < '0' || argv[0][1] > '9')) {
926 ignore_errors = 1;
927 ++argv[0];
928 }
929
930 for_each_kdbcmd(tp, i) {
931 if (tp->cmd_name) {
932 /*
933 * If this command is allowed to be abbreviated,
934 * check to see if this is it.
935 */
936
937 if (tp->cmd_minlen
938 && (strlen(argv[0]) <= tp->cmd_minlen)) {
939 if (strncmp(argv[0],
940 tp->cmd_name,
941 tp->cmd_minlen) == 0) {
942 break;
943 }
944 }
945
946 if (strcmp(argv[0], tp->cmd_name) == 0)
947 break;
948 }
949 }
950
951 /*
952 * If we don't find a command by this name, see if the first
953 * few characters of this match any of the known commands.
954 * e.g., md1c20 should match md.
955 */
956 if (i == kdb_max_commands) {
957 for_each_kdbcmd(tp, i) {
958 if (tp->cmd_name) {
959 if (strncmp(argv[0],
960 tp->cmd_name,
961 strlen(tp->cmd_name)) == 0) {
962 break;
963 }
964 }
965 }
966 }
967
968 if (i < kdb_max_commands) {
969 int result;
970 KDB_STATE_SET(CMD);
971 result = (*tp->cmd_func)(argc-1, (const char **)argv);
972 if (result && ignore_errors && result > KDB_CMD_GO)
973 result = 0;
974 KDB_STATE_CLEAR(CMD);
975 switch (tp->cmd_repeat) {
976 case KDB_REPEAT_NONE:
977 argc = 0;
978 if (argv[0])
979 *(argv[0]) = '\0';
980 break;
981 case KDB_REPEAT_NO_ARGS:
982 argc = 1;
983 if (argv[1])
984 *(argv[1]) = '\0';
985 break;
986 case KDB_REPEAT_WITH_ARGS:
987 break;
988 }
989 return result;
990 }
991
992 /*
993 * If the input with which we were presented does not
994 * map to an existing command, attempt to parse it as an
995 * address argument and display the result. Useful for
996 * obtaining the address of a variable, or the nearest symbol
997 * to an address contained in a register.
998 */
999 {
1000 unsigned long value;
1001 char *name = NULL;
1002 long offset;
1003 int nextarg = 0;
1004
1005 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1006 &value, &offset, &name)) {
1007 return KDB_NOTFOUND;
1008 }
1009
1010 kdb_printf("%s = ", argv[0]);
1011 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1012 kdb_printf("\n");
1013 return 0;
1014 }
1015}
1016
1017
1018static int handle_ctrl_cmd(char *cmd)
1019{
1020#define CTRL_P 16
1021#define CTRL_N 14
1022
1023 /* initial situation */
1024 if (cmd_head == cmd_tail)
1025 return 0;
1026 switch (*cmd) {
1027 case CTRL_P:
1028 if (cmdptr != cmd_tail)
1029 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1030 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1031 return 1;
1032 case CTRL_N:
1033 if (cmdptr != cmd_head)
1034 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1035 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1036 return 1;
1037 }
1038 return 0;
1039}
1040
1041/*
1042 * kdb_reboot - This function implements the 'reboot' command. Reboot
1043 * the system immediately, or loop for ever on failure.
1044 */
1045static int kdb_reboot(int argc, const char **argv)
1046{
1047 emergency_restart();
1048 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1049 while (1)
1050 cpu_relax();
1051 /* NOTREACHED */
1052 return 0;
1053}
1054
1055static void kdb_dumpregs(struct pt_regs *regs)
1056{
1057 int old_lvl = console_loglevel;
1058 console_loglevel = 15;
1059 show_regs(regs);
1060 kdb_printf("\n");
1061 console_loglevel = old_lvl;
1062}
1063
1064void kdb_set_current_task(struct task_struct *p)
1065{
1066 kdb_current_task = p;
1067
1068 if (kdb_task_has_cpu(p)) {
1069 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1070 return;
1071 }
1072 kdb_current_regs = NULL;
1073}
1074
1075/*
1076 * kdb_local - The main code for kdb. This routine is invoked on a
1077 * specific processor, it is not global. The main kdb() routine
1078 * ensures that only one processor at a time is in this routine.
1079 * This code is called with the real reason code on the first
1080 * entry to a kdb session, thereafter it is called with reason
1081 * SWITCH, even if the user goes back to the original cpu.
1082 * Inputs:
1083 * reason The reason KDB was invoked
1084 * error The hardware-defined error code
1085 * regs The exception frame at time of fault/breakpoint.
1086 * db_result Result code from the break or debug point.
1087 * Returns:
1088 * 0 KDB was invoked for an event which it wasn't responsible
1089 * 1 KDB handled the event for which it was invoked.
1090 * KDB_CMD_GO User typed 'go'.
1091 * KDB_CMD_CPU User switched to another cpu.
1092 * KDB_CMD_SS Single step.
1093 * KDB_CMD_SSB Single step until branch.
1094 */
1095static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1096 kdb_dbtrap_t db_result)
1097{
1098 char *cmdbuf;
1099 int diag;
1100 struct task_struct *kdb_current =
1101 kdb_curr_task(raw_smp_processor_id());
1102
1103 KDB_DEBUG_STATE("kdb_local 1", reason);
1104 kdb_go_count = 0;
1105 if (reason == KDB_REASON_DEBUG) {
1106 /* special case below */
1107 } else {
1108 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1109 kdb_current, kdb_current->pid);
1110#if defined(CONFIG_SMP)
1111 kdb_printf("on processor %d ", raw_smp_processor_id());
1112#endif
1113 }
1114
1115 switch (reason) {
1116 case KDB_REASON_DEBUG:
1117 {
1118 /*
1119 * If re-entering kdb after a single step
1120 * command, don't print the message.
1121 */
1122 switch (db_result) {
1123 case KDB_DB_BPT:
1124 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1125 kdb_current, kdb_current->pid);
1126#if defined(CONFIG_SMP)
1127 kdb_printf("on processor %d ", raw_smp_processor_id());
1128#endif
1129 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1130 instruction_pointer(regs));
1131 break;
1132 case KDB_DB_SSB:
1133 /*
1134 * In the midst of ssb command. Just return.
1135 */
1136 KDB_DEBUG_STATE("kdb_local 3", reason);
1137 return KDB_CMD_SSB; /* Continue with SSB command */
1138
1139 break;
1140 case KDB_DB_SS:
1141 break;
1142 case KDB_DB_SSBPT:
1143 KDB_DEBUG_STATE("kdb_local 4", reason);
1144 return 1; /* kdba_db_trap did the work */
1145 default:
1146 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1147 db_result);
1148 break;
1149 }
1150
1151 }
1152 break;
1153 case KDB_REASON_ENTER:
1154 if (KDB_STATE(KEYBOARD))
1155 kdb_printf("due to Keyboard Entry\n");
1156 else
1157 kdb_printf("due to KDB_ENTER()\n");
1158 break;
1159 case KDB_REASON_KEYBOARD:
1160 KDB_STATE_SET(KEYBOARD);
1161 kdb_printf("due to Keyboard Entry\n");
1162 break;
1163 case KDB_REASON_ENTER_SLAVE:
1164 /* drop through, slaves only get released via cpu switch */
1165 case KDB_REASON_SWITCH:
1166 kdb_printf("due to cpu switch\n");
1167 break;
1168 case KDB_REASON_OOPS:
1169 kdb_printf("Oops: %s\n", kdb_diemsg);
1170 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1171 instruction_pointer(regs));
1172 kdb_dumpregs(regs);
1173 break;
1174 case KDB_REASON_NMI:
1175 kdb_printf("due to NonMaskable Interrupt @ "
1176 kdb_machreg_fmt "\n",
1177 instruction_pointer(regs));
1178 kdb_dumpregs(regs);
1179 break;
1180 case KDB_REASON_SSTEP:
1181 case KDB_REASON_BREAK:
1182 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1183 reason == KDB_REASON_BREAK ?
1184 "Breakpoint" : "SS trap", instruction_pointer(regs));
1185 /*
1186 * Determine if this breakpoint is one that we
1187 * are interested in.
1188 */
1189 if (db_result != KDB_DB_BPT) {
1190 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1191 db_result);
1192 KDB_DEBUG_STATE("kdb_local 6", reason);
1193 return 0; /* Not for us, dismiss it */
1194 }
1195 break;
1196 case KDB_REASON_RECURSE:
1197 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1198 instruction_pointer(regs));
1199 break;
1200 default:
1201 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1202 KDB_DEBUG_STATE("kdb_local 8", reason);
1203 return 0; /* Not for us, dismiss it */
1204 }
1205
1206 while (1) {
1207 /*
1208 * Initialize pager context.
1209 */
1210 kdb_nextline = 1;
1211 KDB_STATE_CLEAR(SUPPRESS);
1212
1213 cmdbuf = cmd_cur;
1214 *cmdbuf = '\0';
1215 *(cmd_hist[cmd_head]) = '\0';
1216
1217 if (KDB_FLAG(ONLY_DO_DUMP)) {
1218 /* kdb is off but a catastrophic error requires a dump.
1219 * Take the dump and reboot.
1220 * Turn on logging so the kdb output appears in the log
1221 * buffer in the dump.
1222 */
1223 const char *setargs[] = { "set", "LOGGING", "1" };
1224 kdb_set(2, setargs);
1225 kdb_reboot(0, NULL);
1226 /*NOTREACHED*/
1227 }
1228
1229do_full_getstr:
1230#if defined(CONFIG_SMP)
1231 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1232 raw_smp_processor_id());
1233#else
1234 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1235#endif
1236 if (defcmd_in_progress)
1237 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1238
1239 /*
1240 * Fetch command from keyboard
1241 */
1242 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1243 if (*cmdbuf != '\n') {
1244 if (*cmdbuf < 32) {
1245 if (cmdptr == cmd_head) {
1246 strncpy(cmd_hist[cmd_head], cmd_cur,
1247 CMD_BUFLEN);
1248 *(cmd_hist[cmd_head] +
1249 strlen(cmd_hist[cmd_head])-1) = '\0';
1250 }
1251 if (!handle_ctrl_cmd(cmdbuf))
1252 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1253 cmdbuf = cmd_cur;
1254 goto do_full_getstr;
1255 } else {
1256 strncpy(cmd_hist[cmd_head], cmd_cur,
1257 CMD_BUFLEN);
1258 }
1259
1260 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1261 if (cmd_head == cmd_tail)
1262 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1263 }
1264
1265 cmdptr = cmd_head;
1266 diag = kdb_parse(cmdbuf);
1267 if (diag == KDB_NOTFOUND) {
1268 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1269 diag = 0;
1270 }
1271 if (diag == KDB_CMD_GO
1272 || diag == KDB_CMD_CPU
1273 || diag == KDB_CMD_SS
1274 || diag == KDB_CMD_SSB
1275 || diag == KDB_CMD_KGDB)
1276 break;
1277
1278 if (diag)
1279 kdb_cmderror(diag);
1280 }
1281 KDB_DEBUG_STATE("kdb_local 9", diag);
1282 return diag;
1283}
1284
1285
1286/*
1287 * kdb_print_state - Print the state data for the current processor
1288 * for debugging.
1289 * Inputs:
1290 * text Identifies the debug point
1291 * value Any integer value to be printed, e.g. reason code.
1292 */
1293void kdb_print_state(const char *text, int value)
1294{
1295 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1296 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1297 kdb_state);
1298}
1299
1300/*
1301 * kdb_main_loop - After initial setup and assignment of the
1302 * controlling cpu, all cpus are in this loop. One cpu is in
1303 * control and will issue the kdb prompt, the others will spin
1304 * until 'go' or cpu switch.
1305 *
1306 * To get a consistent view of the kernel stacks for all
1307 * processes, this routine is invoked from the main kdb code via
1308 * an architecture specific routine. kdba_main_loop is
1309 * responsible for making the kernel stacks consistent for all
1310 * processes, there should be no difference between a blocked
1311 * process and a running process as far as kdb is concerned.
1312 * Inputs:
1313 * reason The reason KDB was invoked
1314 * error The hardware-defined error code
1315 * reason2 kdb's current reason code.
1316 * Initially error but can change
1317 * acording to kdb state.
1318 * db_result Result code from break or debug point.
1319 * regs The exception frame at time of fault/breakpoint.
1320 * should always be valid.
1321 * Returns:
1322 * 0 KDB was invoked for an event which it wasn't responsible
1323 * 1 KDB handled the event for which it was invoked.
1324 */
1325int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1326 kdb_dbtrap_t db_result, struct pt_regs *regs)
1327{
1328 int result = 1;
1329 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1330 while (1) {
1331 /*
1332 * All processors except the one that is in control
1333 * will spin here.
1334 */
1335 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1336 while (KDB_STATE(HOLD_CPU)) {
1337 /* state KDB is turned off by kdb_cpu to see if the
1338 * other cpus are still live, each cpu in this loop
1339 * turns it back on.
1340 */
1341 if (!KDB_STATE(KDB))
1342 KDB_STATE_SET(KDB);
1343 }
1344
1345 KDB_STATE_CLEAR(SUPPRESS);
1346 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1347 if (KDB_STATE(LEAVING))
1348 break; /* Another cpu said 'go' */
1349 /* Still using kdb, this processor is in control */
1350 result = kdb_local(reason2, error, regs, db_result);
1351 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1352
1353 if (result == KDB_CMD_CPU)
1354 break;
1355
1356 if (result == KDB_CMD_SS) {
1357 KDB_STATE_SET(DOING_SS);
1358 break;
1359 }
1360
1361 if (result == KDB_CMD_SSB) {
1362 KDB_STATE_SET(DOING_SS);
1363 KDB_STATE_SET(DOING_SSB);
1364 break;
1365 }
1366
1367 if (result == KDB_CMD_KGDB) {
1368 if (!(KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2)))
1369 kdb_printf("Entering please attach debugger "
1370 "or use $D#44+ or $3#33\n");
1371 break;
1372 }
1373 if (result && result != 1 && result != KDB_CMD_GO)
1374 kdb_printf("\nUnexpected kdb_local return code %d\n",
1375 result);
1376 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1377 break;
1378 }
1379 if (KDB_STATE(DOING_SS))
1380 KDB_STATE_CLEAR(SSBPT);
1381
1382 return result;
1383}
1384
1385/*
1386 * kdb_mdr - This function implements the guts of the 'mdr', memory
1387 * read command.
1388 * mdr <addr arg>,<byte count>
1389 * Inputs:
1390 * addr Start address
1391 * count Number of bytes
1392 * Returns:
1393 * Always 0. Any errors are detected and printed by kdb_getarea.
1394 */
1395static int kdb_mdr(unsigned long addr, unsigned int count)
1396{
1397 unsigned char c;
1398 while (count--) {
1399 if (kdb_getarea(c, addr))
1400 return 0;
1401 kdb_printf("%02x", c);
1402 addr++;
1403 }
1404 kdb_printf("\n");
1405 return 0;
1406}
1407
1408/*
1409 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1410 * 'md8' 'mdr' and 'mds' commands.
1411 *
1412 * md|mds [<addr arg> [<line count> [<radix>]]]
1413 * mdWcN [<addr arg> [<line count> [<radix>]]]
1414 * where W = is the width (1, 2, 4 or 8) and N is the count.
1415 * for eg., md1c20 reads 20 bytes, 1 at a time.
1416 * mdr <addr arg>,<byte count>
1417 */
1418static void kdb_md_line(const char *fmtstr, unsigned long addr,
1419 int symbolic, int nosect, int bytesperword,
1420 int num, int repeat, int phys)
1421{
1422 /* print just one line of data */
1423 kdb_symtab_t symtab;
1424 char cbuf[32];
1425 char *c = cbuf;
1426 int i;
1427 unsigned long word;
1428
1429 memset(cbuf, '\0', sizeof(cbuf));
1430 if (phys)
1431 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1432 else
1433 kdb_printf(kdb_machreg_fmt0 " ", addr);
1434
1435 for (i = 0; i < num && repeat--; i++) {
1436 if (phys) {
1437 if (kdb_getphysword(&word, addr, bytesperword))
1438 break;
1439 } else if (kdb_getword(&word, addr, bytesperword))
1440 break;
1441 kdb_printf(fmtstr, word);
1442 if (symbolic)
1443 kdbnearsym(word, &symtab);
1444 else
1445 memset(&symtab, 0, sizeof(symtab));
1446 if (symtab.sym_name) {
1447 kdb_symbol_print(word, &symtab, 0);
1448 if (!nosect) {
1449 kdb_printf("\n");
1450 kdb_printf(" %s %s "
1451 kdb_machreg_fmt " "
1452 kdb_machreg_fmt " "
1453 kdb_machreg_fmt, symtab.mod_name,
1454 symtab.sec_name, symtab.sec_start,
1455 symtab.sym_start, symtab.sym_end);
1456 }
1457 addr += bytesperword;
1458 } else {
1459 union {
1460 u64 word;
1461 unsigned char c[8];
1462 } wc;
1463 unsigned char *cp;
1464#ifdef __BIG_ENDIAN
1465 cp = wc.c + 8 - bytesperword;
1466#else
1467 cp = wc.c;
1468#endif
1469 wc.word = word;
1470#define printable_char(c) \
1471 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1472 switch (bytesperword) {
1473 case 8:
1474 *c++ = printable_char(*cp++);
1475 *c++ = printable_char(*cp++);
1476 *c++ = printable_char(*cp++);
1477 *c++ = printable_char(*cp++);
1478 addr += 4;
1479 case 4:
1480 *c++ = printable_char(*cp++);
1481 *c++ = printable_char(*cp++);
1482 addr += 2;
1483 case 2:
1484 *c++ = printable_char(*cp++);
1485 addr++;
1486 case 1:
1487 *c++ = printable_char(*cp++);
1488 addr++;
1489 break;
1490 }
1491#undef printable_char
1492 }
1493 }
1494 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1495 " ", cbuf);
1496}
1497
1498static int kdb_md(int argc, const char **argv)
1499{
1500 static unsigned long last_addr;
1501 static int last_radix, last_bytesperword, last_repeat;
1502 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1503 int nosect = 0;
1504 char fmtchar, fmtstr[64];
1505 unsigned long addr;
1506 unsigned long word;
1507 long offset = 0;
1508 int symbolic = 0;
1509 int valid = 0;
1510 int phys = 0;
1511
1512 kdbgetintenv("MDCOUNT", &mdcount);
1513 kdbgetintenv("RADIX", &radix);
1514 kdbgetintenv("BYTESPERWORD", &bytesperword);
1515
1516 /* Assume 'md <addr>' and start with environment values */
1517 repeat = mdcount * 16 / bytesperword;
1518
1519 if (strcmp(argv[0], "mdr") == 0) {
1520 if (argc != 2)
1521 return KDB_ARGCOUNT;
1522 valid = 1;
1523 } else if (isdigit(argv[0][2])) {
1524 bytesperword = (int)(argv[0][2] - '0');
1525 if (bytesperword == 0) {
1526 bytesperword = last_bytesperword;
1527 if (bytesperword == 0)
1528 bytesperword = 4;
1529 }
1530 last_bytesperword = bytesperword;
1531 repeat = mdcount * 16 / bytesperword;
1532 if (!argv[0][3])
1533 valid = 1;
1534 else if (argv[0][3] == 'c' && argv[0][4]) {
1535 char *p;
1536 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1537 mdcount = ((repeat * bytesperword) + 15) / 16;
1538 valid = !*p;
1539 }
1540 last_repeat = repeat;
1541 } else if (strcmp(argv[0], "md") == 0)
1542 valid = 1;
1543 else if (strcmp(argv[0], "mds") == 0)
1544 valid = 1;
1545 else if (strcmp(argv[0], "mdp") == 0) {
1546 phys = valid = 1;
1547 }
1548 if (!valid)
1549 return KDB_NOTFOUND;
1550
1551 if (argc == 0) {
1552 if (last_addr == 0)
1553 return KDB_ARGCOUNT;
1554 addr = last_addr;
1555 radix = last_radix;
1556 bytesperword = last_bytesperword;
1557 repeat = last_repeat;
1558 mdcount = ((repeat * bytesperword) + 15) / 16;
1559 }
1560
1561 if (argc) {
1562 unsigned long val;
1563 int diag, nextarg = 1;
1564 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1565 &offset, NULL);
1566 if (diag)
1567 return diag;
1568 if (argc > nextarg+2)
1569 return KDB_ARGCOUNT;
1570
1571 if (argc >= nextarg) {
1572 diag = kdbgetularg(argv[nextarg], &val);
1573 if (!diag) {
1574 mdcount = (int) val;
1575 repeat = mdcount * 16 / bytesperword;
1576 }
1577 }
1578 if (argc >= nextarg+1) {
1579 diag = kdbgetularg(argv[nextarg+1], &val);
1580 if (!diag)
1581 radix = (int) val;
1582 }
1583 }
1584
1585 if (strcmp(argv[0], "mdr") == 0)
1586 return kdb_mdr(addr, mdcount);
1587
1588 switch (radix) {
1589 case 10:
1590 fmtchar = 'd';
1591 break;
1592 case 16:
1593 fmtchar = 'x';
1594 break;
1595 case 8:
1596 fmtchar = 'o';
1597 break;
1598 default:
1599 return KDB_BADRADIX;
1600 }
1601
1602 last_radix = radix;
1603
1604 if (bytesperword > KDB_WORD_SIZE)
1605 return KDB_BADWIDTH;
1606
1607 switch (bytesperword) {
1608 case 8:
1609 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1610 break;
1611 case 4:
1612 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1613 break;
1614 case 2:
1615 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1616 break;
1617 case 1:
1618 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1619 break;
1620 default:
1621 return KDB_BADWIDTH;
1622 }
1623
1624 last_repeat = repeat;
1625 last_bytesperword = bytesperword;
1626
1627 if (strcmp(argv[0], "mds") == 0) {
1628 symbolic = 1;
1629 /* Do not save these changes as last_*, they are temporary mds
1630 * overrides.
1631 */
1632 bytesperword = KDB_WORD_SIZE;
1633 repeat = mdcount;
1634 kdbgetintenv("NOSECT", &nosect);
1635 }
1636
1637 /* Round address down modulo BYTESPERWORD */
1638
1639 addr &= ~(bytesperword-1);
1640
1641 while (repeat > 0) {
1642 unsigned long a;
1643 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1644
1645 if (KDB_FLAG(CMD_INTERRUPT))
1646 return 0;
1647 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1648 if (phys) {
1649 if (kdb_getphysword(&word, a, bytesperword)
1650 || word)
1651 break;
1652 } else if (kdb_getword(&word, a, bytesperword) || word)
1653 break;
1654 }
1655 n = min(num, repeat);
1656 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1657 num, repeat, phys);
1658 addr += bytesperword * n;
1659 repeat -= n;
1660 z = (z + num - 1) / num;
1661 if (z > 2) {
1662 int s = num * (z-2);
1663 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1664 " zero suppressed\n",
1665 addr, addr + bytesperword * s - 1);
1666 addr += bytesperword * s;
1667 repeat -= s;
1668 }
1669 }
1670 last_addr = addr;
1671
1672 return 0;
1673}
1674
1675/*
1676 * kdb_mm - This function implements the 'mm' command.
1677 * mm address-expression new-value
1678 * Remarks:
1679 * mm works on machine words, mmW works on bytes.
1680 */
1681static int kdb_mm(int argc, const char **argv)
1682{
1683 int diag;
1684 unsigned long addr;
1685 long offset = 0;
1686 unsigned long contents;
1687 int nextarg;
1688 int width;
1689
1690 if (argv[0][2] && !isdigit(argv[0][2]))
1691 return KDB_NOTFOUND;
1692
1693 if (argc < 2)
1694 return KDB_ARGCOUNT;
1695
1696 nextarg = 1;
1697 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1698 if (diag)
1699 return diag;
1700
1701 if (nextarg > argc)
1702 return KDB_ARGCOUNT;
1703 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1704 if (diag)
1705 return diag;
1706
1707 if (nextarg != argc + 1)
1708 return KDB_ARGCOUNT;
1709
1710 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1711 diag = kdb_putword(addr, contents, width);
1712 if (diag)
1713 return diag;
1714
1715 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1716
1717 return 0;
1718}
1719
1720/*
1721 * kdb_go - This function implements the 'go' command.
1722 * go [address-expression]
1723 */
1724static int kdb_go(int argc, const char **argv)
1725{
1726 unsigned long addr;
1727 int diag;
1728 int nextarg;
1729 long offset;
1730
1731 if (argc == 1) {
1732 if (raw_smp_processor_id() != kdb_initial_cpu) {
1733 kdb_printf("go <address> must be issued from the "
1734 "initial cpu, do cpu %d first\n",
1735 kdb_initial_cpu);
1736 return KDB_ARGCOUNT;
1737 }
1738 nextarg = 1;
1739 diag = kdbgetaddrarg(argc, argv, &nextarg,
1740 &addr, &offset, NULL);
1741 if (diag)
1742 return diag;
1743 } else if (argc) {
1744 return KDB_ARGCOUNT;
1745 }
1746
1747 diag = KDB_CMD_GO;
1748 if (KDB_FLAG(CATASTROPHIC)) {
1749 kdb_printf("Catastrophic error detected\n");
1750 kdb_printf("kdb_continue_catastrophic=%d, ",
1751 kdb_continue_catastrophic);
1752 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1753 kdb_printf("type go a second time if you really want "
1754 "to continue\n");
1755 return 0;
1756 }
1757 if (kdb_continue_catastrophic == 2) {
1758 kdb_printf("forcing reboot\n");
1759 kdb_reboot(0, NULL);
1760 }
1761 kdb_printf("attempting to continue\n");
1762 }
1763 return diag;
1764}
1765
1766/*
1767 * kdb_rd - This function implements the 'rd' command.
1768 */
1769static int kdb_rd(int argc, const char **argv)
1770{
1771 int diag = kdb_check_regs();
1772 if (diag)
1773 return diag;
1774
1775 kdb_dumpregs(kdb_current_regs);
1776 return 0;
1777}
1778
1779/*
1780 * kdb_rm - This function implements the 'rm' (register modify) command.
1781 * rm register-name new-contents
1782 * Remarks:
1783 * Currently doesn't allow modification of control or
1784 * debug registers.
1785 */
1786static int kdb_rm(int argc, const char **argv)
1787{
1788 int diag;
1789 int ind = 0;
1790 unsigned long contents;
1791
1792 if (argc != 2)
1793 return KDB_ARGCOUNT;
1794 /*
1795 * Allow presence or absence of leading '%' symbol.
1796 */
1797 if (argv[1][0] == '%')
1798 ind = 1;
1799
1800 diag = kdbgetularg(argv[2], &contents);
1801 if (diag)
1802 return diag;
1803
1804 diag = kdb_check_regs();
1805 if (diag)
1806 return diag;
1807 kdb_printf("ERROR: Register set currently not implemented\n");
1808 return 0;
1809}
1810
1811#if defined(CONFIG_MAGIC_SYSRQ)
1812/*
1813 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1814 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1815 * sr <magic-sysrq-code>
1816 */
1817static int kdb_sr(int argc, const char **argv)
1818{
1819 if (argc != 1)
1820 return KDB_ARGCOUNT;
1821 sysrq_toggle_support(1);
1822 handle_sysrq(*argv[1], NULL);
1823
1824 return 0;
1825}
1826#endif /* CONFIG_MAGIC_SYSRQ */
1827
1828/*
1829 * kdb_ef - This function implements the 'regs' (display exception
1830 * frame) command. This command takes an address and expects to
1831 * find an exception frame at that address, formats and prints
1832 * it.
1833 * regs address-expression
1834 * Remarks:
1835 * Not done yet.
1836 */
1837static int kdb_ef(int argc, const char **argv)
1838{
1839 int diag;
1840 unsigned long addr;
1841 long offset;
1842 int nextarg;
1843
1844 if (argc != 1)
1845 return KDB_ARGCOUNT;
1846
1847 nextarg = 1;
1848 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1849 if (diag)
1850 return diag;
1851 show_regs((struct pt_regs *)addr);
1852 return 0;
1853}
1854
1855#if defined(CONFIG_MODULES)
1856/* modules using other modules */
1857struct module_use {
1858 struct list_head list;
1859 struct module *module_which_uses;
1860};
1861
1862/*
1863 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1864 * currently loaded kernel modules.
1865 * Mostly taken from userland lsmod.
1866 */
1867static int kdb_lsmod(int argc, const char **argv)
1868{
1869 struct module *mod;
1870
1871 if (argc != 0)
1872 return KDB_ARGCOUNT;
1873
1874 kdb_printf("Module Size modstruct Used by\n");
1875 list_for_each_entry(mod, kdb_modules, list) {
1876
1877 kdb_printf("%-20s%8u 0x%p ", mod->name,
1878 mod->core_size, (void *)mod);
1879#ifdef CONFIG_MODULE_UNLOAD
1880 kdb_printf("%4d ", module_refcount(mod));
1881#endif
1882 if (mod->state == MODULE_STATE_GOING)
1883 kdb_printf(" (Unloading)");
1884 else if (mod->state == MODULE_STATE_COMING)
1885 kdb_printf(" (Loading)");
1886 else
1887 kdb_printf(" (Live)");
1888
1889#ifdef CONFIG_MODULE_UNLOAD
1890 {
1891 struct module_use *use;
1892 kdb_printf(" [ ");
1893 list_for_each_entry(use, &mod->modules_which_use_me,
1894 list)
1895 kdb_printf("%s ", use->module_which_uses->name);
1896 kdb_printf("]\n");
1897 }
1898#endif
1899 }
1900
1901 return 0;
1902}
1903
1904#endif /* CONFIG_MODULES */
1905
1906/*
1907 * kdb_env - This function implements the 'env' command. Display the
1908 * current environment variables.
1909 */
1910
1911static int kdb_env(int argc, const char **argv)
1912{
1913 int i;
1914
1915 for (i = 0; i < __nenv; i++) {
1916 if (__env[i])
1917 kdb_printf("%s\n", __env[i]);
1918 }
1919
1920 if (KDB_DEBUG(MASK))
1921 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
1922
1923 return 0;
1924}
1925
1926#ifdef CONFIG_PRINTK
1927/*
1928 * kdb_dmesg - This function implements the 'dmesg' command to display
1929 * the contents of the syslog buffer.
1930 * dmesg [lines] [adjust]
1931 */
1932static int kdb_dmesg(int argc, const char **argv)
1933{
1934 char *syslog_data[4], *start, *end, c = '\0', *p;
1935 int diag, logging, logsize, lines = 0, adjust = 0, n;
1936
1937 if (argc > 2)
1938 return KDB_ARGCOUNT;
1939 if (argc) {
1940 char *cp;
1941 lines = simple_strtol(argv[1], &cp, 0);
1942 if (*cp)
1943 lines = 0;
1944 if (argc > 1) {
1945 adjust = simple_strtoul(argv[2], &cp, 0);
1946 if (*cp || adjust < 0)
1947 adjust = 0;
1948 }
1949 }
1950
1951 /* disable LOGGING if set */
1952 diag = kdbgetintenv("LOGGING", &logging);
1953 if (!diag && logging) {
1954 const char *setargs[] = { "set", "LOGGING", "0" };
1955 kdb_set(2, setargs);
1956 }
1957
1958 /* syslog_data[0,1] physical start, end+1. syslog_data[2,3]
1959 * logical start, end+1. */
1960 kdb_syslog_data(syslog_data);
1961 if (syslog_data[2] == syslog_data[3])
1962 return 0;
1963 logsize = syslog_data[1] - syslog_data[0];
1964 start = syslog_data[2];
1965 end = syslog_data[3];
1966#define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
1967 for (n = 0, p = start; p < end; ++p) {
1968 c = *KDB_WRAP(p);
1969 if (c == '\n')
1970 ++n;
1971 }
1972 if (c != '\n')
1973 ++n;
1974 if (lines < 0) {
1975 if (adjust >= n)
1976 kdb_printf("buffer only contains %d lines, nothing "
1977 "printed\n", n);
1978 else if (adjust - lines >= n)
1979 kdb_printf("buffer only contains %d lines, last %d "
1980 "lines printed\n", n, n - adjust);
1981 if (adjust) {
1982 for (; start < end && adjust; ++start) {
1983 if (*KDB_WRAP(start) == '\n')
1984 --adjust;
1985 }
1986 if (start < end)
1987 ++start;
1988 }
1989 for (p = start; p < end && lines; ++p) {
1990 if (*KDB_WRAP(p) == '\n')
1991 ++lines;
1992 }
1993 end = p;
1994 } else if (lines > 0) {
1995 int skip = n - (adjust + lines);
1996 if (adjust >= n) {
1997 kdb_printf("buffer only contains %d lines, "
1998 "nothing printed\n", n);
1999 skip = n;
2000 } else if (skip < 0) {
2001 lines += skip;
2002 skip = 0;
2003 kdb_printf("buffer only contains %d lines, first "
2004 "%d lines printed\n", n, lines);
2005 }
2006 for (; start < end && skip; ++start) {
2007 if (*KDB_WRAP(start) == '\n')
2008 --skip;
2009 }
2010 for (p = start; p < end && lines; ++p) {
2011 if (*KDB_WRAP(p) == '\n')
2012 --lines;
2013 }
2014 end = p;
2015 }
2016 /* Do a line at a time (max 200 chars) to reduce protocol overhead */
2017 c = '\n';
2018 while (start != end) {
2019 char buf[201];
2020 p = buf;
2021 if (KDB_FLAG(CMD_INTERRUPT))
2022 return 0;
2023 while (start < end && (c = *KDB_WRAP(start)) &&
2024 (p - buf) < sizeof(buf)-1) {
2025 ++start;
2026 *p++ = c;
2027 if (c == '\n')
2028 break;
2029 }
2030 *p = '\0';
2031 kdb_printf("%s", buf);
2032 }
2033 if (c != '\n')
2034 kdb_printf("\n");
2035
2036 return 0;
2037}
2038#endif /* CONFIG_PRINTK */
2039/*
2040 * kdb_cpu - This function implements the 'cpu' command.
2041 * cpu [<cpunum>]
2042 * Returns:
2043 * KDB_CMD_CPU for success, a kdb diagnostic if error
2044 */
2045static void kdb_cpu_status(void)
2046{
2047 int i, start_cpu, first_print = 1;
2048 char state, prev_state = '?';
2049
2050 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2051 kdb_printf("Available cpus: ");
2052 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2053 if (!cpu_online(i)) {
2054 state = 'F'; /* cpu is offline */
2055 } else {
2056 state = ' '; /* cpu is responding to kdb */
2057 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2058 state = 'I'; /* idle task */
2059 }
2060 if (state != prev_state) {
2061 if (prev_state != '?') {
2062 if (!first_print)
2063 kdb_printf(", ");
2064 first_print = 0;
2065 kdb_printf("%d", start_cpu);
2066 if (start_cpu < i-1)
2067 kdb_printf("-%d", i-1);
2068 if (prev_state != ' ')
2069 kdb_printf("(%c)", prev_state);
2070 }
2071 prev_state = state;
2072 start_cpu = i;
2073 }
2074 }
2075 /* print the trailing cpus, ignoring them if they are all offline */
2076 if (prev_state != 'F') {
2077 if (!first_print)
2078 kdb_printf(", ");
2079 kdb_printf("%d", start_cpu);
2080 if (start_cpu < i-1)
2081 kdb_printf("-%d", i-1);
2082 if (prev_state != ' ')
2083 kdb_printf("(%c)", prev_state);
2084 }
2085 kdb_printf("\n");
2086}
2087
2088static int kdb_cpu(int argc, const char **argv)
2089{
2090 unsigned long cpunum;
2091 int diag;
2092
2093 if (argc == 0) {
2094 kdb_cpu_status();
2095 return 0;
2096 }
2097
2098 if (argc != 1)
2099 return KDB_ARGCOUNT;
2100
2101 diag = kdbgetularg(argv[1], &cpunum);
2102 if (diag)
2103 return diag;
2104
2105 /*
2106 * Validate cpunum
2107 */
2108 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2109 return KDB_BADCPUNUM;
2110
2111 dbg_switch_cpu = cpunum;
2112
2113 /*
2114 * Switch to other cpu
2115 */
2116 return KDB_CMD_CPU;
2117}
2118
2119/* The user may not realize that ps/bta with no parameters does not print idle
2120 * or sleeping system daemon processes, so tell them how many were suppressed.
2121 */
2122void kdb_ps_suppressed(void)
2123{
2124 int idle = 0, daemon = 0;
2125 unsigned long mask_I = kdb_task_state_string("I"),
2126 mask_M = kdb_task_state_string("M");
2127 unsigned long cpu;
2128 const struct task_struct *p, *g;
2129 for_each_online_cpu(cpu) {
2130 p = kdb_curr_task(cpu);
2131 if (kdb_task_state(p, mask_I))
2132 ++idle;
2133 }
2134 kdb_do_each_thread(g, p) {
2135 if (kdb_task_state(p, mask_M))
2136 ++daemon;
2137 } kdb_while_each_thread(g, p);
2138 if (idle || daemon) {
2139 if (idle)
2140 kdb_printf("%d idle process%s (state I)%s\n",
2141 idle, idle == 1 ? "" : "es",
2142 daemon ? " and " : "");
2143 if (daemon)
2144 kdb_printf("%d sleeping system daemon (state M) "
2145 "process%s", daemon,
2146 daemon == 1 ? "" : "es");
2147 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2148 }
2149}
2150
2151/*
2152 * kdb_ps - This function implements the 'ps' command which shows a
2153 * list of the active processes.
2154 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2155 */
2156void kdb_ps1(const struct task_struct *p)
2157{
2158 int cpu;
2159 unsigned long tmp;
2160
2161 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2162 return;
2163
2164 cpu = kdb_process_cpu(p);
2165 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2166 (void *)p, p->pid, p->parent->pid,
2167 kdb_task_has_cpu(p), kdb_process_cpu(p),
2168 kdb_task_state_char(p),
2169 (void *)(&p->thread),
2170 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2171 p->comm);
2172 if (kdb_task_has_cpu(p)) {
2173 if (!KDB_TSK(cpu)) {
2174 kdb_printf(" Error: no saved data for this cpu\n");
2175 } else {
2176 if (KDB_TSK(cpu) != p)
2177 kdb_printf(" Error: does not match running "
2178 "process table (0x%p)\n", KDB_TSK(cpu));
2179 }
2180 }
2181}
2182
2183static int kdb_ps(int argc, const char **argv)
2184{
2185 struct task_struct *g, *p;
2186 unsigned long mask, cpu;
2187
2188 if (argc == 0)
2189 kdb_ps_suppressed();
2190 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2191 (int)(2*sizeof(void *))+2, "Task Addr",
2192 (int)(2*sizeof(void *))+2, "Thread");
2193 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2194 /* Run the active tasks first */
2195 for_each_online_cpu(cpu) {
2196 if (KDB_FLAG(CMD_INTERRUPT))
2197 return 0;
2198 p = kdb_curr_task(cpu);
2199 if (kdb_task_state(p, mask))
2200 kdb_ps1(p);
2201 }
2202 kdb_printf("\n");
2203 /* Now the real tasks */
2204 kdb_do_each_thread(g, p) {
2205 if (KDB_FLAG(CMD_INTERRUPT))
2206 return 0;
2207 if (kdb_task_state(p, mask))
2208 kdb_ps1(p);
2209 } kdb_while_each_thread(g, p);
2210
2211 return 0;
2212}
2213
2214/*
2215 * kdb_pid - This function implements the 'pid' command which switches
2216 * the currently active process.
2217 * pid [<pid> | R]
2218 */
2219static int kdb_pid(int argc, const char **argv)
2220{
2221 struct task_struct *p;
2222 unsigned long val;
2223 int diag;
2224
2225 if (argc > 1)
2226 return KDB_ARGCOUNT;
2227
2228 if (argc) {
2229 if (strcmp(argv[1], "R") == 0) {
2230 p = KDB_TSK(kdb_initial_cpu);
2231 } else {
2232 diag = kdbgetularg(argv[1], &val);
2233 if (diag)
2234 return KDB_BADINT;
2235
2236 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2237 if (!p) {
2238 kdb_printf("No task with pid=%d\n", (pid_t)val);
2239 return 0;
2240 }
2241 }
2242 kdb_set_current_task(p);
2243 }
2244 kdb_printf("KDB current process is %s(pid=%d)\n",
2245 kdb_current_task->comm,
2246 kdb_current_task->pid);
2247
2248 return 0;
2249}
2250
2251/*
2252 * kdb_ll - This function implements the 'll' command which follows a
2253 * linked list and executes an arbitrary command for each
2254 * element.
2255 */
2256static int kdb_ll(int argc, const char **argv)
2257{
2258 int diag;
2259 unsigned long addr;
2260 long offset = 0;
2261 unsigned long va;
2262 unsigned long linkoffset;
2263 int nextarg;
2264 const char *command;
2265
2266 if (argc != 3)
2267 return KDB_ARGCOUNT;
2268
2269 nextarg = 1;
2270 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2271 if (diag)
2272 return diag;
2273
2274 diag = kdbgetularg(argv[2], &linkoffset);
2275 if (diag)
2276 return diag;
2277
2278 /*
2279 * Using the starting address as
2280 * the first element in the list, and assuming that
2281 * the list ends with a null pointer.
2282 */
2283
2284 va = addr;
2285 command = kdb_strdup(argv[3], GFP_KDB);
2286 if (!command) {
2287 kdb_printf("%s: cannot duplicate command\n", __func__);
2288 return 0;
2289 }
2290 /* Recursive use of kdb_parse, do not use argv after this point */
2291 argv = NULL;
2292
2293 while (va) {
2294 char buf[80];
2295
2296 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2297 diag = kdb_parse(buf);
2298 if (diag)
2299 return diag;
2300
2301 addr = va + linkoffset;
2302 if (kdb_getword(&va, addr, sizeof(va)))
2303 return 0;
2304 }
2305 kfree(command);
2306
2307 return 0;
2308}
2309
2310static int kdb_kgdb(int argc, const char **argv)
2311{
2312 return KDB_CMD_KGDB;
2313}
2314
2315/*
2316 * kdb_help - This function implements the 'help' and '?' commands.
2317 */
2318static int kdb_help(int argc, const char **argv)
2319{
2320 kdbtab_t *kt;
2321 int i;
2322
2323 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2324 kdb_printf("-----------------------------"
2325 "-----------------------------\n");
2326 for_each_kdbcmd(kt, i) {
2327 if (kt->cmd_name)
2328 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2329 kt->cmd_usage, kt->cmd_help);
2330 if (KDB_FLAG(CMD_INTERRUPT))
2331 return 0;
2332 }
2333 return 0;
2334}
2335
2336/*
2337 * kdb_kill - This function implements the 'kill' commands.
2338 */
2339static int kdb_kill(int argc, const char **argv)
2340{
2341 long sig, pid;
2342 char *endp;
2343 struct task_struct *p;
2344 struct siginfo info;
2345
2346 if (argc != 2)
2347 return KDB_ARGCOUNT;
2348
2349 sig = simple_strtol(argv[1], &endp, 0);
2350 if (*endp)
2351 return KDB_BADINT;
2352 if (sig >= 0) {
2353 kdb_printf("Invalid signal parameter.<-signal>\n");
2354 return 0;
2355 }
2356 sig = -sig;
2357
2358 pid = simple_strtol(argv[2], &endp, 0);
2359 if (*endp)
2360 return KDB_BADINT;
2361 if (pid <= 0) {
2362 kdb_printf("Process ID must be large than 0.\n");
2363 return 0;
2364 }
2365
2366 /* Find the process. */
2367 p = find_task_by_pid_ns(pid, &init_pid_ns);
2368 if (!p) {
2369 kdb_printf("The specified process isn't found.\n");
2370 return 0;
2371 }
2372 p = p->group_leader;
2373 info.si_signo = sig;
2374 info.si_errno = 0;
2375 info.si_code = SI_USER;
2376 info.si_pid = pid; /* same capabilities as process being signalled */
2377 info.si_uid = 0; /* kdb has root authority */
2378 kdb_send_sig_info(p, &info);
2379 return 0;
2380}
2381
2382struct kdb_tm {
2383 int tm_sec; /* seconds */
2384 int tm_min; /* minutes */
2385 int tm_hour; /* hours */
2386 int tm_mday; /* day of the month */
2387 int tm_mon; /* month */
2388 int tm_year; /* year */
2389};
2390
2391static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2392{
2393 /* This will work from 1970-2099, 2100 is not a leap year */
2394 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2395 31, 30, 31, 30, 31 };
2396 memset(tm, 0, sizeof(*tm));
2397 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2398 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2399 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2400 tm->tm_min = tm->tm_sec / 60 % 60;
2401 tm->tm_hour = tm->tm_sec / 60 / 60;
2402 tm->tm_sec = tm->tm_sec % 60;
2403 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2404 tm->tm_mday %= (4*365+1);
2405 mon_day[1] = 29;
2406 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2407 tm->tm_mday -= mon_day[tm->tm_mon];
2408 if (++tm->tm_mon == 12) {
2409 tm->tm_mon = 0;
2410 ++tm->tm_year;
2411 mon_day[1] = 28;
2412 }
2413 }
2414 ++tm->tm_mday;
2415}
2416
2417/*
2418 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2419 * I cannot call that code directly from kdb, it has an unconditional
2420 * cli()/sti() and calls routines that take locks which can stop the debugger.
2421 */
2422static void kdb_sysinfo(struct sysinfo *val)
2423{
2424 struct timespec uptime;
2425 do_posix_clock_monotonic_gettime(&uptime);
2426 memset(val, 0, sizeof(*val));
2427 val->uptime = uptime.tv_sec;
2428 val->loads[0] = avenrun[0];
2429 val->loads[1] = avenrun[1];
2430 val->loads[2] = avenrun[2];
2431 val->procs = nr_threads-1;
2432 si_meminfo(val);
2433
2434 return;
2435}
2436
2437/*
2438 * kdb_summary - This function implements the 'summary' command.
2439 */
2440static int kdb_summary(int argc, const char **argv)
2441{
2442 struct kdb_tm tm;
2443 struct sysinfo val;
2444
2445 if (argc)
2446 return KDB_ARGCOUNT;
2447
2448 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2449 kdb_printf("release %s\n", init_uts_ns.name.release);
2450 kdb_printf("version %s\n", init_uts_ns.name.version);
2451 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2452 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2453 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2454 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2455
2456 kdb_gmtime(&xtime, &tm);
2457 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2458 "tz_minuteswest %d\n",
2459 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2460 tm.tm_hour, tm.tm_min, tm.tm_sec,
2461 sys_tz.tz_minuteswest);
2462
2463 kdb_sysinfo(&val);
2464 kdb_printf("uptime ");
2465 if (val.uptime > (24*60*60)) {
2466 int days = val.uptime / (24*60*60);
2467 val.uptime %= (24*60*60);
2468 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2469 }
2470 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2471
2472 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2473
2474#define LOAD_INT(x) ((x) >> FSHIFT)
2475#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2476 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2477 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2478 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2479 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2480#undef LOAD_INT
2481#undef LOAD_FRAC
2482 /* Display in kilobytes */
2483#define K(x) ((x) << (PAGE_SHIFT - 10))
2484 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2485 "Buffers: %8lu kB\n",
2486 val.totalram, val.freeram, val.bufferram);
2487 return 0;
2488}
2489
2490/*
2491 * kdb_per_cpu - This function implements the 'per_cpu' command.
2492 */
2493static int kdb_per_cpu(int argc, const char **argv)
2494{
2495 char buf[256], fmtstr[64];
2496 kdb_symtab_t symtab;
2497 cpumask_t suppress = CPU_MASK_NONE;
2498 int cpu, diag;
2499 unsigned long addr, val, bytesperword = 0, whichcpu = ~0UL;
2500
2501 if (argc < 1 || argc > 3)
2502 return KDB_ARGCOUNT;
2503
2504 snprintf(buf, sizeof(buf), "per_cpu__%s", argv[1]);
2505 if (!kdbgetsymval(buf, &symtab)) {
2506 kdb_printf("%s is not a per_cpu variable\n", argv[1]);
2507 return KDB_BADADDR;
2508 }
2509 if (argc >= 2) {
2510 diag = kdbgetularg(argv[2], &bytesperword);
2511 if (diag)
2512 return diag;
2513 }
2514 if (!bytesperword)
2515 bytesperword = KDB_WORD_SIZE;
2516 else if (bytesperword > KDB_WORD_SIZE)
2517 return KDB_BADWIDTH;
2518 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2519 if (argc >= 3) {
2520 diag = kdbgetularg(argv[3], &whichcpu);
2521 if (diag)
2522 return diag;
2523 if (!cpu_online(whichcpu)) {
2524 kdb_printf("cpu %ld is not online\n", whichcpu);
2525 return KDB_BADCPUNUM;
2526 }
2527 }
2528
2529 /* Most architectures use __per_cpu_offset[cpu], some use
2530 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2531 */
2532#ifdef __per_cpu_offset
2533#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2534#else
2535#ifdef CONFIG_SMP
2536#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2537#else
2538#define KDB_PCU(cpu) 0
2539#endif
2540#endif
2541
2542 for_each_online_cpu(cpu) {
2543 if (whichcpu != ~0UL && whichcpu != cpu)
2544 continue;
2545 addr = symtab.sym_start + KDB_PCU(cpu);
2546 diag = kdb_getword(&val, addr, bytesperword);
2547 if (diag) {
2548 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2549 "read, diag=%d\n", cpu, addr, diag);
2550 continue;
2551 }
2552#ifdef CONFIG_SMP
2553 if (!val) {
2554 cpu_set(cpu, suppress);
2555 continue;
2556 }
2557#endif /* CONFIG_SMP */
2558 kdb_printf("%5d ", cpu);
2559 kdb_md_line(fmtstr, addr,
2560 bytesperword == KDB_WORD_SIZE,
2561 1, bytesperword, 1, 1, 0);
2562 }
2563 if (cpus_weight(suppress) == 0)
2564 return 0;
2565 kdb_printf("Zero suppressed cpu(s):");
2566 for (cpu = first_cpu(suppress); cpu < num_possible_cpus();
2567 cpu = next_cpu(cpu, suppress)) {
2568 kdb_printf(" %d", cpu);
2569 if (cpu == num_possible_cpus() - 1 ||
2570 next_cpu(cpu, suppress) != cpu + 1)
2571 continue;
2572 while (cpu < num_possible_cpus() &&
2573 next_cpu(cpu, suppress) == cpu + 1)
2574 ++cpu;
2575 kdb_printf("-%d", cpu);
2576 }
2577 kdb_printf("\n");
2578
2579#undef KDB_PCU
2580
2581 return 0;
2582}
2583
2584/*
2585 * display help for the use of cmd | grep pattern
2586 */
2587static int kdb_grep_help(int argc, const char **argv)
2588{
2589 kdb_printf("Usage of cmd args | grep pattern:\n");
2590 kdb_printf(" Any command's output may be filtered through an ");
2591 kdb_printf("emulated 'pipe'.\n");
2592 kdb_printf(" 'grep' is just a key word.\n");
2593 kdb_printf(" The pattern may include a very limited set of "
2594 "metacharacters:\n");
2595 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2596 kdb_printf(" And if there are spaces in the pattern, you may "
2597 "quote it:\n");
2598 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2599 " or \"^pat tern$\"\n");
2600 return 0;
2601}
2602
2603/*
2604 * kdb_register_repeat - This function is used to register a kernel
2605 * debugger command.
2606 * Inputs:
2607 * cmd Command name
2608 * func Function to execute the command
2609 * usage A simple usage string showing arguments
2610 * help A simple help string describing command
2611 * repeat Does the command auto repeat on enter?
2612 * Returns:
2613 * zero for success, one if a duplicate command.
2614 */
2615#define kdb_command_extend 50 /* arbitrary */
2616int kdb_register_repeat(char *cmd,
2617 kdb_func_t func,
2618 char *usage,
2619 char *help,
2620 short minlen,
2621 kdb_repeat_t repeat)
2622{
2623 int i;
2624 kdbtab_t *kp;
2625
2626 /*
2627 * Brute force method to determine duplicates
2628 */
2629 for_each_kdbcmd(kp, i) {
2630 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2631 kdb_printf("Duplicate kdb command registered: "
2632 "%s, func %p help %s\n", cmd, func, help);
2633 return 1;
2634 }
2635 }
2636
2637 /*
2638 * Insert command into first available location in table
2639 */
2640 for_each_kdbcmd(kp, i) {
2641 if (kp->cmd_name == NULL)
2642 break;
2643 }
2644
2645 if (i >= kdb_max_commands) {
2646 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2647 kdb_command_extend) * sizeof(*new), GFP_KDB);
2648 if (!new) {
2649 kdb_printf("Could not allocate new kdb_command "
2650 "table\n");
2651 return 1;
2652 }
2653 if (kdb_commands) {
2654 memcpy(new, kdb_commands,
2655 kdb_max_commands * sizeof(*new));
2656 kfree(kdb_commands);
2657 }
2658 memset(new + kdb_max_commands, 0,
2659 kdb_command_extend * sizeof(*new));
2660 kdb_commands = new;
2661 kp = kdb_commands + kdb_max_commands;
2662 kdb_max_commands += kdb_command_extend;
2663 }
2664
2665 kp->cmd_name = cmd;
2666 kp->cmd_func = func;
2667 kp->cmd_usage = usage;
2668 kp->cmd_help = help;
2669 kp->cmd_flags = 0;
2670 kp->cmd_minlen = minlen;
2671 kp->cmd_repeat = repeat;
2672
2673 return 0;
2674}
2675
2676/*
2677 * kdb_register - Compatibility register function for commands that do
2678 * not need to specify a repeat state. Equivalent to
2679 * kdb_register_repeat with KDB_REPEAT_NONE.
2680 * Inputs:
2681 * cmd Command name
2682 * func Function to execute the command
2683 * usage A simple usage string showing arguments
2684 * help A simple help string describing command
2685 * Returns:
2686 * zero for success, one if a duplicate command.
2687 */
2688int kdb_register(char *cmd,
2689 kdb_func_t func,
2690 char *usage,
2691 char *help,
2692 short minlen)
2693{
2694 return kdb_register_repeat(cmd, func, usage, help, minlen,
2695 KDB_REPEAT_NONE);
2696}
2697
2698/*
2699 * kdb_unregister - This function is used to unregister a kernel
2700 * debugger command. It is generally called when a module which
2701 * implements kdb commands is unloaded.
2702 * Inputs:
2703 * cmd Command name
2704 * Returns:
2705 * zero for success, one command not registered.
2706 */
2707int kdb_unregister(char *cmd)
2708{
2709 int i;
2710 kdbtab_t *kp;
2711
2712 /*
2713 * find the command.
2714 */
2715 for (i = 0, kp = kdb_commands; i < kdb_max_commands; i++, kp++) {
2716 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2717 kp->cmd_name = NULL;
2718 return 0;
2719 }
2720 }
2721
2722 /* Couldn't find it. */
2723 return 1;
2724}
2725
2726/* Initialize the kdb command table. */
2727static void __init kdb_inittab(void)
2728{
2729 int i;
2730 kdbtab_t *kp;
2731
2732 for_each_kdbcmd(kp, i)
2733 kp->cmd_name = NULL;
2734
2735 kdb_register_repeat("md", kdb_md, "<vaddr>",
2736 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2737 KDB_REPEAT_NO_ARGS);
2738 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2739 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2740 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2741 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2742 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2743 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2744 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2745 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2746 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2747 "Continue Execution", 1, KDB_REPEAT_NONE);
2748 kdb_register_repeat("rd", kdb_rd, "",
2749 "Display Registers", 0, KDB_REPEAT_NONE);
2750 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2751 "Modify Registers", 0, KDB_REPEAT_NONE);
2752 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2753 "Display exception frame", 0, KDB_REPEAT_NONE);
2754 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2755 "Stack traceback", 1, KDB_REPEAT_NONE);
2756 kdb_register_repeat("btp", kdb_bt, "<pid>",
2757 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2758 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2759 "Display stack all processes", 0, KDB_REPEAT_NONE);
2760 kdb_register_repeat("btc", kdb_bt, "",
2761 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2762 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2763 "Backtrace process given its struct task address", 0,
2764 KDB_REPEAT_NONE);
2765 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2766 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2767 kdb_register_repeat("env", kdb_env, "",
2768 "Show environment variables", 0, KDB_REPEAT_NONE);
2769 kdb_register_repeat("set", kdb_set, "",
2770 "Set environment variables", 0, KDB_REPEAT_NONE);
2771 kdb_register_repeat("help", kdb_help, "",
2772 "Display Help Message", 1, KDB_REPEAT_NONE);
2773 kdb_register_repeat("?", kdb_help, "",
2774 "Display Help Message", 0, KDB_REPEAT_NONE);
2775 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2776 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2777 kdb_register_repeat("kgdb", kdb_kgdb, "",
2778 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2779 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2780 "Display active task list", 0, KDB_REPEAT_NONE);
2781 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2782 "Switch to another task", 0, KDB_REPEAT_NONE);
2783 kdb_register_repeat("reboot", kdb_reboot, "",
2784 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2785#if defined(CONFIG_MODULES)
2786 kdb_register_repeat("lsmod", kdb_lsmod, "",
2787 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2788#endif
2789#if defined(CONFIG_MAGIC_SYSRQ)
2790 kdb_register_repeat("sr", kdb_sr, "<key>",
2791 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2792#endif
2793#if defined(CONFIG_PRINTK)
2794 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2795 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2796#endif
2797 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2798 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2799 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2800 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2801 kdb_register_repeat("summary", kdb_summary, "",
2802 "Summarize the system", 4, KDB_REPEAT_NONE);
2803 kdb_register_repeat("per_cpu", kdb_per_cpu, "",
2804 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2805 kdb_register_repeat("grephelp", kdb_grep_help, "",
2806 "Display help on | grep", 0, KDB_REPEAT_NONE);
2807}
2808
2809/* Execute any commands defined in kdb_cmds. */
2810static void __init kdb_cmd_init(void)
2811{
2812 int i, diag;
2813 for (i = 0; kdb_cmds[i]; ++i) {
2814 diag = kdb_parse(kdb_cmds[i]);
2815 if (diag)
2816 kdb_printf("kdb command %s failed, kdb diag %d\n",
2817 kdb_cmds[i], diag);
2818 }
2819 if (defcmd_in_progress) {
2820 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2821 kdb_parse("endefcmd");
2822 }
2823}
2824
2825/* Intialize kdb_printf, breakpoint tables and kdb state */
2826void __init kdb_init(int lvl)
2827{
2828 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2829 int i;
2830
2831 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2832 return;
2833 for (i = kdb_init_lvl; i < lvl; i++) {
2834 switch (i) {
2835 case KDB_NOT_INITIALIZED:
2836 kdb_inittab(); /* Initialize Command Table */
2837 kdb_initbptab(); /* Initialize Breakpoints */
2838 break;
2839 case KDB_INIT_EARLY:
2840 kdb_cmd_init(); /* Build kdb_cmds tables */
2841 break;
2842 }
2843 }
2844 kdb_init_lvl = lvl;
2845}
This page took 0.141265 seconds and 5 git commands to generate.