new helpers: fdget()/fdput()
[deliverable/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
cdd6c482 36#include <linux/perf_event.h>
6fb2915d 37#include <linux/ftrace_event.h>
3c502e7a 38#include <linux/hw_breakpoint.h>
0793a61d 39
76369139
FW
40#include "internal.h"
41
4e193bd4
TB
42#include <asm/irq_regs.h>
43
fe4b04fa 44struct remote_function_call {
e7e7ee2e
IM
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
fe4b04fa
PZ
49};
50
51static void remote_function(void *data)
52{
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63}
64
65/**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78static int
79task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80{
81 struct remote_function_call data = {
e7e7ee2e
IM
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92}
93
94/**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115}
116
e5d1367f
SE
117#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
bce38cd5
SE
121/*
122 * branch priv levels that need permission checks
123 */
124#define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
127
0b3fcf17
SE
128enum event_type_t {
129 EVENT_FLEXIBLE = 0x1,
130 EVENT_PINNED = 0x2,
131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132};
133
e5d1367f
SE
134/*
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137 */
c5905afb 138struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 139static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 140static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 141
cdd6c482
IM
142static atomic_t nr_mmap_events __read_mostly;
143static atomic_t nr_comm_events __read_mostly;
144static atomic_t nr_task_events __read_mostly;
9ee318a7 145
108b02cf
PZ
146static LIST_HEAD(pmus);
147static DEFINE_MUTEX(pmus_lock);
148static struct srcu_struct pmus_srcu;
149
0764771d 150/*
cdd6c482 151 * perf event paranoia level:
0fbdea19
IM
152 * -1 - not paranoid at all
153 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 154 * 1 - disallow cpu events for unpriv
0fbdea19 155 * 2 - disallow kernel profiling for unpriv
0764771d 156 */
cdd6c482 157int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 158
20443384
FW
159/* Minimum for 512 kiB + 1 user control page */
160int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
161
162/*
cdd6c482 163 * max perf event sample rate
df58ab24 164 */
163ec435
PZ
165#define DEFAULT_MAX_SAMPLE_RATE 100000
166int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167static int max_samples_per_tick __read_mostly =
168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169
170int perf_proc_update_handler(struct ctl_table *table, int write,
171 void __user *buffer, size_t *lenp,
172 loff_t *ppos)
173{
174 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175
176 if (ret || !write)
177 return ret;
178
179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180
181 return 0;
182}
1ccd1549 183
cdd6c482 184static atomic64_t perf_event_id;
a96bbc16 185
0b3fcf17
SE
186static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 enum event_type_t event_type);
188
189static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
190 enum event_type_t event_type,
191 struct task_struct *task);
192
193static void update_context_time(struct perf_event_context *ctx);
194static u64 perf_event_time(struct perf_event *event);
0b3fcf17 195
10c6db11
PZ
196static void ring_buffer_attach(struct perf_event *event,
197 struct ring_buffer *rb);
198
cdd6c482 199void __weak perf_event_print_debug(void) { }
0793a61d 200
84c79910 201extern __weak const char *perf_pmu_name(void)
0793a61d 202{
84c79910 203 return "pmu";
0793a61d
TG
204}
205
0b3fcf17
SE
206static inline u64 perf_clock(void)
207{
208 return local_clock();
209}
210
e5d1367f
SE
211static inline struct perf_cpu_context *
212__get_cpu_context(struct perf_event_context *ctx)
213{
214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215}
216
facc4307
PZ
217static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219{
220 raw_spin_lock(&cpuctx->ctx.lock);
221 if (ctx)
222 raw_spin_lock(&ctx->lock);
223}
224
225static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 struct perf_event_context *ctx)
227{
228 if (ctx)
229 raw_spin_unlock(&ctx->lock);
230 raw_spin_unlock(&cpuctx->ctx.lock);
231}
232
e5d1367f
SE
233#ifdef CONFIG_CGROUP_PERF
234
3f7cce3c
SE
235/*
236 * Must ensure cgroup is pinned (css_get) before calling
237 * this function. In other words, we cannot call this function
238 * if there is no cgroup event for the current CPU context.
239 */
e5d1367f
SE
240static inline struct perf_cgroup *
241perf_cgroup_from_task(struct task_struct *task)
242{
243 return container_of(task_subsys_state(task, perf_subsys_id),
244 struct perf_cgroup, css);
245}
246
247static inline bool
248perf_cgroup_match(struct perf_event *event)
249{
250 struct perf_event_context *ctx = event->ctx;
251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252
253 return !event->cgrp || event->cgrp == cpuctx->cgrp;
254}
255
9c5da09d 256static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 257{
9c5da09d 258 return css_tryget(&event->cgrp->css);
e5d1367f
SE
259}
260
261static inline void perf_put_cgroup(struct perf_event *event)
262{
263 css_put(&event->cgrp->css);
264}
265
266static inline void perf_detach_cgroup(struct perf_event *event)
267{
268 perf_put_cgroup(event);
269 event->cgrp = NULL;
270}
271
272static inline int is_cgroup_event(struct perf_event *event)
273{
274 return event->cgrp != NULL;
275}
276
277static inline u64 perf_cgroup_event_time(struct perf_event *event)
278{
279 struct perf_cgroup_info *t;
280
281 t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 return t->time;
283}
284
285static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286{
287 struct perf_cgroup_info *info;
288 u64 now;
289
290 now = perf_clock();
291
292 info = this_cpu_ptr(cgrp->info);
293
294 info->time += now - info->timestamp;
295 info->timestamp = now;
296}
297
298static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299{
300 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 if (cgrp_out)
302 __update_cgrp_time(cgrp_out);
303}
304
305static inline void update_cgrp_time_from_event(struct perf_event *event)
306{
3f7cce3c
SE
307 struct perf_cgroup *cgrp;
308
e5d1367f 309 /*
3f7cce3c
SE
310 * ensure we access cgroup data only when needed and
311 * when we know the cgroup is pinned (css_get)
e5d1367f 312 */
3f7cce3c 313 if (!is_cgroup_event(event))
e5d1367f
SE
314 return;
315
3f7cce3c
SE
316 cgrp = perf_cgroup_from_task(current);
317 /*
318 * Do not update time when cgroup is not active
319 */
320 if (cgrp == event->cgrp)
321 __update_cgrp_time(event->cgrp);
e5d1367f
SE
322}
323
324static inline void
3f7cce3c
SE
325perf_cgroup_set_timestamp(struct task_struct *task,
326 struct perf_event_context *ctx)
e5d1367f
SE
327{
328 struct perf_cgroup *cgrp;
329 struct perf_cgroup_info *info;
330
3f7cce3c
SE
331 /*
332 * ctx->lock held by caller
333 * ensure we do not access cgroup data
334 * unless we have the cgroup pinned (css_get)
335 */
336 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
337 return;
338
339 cgrp = perf_cgroup_from_task(task);
340 info = this_cpu_ptr(cgrp->info);
3f7cce3c 341 info->timestamp = ctx->timestamp;
e5d1367f
SE
342}
343
344#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
345#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
346
347/*
348 * reschedule events based on the cgroup constraint of task.
349 *
350 * mode SWOUT : schedule out everything
351 * mode SWIN : schedule in based on cgroup for next
352 */
353void perf_cgroup_switch(struct task_struct *task, int mode)
354{
355 struct perf_cpu_context *cpuctx;
356 struct pmu *pmu;
357 unsigned long flags;
358
359 /*
360 * disable interrupts to avoid geting nr_cgroup
361 * changes via __perf_event_disable(). Also
362 * avoids preemption.
363 */
364 local_irq_save(flags);
365
366 /*
367 * we reschedule only in the presence of cgroup
368 * constrained events.
369 */
370 rcu_read_lock();
371
372 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f
SE
373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374
e5d1367f
SE
375 /*
376 * perf_cgroup_events says at least one
377 * context on this CPU has cgroup events.
378 *
379 * ctx->nr_cgroups reports the number of cgroup
380 * events for a context.
381 */
382 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
383 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
385
386 if (mode & PERF_CGROUP_SWOUT) {
387 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 /*
389 * must not be done before ctxswout due
390 * to event_filter_match() in event_sched_out()
391 */
392 cpuctx->cgrp = NULL;
393 }
394
395 if (mode & PERF_CGROUP_SWIN) {
e566b76e 396 WARN_ON_ONCE(cpuctx->cgrp);
e5d1367f
SE
397 /* set cgrp before ctxsw in to
398 * allow event_filter_match() to not
399 * have to pass task around
400 */
401 cpuctx->cgrp = perf_cgroup_from_task(task);
402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 }
facc4307
PZ
404 perf_pmu_enable(cpuctx->ctx.pmu);
405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 406 }
e5d1367f
SE
407 }
408
409 rcu_read_unlock();
410
411 local_irq_restore(flags);
412}
413
a8d757ef
SE
414static inline void perf_cgroup_sched_out(struct task_struct *task,
415 struct task_struct *next)
e5d1367f 416{
a8d757ef
SE
417 struct perf_cgroup *cgrp1;
418 struct perf_cgroup *cgrp2 = NULL;
419
420 /*
421 * we come here when we know perf_cgroup_events > 0
422 */
423 cgrp1 = perf_cgroup_from_task(task);
424
425 /*
426 * next is NULL when called from perf_event_enable_on_exec()
427 * that will systematically cause a cgroup_switch()
428 */
429 if (next)
430 cgrp2 = perf_cgroup_from_task(next);
431
432 /*
433 * only schedule out current cgroup events if we know
434 * that we are switching to a different cgroup. Otherwise,
435 * do no touch the cgroup events.
436 */
437 if (cgrp1 != cgrp2)
438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
439}
440
a8d757ef
SE
441static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 struct task_struct *task)
e5d1367f 443{
a8d757ef
SE
444 struct perf_cgroup *cgrp1;
445 struct perf_cgroup *cgrp2 = NULL;
446
447 /*
448 * we come here when we know perf_cgroup_events > 0
449 */
450 cgrp1 = perf_cgroup_from_task(task);
451
452 /* prev can never be NULL */
453 cgrp2 = perf_cgroup_from_task(prev);
454
455 /*
456 * only need to schedule in cgroup events if we are changing
457 * cgroup during ctxsw. Cgroup events were not scheduled
458 * out of ctxsw out if that was not the case.
459 */
460 if (cgrp1 != cgrp2)
461 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
462}
463
464static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 struct perf_event_attr *attr,
466 struct perf_event *group_leader)
467{
468 struct perf_cgroup *cgrp;
469 struct cgroup_subsys_state *css;
470 struct file *file;
471 int ret = 0, fput_needed;
472
473 file = fget_light(fd, &fput_needed);
474 if (!file)
475 return -EBADF;
476
477 css = cgroup_css_from_dir(file, perf_subsys_id);
3db272c0
LZ
478 if (IS_ERR(css)) {
479 ret = PTR_ERR(css);
480 goto out;
481 }
e5d1367f
SE
482
483 cgrp = container_of(css, struct perf_cgroup, css);
484 event->cgrp = cgrp;
485
f75e18cb 486 /* must be done before we fput() the file */
9c5da09d
SQ
487 if (!perf_tryget_cgroup(event)) {
488 event->cgrp = NULL;
489 ret = -ENOENT;
490 goto out;
491 }
f75e18cb 492
e5d1367f
SE
493 /*
494 * all events in a group must monitor
495 * the same cgroup because a task belongs
496 * to only one perf cgroup at a time
497 */
498 if (group_leader && group_leader->cgrp != cgrp) {
499 perf_detach_cgroup(event);
500 ret = -EINVAL;
e5d1367f 501 }
3db272c0 502out:
e5d1367f
SE
503 fput_light(file, fput_needed);
504 return ret;
505}
506
507static inline void
508perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
509{
510 struct perf_cgroup_info *t;
511 t = per_cpu_ptr(event->cgrp->info, event->cpu);
512 event->shadow_ctx_time = now - t->timestamp;
513}
514
515static inline void
516perf_cgroup_defer_enabled(struct perf_event *event)
517{
518 /*
519 * when the current task's perf cgroup does not match
520 * the event's, we need to remember to call the
521 * perf_mark_enable() function the first time a task with
522 * a matching perf cgroup is scheduled in.
523 */
524 if (is_cgroup_event(event) && !perf_cgroup_match(event))
525 event->cgrp_defer_enabled = 1;
526}
527
528static inline void
529perf_cgroup_mark_enabled(struct perf_event *event,
530 struct perf_event_context *ctx)
531{
532 struct perf_event *sub;
533 u64 tstamp = perf_event_time(event);
534
535 if (!event->cgrp_defer_enabled)
536 return;
537
538 event->cgrp_defer_enabled = 0;
539
540 event->tstamp_enabled = tstamp - event->total_time_enabled;
541 list_for_each_entry(sub, &event->sibling_list, group_entry) {
542 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
543 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
544 sub->cgrp_defer_enabled = 0;
545 }
546 }
547}
548#else /* !CONFIG_CGROUP_PERF */
549
550static inline bool
551perf_cgroup_match(struct perf_event *event)
552{
553 return true;
554}
555
556static inline void perf_detach_cgroup(struct perf_event *event)
557{}
558
559static inline int is_cgroup_event(struct perf_event *event)
560{
561 return 0;
562}
563
564static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
565{
566 return 0;
567}
568
569static inline void update_cgrp_time_from_event(struct perf_event *event)
570{
571}
572
573static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574{
575}
576
a8d757ef
SE
577static inline void perf_cgroup_sched_out(struct task_struct *task,
578 struct task_struct *next)
e5d1367f
SE
579{
580}
581
a8d757ef
SE
582static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
e5d1367f
SE
584{
585}
586
587static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
588 struct perf_event_attr *attr,
589 struct perf_event *group_leader)
590{
591 return -EINVAL;
592}
593
594static inline void
3f7cce3c
SE
595perf_cgroup_set_timestamp(struct task_struct *task,
596 struct perf_event_context *ctx)
e5d1367f
SE
597{
598}
599
600void
601perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
602{
603}
604
605static inline void
606perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
607{
608}
609
610static inline u64 perf_cgroup_event_time(struct perf_event *event)
611{
612 return 0;
613}
614
615static inline void
616perf_cgroup_defer_enabled(struct perf_event *event)
617{
618}
619
620static inline void
621perf_cgroup_mark_enabled(struct perf_event *event,
622 struct perf_event_context *ctx)
623{
624}
625#endif
626
33696fc0 627void perf_pmu_disable(struct pmu *pmu)
9e35ad38 628{
33696fc0
PZ
629 int *count = this_cpu_ptr(pmu->pmu_disable_count);
630 if (!(*count)++)
631 pmu->pmu_disable(pmu);
9e35ad38 632}
9e35ad38 633
33696fc0 634void perf_pmu_enable(struct pmu *pmu)
9e35ad38 635{
33696fc0
PZ
636 int *count = this_cpu_ptr(pmu->pmu_disable_count);
637 if (!--(*count))
638 pmu->pmu_enable(pmu);
9e35ad38 639}
9e35ad38 640
e9d2b064
PZ
641static DEFINE_PER_CPU(struct list_head, rotation_list);
642
643/*
644 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
645 * because they're strictly cpu affine and rotate_start is called with IRQs
646 * disabled, while rotate_context is called from IRQ context.
647 */
108b02cf 648static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 649{
108b02cf 650 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 651 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 652
e9d2b064 653 WARN_ON(!irqs_disabled());
b5ab4cd5 654
e9d2b064
PZ
655 if (list_empty(&cpuctx->rotation_list))
656 list_add(&cpuctx->rotation_list, head);
9e35ad38 657}
9e35ad38 658
cdd6c482 659static void get_ctx(struct perf_event_context *ctx)
a63eaf34 660{
e5289d4a 661 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
662}
663
cdd6c482 664static void put_ctx(struct perf_event_context *ctx)
a63eaf34 665{
564c2b21
PM
666 if (atomic_dec_and_test(&ctx->refcount)) {
667 if (ctx->parent_ctx)
668 put_ctx(ctx->parent_ctx);
c93f7669
PM
669 if (ctx->task)
670 put_task_struct(ctx->task);
cb796ff3 671 kfree_rcu(ctx, rcu_head);
564c2b21 672 }
a63eaf34
PM
673}
674
cdd6c482 675static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
676{
677 if (ctx->parent_ctx) {
678 put_ctx(ctx->parent_ctx);
679 ctx->parent_ctx = NULL;
680 }
681}
682
6844c09d
ACM
683static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
684{
685 /*
686 * only top level events have the pid namespace they were created in
687 */
688 if (event->parent)
689 event = event->parent;
690
691 return task_tgid_nr_ns(p, event->ns);
692}
693
694static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
695{
696 /*
697 * only top level events have the pid namespace they were created in
698 */
699 if (event->parent)
700 event = event->parent;
701
702 return task_pid_nr_ns(p, event->ns);
703}
704
7f453c24 705/*
cdd6c482 706 * If we inherit events we want to return the parent event id
7f453c24
PZ
707 * to userspace.
708 */
cdd6c482 709static u64 primary_event_id(struct perf_event *event)
7f453c24 710{
cdd6c482 711 u64 id = event->id;
7f453c24 712
cdd6c482
IM
713 if (event->parent)
714 id = event->parent->id;
7f453c24
PZ
715
716 return id;
717}
718
25346b93 719/*
cdd6c482 720 * Get the perf_event_context for a task and lock it.
25346b93
PM
721 * This has to cope with with the fact that until it is locked,
722 * the context could get moved to another task.
723 */
cdd6c482 724static struct perf_event_context *
8dc85d54 725perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 726{
cdd6c482 727 struct perf_event_context *ctx;
25346b93
PM
728
729 rcu_read_lock();
9ed6060d 730retry:
8dc85d54 731 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
732 if (ctx) {
733 /*
734 * If this context is a clone of another, it might
735 * get swapped for another underneath us by
cdd6c482 736 * perf_event_task_sched_out, though the
25346b93
PM
737 * rcu_read_lock() protects us from any context
738 * getting freed. Lock the context and check if it
739 * got swapped before we could get the lock, and retry
740 * if so. If we locked the right context, then it
741 * can't get swapped on us any more.
742 */
e625cce1 743 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 744 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 745 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
746 goto retry;
747 }
b49a9e7e
PZ
748
749 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 750 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
751 ctx = NULL;
752 }
25346b93
PM
753 }
754 rcu_read_unlock();
755 return ctx;
756}
757
758/*
759 * Get the context for a task and increment its pin_count so it
760 * can't get swapped to another task. This also increments its
761 * reference count so that the context can't get freed.
762 */
8dc85d54
PZ
763static struct perf_event_context *
764perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 765{
cdd6c482 766 struct perf_event_context *ctx;
25346b93
PM
767 unsigned long flags;
768
8dc85d54 769 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
770 if (ctx) {
771 ++ctx->pin_count;
e625cce1 772 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
773 }
774 return ctx;
775}
776
cdd6c482 777static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
778{
779 unsigned long flags;
780
e625cce1 781 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 782 --ctx->pin_count;
e625cce1 783 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
784}
785
f67218c3
PZ
786/*
787 * Update the record of the current time in a context.
788 */
789static void update_context_time(struct perf_event_context *ctx)
790{
791 u64 now = perf_clock();
792
793 ctx->time += now - ctx->timestamp;
794 ctx->timestamp = now;
795}
796
4158755d
SE
797static u64 perf_event_time(struct perf_event *event)
798{
799 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
800
801 if (is_cgroup_event(event))
802 return perf_cgroup_event_time(event);
803
4158755d
SE
804 return ctx ? ctx->time : 0;
805}
806
f67218c3
PZ
807/*
808 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 809 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
810 */
811static void update_event_times(struct perf_event *event)
812{
813 struct perf_event_context *ctx = event->ctx;
814 u64 run_end;
815
816 if (event->state < PERF_EVENT_STATE_INACTIVE ||
817 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
818 return;
e5d1367f
SE
819 /*
820 * in cgroup mode, time_enabled represents
821 * the time the event was enabled AND active
822 * tasks were in the monitored cgroup. This is
823 * independent of the activity of the context as
824 * there may be a mix of cgroup and non-cgroup events.
825 *
826 * That is why we treat cgroup events differently
827 * here.
828 */
829 if (is_cgroup_event(event))
46cd6a7f 830 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
831 else if (ctx->is_active)
832 run_end = ctx->time;
acd1d7c1
PZ
833 else
834 run_end = event->tstamp_stopped;
835
836 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
837
838 if (event->state == PERF_EVENT_STATE_INACTIVE)
839 run_end = event->tstamp_stopped;
840 else
4158755d 841 run_end = perf_event_time(event);
f67218c3
PZ
842
843 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 844
f67218c3
PZ
845}
846
96c21a46
PZ
847/*
848 * Update total_time_enabled and total_time_running for all events in a group.
849 */
850static void update_group_times(struct perf_event *leader)
851{
852 struct perf_event *event;
853
854 update_event_times(leader);
855 list_for_each_entry(event, &leader->sibling_list, group_entry)
856 update_event_times(event);
857}
858
889ff015
FW
859static struct list_head *
860ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
861{
862 if (event->attr.pinned)
863 return &ctx->pinned_groups;
864 else
865 return &ctx->flexible_groups;
866}
867
fccc714b 868/*
cdd6c482 869 * Add a event from the lists for its context.
fccc714b
PZ
870 * Must be called with ctx->mutex and ctx->lock held.
871 */
04289bb9 872static void
cdd6c482 873list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 874{
8a49542c
PZ
875 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
876 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
877
878 /*
8a49542c
PZ
879 * If we're a stand alone event or group leader, we go to the context
880 * list, group events are kept attached to the group so that
881 * perf_group_detach can, at all times, locate all siblings.
04289bb9 882 */
8a49542c 883 if (event->group_leader == event) {
889ff015
FW
884 struct list_head *list;
885
d6f962b5
FW
886 if (is_software_event(event))
887 event->group_flags |= PERF_GROUP_SOFTWARE;
888
889ff015
FW
889 list = ctx_group_list(event, ctx);
890 list_add_tail(&event->group_entry, list);
5c148194 891 }
592903cd 892
08309379 893 if (is_cgroup_event(event))
e5d1367f 894 ctx->nr_cgroups++;
e5d1367f 895
d010b332
SE
896 if (has_branch_stack(event))
897 ctx->nr_branch_stack++;
898
cdd6c482 899 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 900 if (!ctx->nr_events)
108b02cf 901 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
902 ctx->nr_events++;
903 if (event->attr.inherit_stat)
bfbd3381 904 ctx->nr_stat++;
04289bb9
IM
905}
906
c320c7b7
ACM
907/*
908 * Called at perf_event creation and when events are attached/detached from a
909 * group.
910 */
911static void perf_event__read_size(struct perf_event *event)
912{
913 int entry = sizeof(u64); /* value */
914 int size = 0;
915 int nr = 1;
916
917 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
918 size += sizeof(u64);
919
920 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
921 size += sizeof(u64);
922
923 if (event->attr.read_format & PERF_FORMAT_ID)
924 entry += sizeof(u64);
925
926 if (event->attr.read_format & PERF_FORMAT_GROUP) {
927 nr += event->group_leader->nr_siblings;
928 size += sizeof(u64);
929 }
930
931 size += entry * nr;
932 event->read_size = size;
933}
934
935static void perf_event__header_size(struct perf_event *event)
936{
937 struct perf_sample_data *data;
938 u64 sample_type = event->attr.sample_type;
939 u16 size = 0;
940
941 perf_event__read_size(event);
942
943 if (sample_type & PERF_SAMPLE_IP)
944 size += sizeof(data->ip);
945
6844c09d
ACM
946 if (sample_type & PERF_SAMPLE_ADDR)
947 size += sizeof(data->addr);
948
949 if (sample_type & PERF_SAMPLE_PERIOD)
950 size += sizeof(data->period);
951
952 if (sample_type & PERF_SAMPLE_READ)
953 size += event->read_size;
954
955 event->header_size = size;
956}
957
958static void perf_event__id_header_size(struct perf_event *event)
959{
960 struct perf_sample_data *data;
961 u64 sample_type = event->attr.sample_type;
962 u16 size = 0;
963
c320c7b7
ACM
964 if (sample_type & PERF_SAMPLE_TID)
965 size += sizeof(data->tid_entry);
966
967 if (sample_type & PERF_SAMPLE_TIME)
968 size += sizeof(data->time);
969
c320c7b7
ACM
970 if (sample_type & PERF_SAMPLE_ID)
971 size += sizeof(data->id);
972
973 if (sample_type & PERF_SAMPLE_STREAM_ID)
974 size += sizeof(data->stream_id);
975
976 if (sample_type & PERF_SAMPLE_CPU)
977 size += sizeof(data->cpu_entry);
978
6844c09d 979 event->id_header_size = size;
c320c7b7
ACM
980}
981
8a49542c
PZ
982static void perf_group_attach(struct perf_event *event)
983{
c320c7b7 984 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 985
74c3337c
PZ
986 /*
987 * We can have double attach due to group movement in perf_event_open.
988 */
989 if (event->attach_state & PERF_ATTACH_GROUP)
990 return;
991
8a49542c
PZ
992 event->attach_state |= PERF_ATTACH_GROUP;
993
994 if (group_leader == event)
995 return;
996
997 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
998 !is_software_event(event))
999 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1000
1001 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1002 group_leader->nr_siblings++;
c320c7b7
ACM
1003
1004 perf_event__header_size(group_leader);
1005
1006 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1007 perf_event__header_size(pos);
8a49542c
PZ
1008}
1009
a63eaf34 1010/*
cdd6c482 1011 * Remove a event from the lists for its context.
fccc714b 1012 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1013 */
04289bb9 1014static void
cdd6c482 1015list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1016{
68cacd29 1017 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1018 /*
1019 * We can have double detach due to exit/hot-unplug + close.
1020 */
1021 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1022 return;
8a49542c
PZ
1023
1024 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1025
68cacd29 1026 if (is_cgroup_event(event)) {
e5d1367f 1027 ctx->nr_cgroups--;
68cacd29
SE
1028 cpuctx = __get_cpu_context(ctx);
1029 /*
1030 * if there are no more cgroup events
1031 * then cler cgrp to avoid stale pointer
1032 * in update_cgrp_time_from_cpuctx()
1033 */
1034 if (!ctx->nr_cgroups)
1035 cpuctx->cgrp = NULL;
1036 }
e5d1367f 1037
d010b332
SE
1038 if (has_branch_stack(event))
1039 ctx->nr_branch_stack--;
1040
cdd6c482
IM
1041 ctx->nr_events--;
1042 if (event->attr.inherit_stat)
bfbd3381 1043 ctx->nr_stat--;
8bc20959 1044
cdd6c482 1045 list_del_rcu(&event->event_entry);
04289bb9 1046
8a49542c
PZ
1047 if (event->group_leader == event)
1048 list_del_init(&event->group_entry);
5c148194 1049
96c21a46 1050 update_group_times(event);
b2e74a26
SE
1051
1052 /*
1053 * If event was in error state, then keep it
1054 * that way, otherwise bogus counts will be
1055 * returned on read(). The only way to get out
1056 * of error state is by explicit re-enabling
1057 * of the event
1058 */
1059 if (event->state > PERF_EVENT_STATE_OFF)
1060 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1061}
1062
8a49542c 1063static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1064{
1065 struct perf_event *sibling, *tmp;
8a49542c
PZ
1066 struct list_head *list = NULL;
1067
1068 /*
1069 * We can have double detach due to exit/hot-unplug + close.
1070 */
1071 if (!(event->attach_state & PERF_ATTACH_GROUP))
1072 return;
1073
1074 event->attach_state &= ~PERF_ATTACH_GROUP;
1075
1076 /*
1077 * If this is a sibling, remove it from its group.
1078 */
1079 if (event->group_leader != event) {
1080 list_del_init(&event->group_entry);
1081 event->group_leader->nr_siblings--;
c320c7b7 1082 goto out;
8a49542c
PZ
1083 }
1084
1085 if (!list_empty(&event->group_entry))
1086 list = &event->group_entry;
2e2af50b 1087
04289bb9 1088 /*
cdd6c482
IM
1089 * If this was a group event with sibling events then
1090 * upgrade the siblings to singleton events by adding them
8a49542c 1091 * to whatever list we are on.
04289bb9 1092 */
cdd6c482 1093 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1094 if (list)
1095 list_move_tail(&sibling->group_entry, list);
04289bb9 1096 sibling->group_leader = sibling;
d6f962b5
FW
1097
1098 /* Inherit group flags from the previous leader */
1099 sibling->group_flags = event->group_flags;
04289bb9 1100 }
c320c7b7
ACM
1101
1102out:
1103 perf_event__header_size(event->group_leader);
1104
1105 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1106 perf_event__header_size(tmp);
04289bb9
IM
1107}
1108
fa66f07a
SE
1109static inline int
1110event_filter_match(struct perf_event *event)
1111{
e5d1367f
SE
1112 return (event->cpu == -1 || event->cpu == smp_processor_id())
1113 && perf_cgroup_match(event);
fa66f07a
SE
1114}
1115
9ffcfa6f
SE
1116static void
1117event_sched_out(struct perf_event *event,
3b6f9e5c 1118 struct perf_cpu_context *cpuctx,
cdd6c482 1119 struct perf_event_context *ctx)
3b6f9e5c 1120{
4158755d 1121 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1122 u64 delta;
1123 /*
1124 * An event which could not be activated because of
1125 * filter mismatch still needs to have its timings
1126 * maintained, otherwise bogus information is return
1127 * via read() for time_enabled, time_running:
1128 */
1129 if (event->state == PERF_EVENT_STATE_INACTIVE
1130 && !event_filter_match(event)) {
e5d1367f 1131 delta = tstamp - event->tstamp_stopped;
fa66f07a 1132 event->tstamp_running += delta;
4158755d 1133 event->tstamp_stopped = tstamp;
fa66f07a
SE
1134 }
1135
cdd6c482 1136 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1137 return;
3b6f9e5c 1138
cdd6c482
IM
1139 event->state = PERF_EVENT_STATE_INACTIVE;
1140 if (event->pending_disable) {
1141 event->pending_disable = 0;
1142 event->state = PERF_EVENT_STATE_OFF;
970892a9 1143 }
4158755d 1144 event->tstamp_stopped = tstamp;
a4eaf7f1 1145 event->pmu->del(event, 0);
cdd6c482 1146 event->oncpu = -1;
3b6f9e5c 1147
cdd6c482 1148 if (!is_software_event(event))
3b6f9e5c
PM
1149 cpuctx->active_oncpu--;
1150 ctx->nr_active--;
0f5a2601
PZ
1151 if (event->attr.freq && event->attr.sample_freq)
1152 ctx->nr_freq--;
cdd6c482 1153 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1154 cpuctx->exclusive = 0;
1155}
1156
d859e29f 1157static void
cdd6c482 1158group_sched_out(struct perf_event *group_event,
d859e29f 1159 struct perf_cpu_context *cpuctx,
cdd6c482 1160 struct perf_event_context *ctx)
d859e29f 1161{
cdd6c482 1162 struct perf_event *event;
fa66f07a 1163 int state = group_event->state;
d859e29f 1164
cdd6c482 1165 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1166
1167 /*
1168 * Schedule out siblings (if any):
1169 */
cdd6c482
IM
1170 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1171 event_sched_out(event, cpuctx, ctx);
d859e29f 1172
fa66f07a 1173 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1174 cpuctx->exclusive = 0;
1175}
1176
0793a61d 1177/*
cdd6c482 1178 * Cross CPU call to remove a performance event
0793a61d 1179 *
cdd6c482 1180 * We disable the event on the hardware level first. After that we
0793a61d
TG
1181 * remove it from the context list.
1182 */
fe4b04fa 1183static int __perf_remove_from_context(void *info)
0793a61d 1184{
cdd6c482
IM
1185 struct perf_event *event = info;
1186 struct perf_event_context *ctx = event->ctx;
108b02cf 1187 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1188
e625cce1 1189 raw_spin_lock(&ctx->lock);
cdd6c482 1190 event_sched_out(event, cpuctx, ctx);
cdd6c482 1191 list_del_event(event, ctx);
64ce3126
PZ
1192 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1193 ctx->is_active = 0;
1194 cpuctx->task_ctx = NULL;
1195 }
e625cce1 1196 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1197
1198 return 0;
0793a61d
TG
1199}
1200
1201
1202/*
cdd6c482 1203 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1204 *
cdd6c482 1205 * CPU events are removed with a smp call. For task events we only
0793a61d 1206 * call when the task is on a CPU.
c93f7669 1207 *
cdd6c482
IM
1208 * If event->ctx is a cloned context, callers must make sure that
1209 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1210 * remains valid. This is OK when called from perf_release since
1211 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1212 * When called from perf_event_exit_task, it's OK because the
c93f7669 1213 * context has been detached from its task.
0793a61d 1214 */
fe4b04fa 1215static void perf_remove_from_context(struct perf_event *event)
0793a61d 1216{
cdd6c482 1217 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1218 struct task_struct *task = ctx->task;
1219
fe4b04fa
PZ
1220 lockdep_assert_held(&ctx->mutex);
1221
0793a61d
TG
1222 if (!task) {
1223 /*
cdd6c482 1224 * Per cpu events are removed via an smp call and
af901ca1 1225 * the removal is always successful.
0793a61d 1226 */
fe4b04fa 1227 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1228 return;
1229 }
1230
1231retry:
fe4b04fa
PZ
1232 if (!task_function_call(task, __perf_remove_from_context, event))
1233 return;
0793a61d 1234
e625cce1 1235 raw_spin_lock_irq(&ctx->lock);
0793a61d 1236 /*
fe4b04fa
PZ
1237 * If we failed to find a running task, but find the context active now
1238 * that we've acquired the ctx->lock, retry.
0793a61d 1239 */
fe4b04fa 1240 if (ctx->is_active) {
e625cce1 1241 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1242 goto retry;
1243 }
1244
1245 /*
fe4b04fa
PZ
1246 * Since the task isn't running, its safe to remove the event, us
1247 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1248 */
fe4b04fa 1249 list_del_event(event, ctx);
e625cce1 1250 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1251}
1252
d859e29f 1253/*
cdd6c482 1254 * Cross CPU call to disable a performance event
d859e29f 1255 */
500ad2d8 1256int __perf_event_disable(void *info)
d859e29f 1257{
cdd6c482 1258 struct perf_event *event = info;
cdd6c482 1259 struct perf_event_context *ctx = event->ctx;
108b02cf 1260 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1261
1262 /*
cdd6c482
IM
1263 * If this is a per-task event, need to check whether this
1264 * event's task is the current task on this cpu.
fe4b04fa
PZ
1265 *
1266 * Can trigger due to concurrent perf_event_context_sched_out()
1267 * flipping contexts around.
d859e29f 1268 */
665c2142 1269 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1270 return -EINVAL;
d859e29f 1271
e625cce1 1272 raw_spin_lock(&ctx->lock);
d859e29f
PM
1273
1274 /*
cdd6c482 1275 * If the event is on, turn it off.
d859e29f
PM
1276 * If it is in error state, leave it in error state.
1277 */
cdd6c482 1278 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1279 update_context_time(ctx);
e5d1367f 1280 update_cgrp_time_from_event(event);
cdd6c482
IM
1281 update_group_times(event);
1282 if (event == event->group_leader)
1283 group_sched_out(event, cpuctx, ctx);
d859e29f 1284 else
cdd6c482
IM
1285 event_sched_out(event, cpuctx, ctx);
1286 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1287 }
1288
e625cce1 1289 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1290
1291 return 0;
d859e29f
PM
1292}
1293
1294/*
cdd6c482 1295 * Disable a event.
c93f7669 1296 *
cdd6c482
IM
1297 * If event->ctx is a cloned context, callers must make sure that
1298 * every task struct that event->ctx->task could possibly point to
c93f7669 1299 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1300 * perf_event_for_each_child or perf_event_for_each because they
1301 * hold the top-level event's child_mutex, so any descendant that
1302 * goes to exit will block in sync_child_event.
1303 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1304 * is the current context on this CPU and preemption is disabled,
cdd6c482 1305 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1306 */
44234adc 1307void perf_event_disable(struct perf_event *event)
d859e29f 1308{
cdd6c482 1309 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1310 struct task_struct *task = ctx->task;
1311
1312 if (!task) {
1313 /*
cdd6c482 1314 * Disable the event on the cpu that it's on
d859e29f 1315 */
fe4b04fa 1316 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1317 return;
1318 }
1319
9ed6060d 1320retry:
fe4b04fa
PZ
1321 if (!task_function_call(task, __perf_event_disable, event))
1322 return;
d859e29f 1323
e625cce1 1324 raw_spin_lock_irq(&ctx->lock);
d859e29f 1325 /*
cdd6c482 1326 * If the event is still active, we need to retry the cross-call.
d859e29f 1327 */
cdd6c482 1328 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1329 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1330 /*
1331 * Reload the task pointer, it might have been changed by
1332 * a concurrent perf_event_context_sched_out().
1333 */
1334 task = ctx->task;
d859e29f
PM
1335 goto retry;
1336 }
1337
1338 /*
1339 * Since we have the lock this context can't be scheduled
1340 * in, so we can change the state safely.
1341 */
cdd6c482
IM
1342 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1343 update_group_times(event);
1344 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1345 }
e625cce1 1346 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1347}
dcfce4a0 1348EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1349
e5d1367f
SE
1350static void perf_set_shadow_time(struct perf_event *event,
1351 struct perf_event_context *ctx,
1352 u64 tstamp)
1353{
1354 /*
1355 * use the correct time source for the time snapshot
1356 *
1357 * We could get by without this by leveraging the
1358 * fact that to get to this function, the caller
1359 * has most likely already called update_context_time()
1360 * and update_cgrp_time_xx() and thus both timestamp
1361 * are identical (or very close). Given that tstamp is,
1362 * already adjusted for cgroup, we could say that:
1363 * tstamp - ctx->timestamp
1364 * is equivalent to
1365 * tstamp - cgrp->timestamp.
1366 *
1367 * Then, in perf_output_read(), the calculation would
1368 * work with no changes because:
1369 * - event is guaranteed scheduled in
1370 * - no scheduled out in between
1371 * - thus the timestamp would be the same
1372 *
1373 * But this is a bit hairy.
1374 *
1375 * So instead, we have an explicit cgroup call to remain
1376 * within the time time source all along. We believe it
1377 * is cleaner and simpler to understand.
1378 */
1379 if (is_cgroup_event(event))
1380 perf_cgroup_set_shadow_time(event, tstamp);
1381 else
1382 event->shadow_ctx_time = tstamp - ctx->timestamp;
1383}
1384
4fe757dd
PZ
1385#define MAX_INTERRUPTS (~0ULL)
1386
1387static void perf_log_throttle(struct perf_event *event, int enable);
1388
235c7fc7 1389static int
9ffcfa6f 1390event_sched_in(struct perf_event *event,
235c7fc7 1391 struct perf_cpu_context *cpuctx,
6e37738a 1392 struct perf_event_context *ctx)
235c7fc7 1393{
4158755d
SE
1394 u64 tstamp = perf_event_time(event);
1395
cdd6c482 1396 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1397 return 0;
1398
cdd6c482 1399 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1400 event->oncpu = smp_processor_id();
4fe757dd
PZ
1401
1402 /*
1403 * Unthrottle events, since we scheduled we might have missed several
1404 * ticks already, also for a heavily scheduling task there is little
1405 * guarantee it'll get a tick in a timely manner.
1406 */
1407 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1408 perf_log_throttle(event, 1);
1409 event->hw.interrupts = 0;
1410 }
1411
235c7fc7
IM
1412 /*
1413 * The new state must be visible before we turn it on in the hardware:
1414 */
1415 smp_wmb();
1416
a4eaf7f1 1417 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1418 event->state = PERF_EVENT_STATE_INACTIVE;
1419 event->oncpu = -1;
235c7fc7
IM
1420 return -EAGAIN;
1421 }
1422
4158755d 1423 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1424
e5d1367f 1425 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1426
cdd6c482 1427 if (!is_software_event(event))
3b6f9e5c 1428 cpuctx->active_oncpu++;
235c7fc7 1429 ctx->nr_active++;
0f5a2601
PZ
1430 if (event->attr.freq && event->attr.sample_freq)
1431 ctx->nr_freq++;
235c7fc7 1432
cdd6c482 1433 if (event->attr.exclusive)
3b6f9e5c
PM
1434 cpuctx->exclusive = 1;
1435
235c7fc7
IM
1436 return 0;
1437}
1438
6751b71e 1439static int
cdd6c482 1440group_sched_in(struct perf_event *group_event,
6751b71e 1441 struct perf_cpu_context *cpuctx,
6e37738a 1442 struct perf_event_context *ctx)
6751b71e 1443{
6bde9b6c 1444 struct perf_event *event, *partial_group = NULL;
51b0fe39 1445 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1446 u64 now = ctx->time;
1447 bool simulate = false;
6751b71e 1448
cdd6c482 1449 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1450 return 0;
1451
ad5133b7 1452 pmu->start_txn(pmu);
6bde9b6c 1453
9ffcfa6f 1454 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1455 pmu->cancel_txn(pmu);
6751b71e 1456 return -EAGAIN;
90151c35 1457 }
6751b71e
PM
1458
1459 /*
1460 * Schedule in siblings as one group (if any):
1461 */
cdd6c482 1462 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1463 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1464 partial_group = event;
6751b71e
PM
1465 goto group_error;
1466 }
1467 }
1468
9ffcfa6f 1469 if (!pmu->commit_txn(pmu))
6e85158c 1470 return 0;
9ffcfa6f 1471
6751b71e
PM
1472group_error:
1473 /*
1474 * Groups can be scheduled in as one unit only, so undo any
1475 * partial group before returning:
d7842da4
SE
1476 * The events up to the failed event are scheduled out normally,
1477 * tstamp_stopped will be updated.
1478 *
1479 * The failed events and the remaining siblings need to have
1480 * their timings updated as if they had gone thru event_sched_in()
1481 * and event_sched_out(). This is required to get consistent timings
1482 * across the group. This also takes care of the case where the group
1483 * could never be scheduled by ensuring tstamp_stopped is set to mark
1484 * the time the event was actually stopped, such that time delta
1485 * calculation in update_event_times() is correct.
6751b71e 1486 */
cdd6c482
IM
1487 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1488 if (event == partial_group)
d7842da4
SE
1489 simulate = true;
1490
1491 if (simulate) {
1492 event->tstamp_running += now - event->tstamp_stopped;
1493 event->tstamp_stopped = now;
1494 } else {
1495 event_sched_out(event, cpuctx, ctx);
1496 }
6751b71e 1497 }
9ffcfa6f 1498 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1499
ad5133b7 1500 pmu->cancel_txn(pmu);
90151c35 1501
6751b71e
PM
1502 return -EAGAIN;
1503}
1504
3b6f9e5c 1505/*
cdd6c482 1506 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1507 */
cdd6c482 1508static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1509 struct perf_cpu_context *cpuctx,
1510 int can_add_hw)
1511{
1512 /*
cdd6c482 1513 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1514 */
d6f962b5 1515 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1516 return 1;
1517 /*
1518 * If an exclusive group is already on, no other hardware
cdd6c482 1519 * events can go on.
3b6f9e5c
PM
1520 */
1521 if (cpuctx->exclusive)
1522 return 0;
1523 /*
1524 * If this group is exclusive and there are already
cdd6c482 1525 * events on the CPU, it can't go on.
3b6f9e5c 1526 */
cdd6c482 1527 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1528 return 0;
1529 /*
1530 * Otherwise, try to add it if all previous groups were able
1531 * to go on.
1532 */
1533 return can_add_hw;
1534}
1535
cdd6c482
IM
1536static void add_event_to_ctx(struct perf_event *event,
1537 struct perf_event_context *ctx)
53cfbf59 1538{
4158755d
SE
1539 u64 tstamp = perf_event_time(event);
1540
cdd6c482 1541 list_add_event(event, ctx);
8a49542c 1542 perf_group_attach(event);
4158755d
SE
1543 event->tstamp_enabled = tstamp;
1544 event->tstamp_running = tstamp;
1545 event->tstamp_stopped = tstamp;
53cfbf59
PM
1546}
1547
2c29ef0f
PZ
1548static void task_ctx_sched_out(struct perf_event_context *ctx);
1549static void
1550ctx_sched_in(struct perf_event_context *ctx,
1551 struct perf_cpu_context *cpuctx,
1552 enum event_type_t event_type,
1553 struct task_struct *task);
fe4b04fa 1554
dce5855b
PZ
1555static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1556 struct perf_event_context *ctx,
1557 struct task_struct *task)
1558{
1559 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1560 if (ctx)
1561 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1562 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1563 if (ctx)
1564 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1565}
1566
0793a61d 1567/*
cdd6c482 1568 * Cross CPU call to install and enable a performance event
682076ae
PZ
1569 *
1570 * Must be called with ctx->mutex held
0793a61d 1571 */
fe4b04fa 1572static int __perf_install_in_context(void *info)
0793a61d 1573{
cdd6c482
IM
1574 struct perf_event *event = info;
1575 struct perf_event_context *ctx = event->ctx;
108b02cf 1576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1577 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1578 struct task_struct *task = current;
1579
b58f6b0d 1580 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1581 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1582
1583 /*
2c29ef0f 1584 * If there was an active task_ctx schedule it out.
0793a61d 1585 */
b58f6b0d 1586 if (task_ctx)
2c29ef0f 1587 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1588
1589 /*
1590 * If the context we're installing events in is not the
1591 * active task_ctx, flip them.
1592 */
1593 if (ctx->task && task_ctx != ctx) {
1594 if (task_ctx)
1595 raw_spin_unlock(&task_ctx->lock);
1596 raw_spin_lock(&ctx->lock);
1597 task_ctx = ctx;
1598 }
1599
1600 if (task_ctx) {
1601 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1602 task = task_ctx->task;
1603 }
b58f6b0d 1604
2c29ef0f 1605 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1606
4af4998b 1607 update_context_time(ctx);
e5d1367f
SE
1608 /*
1609 * update cgrp time only if current cgrp
1610 * matches event->cgrp. Must be done before
1611 * calling add_event_to_ctx()
1612 */
1613 update_cgrp_time_from_event(event);
0793a61d 1614
cdd6c482 1615 add_event_to_ctx(event, ctx);
0793a61d 1616
d859e29f 1617 /*
2c29ef0f 1618 * Schedule everything back in
d859e29f 1619 */
dce5855b 1620 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1621
1622 perf_pmu_enable(cpuctx->ctx.pmu);
1623 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1624
1625 return 0;
0793a61d
TG
1626}
1627
1628/*
cdd6c482 1629 * Attach a performance event to a context
0793a61d 1630 *
cdd6c482
IM
1631 * First we add the event to the list with the hardware enable bit
1632 * in event->hw_config cleared.
0793a61d 1633 *
cdd6c482 1634 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1635 * call to enable it in the task context. The task might have been
1636 * scheduled away, but we check this in the smp call again.
1637 */
1638static void
cdd6c482
IM
1639perf_install_in_context(struct perf_event_context *ctx,
1640 struct perf_event *event,
0793a61d
TG
1641 int cpu)
1642{
1643 struct task_struct *task = ctx->task;
1644
fe4b04fa
PZ
1645 lockdep_assert_held(&ctx->mutex);
1646
c3f00c70 1647 event->ctx = ctx;
0cda4c02
YZ
1648 if (event->cpu != -1)
1649 event->cpu = cpu;
c3f00c70 1650
0793a61d
TG
1651 if (!task) {
1652 /*
cdd6c482 1653 * Per cpu events are installed via an smp call and
af901ca1 1654 * the install is always successful.
0793a61d 1655 */
fe4b04fa 1656 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1657 return;
1658 }
1659
0793a61d 1660retry:
fe4b04fa
PZ
1661 if (!task_function_call(task, __perf_install_in_context, event))
1662 return;
0793a61d 1663
e625cce1 1664 raw_spin_lock_irq(&ctx->lock);
0793a61d 1665 /*
fe4b04fa
PZ
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
0793a61d 1668 */
fe4b04fa 1669 if (ctx->is_active) {
e625cce1 1670 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1671 goto retry;
1672 }
1673
1674 /*
fe4b04fa
PZ
1675 * Since the task isn't running, its safe to add the event, us holding
1676 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1677 */
fe4b04fa 1678 add_event_to_ctx(event, ctx);
e625cce1 1679 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1680}
1681
fa289bec 1682/*
cdd6c482 1683 * Put a event into inactive state and update time fields.
fa289bec
PM
1684 * Enabling the leader of a group effectively enables all
1685 * the group members that aren't explicitly disabled, so we
1686 * have to update their ->tstamp_enabled also.
1687 * Note: this works for group members as well as group leaders
1688 * since the non-leader members' sibling_lists will be empty.
1689 */
1d9b482e 1690static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1691{
cdd6c482 1692 struct perf_event *sub;
4158755d 1693 u64 tstamp = perf_event_time(event);
fa289bec 1694
cdd6c482 1695 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1696 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1697 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1698 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1699 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1700 }
fa289bec
PM
1701}
1702
d859e29f 1703/*
cdd6c482 1704 * Cross CPU call to enable a performance event
d859e29f 1705 */
fe4b04fa 1706static int __perf_event_enable(void *info)
04289bb9 1707{
cdd6c482 1708 struct perf_event *event = info;
cdd6c482
IM
1709 struct perf_event_context *ctx = event->ctx;
1710 struct perf_event *leader = event->group_leader;
108b02cf 1711 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1712 int err;
04289bb9 1713
fe4b04fa
PZ
1714 if (WARN_ON_ONCE(!ctx->is_active))
1715 return -EINVAL;
3cbed429 1716
e625cce1 1717 raw_spin_lock(&ctx->lock);
4af4998b 1718 update_context_time(ctx);
d859e29f 1719
cdd6c482 1720 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1721 goto unlock;
e5d1367f
SE
1722
1723 /*
1724 * set current task's cgroup time reference point
1725 */
3f7cce3c 1726 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1727
1d9b482e 1728 __perf_event_mark_enabled(event);
04289bb9 1729
e5d1367f
SE
1730 if (!event_filter_match(event)) {
1731 if (is_cgroup_event(event))
1732 perf_cgroup_defer_enabled(event);
f4c4176f 1733 goto unlock;
e5d1367f 1734 }
f4c4176f 1735
04289bb9 1736 /*
cdd6c482 1737 * If the event is in a group and isn't the group leader,
d859e29f 1738 * then don't put it on unless the group is on.
04289bb9 1739 */
cdd6c482 1740 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1741 goto unlock;
3b6f9e5c 1742
cdd6c482 1743 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1744 err = -EEXIST;
e758a33d 1745 } else {
cdd6c482 1746 if (event == leader)
6e37738a 1747 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1748 else
6e37738a 1749 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1750 }
d859e29f
PM
1751
1752 if (err) {
1753 /*
cdd6c482 1754 * If this event can't go on and it's part of a
d859e29f
PM
1755 * group, then the whole group has to come off.
1756 */
cdd6c482 1757 if (leader != event)
d859e29f 1758 group_sched_out(leader, cpuctx, ctx);
0d48696f 1759 if (leader->attr.pinned) {
53cfbf59 1760 update_group_times(leader);
cdd6c482 1761 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1762 }
d859e29f
PM
1763 }
1764
9ed6060d 1765unlock:
e625cce1 1766 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1767
1768 return 0;
d859e29f
PM
1769}
1770
1771/*
cdd6c482 1772 * Enable a event.
c93f7669 1773 *
cdd6c482
IM
1774 * If event->ctx is a cloned context, callers must make sure that
1775 * every task struct that event->ctx->task could possibly point to
c93f7669 1776 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1777 * perf_event_for_each_child or perf_event_for_each as described
1778 * for perf_event_disable.
d859e29f 1779 */
44234adc 1780void perf_event_enable(struct perf_event *event)
d859e29f 1781{
cdd6c482 1782 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1783 struct task_struct *task = ctx->task;
1784
1785 if (!task) {
1786 /*
cdd6c482 1787 * Enable the event on the cpu that it's on
d859e29f 1788 */
fe4b04fa 1789 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1790 return;
1791 }
1792
e625cce1 1793 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1794 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1795 goto out;
1796
1797 /*
cdd6c482
IM
1798 * If the event is in error state, clear that first.
1799 * That way, if we see the event in error state below, we
d859e29f
PM
1800 * know that it has gone back into error state, as distinct
1801 * from the task having been scheduled away before the
1802 * cross-call arrived.
1803 */
cdd6c482
IM
1804 if (event->state == PERF_EVENT_STATE_ERROR)
1805 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1806
9ed6060d 1807retry:
fe4b04fa 1808 if (!ctx->is_active) {
1d9b482e 1809 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1810 goto out;
1811 }
1812
e625cce1 1813 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1814
1815 if (!task_function_call(task, __perf_event_enable, event))
1816 return;
d859e29f 1817
e625cce1 1818 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1819
1820 /*
cdd6c482 1821 * If the context is active and the event is still off,
d859e29f
PM
1822 * we need to retry the cross-call.
1823 */
fe4b04fa
PZ
1824 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1825 /*
1826 * task could have been flipped by a concurrent
1827 * perf_event_context_sched_out()
1828 */
1829 task = ctx->task;
d859e29f 1830 goto retry;
fe4b04fa 1831 }
fa289bec 1832
9ed6060d 1833out:
e625cce1 1834 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1835}
dcfce4a0 1836EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1837
26ca5c11 1838int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1839{
2023b359 1840 /*
cdd6c482 1841 * not supported on inherited events
2023b359 1842 */
2e939d1d 1843 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1844 return -EINVAL;
1845
cdd6c482
IM
1846 atomic_add(refresh, &event->event_limit);
1847 perf_event_enable(event);
2023b359
PZ
1848
1849 return 0;
79f14641 1850}
26ca5c11 1851EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 1852
5b0311e1
FW
1853static void ctx_sched_out(struct perf_event_context *ctx,
1854 struct perf_cpu_context *cpuctx,
1855 enum event_type_t event_type)
235c7fc7 1856{
cdd6c482 1857 struct perf_event *event;
db24d33e 1858 int is_active = ctx->is_active;
235c7fc7 1859
db24d33e 1860 ctx->is_active &= ~event_type;
cdd6c482 1861 if (likely(!ctx->nr_events))
facc4307
PZ
1862 return;
1863
4af4998b 1864 update_context_time(ctx);
e5d1367f 1865 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 1866 if (!ctx->nr_active)
facc4307 1867 return;
5b0311e1 1868
075e0b00 1869 perf_pmu_disable(ctx->pmu);
db24d33e 1870 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
1871 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1872 group_sched_out(event, cpuctx, ctx);
9ed6060d 1873 }
889ff015 1874
db24d33e 1875 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 1876 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 1877 group_sched_out(event, cpuctx, ctx);
9ed6060d 1878 }
1b9a644f 1879 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
1880}
1881
564c2b21
PM
1882/*
1883 * Test whether two contexts are equivalent, i.e. whether they
1884 * have both been cloned from the same version of the same context
cdd6c482
IM
1885 * and they both have the same number of enabled events.
1886 * If the number of enabled events is the same, then the set
1887 * of enabled events should be the same, because these are both
1888 * inherited contexts, therefore we can't access individual events
564c2b21 1889 * in them directly with an fd; we can only enable/disable all
cdd6c482 1890 * events via prctl, or enable/disable all events in a family
564c2b21
PM
1891 * via ioctl, which will have the same effect on both contexts.
1892 */
cdd6c482
IM
1893static int context_equiv(struct perf_event_context *ctx1,
1894 struct perf_event_context *ctx2)
564c2b21
PM
1895{
1896 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 1897 && ctx1->parent_gen == ctx2->parent_gen
25346b93 1898 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
1899}
1900
cdd6c482
IM
1901static void __perf_event_sync_stat(struct perf_event *event,
1902 struct perf_event *next_event)
bfbd3381
PZ
1903{
1904 u64 value;
1905
cdd6c482 1906 if (!event->attr.inherit_stat)
bfbd3381
PZ
1907 return;
1908
1909 /*
cdd6c482 1910 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
1911 * because we're in the middle of a context switch and have IRQs
1912 * disabled, which upsets smp_call_function_single(), however
cdd6c482 1913 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
1914 * don't need to use it.
1915 */
cdd6c482
IM
1916 switch (event->state) {
1917 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
1918 event->pmu->read(event);
1919 /* fall-through */
bfbd3381 1920
cdd6c482
IM
1921 case PERF_EVENT_STATE_INACTIVE:
1922 update_event_times(event);
bfbd3381
PZ
1923 break;
1924
1925 default:
1926 break;
1927 }
1928
1929 /*
cdd6c482 1930 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
1931 * values when we flip the contexts.
1932 */
e7850595
PZ
1933 value = local64_read(&next_event->count);
1934 value = local64_xchg(&event->count, value);
1935 local64_set(&next_event->count, value);
bfbd3381 1936
cdd6c482
IM
1937 swap(event->total_time_enabled, next_event->total_time_enabled);
1938 swap(event->total_time_running, next_event->total_time_running);
19d2e755 1939
bfbd3381 1940 /*
19d2e755 1941 * Since we swizzled the values, update the user visible data too.
bfbd3381 1942 */
cdd6c482
IM
1943 perf_event_update_userpage(event);
1944 perf_event_update_userpage(next_event);
bfbd3381
PZ
1945}
1946
1947#define list_next_entry(pos, member) \
1948 list_entry(pos->member.next, typeof(*pos), member)
1949
cdd6c482
IM
1950static void perf_event_sync_stat(struct perf_event_context *ctx,
1951 struct perf_event_context *next_ctx)
bfbd3381 1952{
cdd6c482 1953 struct perf_event *event, *next_event;
bfbd3381
PZ
1954
1955 if (!ctx->nr_stat)
1956 return;
1957
02ffdbc8
PZ
1958 update_context_time(ctx);
1959
cdd6c482
IM
1960 event = list_first_entry(&ctx->event_list,
1961 struct perf_event, event_entry);
bfbd3381 1962
cdd6c482
IM
1963 next_event = list_first_entry(&next_ctx->event_list,
1964 struct perf_event, event_entry);
bfbd3381 1965
cdd6c482
IM
1966 while (&event->event_entry != &ctx->event_list &&
1967 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 1968
cdd6c482 1969 __perf_event_sync_stat(event, next_event);
bfbd3381 1970
cdd6c482
IM
1971 event = list_next_entry(event, event_entry);
1972 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
1973 }
1974}
1975
fe4b04fa
PZ
1976static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1977 struct task_struct *next)
0793a61d 1978{
8dc85d54 1979 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
1980 struct perf_event_context *next_ctx;
1981 struct perf_event_context *parent;
108b02cf 1982 struct perf_cpu_context *cpuctx;
c93f7669 1983 int do_switch = 1;
0793a61d 1984
108b02cf
PZ
1985 if (likely(!ctx))
1986 return;
10989fb2 1987
108b02cf
PZ
1988 cpuctx = __get_cpu_context(ctx);
1989 if (!cpuctx->task_ctx)
0793a61d
TG
1990 return;
1991
c93f7669
PM
1992 rcu_read_lock();
1993 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 1994 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
1995 if (parent && next_ctx &&
1996 rcu_dereference(next_ctx->parent_ctx) == parent) {
1997 /*
1998 * Looks like the two contexts are clones, so we might be
1999 * able to optimize the context switch. We lock both
2000 * contexts and check that they are clones under the
2001 * lock (including re-checking that neither has been
2002 * uncloned in the meantime). It doesn't matter which
2003 * order we take the locks because no other cpu could
2004 * be trying to lock both of these tasks.
2005 */
e625cce1
TG
2006 raw_spin_lock(&ctx->lock);
2007 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2008 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2009 /*
2010 * XXX do we need a memory barrier of sorts
cdd6c482 2011 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2012 */
8dc85d54
PZ
2013 task->perf_event_ctxp[ctxn] = next_ctx;
2014 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2015 ctx->task = next;
2016 next_ctx->task = task;
2017 do_switch = 0;
bfbd3381 2018
cdd6c482 2019 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2020 }
e625cce1
TG
2021 raw_spin_unlock(&next_ctx->lock);
2022 raw_spin_unlock(&ctx->lock);
564c2b21 2023 }
c93f7669 2024 rcu_read_unlock();
564c2b21 2025
c93f7669 2026 if (do_switch) {
facc4307 2027 raw_spin_lock(&ctx->lock);
5b0311e1 2028 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2029 cpuctx->task_ctx = NULL;
facc4307 2030 raw_spin_unlock(&ctx->lock);
c93f7669 2031 }
0793a61d
TG
2032}
2033
8dc85d54
PZ
2034#define for_each_task_context_nr(ctxn) \
2035 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2036
2037/*
2038 * Called from scheduler to remove the events of the current task,
2039 * with interrupts disabled.
2040 *
2041 * We stop each event and update the event value in event->count.
2042 *
2043 * This does not protect us against NMI, but disable()
2044 * sets the disabled bit in the control field of event _before_
2045 * accessing the event control register. If a NMI hits, then it will
2046 * not restart the event.
2047 */
ab0cce56
JO
2048void __perf_event_task_sched_out(struct task_struct *task,
2049 struct task_struct *next)
8dc85d54
PZ
2050{
2051 int ctxn;
2052
8dc85d54
PZ
2053 for_each_task_context_nr(ctxn)
2054 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2055
2056 /*
2057 * if cgroup events exist on this CPU, then we need
2058 * to check if we have to switch out PMU state.
2059 * cgroup event are system-wide mode only
2060 */
2061 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2062 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2063}
2064
04dc2dbb 2065static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2066{
108b02cf 2067 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2068
a63eaf34
PM
2069 if (!cpuctx->task_ctx)
2070 return;
012b84da
IM
2071
2072 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2073 return;
2074
04dc2dbb 2075 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2076 cpuctx->task_ctx = NULL;
2077}
2078
5b0311e1
FW
2079/*
2080 * Called with IRQs disabled
2081 */
2082static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2083 enum event_type_t event_type)
2084{
2085 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2086}
2087
235c7fc7 2088static void
5b0311e1 2089ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2090 struct perf_cpu_context *cpuctx)
0793a61d 2091{
cdd6c482 2092 struct perf_event *event;
0793a61d 2093
889ff015
FW
2094 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2095 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2096 continue;
5632ab12 2097 if (!event_filter_match(event))
3b6f9e5c
PM
2098 continue;
2099
e5d1367f
SE
2100 /* may need to reset tstamp_enabled */
2101 if (is_cgroup_event(event))
2102 perf_cgroup_mark_enabled(event, ctx);
2103
8c9ed8e1 2104 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2105 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2106
2107 /*
2108 * If this pinned group hasn't been scheduled,
2109 * put it in error state.
2110 */
cdd6c482
IM
2111 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2112 update_group_times(event);
2113 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2114 }
3b6f9e5c 2115 }
5b0311e1
FW
2116}
2117
2118static void
2119ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2120 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2121{
2122 struct perf_event *event;
2123 int can_add_hw = 1;
3b6f9e5c 2124
889ff015
FW
2125 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2126 /* Ignore events in OFF or ERROR state */
2127 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2128 continue;
04289bb9
IM
2129 /*
2130 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2131 * of events:
04289bb9 2132 */
5632ab12 2133 if (!event_filter_match(event))
0793a61d
TG
2134 continue;
2135
e5d1367f
SE
2136 /* may need to reset tstamp_enabled */
2137 if (is_cgroup_event(event))
2138 perf_cgroup_mark_enabled(event, ctx);
2139
9ed6060d 2140 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2141 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2142 can_add_hw = 0;
9ed6060d 2143 }
0793a61d 2144 }
5b0311e1
FW
2145}
2146
2147static void
2148ctx_sched_in(struct perf_event_context *ctx,
2149 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2150 enum event_type_t event_type,
2151 struct task_struct *task)
5b0311e1 2152{
e5d1367f 2153 u64 now;
db24d33e 2154 int is_active = ctx->is_active;
e5d1367f 2155
db24d33e 2156 ctx->is_active |= event_type;
5b0311e1 2157 if (likely(!ctx->nr_events))
facc4307 2158 return;
5b0311e1 2159
e5d1367f
SE
2160 now = perf_clock();
2161 ctx->timestamp = now;
3f7cce3c 2162 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2163 /*
2164 * First go through the list and put on any pinned groups
2165 * in order to give them the best chance of going on.
2166 */
db24d33e 2167 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2168 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2169
2170 /* Then walk through the lower prio flexible groups */
db24d33e 2171 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2172 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2173}
2174
329c0e01 2175static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2176 enum event_type_t event_type,
2177 struct task_struct *task)
329c0e01
FW
2178{
2179 struct perf_event_context *ctx = &cpuctx->ctx;
2180
e5d1367f 2181 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2182}
2183
e5d1367f
SE
2184static void perf_event_context_sched_in(struct perf_event_context *ctx,
2185 struct task_struct *task)
235c7fc7 2186{
108b02cf 2187 struct perf_cpu_context *cpuctx;
235c7fc7 2188
108b02cf 2189 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2190 if (cpuctx->task_ctx == ctx)
2191 return;
2192
facc4307 2193 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2194 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2195 /*
2196 * We want to keep the following priority order:
2197 * cpu pinned (that don't need to move), task pinned,
2198 * cpu flexible, task flexible.
2199 */
2200 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2201
1d5f003f
GN
2202 if (ctx->nr_events)
2203 cpuctx->task_ctx = ctx;
9b33fa6b 2204
86b47c25
GN
2205 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2206
facc4307
PZ
2207 perf_pmu_enable(ctx->pmu);
2208 perf_ctx_unlock(cpuctx, ctx);
2209
b5ab4cd5
PZ
2210 /*
2211 * Since these rotations are per-cpu, we need to ensure the
2212 * cpu-context we got scheduled on is actually rotating.
2213 */
108b02cf 2214 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2215}
2216
d010b332
SE
2217/*
2218 * When sampling the branck stack in system-wide, it may be necessary
2219 * to flush the stack on context switch. This happens when the branch
2220 * stack does not tag its entries with the pid of the current task.
2221 * Otherwise it becomes impossible to associate a branch entry with a
2222 * task. This ambiguity is more likely to appear when the branch stack
2223 * supports priv level filtering and the user sets it to monitor only
2224 * at the user level (which could be a useful measurement in system-wide
2225 * mode). In that case, the risk is high of having a branch stack with
2226 * branch from multiple tasks. Flushing may mean dropping the existing
2227 * entries or stashing them somewhere in the PMU specific code layer.
2228 *
2229 * This function provides the context switch callback to the lower code
2230 * layer. It is invoked ONLY when there is at least one system-wide context
2231 * with at least one active event using taken branch sampling.
2232 */
2233static void perf_branch_stack_sched_in(struct task_struct *prev,
2234 struct task_struct *task)
2235{
2236 struct perf_cpu_context *cpuctx;
2237 struct pmu *pmu;
2238 unsigned long flags;
2239
2240 /* no need to flush branch stack if not changing task */
2241 if (prev == task)
2242 return;
2243
2244 local_irq_save(flags);
2245
2246 rcu_read_lock();
2247
2248 list_for_each_entry_rcu(pmu, &pmus, entry) {
2249 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2250
2251 /*
2252 * check if the context has at least one
2253 * event using PERF_SAMPLE_BRANCH_STACK
2254 */
2255 if (cpuctx->ctx.nr_branch_stack > 0
2256 && pmu->flush_branch_stack) {
2257
2258 pmu = cpuctx->ctx.pmu;
2259
2260 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2261
2262 perf_pmu_disable(pmu);
2263
2264 pmu->flush_branch_stack();
2265
2266 perf_pmu_enable(pmu);
2267
2268 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2269 }
2270 }
2271
2272 rcu_read_unlock();
2273
2274 local_irq_restore(flags);
2275}
2276
8dc85d54
PZ
2277/*
2278 * Called from scheduler to add the events of the current task
2279 * with interrupts disabled.
2280 *
2281 * We restore the event value and then enable it.
2282 *
2283 * This does not protect us against NMI, but enable()
2284 * sets the enabled bit in the control field of event _before_
2285 * accessing the event control register. If a NMI hits, then it will
2286 * keep the event running.
2287 */
ab0cce56
JO
2288void __perf_event_task_sched_in(struct task_struct *prev,
2289 struct task_struct *task)
8dc85d54
PZ
2290{
2291 struct perf_event_context *ctx;
2292 int ctxn;
2293
2294 for_each_task_context_nr(ctxn) {
2295 ctx = task->perf_event_ctxp[ctxn];
2296 if (likely(!ctx))
2297 continue;
2298
e5d1367f 2299 perf_event_context_sched_in(ctx, task);
8dc85d54 2300 }
e5d1367f
SE
2301 /*
2302 * if cgroup events exist on this CPU, then we need
2303 * to check if we have to switch in PMU state.
2304 * cgroup event are system-wide mode only
2305 */
2306 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2307 perf_cgroup_sched_in(prev, task);
d010b332
SE
2308
2309 /* check for system-wide branch_stack events */
2310 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2311 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2312}
2313
abd50713
PZ
2314static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2315{
2316 u64 frequency = event->attr.sample_freq;
2317 u64 sec = NSEC_PER_SEC;
2318 u64 divisor, dividend;
2319
2320 int count_fls, nsec_fls, frequency_fls, sec_fls;
2321
2322 count_fls = fls64(count);
2323 nsec_fls = fls64(nsec);
2324 frequency_fls = fls64(frequency);
2325 sec_fls = 30;
2326
2327 /*
2328 * We got @count in @nsec, with a target of sample_freq HZ
2329 * the target period becomes:
2330 *
2331 * @count * 10^9
2332 * period = -------------------
2333 * @nsec * sample_freq
2334 *
2335 */
2336
2337 /*
2338 * Reduce accuracy by one bit such that @a and @b converge
2339 * to a similar magnitude.
2340 */
fe4b04fa 2341#define REDUCE_FLS(a, b) \
abd50713
PZ
2342do { \
2343 if (a##_fls > b##_fls) { \
2344 a >>= 1; \
2345 a##_fls--; \
2346 } else { \
2347 b >>= 1; \
2348 b##_fls--; \
2349 } \
2350} while (0)
2351
2352 /*
2353 * Reduce accuracy until either term fits in a u64, then proceed with
2354 * the other, so that finally we can do a u64/u64 division.
2355 */
2356 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2357 REDUCE_FLS(nsec, frequency);
2358 REDUCE_FLS(sec, count);
2359 }
2360
2361 if (count_fls + sec_fls > 64) {
2362 divisor = nsec * frequency;
2363
2364 while (count_fls + sec_fls > 64) {
2365 REDUCE_FLS(count, sec);
2366 divisor >>= 1;
2367 }
2368
2369 dividend = count * sec;
2370 } else {
2371 dividend = count * sec;
2372
2373 while (nsec_fls + frequency_fls > 64) {
2374 REDUCE_FLS(nsec, frequency);
2375 dividend >>= 1;
2376 }
2377
2378 divisor = nsec * frequency;
2379 }
2380
f6ab91ad
PZ
2381 if (!divisor)
2382 return dividend;
2383
abd50713
PZ
2384 return div64_u64(dividend, divisor);
2385}
2386
e050e3f0
SE
2387static DEFINE_PER_CPU(int, perf_throttled_count);
2388static DEFINE_PER_CPU(u64, perf_throttled_seq);
2389
f39d47ff 2390static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2391{
cdd6c482 2392 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2393 s64 period, sample_period;
bd2b5b12
PZ
2394 s64 delta;
2395
abd50713 2396 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2397
2398 delta = (s64)(period - hwc->sample_period);
2399 delta = (delta + 7) / 8; /* low pass filter */
2400
2401 sample_period = hwc->sample_period + delta;
2402
2403 if (!sample_period)
2404 sample_period = 1;
2405
bd2b5b12 2406 hwc->sample_period = sample_period;
abd50713 2407
e7850595 2408 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2409 if (disable)
2410 event->pmu->stop(event, PERF_EF_UPDATE);
2411
e7850595 2412 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2413
2414 if (disable)
2415 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2416 }
bd2b5b12
PZ
2417}
2418
e050e3f0
SE
2419/*
2420 * combine freq adjustment with unthrottling to avoid two passes over the
2421 * events. At the same time, make sure, having freq events does not change
2422 * the rate of unthrottling as that would introduce bias.
2423 */
2424static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2425 int needs_unthr)
60db5e09 2426{
cdd6c482
IM
2427 struct perf_event *event;
2428 struct hw_perf_event *hwc;
e050e3f0 2429 u64 now, period = TICK_NSEC;
abd50713 2430 s64 delta;
60db5e09 2431
e050e3f0
SE
2432 /*
2433 * only need to iterate over all events iff:
2434 * - context have events in frequency mode (needs freq adjust)
2435 * - there are events to unthrottle on this cpu
2436 */
2437 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2438 return;
2439
e050e3f0 2440 raw_spin_lock(&ctx->lock);
f39d47ff 2441 perf_pmu_disable(ctx->pmu);
e050e3f0 2442
03541f8b 2443 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2444 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2445 continue;
2446
5632ab12 2447 if (!event_filter_match(event))
5d27c23d
PZ
2448 continue;
2449
cdd6c482 2450 hwc = &event->hw;
6a24ed6c 2451
e050e3f0
SE
2452 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2453 hwc->interrupts = 0;
cdd6c482 2454 perf_log_throttle(event, 1);
a4eaf7f1 2455 event->pmu->start(event, 0);
a78ac325
PZ
2456 }
2457
cdd6c482 2458 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2459 continue;
2460
e050e3f0
SE
2461 /*
2462 * stop the event and update event->count
2463 */
2464 event->pmu->stop(event, PERF_EF_UPDATE);
2465
e7850595 2466 now = local64_read(&event->count);
abd50713
PZ
2467 delta = now - hwc->freq_count_stamp;
2468 hwc->freq_count_stamp = now;
60db5e09 2469
e050e3f0
SE
2470 /*
2471 * restart the event
2472 * reload only if value has changed
f39d47ff
SE
2473 * we have stopped the event so tell that
2474 * to perf_adjust_period() to avoid stopping it
2475 * twice.
e050e3f0 2476 */
abd50713 2477 if (delta > 0)
f39d47ff 2478 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2479
2480 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2481 }
e050e3f0 2482
f39d47ff 2483 perf_pmu_enable(ctx->pmu);
e050e3f0 2484 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2485}
2486
235c7fc7 2487/*
cdd6c482 2488 * Round-robin a context's events:
235c7fc7 2489 */
cdd6c482 2490static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2491{
dddd3379
TG
2492 /*
2493 * Rotate the first entry last of non-pinned groups. Rotation might be
2494 * disabled by the inheritance code.
2495 */
2496 if (!ctx->rotate_disable)
2497 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2498}
2499
b5ab4cd5 2500/*
e9d2b064
PZ
2501 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2502 * because they're strictly cpu affine and rotate_start is called with IRQs
2503 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2504 */
e9d2b064 2505static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2506{
8dc85d54 2507 struct perf_event_context *ctx = NULL;
e050e3f0 2508 int rotate = 0, remove = 1;
7fc23a53 2509
b5ab4cd5 2510 if (cpuctx->ctx.nr_events) {
e9d2b064 2511 remove = 0;
b5ab4cd5
PZ
2512 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2513 rotate = 1;
2514 }
235c7fc7 2515
8dc85d54 2516 ctx = cpuctx->task_ctx;
b5ab4cd5 2517 if (ctx && ctx->nr_events) {
e9d2b064 2518 remove = 0;
b5ab4cd5
PZ
2519 if (ctx->nr_events != ctx->nr_active)
2520 rotate = 1;
2521 }
9717e6cd 2522
e050e3f0 2523 if (!rotate)
0f5a2601
PZ
2524 goto done;
2525
facc4307 2526 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2527 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2528
e050e3f0
SE
2529 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2530 if (ctx)
2531 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2532
e050e3f0
SE
2533 rotate_ctx(&cpuctx->ctx);
2534 if (ctx)
2535 rotate_ctx(ctx);
235c7fc7 2536
e050e3f0 2537 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2538
0f5a2601
PZ
2539 perf_pmu_enable(cpuctx->ctx.pmu);
2540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2541done:
e9d2b064
PZ
2542 if (remove)
2543 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2544}
2545
2546void perf_event_task_tick(void)
2547{
2548 struct list_head *head = &__get_cpu_var(rotation_list);
2549 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2550 struct perf_event_context *ctx;
2551 int throttled;
b5ab4cd5 2552
e9d2b064
PZ
2553 WARN_ON(!irqs_disabled());
2554
e050e3f0
SE
2555 __this_cpu_inc(perf_throttled_seq);
2556 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2557
e9d2b064 2558 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2559 ctx = &cpuctx->ctx;
2560 perf_adjust_freq_unthr_context(ctx, throttled);
2561
2562 ctx = cpuctx->task_ctx;
2563 if (ctx)
2564 perf_adjust_freq_unthr_context(ctx, throttled);
2565
e9d2b064
PZ
2566 if (cpuctx->jiffies_interval == 1 ||
2567 !(jiffies % cpuctx->jiffies_interval))
2568 perf_rotate_context(cpuctx);
2569 }
0793a61d
TG
2570}
2571
889ff015
FW
2572static int event_enable_on_exec(struct perf_event *event,
2573 struct perf_event_context *ctx)
2574{
2575 if (!event->attr.enable_on_exec)
2576 return 0;
2577
2578 event->attr.enable_on_exec = 0;
2579 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2580 return 0;
2581
1d9b482e 2582 __perf_event_mark_enabled(event);
889ff015
FW
2583
2584 return 1;
2585}
2586
57e7986e 2587/*
cdd6c482 2588 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2589 * This expects task == current.
2590 */
8dc85d54 2591static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2592{
cdd6c482 2593 struct perf_event *event;
57e7986e
PM
2594 unsigned long flags;
2595 int enabled = 0;
889ff015 2596 int ret;
57e7986e
PM
2597
2598 local_irq_save(flags);
cdd6c482 2599 if (!ctx || !ctx->nr_events)
57e7986e
PM
2600 goto out;
2601
e566b76e
SE
2602 /*
2603 * We must ctxsw out cgroup events to avoid conflict
2604 * when invoking perf_task_event_sched_in() later on
2605 * in this function. Otherwise we end up trying to
2606 * ctxswin cgroup events which are already scheduled
2607 * in.
2608 */
a8d757ef 2609 perf_cgroup_sched_out(current, NULL);
57e7986e 2610
e625cce1 2611 raw_spin_lock(&ctx->lock);
04dc2dbb 2612 task_ctx_sched_out(ctx);
57e7986e 2613
b79387ef 2614 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2615 ret = event_enable_on_exec(event, ctx);
2616 if (ret)
2617 enabled = 1;
57e7986e
PM
2618 }
2619
2620 /*
cdd6c482 2621 * Unclone this context if we enabled any event.
57e7986e 2622 */
71a851b4
PZ
2623 if (enabled)
2624 unclone_ctx(ctx);
57e7986e 2625
e625cce1 2626 raw_spin_unlock(&ctx->lock);
57e7986e 2627
e566b76e
SE
2628 /*
2629 * Also calls ctxswin for cgroup events, if any:
2630 */
e5d1367f 2631 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2632out:
57e7986e
PM
2633 local_irq_restore(flags);
2634}
2635
0793a61d 2636/*
cdd6c482 2637 * Cross CPU call to read the hardware event
0793a61d 2638 */
cdd6c482 2639static void __perf_event_read(void *info)
0793a61d 2640{
cdd6c482
IM
2641 struct perf_event *event = info;
2642 struct perf_event_context *ctx = event->ctx;
108b02cf 2643 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2644
e1ac3614
PM
2645 /*
2646 * If this is a task context, we need to check whether it is
2647 * the current task context of this cpu. If not it has been
2648 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2649 * event->count would have been updated to a recent sample
2650 * when the event was scheduled out.
e1ac3614
PM
2651 */
2652 if (ctx->task && cpuctx->task_ctx != ctx)
2653 return;
2654
e625cce1 2655 raw_spin_lock(&ctx->lock);
e5d1367f 2656 if (ctx->is_active) {
542e72fc 2657 update_context_time(ctx);
e5d1367f
SE
2658 update_cgrp_time_from_event(event);
2659 }
cdd6c482 2660 update_event_times(event);
542e72fc
PZ
2661 if (event->state == PERF_EVENT_STATE_ACTIVE)
2662 event->pmu->read(event);
e625cce1 2663 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2664}
2665
b5e58793
PZ
2666static inline u64 perf_event_count(struct perf_event *event)
2667{
e7850595 2668 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2669}
2670
cdd6c482 2671static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2672{
2673 /*
cdd6c482
IM
2674 * If event is enabled and currently active on a CPU, update the
2675 * value in the event structure:
0793a61d 2676 */
cdd6c482
IM
2677 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2678 smp_call_function_single(event->oncpu,
2679 __perf_event_read, event, 1);
2680 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2681 struct perf_event_context *ctx = event->ctx;
2682 unsigned long flags;
2683
e625cce1 2684 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2685 /*
2686 * may read while context is not active
2687 * (e.g., thread is blocked), in that case
2688 * we cannot update context time
2689 */
e5d1367f 2690 if (ctx->is_active) {
c530ccd9 2691 update_context_time(ctx);
e5d1367f
SE
2692 update_cgrp_time_from_event(event);
2693 }
cdd6c482 2694 update_event_times(event);
e625cce1 2695 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2696 }
2697
b5e58793 2698 return perf_event_count(event);
0793a61d
TG
2699}
2700
a63eaf34 2701/*
cdd6c482 2702 * Initialize the perf_event context in a task_struct:
a63eaf34 2703 */
eb184479 2704static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2705{
e625cce1 2706 raw_spin_lock_init(&ctx->lock);
a63eaf34 2707 mutex_init(&ctx->mutex);
889ff015
FW
2708 INIT_LIST_HEAD(&ctx->pinned_groups);
2709 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2710 INIT_LIST_HEAD(&ctx->event_list);
2711 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2712}
2713
2714static struct perf_event_context *
2715alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2716{
2717 struct perf_event_context *ctx;
2718
2719 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2720 if (!ctx)
2721 return NULL;
2722
2723 __perf_event_init_context(ctx);
2724 if (task) {
2725 ctx->task = task;
2726 get_task_struct(task);
0793a61d 2727 }
eb184479
PZ
2728 ctx->pmu = pmu;
2729
2730 return ctx;
a63eaf34
PM
2731}
2732
2ebd4ffb
MH
2733static struct task_struct *
2734find_lively_task_by_vpid(pid_t vpid)
2735{
2736 struct task_struct *task;
2737 int err;
0793a61d
TG
2738
2739 rcu_read_lock();
2ebd4ffb 2740 if (!vpid)
0793a61d
TG
2741 task = current;
2742 else
2ebd4ffb 2743 task = find_task_by_vpid(vpid);
0793a61d
TG
2744 if (task)
2745 get_task_struct(task);
2746 rcu_read_unlock();
2747
2748 if (!task)
2749 return ERR_PTR(-ESRCH);
2750
0793a61d 2751 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2752 err = -EACCES;
2753 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2754 goto errout;
2755
2ebd4ffb
MH
2756 return task;
2757errout:
2758 put_task_struct(task);
2759 return ERR_PTR(err);
2760
2761}
2762
fe4b04fa
PZ
2763/*
2764 * Returns a matching context with refcount and pincount.
2765 */
108b02cf 2766static struct perf_event_context *
38a81da2 2767find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2768{
cdd6c482 2769 struct perf_event_context *ctx;
22a4f650 2770 struct perf_cpu_context *cpuctx;
25346b93 2771 unsigned long flags;
8dc85d54 2772 int ctxn, err;
0793a61d 2773
22a4ec72 2774 if (!task) {
cdd6c482 2775 /* Must be root to operate on a CPU event: */
0764771d 2776 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2777 return ERR_PTR(-EACCES);
2778
0793a61d 2779 /*
cdd6c482 2780 * We could be clever and allow to attach a event to an
0793a61d
TG
2781 * offline CPU and activate it when the CPU comes up, but
2782 * that's for later.
2783 */
f6325e30 2784 if (!cpu_online(cpu))
0793a61d
TG
2785 return ERR_PTR(-ENODEV);
2786
108b02cf 2787 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2788 ctx = &cpuctx->ctx;
c93f7669 2789 get_ctx(ctx);
fe4b04fa 2790 ++ctx->pin_count;
0793a61d 2791
0793a61d
TG
2792 return ctx;
2793 }
2794
8dc85d54
PZ
2795 err = -EINVAL;
2796 ctxn = pmu->task_ctx_nr;
2797 if (ctxn < 0)
2798 goto errout;
2799
9ed6060d 2800retry:
8dc85d54 2801 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2802 if (ctx) {
71a851b4 2803 unclone_ctx(ctx);
fe4b04fa 2804 ++ctx->pin_count;
e625cce1 2805 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2806 } else {
eb184479 2807 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2808 err = -ENOMEM;
2809 if (!ctx)
2810 goto errout;
eb184479 2811
dbe08d82
ON
2812 err = 0;
2813 mutex_lock(&task->perf_event_mutex);
2814 /*
2815 * If it has already passed perf_event_exit_task().
2816 * we must see PF_EXITING, it takes this mutex too.
2817 */
2818 if (task->flags & PF_EXITING)
2819 err = -ESRCH;
2820 else if (task->perf_event_ctxp[ctxn])
2821 err = -EAGAIN;
fe4b04fa 2822 else {
9137fb28 2823 get_ctx(ctx);
fe4b04fa 2824 ++ctx->pin_count;
dbe08d82 2825 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2826 }
dbe08d82
ON
2827 mutex_unlock(&task->perf_event_mutex);
2828
2829 if (unlikely(err)) {
9137fb28 2830 put_ctx(ctx);
dbe08d82
ON
2831
2832 if (err == -EAGAIN)
2833 goto retry;
2834 goto errout;
a63eaf34
PM
2835 }
2836 }
2837
0793a61d 2838 return ctx;
c93f7669 2839
9ed6060d 2840errout:
c93f7669 2841 return ERR_PTR(err);
0793a61d
TG
2842}
2843
6fb2915d
LZ
2844static void perf_event_free_filter(struct perf_event *event);
2845
cdd6c482 2846static void free_event_rcu(struct rcu_head *head)
592903cd 2847{
cdd6c482 2848 struct perf_event *event;
592903cd 2849
cdd6c482
IM
2850 event = container_of(head, struct perf_event, rcu_head);
2851 if (event->ns)
2852 put_pid_ns(event->ns);
6fb2915d 2853 perf_event_free_filter(event);
cdd6c482 2854 kfree(event);
592903cd
PZ
2855}
2856
76369139 2857static void ring_buffer_put(struct ring_buffer *rb);
925d519a 2858
cdd6c482 2859static void free_event(struct perf_event *event)
f1600952 2860{
e360adbe 2861 irq_work_sync(&event->pending);
925d519a 2862
cdd6c482 2863 if (!event->parent) {
82cd6def 2864 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 2865 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 2866 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
2867 atomic_dec(&nr_mmap_events);
2868 if (event->attr.comm)
2869 atomic_dec(&nr_comm_events);
2870 if (event->attr.task)
2871 atomic_dec(&nr_task_events);
927c7a9e
FW
2872 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2873 put_callchain_buffers();
08309379
PZ
2874 if (is_cgroup_event(event)) {
2875 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 2876 static_key_slow_dec_deferred(&perf_sched_events);
08309379 2877 }
d010b332
SE
2878
2879 if (has_branch_stack(event)) {
2880 static_key_slow_dec_deferred(&perf_sched_events);
2881 /* is system-wide event */
2882 if (!(event->attach_state & PERF_ATTACH_TASK))
2883 atomic_dec(&per_cpu(perf_branch_stack_events,
2884 event->cpu));
2885 }
f344011c 2886 }
9ee318a7 2887
76369139
FW
2888 if (event->rb) {
2889 ring_buffer_put(event->rb);
2890 event->rb = NULL;
a4be7c27
PZ
2891 }
2892
e5d1367f
SE
2893 if (is_cgroup_event(event))
2894 perf_detach_cgroup(event);
2895
cdd6c482
IM
2896 if (event->destroy)
2897 event->destroy(event);
e077df4f 2898
0c67b408
PZ
2899 if (event->ctx)
2900 put_ctx(event->ctx);
2901
cdd6c482 2902 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
2903}
2904
a66a3052 2905int perf_event_release_kernel(struct perf_event *event)
0793a61d 2906{
cdd6c482 2907 struct perf_event_context *ctx = event->ctx;
0793a61d 2908
ad3a37de 2909 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
2910 /*
2911 * There are two ways this annotation is useful:
2912 *
2913 * 1) there is a lock recursion from perf_event_exit_task
2914 * see the comment there.
2915 *
2916 * 2) there is a lock-inversion with mmap_sem through
2917 * perf_event_read_group(), which takes faults while
2918 * holding ctx->mutex, however this is called after
2919 * the last filedesc died, so there is no possibility
2920 * to trigger the AB-BA case.
2921 */
2922 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 2923 raw_spin_lock_irq(&ctx->lock);
8a49542c 2924 perf_group_detach(event);
050735b0 2925 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 2926 perf_remove_from_context(event);
d859e29f 2927 mutex_unlock(&ctx->mutex);
0793a61d 2928
cdd6c482 2929 free_event(event);
0793a61d
TG
2930
2931 return 0;
2932}
a66a3052 2933EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 2934
a66a3052
PZ
2935/*
2936 * Called when the last reference to the file is gone.
2937 */
a6fa941d 2938static void put_event(struct perf_event *event)
fb0459d7 2939{
8882135b 2940 struct task_struct *owner;
fb0459d7 2941
a6fa941d
AV
2942 if (!atomic_long_dec_and_test(&event->refcount))
2943 return;
fb0459d7 2944
8882135b
PZ
2945 rcu_read_lock();
2946 owner = ACCESS_ONCE(event->owner);
2947 /*
2948 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2949 * !owner it means the list deletion is complete and we can indeed
2950 * free this event, otherwise we need to serialize on
2951 * owner->perf_event_mutex.
2952 */
2953 smp_read_barrier_depends();
2954 if (owner) {
2955 /*
2956 * Since delayed_put_task_struct() also drops the last
2957 * task reference we can safely take a new reference
2958 * while holding the rcu_read_lock().
2959 */
2960 get_task_struct(owner);
2961 }
2962 rcu_read_unlock();
2963
2964 if (owner) {
2965 mutex_lock(&owner->perf_event_mutex);
2966 /*
2967 * We have to re-check the event->owner field, if it is cleared
2968 * we raced with perf_event_exit_task(), acquiring the mutex
2969 * ensured they're done, and we can proceed with freeing the
2970 * event.
2971 */
2972 if (event->owner)
2973 list_del_init(&event->owner_entry);
2974 mutex_unlock(&owner->perf_event_mutex);
2975 put_task_struct(owner);
2976 }
2977
a6fa941d
AV
2978 perf_event_release_kernel(event);
2979}
2980
2981static int perf_release(struct inode *inode, struct file *file)
2982{
2983 put_event(file->private_data);
2984 return 0;
fb0459d7 2985}
fb0459d7 2986
59ed446f 2987u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 2988{
cdd6c482 2989 struct perf_event *child;
e53c0994
PZ
2990 u64 total = 0;
2991
59ed446f
PZ
2992 *enabled = 0;
2993 *running = 0;
2994
6f10581a 2995 mutex_lock(&event->child_mutex);
cdd6c482 2996 total += perf_event_read(event);
59ed446f
PZ
2997 *enabled += event->total_time_enabled +
2998 atomic64_read(&event->child_total_time_enabled);
2999 *running += event->total_time_running +
3000 atomic64_read(&event->child_total_time_running);
3001
3002 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3003 total += perf_event_read(child);
59ed446f
PZ
3004 *enabled += child->total_time_enabled;
3005 *running += child->total_time_running;
3006 }
6f10581a 3007 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3008
3009 return total;
3010}
fb0459d7 3011EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3012
cdd6c482 3013static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3014 u64 read_format, char __user *buf)
3015{
cdd6c482 3016 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3017 int n = 0, size = 0, ret = -EFAULT;
3018 struct perf_event_context *ctx = leader->ctx;
abf4868b 3019 u64 values[5];
59ed446f 3020 u64 count, enabled, running;
abf4868b 3021
6f10581a 3022 mutex_lock(&ctx->mutex);
59ed446f 3023 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3024
3025 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3026 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3027 values[n++] = enabled;
3028 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3029 values[n++] = running;
abf4868b
PZ
3030 values[n++] = count;
3031 if (read_format & PERF_FORMAT_ID)
3032 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3033
3034 size = n * sizeof(u64);
3035
3036 if (copy_to_user(buf, values, size))
6f10581a 3037 goto unlock;
3dab77fb 3038
6f10581a 3039 ret = size;
3dab77fb 3040
65abc865 3041 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3042 n = 0;
3dab77fb 3043
59ed446f 3044 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3045 if (read_format & PERF_FORMAT_ID)
3046 values[n++] = primary_event_id(sub);
3047
3048 size = n * sizeof(u64);
3049
184d3da8 3050 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3051 ret = -EFAULT;
3052 goto unlock;
3053 }
abf4868b
PZ
3054
3055 ret += size;
3dab77fb 3056 }
6f10581a
PZ
3057unlock:
3058 mutex_unlock(&ctx->mutex);
3dab77fb 3059
abf4868b 3060 return ret;
3dab77fb
PZ
3061}
3062
cdd6c482 3063static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3064 u64 read_format, char __user *buf)
3065{
59ed446f 3066 u64 enabled, running;
3dab77fb
PZ
3067 u64 values[4];
3068 int n = 0;
3069
59ed446f
PZ
3070 values[n++] = perf_event_read_value(event, &enabled, &running);
3071 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3072 values[n++] = enabled;
3073 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3074 values[n++] = running;
3dab77fb 3075 if (read_format & PERF_FORMAT_ID)
cdd6c482 3076 values[n++] = primary_event_id(event);
3dab77fb
PZ
3077
3078 if (copy_to_user(buf, values, n * sizeof(u64)))
3079 return -EFAULT;
3080
3081 return n * sizeof(u64);
3082}
3083
0793a61d 3084/*
cdd6c482 3085 * Read the performance event - simple non blocking version for now
0793a61d
TG
3086 */
3087static ssize_t
cdd6c482 3088perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3089{
cdd6c482 3090 u64 read_format = event->attr.read_format;
3dab77fb 3091 int ret;
0793a61d 3092
3b6f9e5c 3093 /*
cdd6c482 3094 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3095 * error state (i.e. because it was pinned but it couldn't be
3096 * scheduled on to the CPU at some point).
3097 */
cdd6c482 3098 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3099 return 0;
3100
c320c7b7 3101 if (count < event->read_size)
3dab77fb
PZ
3102 return -ENOSPC;
3103
cdd6c482 3104 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3105 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3106 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3107 else
cdd6c482 3108 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3109
3dab77fb 3110 return ret;
0793a61d
TG
3111}
3112
0793a61d
TG
3113static ssize_t
3114perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3115{
cdd6c482 3116 struct perf_event *event = file->private_data;
0793a61d 3117
cdd6c482 3118 return perf_read_hw(event, buf, count);
0793a61d
TG
3119}
3120
3121static unsigned int perf_poll(struct file *file, poll_table *wait)
3122{
cdd6c482 3123 struct perf_event *event = file->private_data;
76369139 3124 struct ring_buffer *rb;
c33a0bc4 3125 unsigned int events = POLL_HUP;
c7138f37 3126
10c6db11
PZ
3127 /*
3128 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3129 * grabs the rb reference but perf_event_set_output() overrides it.
3130 * Here is the timeline for two threads T1, T2:
3131 * t0: T1, rb = rcu_dereference(event->rb)
3132 * t1: T2, old_rb = event->rb
3133 * t2: T2, event->rb = new rb
3134 * t3: T2, ring_buffer_detach(old_rb)
3135 * t4: T1, ring_buffer_attach(rb1)
3136 * t5: T1, poll_wait(event->waitq)
3137 *
3138 * To avoid this problem, we grab mmap_mutex in perf_poll()
3139 * thereby ensuring that the assignment of the new ring buffer
3140 * and the detachment of the old buffer appear atomic to perf_poll()
3141 */
3142 mutex_lock(&event->mmap_mutex);
3143
c7138f37 3144 rcu_read_lock();
76369139 3145 rb = rcu_dereference(event->rb);
10c6db11
PZ
3146 if (rb) {
3147 ring_buffer_attach(event, rb);
76369139 3148 events = atomic_xchg(&rb->poll, 0);
10c6db11 3149 }
c7138f37 3150 rcu_read_unlock();
0793a61d 3151
10c6db11
PZ
3152 mutex_unlock(&event->mmap_mutex);
3153
cdd6c482 3154 poll_wait(file, &event->waitq, wait);
0793a61d 3155
0793a61d
TG
3156 return events;
3157}
3158
cdd6c482 3159static void perf_event_reset(struct perf_event *event)
6de6a7b9 3160{
cdd6c482 3161 (void)perf_event_read(event);
e7850595 3162 local64_set(&event->count, 0);
cdd6c482 3163 perf_event_update_userpage(event);
3df5edad
PZ
3164}
3165
c93f7669 3166/*
cdd6c482
IM
3167 * Holding the top-level event's child_mutex means that any
3168 * descendant process that has inherited this event will block
3169 * in sync_child_event if it goes to exit, thus satisfying the
3170 * task existence requirements of perf_event_enable/disable.
c93f7669 3171 */
cdd6c482
IM
3172static void perf_event_for_each_child(struct perf_event *event,
3173 void (*func)(struct perf_event *))
3df5edad 3174{
cdd6c482 3175 struct perf_event *child;
3df5edad 3176
cdd6c482
IM
3177 WARN_ON_ONCE(event->ctx->parent_ctx);
3178 mutex_lock(&event->child_mutex);
3179 func(event);
3180 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3181 func(child);
cdd6c482 3182 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3183}
3184
cdd6c482
IM
3185static void perf_event_for_each(struct perf_event *event,
3186 void (*func)(struct perf_event *))
3df5edad 3187{
cdd6c482
IM
3188 struct perf_event_context *ctx = event->ctx;
3189 struct perf_event *sibling;
3df5edad 3190
75f937f2
PZ
3191 WARN_ON_ONCE(ctx->parent_ctx);
3192 mutex_lock(&ctx->mutex);
cdd6c482 3193 event = event->group_leader;
75f937f2 3194
cdd6c482 3195 perf_event_for_each_child(event, func);
cdd6c482 3196 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3197 perf_event_for_each_child(sibling, func);
75f937f2 3198 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3199}
3200
cdd6c482 3201static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3202{
cdd6c482 3203 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3204 int ret = 0;
3205 u64 value;
3206
6c7e550f 3207 if (!is_sampling_event(event))
08247e31
PZ
3208 return -EINVAL;
3209
ad0cf347 3210 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3211 return -EFAULT;
3212
3213 if (!value)
3214 return -EINVAL;
3215
e625cce1 3216 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3217 if (event->attr.freq) {
3218 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3219 ret = -EINVAL;
3220 goto unlock;
3221 }
3222
cdd6c482 3223 event->attr.sample_freq = value;
08247e31 3224 } else {
cdd6c482
IM
3225 event->attr.sample_period = value;
3226 event->hw.sample_period = value;
08247e31
PZ
3227 }
3228unlock:
e625cce1 3229 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3230
3231 return ret;
3232}
3233
ac9721f3
PZ
3234static const struct file_operations perf_fops;
3235
a6fa941d 3236static struct file *perf_fget_light(int fd, int *fput_needed)
ac9721f3
PZ
3237{
3238 struct file *file;
3239
3240 file = fget_light(fd, fput_needed);
3241 if (!file)
3242 return ERR_PTR(-EBADF);
3243
3244 if (file->f_op != &perf_fops) {
3245 fput_light(file, *fput_needed);
3246 *fput_needed = 0;
3247 return ERR_PTR(-EBADF);
3248 }
3249
a6fa941d 3250 return file;
ac9721f3
PZ
3251}
3252
3253static int perf_event_set_output(struct perf_event *event,
3254 struct perf_event *output_event);
6fb2915d 3255static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3256
d859e29f
PM
3257static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3258{
cdd6c482
IM
3259 struct perf_event *event = file->private_data;
3260 void (*func)(struct perf_event *);
3df5edad 3261 u32 flags = arg;
d859e29f
PM
3262
3263 switch (cmd) {
cdd6c482
IM
3264 case PERF_EVENT_IOC_ENABLE:
3265 func = perf_event_enable;
d859e29f 3266 break;
cdd6c482
IM
3267 case PERF_EVENT_IOC_DISABLE:
3268 func = perf_event_disable;
79f14641 3269 break;
cdd6c482
IM
3270 case PERF_EVENT_IOC_RESET:
3271 func = perf_event_reset;
6de6a7b9 3272 break;
3df5edad 3273
cdd6c482
IM
3274 case PERF_EVENT_IOC_REFRESH:
3275 return perf_event_refresh(event, arg);
08247e31 3276
cdd6c482
IM
3277 case PERF_EVENT_IOC_PERIOD:
3278 return perf_event_period(event, (u64 __user *)arg);
08247e31 3279
cdd6c482 3280 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3281 {
a6fa941d 3282 struct file *output_file = NULL;
ac9721f3
PZ
3283 struct perf_event *output_event = NULL;
3284 int fput_needed = 0;
3285 int ret;
3286
3287 if (arg != -1) {
a6fa941d
AV
3288 output_file = perf_fget_light(arg, &fput_needed);
3289 if (IS_ERR(output_file))
3290 return PTR_ERR(output_file);
3291 output_event = output_file->private_data;
ac9721f3
PZ
3292 }
3293
3294 ret = perf_event_set_output(event, output_event);
3295 if (output_event)
a6fa941d 3296 fput_light(output_file, fput_needed);
ac9721f3
PZ
3297
3298 return ret;
3299 }
a4be7c27 3300
6fb2915d
LZ
3301 case PERF_EVENT_IOC_SET_FILTER:
3302 return perf_event_set_filter(event, (void __user *)arg);
3303
d859e29f 3304 default:
3df5edad 3305 return -ENOTTY;
d859e29f 3306 }
3df5edad
PZ
3307
3308 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3309 perf_event_for_each(event, func);
3df5edad 3310 else
cdd6c482 3311 perf_event_for_each_child(event, func);
3df5edad
PZ
3312
3313 return 0;
d859e29f
PM
3314}
3315
cdd6c482 3316int perf_event_task_enable(void)
771d7cde 3317{
cdd6c482 3318 struct perf_event *event;
771d7cde 3319
cdd6c482
IM
3320 mutex_lock(&current->perf_event_mutex);
3321 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3322 perf_event_for_each_child(event, perf_event_enable);
3323 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3324
3325 return 0;
3326}
3327
cdd6c482 3328int perf_event_task_disable(void)
771d7cde 3329{
cdd6c482 3330 struct perf_event *event;
771d7cde 3331
cdd6c482
IM
3332 mutex_lock(&current->perf_event_mutex);
3333 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3334 perf_event_for_each_child(event, perf_event_disable);
3335 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3336
3337 return 0;
3338}
3339
cdd6c482 3340static int perf_event_index(struct perf_event *event)
194002b2 3341{
a4eaf7f1
PZ
3342 if (event->hw.state & PERF_HES_STOPPED)
3343 return 0;
3344
cdd6c482 3345 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3346 return 0;
3347
35edc2a5 3348 return event->pmu->event_idx(event);
194002b2
PZ
3349}
3350
c4794295 3351static void calc_timer_values(struct perf_event *event,
e3f3541c 3352 u64 *now,
7f310a5d
EM
3353 u64 *enabled,
3354 u64 *running)
c4794295 3355{
e3f3541c 3356 u64 ctx_time;
c4794295 3357
e3f3541c
PZ
3358 *now = perf_clock();
3359 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3360 *enabled = ctx_time - event->tstamp_enabled;
3361 *running = ctx_time - event->tstamp_running;
3362}
3363
c7206205 3364void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3365{
3366}
3367
38ff667b
PZ
3368/*
3369 * Callers need to ensure there can be no nesting of this function, otherwise
3370 * the seqlock logic goes bad. We can not serialize this because the arch
3371 * code calls this from NMI context.
3372 */
cdd6c482 3373void perf_event_update_userpage(struct perf_event *event)
37d81828 3374{
cdd6c482 3375 struct perf_event_mmap_page *userpg;
76369139 3376 struct ring_buffer *rb;
e3f3541c 3377 u64 enabled, running, now;
38ff667b
PZ
3378
3379 rcu_read_lock();
0d641208
EM
3380 /*
3381 * compute total_time_enabled, total_time_running
3382 * based on snapshot values taken when the event
3383 * was last scheduled in.
3384 *
3385 * we cannot simply called update_context_time()
3386 * because of locking issue as we can be called in
3387 * NMI context
3388 */
e3f3541c 3389 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3390 rb = rcu_dereference(event->rb);
3391 if (!rb)
38ff667b
PZ
3392 goto unlock;
3393
76369139 3394 userpg = rb->user_page;
37d81828 3395
7b732a75
PZ
3396 /*
3397 * Disable preemption so as to not let the corresponding user-space
3398 * spin too long if we get preempted.
3399 */
3400 preempt_disable();
37d81828 3401 ++userpg->lock;
92f22a38 3402 barrier();
cdd6c482 3403 userpg->index = perf_event_index(event);
b5e58793 3404 userpg->offset = perf_event_count(event);
365a4038 3405 if (userpg->index)
e7850595 3406 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3407
0d641208 3408 userpg->time_enabled = enabled +
cdd6c482 3409 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3410
0d641208 3411 userpg->time_running = running +
cdd6c482 3412 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3413
c7206205 3414 arch_perf_update_userpage(userpg, now);
e3f3541c 3415
92f22a38 3416 barrier();
37d81828 3417 ++userpg->lock;
7b732a75 3418 preempt_enable();
38ff667b 3419unlock:
7b732a75 3420 rcu_read_unlock();
37d81828
PM
3421}
3422
906010b2
PZ
3423static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3424{
3425 struct perf_event *event = vma->vm_file->private_data;
76369139 3426 struct ring_buffer *rb;
906010b2
PZ
3427 int ret = VM_FAULT_SIGBUS;
3428
3429 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3430 if (vmf->pgoff == 0)
3431 ret = 0;
3432 return ret;
3433 }
3434
3435 rcu_read_lock();
76369139
FW
3436 rb = rcu_dereference(event->rb);
3437 if (!rb)
906010b2
PZ
3438 goto unlock;
3439
3440 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3441 goto unlock;
3442
76369139 3443 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3444 if (!vmf->page)
3445 goto unlock;
3446
3447 get_page(vmf->page);
3448 vmf->page->mapping = vma->vm_file->f_mapping;
3449 vmf->page->index = vmf->pgoff;
3450
3451 ret = 0;
3452unlock:
3453 rcu_read_unlock();
3454
3455 return ret;
3456}
3457
10c6db11
PZ
3458static void ring_buffer_attach(struct perf_event *event,
3459 struct ring_buffer *rb)
3460{
3461 unsigned long flags;
3462
3463 if (!list_empty(&event->rb_entry))
3464 return;
3465
3466 spin_lock_irqsave(&rb->event_lock, flags);
3467 if (!list_empty(&event->rb_entry))
3468 goto unlock;
3469
3470 list_add(&event->rb_entry, &rb->event_list);
3471unlock:
3472 spin_unlock_irqrestore(&rb->event_lock, flags);
3473}
3474
3475static void ring_buffer_detach(struct perf_event *event,
3476 struct ring_buffer *rb)
3477{
3478 unsigned long flags;
3479
3480 if (list_empty(&event->rb_entry))
3481 return;
3482
3483 spin_lock_irqsave(&rb->event_lock, flags);
3484 list_del_init(&event->rb_entry);
3485 wake_up_all(&event->waitq);
3486 spin_unlock_irqrestore(&rb->event_lock, flags);
3487}
3488
3489static void ring_buffer_wakeup(struct perf_event *event)
3490{
3491 struct ring_buffer *rb;
3492
3493 rcu_read_lock();
3494 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3495 if (!rb)
3496 goto unlock;
3497
3498 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3499 wake_up_all(&event->waitq);
44b7f4b9
WD
3500
3501unlock:
10c6db11
PZ
3502 rcu_read_unlock();
3503}
3504
76369139 3505static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3506{
76369139 3507 struct ring_buffer *rb;
906010b2 3508
76369139
FW
3509 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3510 rb_free(rb);
7b732a75
PZ
3511}
3512
76369139 3513static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3514{
76369139 3515 struct ring_buffer *rb;
7b732a75 3516
ac9721f3 3517 rcu_read_lock();
76369139
FW
3518 rb = rcu_dereference(event->rb);
3519 if (rb) {
3520 if (!atomic_inc_not_zero(&rb->refcount))
3521 rb = NULL;
ac9721f3
PZ
3522 }
3523 rcu_read_unlock();
3524
76369139 3525 return rb;
ac9721f3
PZ
3526}
3527
76369139 3528static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3529{
10c6db11
PZ
3530 struct perf_event *event, *n;
3531 unsigned long flags;
3532
76369139 3533 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3534 return;
7b732a75 3535
10c6db11
PZ
3536 spin_lock_irqsave(&rb->event_lock, flags);
3537 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3538 list_del_init(&event->rb_entry);
3539 wake_up_all(&event->waitq);
3540 }
3541 spin_unlock_irqrestore(&rb->event_lock, flags);
3542
76369139 3543 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3544}
3545
3546static void perf_mmap_open(struct vm_area_struct *vma)
3547{
cdd6c482 3548 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3549
cdd6c482 3550 atomic_inc(&event->mmap_count);
7b732a75
PZ
3551}
3552
3553static void perf_mmap_close(struct vm_area_struct *vma)
3554{
cdd6c482 3555 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3556
cdd6c482 3557 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3558 unsigned long size = perf_data_size(event->rb);
ac9721f3 3559 struct user_struct *user = event->mmap_user;
76369139 3560 struct ring_buffer *rb = event->rb;
789f90fc 3561
906010b2 3562 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3563 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3564 rcu_assign_pointer(event->rb, NULL);
10c6db11 3565 ring_buffer_detach(event, rb);
cdd6c482 3566 mutex_unlock(&event->mmap_mutex);
ac9721f3 3567
76369139 3568 ring_buffer_put(rb);
ac9721f3 3569 free_uid(user);
7b732a75 3570 }
37d81828
PM
3571}
3572
f0f37e2f 3573static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3574 .open = perf_mmap_open,
3575 .close = perf_mmap_close,
3576 .fault = perf_mmap_fault,
3577 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3578};
3579
3580static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3581{
cdd6c482 3582 struct perf_event *event = file->private_data;
22a4f650 3583 unsigned long user_locked, user_lock_limit;
789f90fc 3584 struct user_struct *user = current_user();
22a4f650 3585 unsigned long locked, lock_limit;
76369139 3586 struct ring_buffer *rb;
7b732a75
PZ
3587 unsigned long vma_size;
3588 unsigned long nr_pages;
789f90fc 3589 long user_extra, extra;
d57e34fd 3590 int ret = 0, flags = 0;
37d81828 3591
c7920614
PZ
3592 /*
3593 * Don't allow mmap() of inherited per-task counters. This would
3594 * create a performance issue due to all children writing to the
76369139 3595 * same rb.
c7920614
PZ
3596 */
3597 if (event->cpu == -1 && event->attr.inherit)
3598 return -EINVAL;
3599
43a21ea8 3600 if (!(vma->vm_flags & VM_SHARED))
37d81828 3601 return -EINVAL;
7b732a75
PZ
3602
3603 vma_size = vma->vm_end - vma->vm_start;
3604 nr_pages = (vma_size / PAGE_SIZE) - 1;
3605
7730d865 3606 /*
76369139 3607 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3608 * can do bitmasks instead of modulo.
3609 */
3610 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3611 return -EINVAL;
3612
7b732a75 3613 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3614 return -EINVAL;
3615
7b732a75
PZ
3616 if (vma->vm_pgoff != 0)
3617 return -EINVAL;
37d81828 3618
cdd6c482
IM
3619 WARN_ON_ONCE(event->ctx->parent_ctx);
3620 mutex_lock(&event->mmap_mutex);
76369139
FW
3621 if (event->rb) {
3622 if (event->rb->nr_pages == nr_pages)
3623 atomic_inc(&event->rb->refcount);
ac9721f3 3624 else
ebb3c4c4
PZ
3625 ret = -EINVAL;
3626 goto unlock;
3627 }
3628
789f90fc 3629 user_extra = nr_pages + 1;
cdd6c482 3630 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3631
3632 /*
3633 * Increase the limit linearly with more CPUs:
3634 */
3635 user_lock_limit *= num_online_cpus();
3636
789f90fc 3637 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3638
789f90fc
PZ
3639 extra = 0;
3640 if (user_locked > user_lock_limit)
3641 extra = user_locked - user_lock_limit;
7b732a75 3642
78d7d407 3643 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3644 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3645 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3646
459ec28a
IM
3647 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3648 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3649 ret = -EPERM;
3650 goto unlock;
3651 }
7b732a75 3652
76369139 3653 WARN_ON(event->rb);
906010b2 3654
d57e34fd 3655 if (vma->vm_flags & VM_WRITE)
76369139 3656 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3657
4ec8363d
VW
3658 rb = rb_alloc(nr_pages,
3659 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3660 event->cpu, flags);
3661
76369139 3662 if (!rb) {
ac9721f3 3663 ret = -ENOMEM;
ebb3c4c4 3664 goto unlock;
ac9721f3 3665 }
76369139 3666 rcu_assign_pointer(event->rb, rb);
43a21ea8 3667
ac9721f3
PZ
3668 atomic_long_add(user_extra, &user->locked_vm);
3669 event->mmap_locked = extra;
3670 event->mmap_user = get_current_user();
bc3e53f6 3671 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3672
9a0f05cb
PZ
3673 perf_event_update_userpage(event);
3674
ebb3c4c4 3675unlock:
ac9721f3
PZ
3676 if (!ret)
3677 atomic_inc(&event->mmap_count);
cdd6c482 3678 mutex_unlock(&event->mmap_mutex);
37d81828 3679
37d81828
PM
3680 vma->vm_flags |= VM_RESERVED;
3681 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3682
3683 return ret;
37d81828
PM
3684}
3685
3c446b3d
PZ
3686static int perf_fasync(int fd, struct file *filp, int on)
3687{
3c446b3d 3688 struct inode *inode = filp->f_path.dentry->d_inode;
cdd6c482 3689 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3690 int retval;
3691
3692 mutex_lock(&inode->i_mutex);
cdd6c482 3693 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3694 mutex_unlock(&inode->i_mutex);
3695
3696 if (retval < 0)
3697 return retval;
3698
3699 return 0;
3700}
3701
0793a61d 3702static const struct file_operations perf_fops = {
3326c1ce 3703 .llseek = no_llseek,
0793a61d
TG
3704 .release = perf_release,
3705 .read = perf_read,
3706 .poll = perf_poll,
d859e29f
PM
3707 .unlocked_ioctl = perf_ioctl,
3708 .compat_ioctl = perf_ioctl,
37d81828 3709 .mmap = perf_mmap,
3c446b3d 3710 .fasync = perf_fasync,
0793a61d
TG
3711};
3712
925d519a 3713/*
cdd6c482 3714 * Perf event wakeup
925d519a
PZ
3715 *
3716 * If there's data, ensure we set the poll() state and publish everything
3717 * to user-space before waking everybody up.
3718 */
3719
cdd6c482 3720void perf_event_wakeup(struct perf_event *event)
925d519a 3721{
10c6db11 3722 ring_buffer_wakeup(event);
4c9e2542 3723
cdd6c482
IM
3724 if (event->pending_kill) {
3725 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3726 event->pending_kill = 0;
4c9e2542 3727 }
925d519a
PZ
3728}
3729
e360adbe 3730static void perf_pending_event(struct irq_work *entry)
79f14641 3731{
cdd6c482
IM
3732 struct perf_event *event = container_of(entry,
3733 struct perf_event, pending);
79f14641 3734
cdd6c482
IM
3735 if (event->pending_disable) {
3736 event->pending_disable = 0;
3737 __perf_event_disable(event);
79f14641
PZ
3738 }
3739
cdd6c482
IM
3740 if (event->pending_wakeup) {
3741 event->pending_wakeup = 0;
3742 perf_event_wakeup(event);
79f14641
PZ
3743 }
3744}
3745
39447b38
ZY
3746/*
3747 * We assume there is only KVM supporting the callbacks.
3748 * Later on, we might change it to a list if there is
3749 * another virtualization implementation supporting the callbacks.
3750 */
3751struct perf_guest_info_callbacks *perf_guest_cbs;
3752
3753int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3754{
3755 perf_guest_cbs = cbs;
3756 return 0;
3757}
3758EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3759
3760int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3761{
3762 perf_guest_cbs = NULL;
3763 return 0;
3764}
3765EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3766
c980d109
ACM
3767static void __perf_event_header__init_id(struct perf_event_header *header,
3768 struct perf_sample_data *data,
3769 struct perf_event *event)
6844c09d
ACM
3770{
3771 u64 sample_type = event->attr.sample_type;
3772
3773 data->type = sample_type;
3774 header->size += event->id_header_size;
3775
3776 if (sample_type & PERF_SAMPLE_TID) {
3777 /* namespace issues */
3778 data->tid_entry.pid = perf_event_pid(event, current);
3779 data->tid_entry.tid = perf_event_tid(event, current);
3780 }
3781
3782 if (sample_type & PERF_SAMPLE_TIME)
3783 data->time = perf_clock();
3784
3785 if (sample_type & PERF_SAMPLE_ID)
3786 data->id = primary_event_id(event);
3787
3788 if (sample_type & PERF_SAMPLE_STREAM_ID)
3789 data->stream_id = event->id;
3790
3791 if (sample_type & PERF_SAMPLE_CPU) {
3792 data->cpu_entry.cpu = raw_smp_processor_id();
3793 data->cpu_entry.reserved = 0;
3794 }
3795}
3796
76369139
FW
3797void perf_event_header__init_id(struct perf_event_header *header,
3798 struct perf_sample_data *data,
3799 struct perf_event *event)
c980d109
ACM
3800{
3801 if (event->attr.sample_id_all)
3802 __perf_event_header__init_id(header, data, event);
3803}
3804
3805static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3806 struct perf_sample_data *data)
3807{
3808 u64 sample_type = data->type;
3809
3810 if (sample_type & PERF_SAMPLE_TID)
3811 perf_output_put(handle, data->tid_entry);
3812
3813 if (sample_type & PERF_SAMPLE_TIME)
3814 perf_output_put(handle, data->time);
3815
3816 if (sample_type & PERF_SAMPLE_ID)
3817 perf_output_put(handle, data->id);
3818
3819 if (sample_type & PERF_SAMPLE_STREAM_ID)
3820 perf_output_put(handle, data->stream_id);
3821
3822 if (sample_type & PERF_SAMPLE_CPU)
3823 perf_output_put(handle, data->cpu_entry);
3824}
3825
76369139
FW
3826void perf_event__output_id_sample(struct perf_event *event,
3827 struct perf_output_handle *handle,
3828 struct perf_sample_data *sample)
c980d109
ACM
3829{
3830 if (event->attr.sample_id_all)
3831 __perf_event__output_id_sample(handle, sample);
3832}
3833
3dab77fb 3834static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
3835 struct perf_event *event,
3836 u64 enabled, u64 running)
3dab77fb 3837{
cdd6c482 3838 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3839 u64 values[4];
3840 int n = 0;
3841
b5e58793 3842 values[n++] = perf_event_count(event);
3dab77fb 3843 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 3844 values[n++] = enabled +
cdd6c482 3845 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
3846 }
3847 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 3848 values[n++] = running +
cdd6c482 3849 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
3850 }
3851 if (read_format & PERF_FORMAT_ID)
cdd6c482 3852 values[n++] = primary_event_id(event);
3dab77fb 3853
76369139 3854 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3855}
3856
3857/*
cdd6c482 3858 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
3859 */
3860static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
3861 struct perf_event *event,
3862 u64 enabled, u64 running)
3dab77fb 3863{
cdd6c482
IM
3864 struct perf_event *leader = event->group_leader, *sub;
3865 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3866 u64 values[5];
3867 int n = 0;
3868
3869 values[n++] = 1 + leader->nr_siblings;
3870
3871 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 3872 values[n++] = enabled;
3dab77fb
PZ
3873
3874 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 3875 values[n++] = running;
3dab77fb 3876
cdd6c482 3877 if (leader != event)
3dab77fb
PZ
3878 leader->pmu->read(leader);
3879
b5e58793 3880 values[n++] = perf_event_count(leader);
3dab77fb 3881 if (read_format & PERF_FORMAT_ID)
cdd6c482 3882 values[n++] = primary_event_id(leader);
3dab77fb 3883
76369139 3884 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 3885
65abc865 3886 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
3887 n = 0;
3888
cdd6c482 3889 if (sub != event)
3dab77fb
PZ
3890 sub->pmu->read(sub);
3891
b5e58793 3892 values[n++] = perf_event_count(sub);
3dab77fb 3893 if (read_format & PERF_FORMAT_ID)
cdd6c482 3894 values[n++] = primary_event_id(sub);
3dab77fb 3895
76369139 3896 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3897 }
3898}
3899
eed01528
SE
3900#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3901 PERF_FORMAT_TOTAL_TIME_RUNNING)
3902
3dab77fb 3903static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 3904 struct perf_event *event)
3dab77fb 3905{
e3f3541c 3906 u64 enabled = 0, running = 0, now;
eed01528
SE
3907 u64 read_format = event->attr.read_format;
3908
3909 /*
3910 * compute total_time_enabled, total_time_running
3911 * based on snapshot values taken when the event
3912 * was last scheduled in.
3913 *
3914 * we cannot simply called update_context_time()
3915 * because of locking issue as we are called in
3916 * NMI context
3917 */
c4794295 3918 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 3919 calc_timer_values(event, &now, &enabled, &running);
eed01528 3920
cdd6c482 3921 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 3922 perf_output_read_group(handle, event, enabled, running);
3dab77fb 3923 else
eed01528 3924 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
3925}
3926
5622f295
MM
3927void perf_output_sample(struct perf_output_handle *handle,
3928 struct perf_event_header *header,
3929 struct perf_sample_data *data,
cdd6c482 3930 struct perf_event *event)
5622f295
MM
3931{
3932 u64 sample_type = data->type;
3933
3934 perf_output_put(handle, *header);
3935
3936 if (sample_type & PERF_SAMPLE_IP)
3937 perf_output_put(handle, data->ip);
3938
3939 if (sample_type & PERF_SAMPLE_TID)
3940 perf_output_put(handle, data->tid_entry);
3941
3942 if (sample_type & PERF_SAMPLE_TIME)
3943 perf_output_put(handle, data->time);
3944
3945 if (sample_type & PERF_SAMPLE_ADDR)
3946 perf_output_put(handle, data->addr);
3947
3948 if (sample_type & PERF_SAMPLE_ID)
3949 perf_output_put(handle, data->id);
3950
3951 if (sample_type & PERF_SAMPLE_STREAM_ID)
3952 perf_output_put(handle, data->stream_id);
3953
3954 if (sample_type & PERF_SAMPLE_CPU)
3955 perf_output_put(handle, data->cpu_entry);
3956
3957 if (sample_type & PERF_SAMPLE_PERIOD)
3958 perf_output_put(handle, data->period);
3959
3960 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 3961 perf_output_read(handle, event);
5622f295
MM
3962
3963 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3964 if (data->callchain) {
3965 int size = 1;
3966
3967 if (data->callchain)
3968 size += data->callchain->nr;
3969
3970 size *= sizeof(u64);
3971
76369139 3972 __output_copy(handle, data->callchain, size);
5622f295
MM
3973 } else {
3974 u64 nr = 0;
3975 perf_output_put(handle, nr);
3976 }
3977 }
3978
3979 if (sample_type & PERF_SAMPLE_RAW) {
3980 if (data->raw) {
3981 perf_output_put(handle, data->raw->size);
76369139
FW
3982 __output_copy(handle, data->raw->data,
3983 data->raw->size);
5622f295
MM
3984 } else {
3985 struct {
3986 u32 size;
3987 u32 data;
3988 } raw = {
3989 .size = sizeof(u32),
3990 .data = 0,
3991 };
3992 perf_output_put(handle, raw);
3993 }
3994 }
a7ac67ea
PZ
3995
3996 if (!event->attr.watermark) {
3997 int wakeup_events = event->attr.wakeup_events;
3998
3999 if (wakeup_events) {
4000 struct ring_buffer *rb = handle->rb;
4001 int events = local_inc_return(&rb->events);
4002
4003 if (events >= wakeup_events) {
4004 local_sub(wakeup_events, &rb->events);
4005 local_inc(&rb->wakeup);
4006 }
4007 }
4008 }
bce38cd5
SE
4009
4010 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4011 if (data->br_stack) {
4012 size_t size;
4013
4014 size = data->br_stack->nr
4015 * sizeof(struct perf_branch_entry);
4016
4017 perf_output_put(handle, data->br_stack->nr);
4018 perf_output_copy(handle, data->br_stack->entries, size);
4019 } else {
4020 /*
4021 * we always store at least the value of nr
4022 */
4023 u64 nr = 0;
4024 perf_output_put(handle, nr);
4025 }
4026 }
5622f295
MM
4027}
4028
4029void perf_prepare_sample(struct perf_event_header *header,
4030 struct perf_sample_data *data,
cdd6c482 4031 struct perf_event *event,
5622f295 4032 struct pt_regs *regs)
7b732a75 4033{
cdd6c482 4034 u64 sample_type = event->attr.sample_type;
7b732a75 4035
cdd6c482 4036 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4037 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4038
4039 header->misc = 0;
4040 header->misc |= perf_misc_flags(regs);
6fab0192 4041
c980d109 4042 __perf_event_header__init_id(header, data, event);
6844c09d 4043
c320c7b7 4044 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4045 data->ip = perf_instruction_pointer(regs);
4046
b23f3325 4047 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4048 int size = 1;
394ee076 4049
e6dab5ff 4050 data->callchain = perf_callchain(event, regs);
5622f295
MM
4051
4052 if (data->callchain)
4053 size += data->callchain->nr;
4054
4055 header->size += size * sizeof(u64);
394ee076
PZ
4056 }
4057
3a43ce68 4058 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4059 int size = sizeof(u32);
4060
4061 if (data->raw)
4062 size += data->raw->size;
4063 else
4064 size += sizeof(u32);
4065
4066 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4067 header->size += size;
7f453c24 4068 }
bce38cd5
SE
4069
4070 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4071 int size = sizeof(u64); /* nr */
4072 if (data->br_stack) {
4073 size += data->br_stack->nr
4074 * sizeof(struct perf_branch_entry);
4075 }
4076 header->size += size;
4077 }
5622f295 4078}
7f453c24 4079
a8b0ca17 4080static void perf_event_output(struct perf_event *event,
5622f295
MM
4081 struct perf_sample_data *data,
4082 struct pt_regs *regs)
4083{
4084 struct perf_output_handle handle;
4085 struct perf_event_header header;
689802b2 4086
927c7a9e
FW
4087 /* protect the callchain buffers */
4088 rcu_read_lock();
4089
cdd6c482 4090 perf_prepare_sample(&header, data, event, regs);
5c148194 4091
a7ac67ea 4092 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4093 goto exit;
0322cd6e 4094
cdd6c482 4095 perf_output_sample(&handle, &header, data, event);
f413cdb8 4096
8a057d84 4097 perf_output_end(&handle);
927c7a9e
FW
4098
4099exit:
4100 rcu_read_unlock();
0322cd6e
PZ
4101}
4102
38b200d6 4103/*
cdd6c482 4104 * read event_id
38b200d6
PZ
4105 */
4106
4107struct perf_read_event {
4108 struct perf_event_header header;
4109
4110 u32 pid;
4111 u32 tid;
38b200d6
PZ
4112};
4113
4114static void
cdd6c482 4115perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4116 struct task_struct *task)
4117{
4118 struct perf_output_handle handle;
c980d109 4119 struct perf_sample_data sample;
dfc65094 4120 struct perf_read_event read_event = {
38b200d6 4121 .header = {
cdd6c482 4122 .type = PERF_RECORD_READ,
38b200d6 4123 .misc = 0,
c320c7b7 4124 .size = sizeof(read_event) + event->read_size,
38b200d6 4125 },
cdd6c482
IM
4126 .pid = perf_event_pid(event, task),
4127 .tid = perf_event_tid(event, task),
38b200d6 4128 };
3dab77fb 4129 int ret;
38b200d6 4130
c980d109 4131 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4132 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4133 if (ret)
4134 return;
4135
dfc65094 4136 perf_output_put(&handle, read_event);
cdd6c482 4137 perf_output_read(&handle, event);
c980d109 4138 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4139
38b200d6
PZ
4140 perf_output_end(&handle);
4141}
4142
60313ebe 4143/*
9f498cc5
PZ
4144 * task tracking -- fork/exit
4145 *
3af9e859 4146 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4147 */
4148
9f498cc5 4149struct perf_task_event {
3a80b4a3 4150 struct task_struct *task;
cdd6c482 4151 struct perf_event_context *task_ctx;
60313ebe
PZ
4152
4153 struct {
4154 struct perf_event_header header;
4155
4156 u32 pid;
4157 u32 ppid;
9f498cc5
PZ
4158 u32 tid;
4159 u32 ptid;
393b2ad8 4160 u64 time;
cdd6c482 4161 } event_id;
60313ebe
PZ
4162};
4163
cdd6c482 4164static void perf_event_task_output(struct perf_event *event,
9f498cc5 4165 struct perf_task_event *task_event)
60313ebe
PZ
4166{
4167 struct perf_output_handle handle;
c980d109 4168 struct perf_sample_data sample;
9f498cc5 4169 struct task_struct *task = task_event->task;
c980d109 4170 int ret, size = task_event->event_id.header.size;
8bb39f9a 4171
c980d109 4172 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4173
c980d109 4174 ret = perf_output_begin(&handle, event,
a7ac67ea 4175 task_event->event_id.header.size);
ef60777c 4176 if (ret)
c980d109 4177 goto out;
60313ebe 4178
cdd6c482
IM
4179 task_event->event_id.pid = perf_event_pid(event, task);
4180 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4181
cdd6c482
IM
4182 task_event->event_id.tid = perf_event_tid(event, task);
4183 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4184
cdd6c482 4185 perf_output_put(&handle, task_event->event_id);
393b2ad8 4186
c980d109
ACM
4187 perf_event__output_id_sample(event, &handle, &sample);
4188
60313ebe 4189 perf_output_end(&handle);
c980d109
ACM
4190out:
4191 task_event->event_id.header.size = size;
60313ebe
PZ
4192}
4193
cdd6c482 4194static int perf_event_task_match(struct perf_event *event)
60313ebe 4195{
6f93d0a7 4196 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4197 return 0;
4198
5632ab12 4199 if (!event_filter_match(event))
5d27c23d
PZ
4200 return 0;
4201
3af9e859
EM
4202 if (event->attr.comm || event->attr.mmap ||
4203 event->attr.mmap_data || event->attr.task)
60313ebe
PZ
4204 return 1;
4205
4206 return 0;
4207}
4208
cdd6c482 4209static void perf_event_task_ctx(struct perf_event_context *ctx,
9f498cc5 4210 struct perf_task_event *task_event)
60313ebe 4211{
cdd6c482 4212 struct perf_event *event;
60313ebe 4213
cdd6c482
IM
4214 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4215 if (perf_event_task_match(event))
4216 perf_event_task_output(event, task_event);
60313ebe 4217 }
60313ebe
PZ
4218}
4219
cdd6c482 4220static void perf_event_task_event(struct perf_task_event *task_event)
60313ebe
PZ
4221{
4222 struct perf_cpu_context *cpuctx;
8dc85d54 4223 struct perf_event_context *ctx;
108b02cf 4224 struct pmu *pmu;
8dc85d54 4225 int ctxn;
60313ebe 4226
d6ff86cf 4227 rcu_read_lock();
108b02cf 4228 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4229 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4230 if (cpuctx->active_pmu != pmu)
4231 goto next;
108b02cf 4232 perf_event_task_ctx(&cpuctx->ctx, task_event);
8dc85d54
PZ
4233
4234 ctx = task_event->task_ctx;
4235 if (!ctx) {
4236 ctxn = pmu->task_ctx_nr;
4237 if (ctxn < 0)
41945f6c 4238 goto next;
8dc85d54
PZ
4239 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4240 }
4241 if (ctx)
4242 perf_event_task_ctx(ctx, task_event);
41945f6c
PZ
4243next:
4244 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4245 }
60313ebe
PZ
4246 rcu_read_unlock();
4247}
4248
cdd6c482
IM
4249static void perf_event_task(struct task_struct *task,
4250 struct perf_event_context *task_ctx,
3a80b4a3 4251 int new)
60313ebe 4252{
9f498cc5 4253 struct perf_task_event task_event;
60313ebe 4254
cdd6c482
IM
4255 if (!atomic_read(&nr_comm_events) &&
4256 !atomic_read(&nr_mmap_events) &&
4257 !atomic_read(&nr_task_events))
60313ebe
PZ
4258 return;
4259
9f498cc5 4260 task_event = (struct perf_task_event){
3a80b4a3
PZ
4261 .task = task,
4262 .task_ctx = task_ctx,
cdd6c482 4263 .event_id = {
60313ebe 4264 .header = {
cdd6c482 4265 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4266 .misc = 0,
cdd6c482 4267 .size = sizeof(task_event.event_id),
60313ebe 4268 },
573402db
PZ
4269 /* .pid */
4270 /* .ppid */
9f498cc5
PZ
4271 /* .tid */
4272 /* .ptid */
6f93d0a7 4273 .time = perf_clock(),
60313ebe
PZ
4274 },
4275 };
4276
cdd6c482 4277 perf_event_task_event(&task_event);
9f498cc5
PZ
4278}
4279
cdd6c482 4280void perf_event_fork(struct task_struct *task)
9f498cc5 4281{
cdd6c482 4282 perf_event_task(task, NULL, 1);
60313ebe
PZ
4283}
4284
8d1b2d93
PZ
4285/*
4286 * comm tracking
4287 */
4288
4289struct perf_comm_event {
22a4f650
IM
4290 struct task_struct *task;
4291 char *comm;
8d1b2d93
PZ
4292 int comm_size;
4293
4294 struct {
4295 struct perf_event_header header;
4296
4297 u32 pid;
4298 u32 tid;
cdd6c482 4299 } event_id;
8d1b2d93
PZ
4300};
4301
cdd6c482 4302static void perf_event_comm_output(struct perf_event *event,
8d1b2d93
PZ
4303 struct perf_comm_event *comm_event)
4304{
4305 struct perf_output_handle handle;
c980d109 4306 struct perf_sample_data sample;
cdd6c482 4307 int size = comm_event->event_id.header.size;
c980d109
ACM
4308 int ret;
4309
4310 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4311 ret = perf_output_begin(&handle, event,
a7ac67ea 4312 comm_event->event_id.header.size);
8d1b2d93
PZ
4313
4314 if (ret)
c980d109 4315 goto out;
8d1b2d93 4316
cdd6c482
IM
4317 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4318 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4319
cdd6c482 4320 perf_output_put(&handle, comm_event->event_id);
76369139 4321 __output_copy(&handle, comm_event->comm,
8d1b2d93 4322 comm_event->comm_size);
c980d109
ACM
4323
4324 perf_event__output_id_sample(event, &handle, &sample);
4325
8d1b2d93 4326 perf_output_end(&handle);
c980d109
ACM
4327out:
4328 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4329}
4330
cdd6c482 4331static int perf_event_comm_match(struct perf_event *event)
8d1b2d93 4332{
6f93d0a7 4333 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4334 return 0;
4335
5632ab12 4336 if (!event_filter_match(event))
5d27c23d
PZ
4337 return 0;
4338
cdd6c482 4339 if (event->attr.comm)
8d1b2d93
PZ
4340 return 1;
4341
4342 return 0;
4343}
4344
cdd6c482 4345static void perf_event_comm_ctx(struct perf_event_context *ctx,
8d1b2d93
PZ
4346 struct perf_comm_event *comm_event)
4347{
cdd6c482 4348 struct perf_event *event;
8d1b2d93 4349
cdd6c482
IM
4350 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4351 if (perf_event_comm_match(event))
4352 perf_event_comm_output(event, comm_event);
8d1b2d93 4353 }
8d1b2d93
PZ
4354}
4355
cdd6c482 4356static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93
PZ
4357{
4358 struct perf_cpu_context *cpuctx;
cdd6c482 4359 struct perf_event_context *ctx;
413ee3b4 4360 char comm[TASK_COMM_LEN];
8d1b2d93 4361 unsigned int size;
108b02cf 4362 struct pmu *pmu;
8dc85d54 4363 int ctxn;
8d1b2d93 4364
413ee3b4 4365 memset(comm, 0, sizeof(comm));
96b02d78 4366 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4367 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4368
4369 comm_event->comm = comm;
4370 comm_event->comm_size = size;
4371
cdd6c482 4372 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
f6595f3a 4373 rcu_read_lock();
108b02cf 4374 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4375 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4376 if (cpuctx->active_pmu != pmu)
4377 goto next;
108b02cf 4378 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
8dc85d54
PZ
4379
4380 ctxn = pmu->task_ctx_nr;
4381 if (ctxn < 0)
41945f6c 4382 goto next;
8dc85d54
PZ
4383
4384 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4385 if (ctx)
4386 perf_event_comm_ctx(ctx, comm_event);
41945f6c
PZ
4387next:
4388 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4389 }
665c2142 4390 rcu_read_unlock();
8d1b2d93
PZ
4391}
4392
cdd6c482 4393void perf_event_comm(struct task_struct *task)
8d1b2d93 4394{
9ee318a7 4395 struct perf_comm_event comm_event;
8dc85d54
PZ
4396 struct perf_event_context *ctx;
4397 int ctxn;
9ee318a7 4398
8dc85d54
PZ
4399 for_each_task_context_nr(ctxn) {
4400 ctx = task->perf_event_ctxp[ctxn];
4401 if (!ctx)
4402 continue;
9ee318a7 4403
8dc85d54
PZ
4404 perf_event_enable_on_exec(ctx);
4405 }
9ee318a7 4406
cdd6c482 4407 if (!atomic_read(&nr_comm_events))
9ee318a7 4408 return;
a63eaf34 4409
9ee318a7 4410 comm_event = (struct perf_comm_event){
8d1b2d93 4411 .task = task,
573402db
PZ
4412 /* .comm */
4413 /* .comm_size */
cdd6c482 4414 .event_id = {
573402db 4415 .header = {
cdd6c482 4416 .type = PERF_RECORD_COMM,
573402db
PZ
4417 .misc = 0,
4418 /* .size */
4419 },
4420 /* .pid */
4421 /* .tid */
8d1b2d93
PZ
4422 },
4423 };
4424
cdd6c482 4425 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4426}
4427
0a4a9391
PZ
4428/*
4429 * mmap tracking
4430 */
4431
4432struct perf_mmap_event {
089dd79d
PZ
4433 struct vm_area_struct *vma;
4434
4435 const char *file_name;
4436 int file_size;
0a4a9391
PZ
4437
4438 struct {
4439 struct perf_event_header header;
4440
4441 u32 pid;
4442 u32 tid;
4443 u64 start;
4444 u64 len;
4445 u64 pgoff;
cdd6c482 4446 } event_id;
0a4a9391
PZ
4447};
4448
cdd6c482 4449static void perf_event_mmap_output(struct perf_event *event,
0a4a9391
PZ
4450 struct perf_mmap_event *mmap_event)
4451{
4452 struct perf_output_handle handle;
c980d109 4453 struct perf_sample_data sample;
cdd6c482 4454 int size = mmap_event->event_id.header.size;
c980d109 4455 int ret;
0a4a9391 4456
c980d109
ACM
4457 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4458 ret = perf_output_begin(&handle, event,
a7ac67ea 4459 mmap_event->event_id.header.size);
0a4a9391 4460 if (ret)
c980d109 4461 goto out;
0a4a9391 4462
cdd6c482
IM
4463 mmap_event->event_id.pid = perf_event_pid(event, current);
4464 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4465
cdd6c482 4466 perf_output_put(&handle, mmap_event->event_id);
76369139 4467 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4468 mmap_event->file_size);
c980d109
ACM
4469
4470 perf_event__output_id_sample(event, &handle, &sample);
4471
78d613eb 4472 perf_output_end(&handle);
c980d109
ACM
4473out:
4474 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4475}
4476
cdd6c482 4477static int perf_event_mmap_match(struct perf_event *event,
3af9e859
EM
4478 struct perf_mmap_event *mmap_event,
4479 int executable)
0a4a9391 4480{
6f93d0a7 4481 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4482 return 0;
4483
5632ab12 4484 if (!event_filter_match(event))
5d27c23d
PZ
4485 return 0;
4486
3af9e859
EM
4487 if ((!executable && event->attr.mmap_data) ||
4488 (executable && event->attr.mmap))
0a4a9391
PZ
4489 return 1;
4490
4491 return 0;
4492}
4493
cdd6c482 4494static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3af9e859
EM
4495 struct perf_mmap_event *mmap_event,
4496 int executable)
0a4a9391 4497{
cdd6c482 4498 struct perf_event *event;
0a4a9391 4499
cdd6c482 4500 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3af9e859 4501 if (perf_event_mmap_match(event, mmap_event, executable))
cdd6c482 4502 perf_event_mmap_output(event, mmap_event);
0a4a9391 4503 }
0a4a9391
PZ
4504}
4505
cdd6c482 4506static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391
PZ
4507{
4508 struct perf_cpu_context *cpuctx;
cdd6c482 4509 struct perf_event_context *ctx;
089dd79d
PZ
4510 struct vm_area_struct *vma = mmap_event->vma;
4511 struct file *file = vma->vm_file;
0a4a9391
PZ
4512 unsigned int size;
4513 char tmp[16];
4514 char *buf = NULL;
089dd79d 4515 const char *name;
108b02cf 4516 struct pmu *pmu;
8dc85d54 4517 int ctxn;
0a4a9391 4518
413ee3b4
AB
4519 memset(tmp, 0, sizeof(tmp));
4520
0a4a9391 4521 if (file) {
413ee3b4 4522 /*
76369139 4523 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4524 * need to add enough zero bytes after the string to handle
4525 * the 64bit alignment we do later.
4526 */
4527 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4528 if (!buf) {
4529 name = strncpy(tmp, "//enomem", sizeof(tmp));
4530 goto got_name;
4531 }
d3d21c41 4532 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4533 if (IS_ERR(name)) {
4534 name = strncpy(tmp, "//toolong", sizeof(tmp));
4535 goto got_name;
4536 }
4537 } else {
413ee3b4
AB
4538 if (arch_vma_name(mmap_event->vma)) {
4539 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4540 sizeof(tmp));
089dd79d 4541 goto got_name;
413ee3b4 4542 }
089dd79d
PZ
4543
4544 if (!vma->vm_mm) {
4545 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4546 goto got_name;
3af9e859
EM
4547 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4548 vma->vm_end >= vma->vm_mm->brk) {
4549 name = strncpy(tmp, "[heap]", sizeof(tmp));
4550 goto got_name;
4551 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4552 vma->vm_end >= vma->vm_mm->start_stack) {
4553 name = strncpy(tmp, "[stack]", sizeof(tmp));
4554 goto got_name;
089dd79d
PZ
4555 }
4556
0a4a9391
PZ
4557 name = strncpy(tmp, "//anon", sizeof(tmp));
4558 goto got_name;
4559 }
4560
4561got_name:
888fcee0 4562 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4563
4564 mmap_event->file_name = name;
4565 mmap_event->file_size = size;
4566
cdd6c482 4567 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4568
f6d9dd23 4569 rcu_read_lock();
108b02cf 4570 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4571 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4572 if (cpuctx->active_pmu != pmu)
4573 goto next;
108b02cf
PZ
4574 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4575 vma->vm_flags & VM_EXEC);
8dc85d54
PZ
4576
4577 ctxn = pmu->task_ctx_nr;
4578 if (ctxn < 0)
41945f6c 4579 goto next;
8dc85d54
PZ
4580
4581 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4582 if (ctx) {
4583 perf_event_mmap_ctx(ctx, mmap_event,
4584 vma->vm_flags & VM_EXEC);
4585 }
41945f6c
PZ
4586next:
4587 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4588 }
665c2142
PZ
4589 rcu_read_unlock();
4590
0a4a9391
PZ
4591 kfree(buf);
4592}
4593
3af9e859 4594void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4595{
9ee318a7
PZ
4596 struct perf_mmap_event mmap_event;
4597
cdd6c482 4598 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4599 return;
4600
4601 mmap_event = (struct perf_mmap_event){
089dd79d 4602 .vma = vma,
573402db
PZ
4603 /* .file_name */
4604 /* .file_size */
cdd6c482 4605 .event_id = {
573402db 4606 .header = {
cdd6c482 4607 .type = PERF_RECORD_MMAP,
39447b38 4608 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4609 /* .size */
4610 },
4611 /* .pid */
4612 /* .tid */
089dd79d
PZ
4613 .start = vma->vm_start,
4614 .len = vma->vm_end - vma->vm_start,
3a0304e9 4615 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4616 },
4617 };
4618
cdd6c482 4619 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4620}
4621
a78ac325
PZ
4622/*
4623 * IRQ throttle logging
4624 */
4625
cdd6c482 4626static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4627{
4628 struct perf_output_handle handle;
c980d109 4629 struct perf_sample_data sample;
a78ac325
PZ
4630 int ret;
4631
4632 struct {
4633 struct perf_event_header header;
4634 u64 time;
cca3f454 4635 u64 id;
7f453c24 4636 u64 stream_id;
a78ac325
PZ
4637 } throttle_event = {
4638 .header = {
cdd6c482 4639 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4640 .misc = 0,
4641 .size = sizeof(throttle_event),
4642 },
def0a9b2 4643 .time = perf_clock(),
cdd6c482
IM
4644 .id = primary_event_id(event),
4645 .stream_id = event->id,
a78ac325
PZ
4646 };
4647
966ee4d6 4648 if (enable)
cdd6c482 4649 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4650
c980d109
ACM
4651 perf_event_header__init_id(&throttle_event.header, &sample, event);
4652
4653 ret = perf_output_begin(&handle, event,
a7ac67ea 4654 throttle_event.header.size);
a78ac325
PZ
4655 if (ret)
4656 return;
4657
4658 perf_output_put(&handle, throttle_event);
c980d109 4659 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4660 perf_output_end(&handle);
4661}
4662
f6c7d5fe 4663/*
cdd6c482 4664 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4665 */
4666
a8b0ca17 4667static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4668 int throttle, struct perf_sample_data *data,
4669 struct pt_regs *regs)
f6c7d5fe 4670{
cdd6c482
IM
4671 int events = atomic_read(&event->event_limit);
4672 struct hw_perf_event *hwc = &event->hw;
e050e3f0 4673 u64 seq;
79f14641
PZ
4674 int ret = 0;
4675
96398826
PZ
4676 /*
4677 * Non-sampling counters might still use the PMI to fold short
4678 * hardware counters, ignore those.
4679 */
4680 if (unlikely(!is_sampling_event(event)))
4681 return 0;
4682
e050e3f0
SE
4683 seq = __this_cpu_read(perf_throttled_seq);
4684 if (seq != hwc->interrupts_seq) {
4685 hwc->interrupts_seq = seq;
4686 hwc->interrupts = 1;
4687 } else {
4688 hwc->interrupts++;
4689 if (unlikely(throttle
4690 && hwc->interrupts >= max_samples_per_tick)) {
4691 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
4692 hwc->interrupts = MAX_INTERRUPTS;
4693 perf_log_throttle(event, 0);
a78ac325
PZ
4694 ret = 1;
4695 }
e050e3f0 4696 }
60db5e09 4697
cdd6c482 4698 if (event->attr.freq) {
def0a9b2 4699 u64 now = perf_clock();
abd50713 4700 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4701
abd50713 4702 hwc->freq_time_stamp = now;
bd2b5b12 4703
abd50713 4704 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 4705 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
4706 }
4707
2023b359
PZ
4708 /*
4709 * XXX event_limit might not quite work as expected on inherited
cdd6c482 4710 * events
2023b359
PZ
4711 */
4712
cdd6c482
IM
4713 event->pending_kill = POLL_IN;
4714 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 4715 ret = 1;
cdd6c482 4716 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
4717 event->pending_disable = 1;
4718 irq_work_queue(&event->pending);
79f14641
PZ
4719 }
4720
453f19ee 4721 if (event->overflow_handler)
a8b0ca17 4722 event->overflow_handler(event, data, regs);
453f19ee 4723 else
a8b0ca17 4724 perf_event_output(event, data, regs);
453f19ee 4725
f506b3dc 4726 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
4727 event->pending_wakeup = 1;
4728 irq_work_queue(&event->pending);
f506b3dc
PZ
4729 }
4730
79f14641 4731 return ret;
f6c7d5fe
PZ
4732}
4733
a8b0ca17 4734int perf_event_overflow(struct perf_event *event,
5622f295
MM
4735 struct perf_sample_data *data,
4736 struct pt_regs *regs)
850bc73f 4737{
a8b0ca17 4738 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
4739}
4740
15dbf27c 4741/*
cdd6c482 4742 * Generic software event infrastructure
15dbf27c
PZ
4743 */
4744
b28ab83c
PZ
4745struct swevent_htable {
4746 struct swevent_hlist *swevent_hlist;
4747 struct mutex hlist_mutex;
4748 int hlist_refcount;
4749
4750 /* Recursion avoidance in each contexts */
4751 int recursion[PERF_NR_CONTEXTS];
4752};
4753
4754static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4755
7b4b6658 4756/*
cdd6c482
IM
4757 * We directly increment event->count and keep a second value in
4758 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
4759 * is kept in the range [-sample_period, 0] so that we can use the
4760 * sign as trigger.
4761 */
4762
cdd6c482 4763static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 4764{
cdd6c482 4765 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
4766 u64 period = hwc->last_period;
4767 u64 nr, offset;
4768 s64 old, val;
4769
4770 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
4771
4772again:
e7850595 4773 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
4774 if (val < 0)
4775 return 0;
15dbf27c 4776
7b4b6658
PZ
4777 nr = div64_u64(period + val, period);
4778 offset = nr * period;
4779 val -= offset;
e7850595 4780 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 4781 goto again;
15dbf27c 4782
7b4b6658 4783 return nr;
15dbf27c
PZ
4784}
4785
0cff784a 4786static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 4787 struct perf_sample_data *data,
5622f295 4788 struct pt_regs *regs)
15dbf27c 4789{
cdd6c482 4790 struct hw_perf_event *hwc = &event->hw;
850bc73f 4791 int throttle = 0;
15dbf27c 4792
0cff784a
PZ
4793 if (!overflow)
4794 overflow = perf_swevent_set_period(event);
15dbf27c 4795
7b4b6658
PZ
4796 if (hwc->interrupts == MAX_INTERRUPTS)
4797 return;
15dbf27c 4798
7b4b6658 4799 for (; overflow; overflow--) {
a8b0ca17 4800 if (__perf_event_overflow(event, throttle,
5622f295 4801 data, regs)) {
7b4b6658
PZ
4802 /*
4803 * We inhibit the overflow from happening when
4804 * hwc->interrupts == MAX_INTERRUPTS.
4805 */
4806 break;
4807 }
cf450a73 4808 throttle = 1;
7b4b6658 4809 }
15dbf27c
PZ
4810}
4811
a4eaf7f1 4812static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 4813 struct perf_sample_data *data,
5622f295 4814 struct pt_regs *regs)
7b4b6658 4815{
cdd6c482 4816 struct hw_perf_event *hwc = &event->hw;
d6d020e9 4817
e7850595 4818 local64_add(nr, &event->count);
d6d020e9 4819
0cff784a
PZ
4820 if (!regs)
4821 return;
4822
6c7e550f 4823 if (!is_sampling_event(event))
7b4b6658 4824 return;
d6d020e9 4825
5d81e5cf
AV
4826 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4827 data->period = nr;
4828 return perf_swevent_overflow(event, 1, data, regs);
4829 } else
4830 data->period = event->hw.last_period;
4831
0cff784a 4832 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 4833 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 4834
e7850595 4835 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 4836 return;
df1a132b 4837
a8b0ca17 4838 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
4839}
4840
f5ffe02e
FW
4841static int perf_exclude_event(struct perf_event *event,
4842 struct pt_regs *regs)
4843{
a4eaf7f1 4844 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 4845 return 1;
a4eaf7f1 4846
f5ffe02e
FW
4847 if (regs) {
4848 if (event->attr.exclude_user && user_mode(regs))
4849 return 1;
4850
4851 if (event->attr.exclude_kernel && !user_mode(regs))
4852 return 1;
4853 }
4854
4855 return 0;
4856}
4857
cdd6c482 4858static int perf_swevent_match(struct perf_event *event,
1c432d89 4859 enum perf_type_id type,
6fb2915d
LZ
4860 u32 event_id,
4861 struct perf_sample_data *data,
4862 struct pt_regs *regs)
15dbf27c 4863{
cdd6c482 4864 if (event->attr.type != type)
a21ca2ca 4865 return 0;
f5ffe02e 4866
cdd6c482 4867 if (event->attr.config != event_id)
15dbf27c
PZ
4868 return 0;
4869
f5ffe02e
FW
4870 if (perf_exclude_event(event, regs))
4871 return 0;
15dbf27c
PZ
4872
4873 return 1;
4874}
4875
76e1d904
FW
4876static inline u64 swevent_hash(u64 type, u32 event_id)
4877{
4878 u64 val = event_id | (type << 32);
4879
4880 return hash_64(val, SWEVENT_HLIST_BITS);
4881}
4882
49f135ed
FW
4883static inline struct hlist_head *
4884__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 4885{
49f135ed
FW
4886 u64 hash = swevent_hash(type, event_id);
4887
4888 return &hlist->heads[hash];
4889}
76e1d904 4890
49f135ed
FW
4891/* For the read side: events when they trigger */
4892static inline struct hlist_head *
b28ab83c 4893find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
4894{
4895 struct swevent_hlist *hlist;
76e1d904 4896
b28ab83c 4897 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
4898 if (!hlist)
4899 return NULL;
4900
49f135ed
FW
4901 return __find_swevent_head(hlist, type, event_id);
4902}
4903
4904/* For the event head insertion and removal in the hlist */
4905static inline struct hlist_head *
b28ab83c 4906find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
4907{
4908 struct swevent_hlist *hlist;
4909 u32 event_id = event->attr.config;
4910 u64 type = event->attr.type;
4911
4912 /*
4913 * Event scheduling is always serialized against hlist allocation
4914 * and release. Which makes the protected version suitable here.
4915 * The context lock guarantees that.
4916 */
b28ab83c 4917 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
4918 lockdep_is_held(&event->ctx->lock));
4919 if (!hlist)
4920 return NULL;
4921
4922 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
4923}
4924
4925static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 4926 u64 nr,
76e1d904
FW
4927 struct perf_sample_data *data,
4928 struct pt_regs *regs)
15dbf27c 4929{
b28ab83c 4930 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4931 struct perf_event *event;
76e1d904
FW
4932 struct hlist_node *node;
4933 struct hlist_head *head;
15dbf27c 4934
76e1d904 4935 rcu_read_lock();
b28ab83c 4936 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
4937 if (!head)
4938 goto end;
4939
4940 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
6fb2915d 4941 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 4942 perf_swevent_event(event, nr, data, regs);
15dbf27c 4943 }
76e1d904
FW
4944end:
4945 rcu_read_unlock();
15dbf27c
PZ
4946}
4947
4ed7c92d 4948int perf_swevent_get_recursion_context(void)
96f6d444 4949{
b28ab83c 4950 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 4951
b28ab83c 4952 return get_recursion_context(swhash->recursion);
96f6d444 4953}
645e8cc0 4954EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 4955
fa9f90be 4956inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 4957{
b28ab83c 4958 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 4959
b28ab83c 4960 put_recursion_context(swhash->recursion, rctx);
ce71b9df 4961}
15dbf27c 4962
a8b0ca17 4963void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 4964{
a4234bfc 4965 struct perf_sample_data data;
4ed7c92d
PZ
4966 int rctx;
4967
1c024eca 4968 preempt_disable_notrace();
4ed7c92d
PZ
4969 rctx = perf_swevent_get_recursion_context();
4970 if (rctx < 0)
4971 return;
a4234bfc 4972
fd0d000b 4973 perf_sample_data_init(&data, addr, 0);
92bf309a 4974
a8b0ca17 4975 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
4976
4977 perf_swevent_put_recursion_context(rctx);
1c024eca 4978 preempt_enable_notrace();
b8e83514
PZ
4979}
4980
cdd6c482 4981static void perf_swevent_read(struct perf_event *event)
15dbf27c 4982{
15dbf27c
PZ
4983}
4984
a4eaf7f1 4985static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 4986{
b28ab83c 4987 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4988 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
4989 struct hlist_head *head;
4990
6c7e550f 4991 if (is_sampling_event(event)) {
7b4b6658 4992 hwc->last_period = hwc->sample_period;
cdd6c482 4993 perf_swevent_set_period(event);
7b4b6658 4994 }
76e1d904 4995
a4eaf7f1
PZ
4996 hwc->state = !(flags & PERF_EF_START);
4997
b28ab83c 4998 head = find_swevent_head(swhash, event);
76e1d904
FW
4999 if (WARN_ON_ONCE(!head))
5000 return -EINVAL;
5001
5002 hlist_add_head_rcu(&event->hlist_entry, head);
5003
15dbf27c
PZ
5004 return 0;
5005}
5006
a4eaf7f1 5007static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5008{
76e1d904 5009 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5010}
5011
a4eaf7f1 5012static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5013{
a4eaf7f1 5014 event->hw.state = 0;
d6d020e9 5015}
aa9c4c0f 5016
a4eaf7f1 5017static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5018{
a4eaf7f1 5019 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5020}
5021
49f135ed
FW
5022/* Deref the hlist from the update side */
5023static inline struct swevent_hlist *
b28ab83c 5024swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5025{
b28ab83c
PZ
5026 return rcu_dereference_protected(swhash->swevent_hlist,
5027 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5028}
5029
b28ab83c 5030static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5031{
b28ab83c 5032 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5033
49f135ed 5034 if (!hlist)
76e1d904
FW
5035 return;
5036
b28ab83c 5037 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5038 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5039}
5040
5041static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5042{
b28ab83c 5043 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5044
b28ab83c 5045 mutex_lock(&swhash->hlist_mutex);
76e1d904 5046
b28ab83c
PZ
5047 if (!--swhash->hlist_refcount)
5048 swevent_hlist_release(swhash);
76e1d904 5049
b28ab83c 5050 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5051}
5052
5053static void swevent_hlist_put(struct perf_event *event)
5054{
5055 int cpu;
5056
5057 if (event->cpu != -1) {
5058 swevent_hlist_put_cpu(event, event->cpu);
5059 return;
5060 }
5061
5062 for_each_possible_cpu(cpu)
5063 swevent_hlist_put_cpu(event, cpu);
5064}
5065
5066static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5067{
b28ab83c 5068 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5069 int err = 0;
5070
b28ab83c 5071 mutex_lock(&swhash->hlist_mutex);
76e1d904 5072
b28ab83c 5073 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5074 struct swevent_hlist *hlist;
5075
5076 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5077 if (!hlist) {
5078 err = -ENOMEM;
5079 goto exit;
5080 }
b28ab83c 5081 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5082 }
b28ab83c 5083 swhash->hlist_refcount++;
9ed6060d 5084exit:
b28ab83c 5085 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5086
5087 return err;
5088}
5089
5090static int swevent_hlist_get(struct perf_event *event)
5091{
5092 int err;
5093 int cpu, failed_cpu;
5094
5095 if (event->cpu != -1)
5096 return swevent_hlist_get_cpu(event, event->cpu);
5097
5098 get_online_cpus();
5099 for_each_possible_cpu(cpu) {
5100 err = swevent_hlist_get_cpu(event, cpu);
5101 if (err) {
5102 failed_cpu = cpu;
5103 goto fail;
5104 }
5105 }
5106 put_online_cpus();
5107
5108 return 0;
9ed6060d 5109fail:
76e1d904
FW
5110 for_each_possible_cpu(cpu) {
5111 if (cpu == failed_cpu)
5112 break;
5113 swevent_hlist_put_cpu(event, cpu);
5114 }
5115
5116 put_online_cpus();
5117 return err;
5118}
5119
c5905afb 5120struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5121
b0a873eb
PZ
5122static void sw_perf_event_destroy(struct perf_event *event)
5123{
5124 u64 event_id = event->attr.config;
95476b64 5125
b0a873eb
PZ
5126 WARN_ON(event->parent);
5127
c5905afb 5128 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5129 swevent_hlist_put(event);
5130}
5131
5132static int perf_swevent_init(struct perf_event *event)
5133{
5134 int event_id = event->attr.config;
5135
5136 if (event->attr.type != PERF_TYPE_SOFTWARE)
5137 return -ENOENT;
5138
2481c5fa
SE
5139 /*
5140 * no branch sampling for software events
5141 */
5142 if (has_branch_stack(event))
5143 return -EOPNOTSUPP;
5144
b0a873eb
PZ
5145 switch (event_id) {
5146 case PERF_COUNT_SW_CPU_CLOCK:
5147 case PERF_COUNT_SW_TASK_CLOCK:
5148 return -ENOENT;
5149
5150 default:
5151 break;
5152 }
5153
ce677831 5154 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5155 return -ENOENT;
5156
5157 if (!event->parent) {
5158 int err;
5159
5160 err = swevent_hlist_get(event);
5161 if (err)
5162 return err;
5163
c5905afb 5164 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5165 event->destroy = sw_perf_event_destroy;
5166 }
5167
5168 return 0;
5169}
5170
35edc2a5
PZ
5171static int perf_swevent_event_idx(struct perf_event *event)
5172{
5173 return 0;
5174}
5175
b0a873eb 5176static struct pmu perf_swevent = {
89a1e187 5177 .task_ctx_nr = perf_sw_context,
95476b64 5178
b0a873eb 5179 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5180 .add = perf_swevent_add,
5181 .del = perf_swevent_del,
5182 .start = perf_swevent_start,
5183 .stop = perf_swevent_stop,
1c024eca 5184 .read = perf_swevent_read,
35edc2a5
PZ
5185
5186 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5187};
5188
b0a873eb
PZ
5189#ifdef CONFIG_EVENT_TRACING
5190
1c024eca
PZ
5191static int perf_tp_filter_match(struct perf_event *event,
5192 struct perf_sample_data *data)
5193{
5194 void *record = data->raw->data;
5195
5196 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5197 return 1;
5198 return 0;
5199}
5200
5201static int perf_tp_event_match(struct perf_event *event,
5202 struct perf_sample_data *data,
5203 struct pt_regs *regs)
5204{
a0f7d0f7
FW
5205 if (event->hw.state & PERF_HES_STOPPED)
5206 return 0;
580d607c
PZ
5207 /*
5208 * All tracepoints are from kernel-space.
5209 */
5210 if (event->attr.exclude_kernel)
1c024eca
PZ
5211 return 0;
5212
5213 if (!perf_tp_filter_match(event, data))
5214 return 0;
5215
5216 return 1;
5217}
5218
5219void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5220 struct pt_regs *regs, struct hlist_head *head, int rctx,
5221 struct task_struct *task)
95476b64
FW
5222{
5223 struct perf_sample_data data;
1c024eca
PZ
5224 struct perf_event *event;
5225 struct hlist_node *node;
5226
95476b64
FW
5227 struct perf_raw_record raw = {
5228 .size = entry_size,
5229 .data = record,
5230 };
5231
fd0d000b 5232 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5233 data.raw = &raw;
5234
1c024eca
PZ
5235 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5236 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5237 perf_swevent_event(event, count, &data, regs);
4f41c013 5238 }
ecc55f84 5239
e6dab5ff
AV
5240 /*
5241 * If we got specified a target task, also iterate its context and
5242 * deliver this event there too.
5243 */
5244 if (task && task != current) {
5245 struct perf_event_context *ctx;
5246 struct trace_entry *entry = record;
5247
5248 rcu_read_lock();
5249 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5250 if (!ctx)
5251 goto unlock;
5252
5253 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5254 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5255 continue;
5256 if (event->attr.config != entry->type)
5257 continue;
5258 if (perf_tp_event_match(event, &data, regs))
5259 perf_swevent_event(event, count, &data, regs);
5260 }
5261unlock:
5262 rcu_read_unlock();
5263 }
5264
ecc55f84 5265 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5266}
5267EXPORT_SYMBOL_GPL(perf_tp_event);
5268
cdd6c482 5269static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5270{
1c024eca 5271 perf_trace_destroy(event);
e077df4f
PZ
5272}
5273
b0a873eb 5274static int perf_tp_event_init(struct perf_event *event)
e077df4f 5275{
76e1d904
FW
5276 int err;
5277
b0a873eb
PZ
5278 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5279 return -ENOENT;
5280
2481c5fa
SE
5281 /*
5282 * no branch sampling for tracepoint events
5283 */
5284 if (has_branch_stack(event))
5285 return -EOPNOTSUPP;
5286
1c024eca
PZ
5287 err = perf_trace_init(event);
5288 if (err)
b0a873eb 5289 return err;
e077df4f 5290
cdd6c482 5291 event->destroy = tp_perf_event_destroy;
e077df4f 5292
b0a873eb
PZ
5293 return 0;
5294}
5295
5296static struct pmu perf_tracepoint = {
89a1e187
PZ
5297 .task_ctx_nr = perf_sw_context,
5298
b0a873eb 5299 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5300 .add = perf_trace_add,
5301 .del = perf_trace_del,
5302 .start = perf_swevent_start,
5303 .stop = perf_swevent_stop,
b0a873eb 5304 .read = perf_swevent_read,
35edc2a5
PZ
5305
5306 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5307};
5308
5309static inline void perf_tp_register(void)
5310{
2e80a82a 5311 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5312}
6fb2915d
LZ
5313
5314static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5315{
5316 char *filter_str;
5317 int ret;
5318
5319 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5320 return -EINVAL;
5321
5322 filter_str = strndup_user(arg, PAGE_SIZE);
5323 if (IS_ERR(filter_str))
5324 return PTR_ERR(filter_str);
5325
5326 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5327
5328 kfree(filter_str);
5329 return ret;
5330}
5331
5332static void perf_event_free_filter(struct perf_event *event)
5333{
5334 ftrace_profile_free_filter(event);
5335}
5336
e077df4f 5337#else
6fb2915d 5338
b0a873eb 5339static inline void perf_tp_register(void)
e077df4f 5340{
e077df4f 5341}
6fb2915d
LZ
5342
5343static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5344{
5345 return -ENOENT;
5346}
5347
5348static void perf_event_free_filter(struct perf_event *event)
5349{
5350}
5351
07b139c8 5352#endif /* CONFIG_EVENT_TRACING */
e077df4f 5353
24f1e32c 5354#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5355void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5356{
f5ffe02e
FW
5357 struct perf_sample_data sample;
5358 struct pt_regs *regs = data;
5359
fd0d000b 5360 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5361
a4eaf7f1 5362 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5363 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5364}
5365#endif
5366
b0a873eb
PZ
5367/*
5368 * hrtimer based swevent callback
5369 */
f29ac756 5370
b0a873eb 5371static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5372{
b0a873eb
PZ
5373 enum hrtimer_restart ret = HRTIMER_RESTART;
5374 struct perf_sample_data data;
5375 struct pt_regs *regs;
5376 struct perf_event *event;
5377 u64 period;
f29ac756 5378
b0a873eb 5379 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5380
5381 if (event->state != PERF_EVENT_STATE_ACTIVE)
5382 return HRTIMER_NORESTART;
5383
b0a873eb 5384 event->pmu->read(event);
f344011c 5385
fd0d000b 5386 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5387 regs = get_irq_regs();
5388
5389 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5390 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5391 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5392 ret = HRTIMER_NORESTART;
5393 }
24f1e32c 5394
b0a873eb
PZ
5395 period = max_t(u64, 10000, event->hw.sample_period);
5396 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5397
b0a873eb 5398 return ret;
f29ac756
PZ
5399}
5400
b0a873eb 5401static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5402{
b0a873eb 5403 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5404 s64 period;
5405
5406 if (!is_sampling_event(event))
5407 return;
f5ffe02e 5408
5d508e82
FBH
5409 period = local64_read(&hwc->period_left);
5410 if (period) {
5411 if (period < 0)
5412 period = 10000;
fa407f35 5413
5d508e82
FBH
5414 local64_set(&hwc->period_left, 0);
5415 } else {
5416 period = max_t(u64, 10000, hwc->sample_period);
5417 }
5418 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5419 ns_to_ktime(period), 0,
b5ab4cd5 5420 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5421}
b0a873eb
PZ
5422
5423static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5424{
b0a873eb
PZ
5425 struct hw_perf_event *hwc = &event->hw;
5426
6c7e550f 5427 if (is_sampling_event(event)) {
b0a873eb 5428 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5429 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5430
5431 hrtimer_cancel(&hwc->hrtimer);
5432 }
24f1e32c
FW
5433}
5434
ba3dd36c
PZ
5435static void perf_swevent_init_hrtimer(struct perf_event *event)
5436{
5437 struct hw_perf_event *hwc = &event->hw;
5438
5439 if (!is_sampling_event(event))
5440 return;
5441
5442 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5443 hwc->hrtimer.function = perf_swevent_hrtimer;
5444
5445 /*
5446 * Since hrtimers have a fixed rate, we can do a static freq->period
5447 * mapping and avoid the whole period adjust feedback stuff.
5448 */
5449 if (event->attr.freq) {
5450 long freq = event->attr.sample_freq;
5451
5452 event->attr.sample_period = NSEC_PER_SEC / freq;
5453 hwc->sample_period = event->attr.sample_period;
5454 local64_set(&hwc->period_left, hwc->sample_period);
5455 event->attr.freq = 0;
5456 }
5457}
5458
b0a873eb
PZ
5459/*
5460 * Software event: cpu wall time clock
5461 */
5462
5463static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5464{
b0a873eb
PZ
5465 s64 prev;
5466 u64 now;
5467
a4eaf7f1 5468 now = local_clock();
b0a873eb
PZ
5469 prev = local64_xchg(&event->hw.prev_count, now);
5470 local64_add(now - prev, &event->count);
24f1e32c 5471}
24f1e32c 5472
a4eaf7f1 5473static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5474{
a4eaf7f1 5475 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5476 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5477}
5478
a4eaf7f1 5479static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5480{
b0a873eb
PZ
5481 perf_swevent_cancel_hrtimer(event);
5482 cpu_clock_event_update(event);
5483}
f29ac756 5484
a4eaf7f1
PZ
5485static int cpu_clock_event_add(struct perf_event *event, int flags)
5486{
5487 if (flags & PERF_EF_START)
5488 cpu_clock_event_start(event, flags);
5489
5490 return 0;
5491}
5492
5493static void cpu_clock_event_del(struct perf_event *event, int flags)
5494{
5495 cpu_clock_event_stop(event, flags);
5496}
5497
b0a873eb
PZ
5498static void cpu_clock_event_read(struct perf_event *event)
5499{
5500 cpu_clock_event_update(event);
5501}
f344011c 5502
b0a873eb
PZ
5503static int cpu_clock_event_init(struct perf_event *event)
5504{
5505 if (event->attr.type != PERF_TYPE_SOFTWARE)
5506 return -ENOENT;
5507
5508 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5509 return -ENOENT;
5510
2481c5fa
SE
5511 /*
5512 * no branch sampling for software events
5513 */
5514 if (has_branch_stack(event))
5515 return -EOPNOTSUPP;
5516
ba3dd36c
PZ
5517 perf_swevent_init_hrtimer(event);
5518
b0a873eb 5519 return 0;
f29ac756
PZ
5520}
5521
b0a873eb 5522static struct pmu perf_cpu_clock = {
89a1e187
PZ
5523 .task_ctx_nr = perf_sw_context,
5524
b0a873eb 5525 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5526 .add = cpu_clock_event_add,
5527 .del = cpu_clock_event_del,
5528 .start = cpu_clock_event_start,
5529 .stop = cpu_clock_event_stop,
b0a873eb 5530 .read = cpu_clock_event_read,
35edc2a5
PZ
5531
5532 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5533};
5534
5535/*
5536 * Software event: task time clock
5537 */
5538
5539static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5540{
b0a873eb
PZ
5541 u64 prev;
5542 s64 delta;
5c92d124 5543
b0a873eb
PZ
5544 prev = local64_xchg(&event->hw.prev_count, now);
5545 delta = now - prev;
5546 local64_add(delta, &event->count);
5547}
5c92d124 5548
a4eaf7f1 5549static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5550{
a4eaf7f1 5551 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5552 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5553}
5554
a4eaf7f1 5555static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5556{
5557 perf_swevent_cancel_hrtimer(event);
5558 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5559}
5560
5561static int task_clock_event_add(struct perf_event *event, int flags)
5562{
5563 if (flags & PERF_EF_START)
5564 task_clock_event_start(event, flags);
b0a873eb 5565
a4eaf7f1
PZ
5566 return 0;
5567}
5568
5569static void task_clock_event_del(struct perf_event *event, int flags)
5570{
5571 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5572}
5573
5574static void task_clock_event_read(struct perf_event *event)
5575{
768a06e2
PZ
5576 u64 now = perf_clock();
5577 u64 delta = now - event->ctx->timestamp;
5578 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5579
5580 task_clock_event_update(event, time);
5581}
5582
5583static int task_clock_event_init(struct perf_event *event)
6fb2915d 5584{
b0a873eb
PZ
5585 if (event->attr.type != PERF_TYPE_SOFTWARE)
5586 return -ENOENT;
5587
5588 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5589 return -ENOENT;
5590
2481c5fa
SE
5591 /*
5592 * no branch sampling for software events
5593 */
5594 if (has_branch_stack(event))
5595 return -EOPNOTSUPP;
5596
ba3dd36c
PZ
5597 perf_swevent_init_hrtimer(event);
5598
b0a873eb 5599 return 0;
6fb2915d
LZ
5600}
5601
b0a873eb 5602static struct pmu perf_task_clock = {
89a1e187
PZ
5603 .task_ctx_nr = perf_sw_context,
5604
b0a873eb 5605 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5606 .add = task_clock_event_add,
5607 .del = task_clock_event_del,
5608 .start = task_clock_event_start,
5609 .stop = task_clock_event_stop,
b0a873eb 5610 .read = task_clock_event_read,
35edc2a5
PZ
5611
5612 .event_idx = perf_swevent_event_idx,
b0a873eb 5613};
6fb2915d 5614
ad5133b7 5615static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5616{
e077df4f 5617}
6fb2915d 5618
ad5133b7 5619static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5620{
ad5133b7 5621 return 0;
6fb2915d
LZ
5622}
5623
ad5133b7 5624static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5625{
ad5133b7 5626 perf_pmu_disable(pmu);
6fb2915d
LZ
5627}
5628
ad5133b7
PZ
5629static int perf_pmu_commit_txn(struct pmu *pmu)
5630{
5631 perf_pmu_enable(pmu);
5632 return 0;
5633}
e077df4f 5634
ad5133b7 5635static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5636{
ad5133b7 5637 perf_pmu_enable(pmu);
24f1e32c
FW
5638}
5639
35edc2a5
PZ
5640static int perf_event_idx_default(struct perf_event *event)
5641{
5642 return event->hw.idx + 1;
5643}
5644
8dc85d54
PZ
5645/*
5646 * Ensures all contexts with the same task_ctx_nr have the same
5647 * pmu_cpu_context too.
5648 */
5649static void *find_pmu_context(int ctxn)
24f1e32c 5650{
8dc85d54 5651 struct pmu *pmu;
b326e956 5652
8dc85d54
PZ
5653 if (ctxn < 0)
5654 return NULL;
24f1e32c 5655
8dc85d54
PZ
5656 list_for_each_entry(pmu, &pmus, entry) {
5657 if (pmu->task_ctx_nr == ctxn)
5658 return pmu->pmu_cpu_context;
5659 }
24f1e32c 5660
8dc85d54 5661 return NULL;
24f1e32c
FW
5662}
5663
51676957 5664static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5665{
51676957
PZ
5666 int cpu;
5667
5668 for_each_possible_cpu(cpu) {
5669 struct perf_cpu_context *cpuctx;
5670
5671 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5672
5673 if (cpuctx->active_pmu == old_pmu)
5674 cpuctx->active_pmu = pmu;
5675 }
5676}
5677
5678static void free_pmu_context(struct pmu *pmu)
5679{
5680 struct pmu *i;
f5ffe02e 5681
8dc85d54 5682 mutex_lock(&pmus_lock);
0475f9ea 5683 /*
8dc85d54 5684 * Like a real lame refcount.
0475f9ea 5685 */
51676957
PZ
5686 list_for_each_entry(i, &pmus, entry) {
5687 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5688 update_pmu_context(i, pmu);
8dc85d54 5689 goto out;
51676957 5690 }
8dc85d54 5691 }
d6d020e9 5692
51676957 5693 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5694out:
5695 mutex_unlock(&pmus_lock);
24f1e32c 5696}
2e80a82a 5697static struct idr pmu_idr;
d6d020e9 5698
abe43400
PZ
5699static ssize_t
5700type_show(struct device *dev, struct device_attribute *attr, char *page)
5701{
5702 struct pmu *pmu = dev_get_drvdata(dev);
5703
5704 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5705}
5706
5707static struct device_attribute pmu_dev_attrs[] = {
5708 __ATTR_RO(type),
5709 __ATTR_NULL,
5710};
5711
5712static int pmu_bus_running;
5713static struct bus_type pmu_bus = {
5714 .name = "event_source",
5715 .dev_attrs = pmu_dev_attrs,
5716};
5717
5718static void pmu_dev_release(struct device *dev)
5719{
5720 kfree(dev);
5721}
5722
5723static int pmu_dev_alloc(struct pmu *pmu)
5724{
5725 int ret = -ENOMEM;
5726
5727 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5728 if (!pmu->dev)
5729 goto out;
5730
0c9d42ed 5731 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
5732 device_initialize(pmu->dev);
5733 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5734 if (ret)
5735 goto free_dev;
5736
5737 dev_set_drvdata(pmu->dev, pmu);
5738 pmu->dev->bus = &pmu_bus;
5739 pmu->dev->release = pmu_dev_release;
5740 ret = device_add(pmu->dev);
5741 if (ret)
5742 goto free_dev;
5743
5744out:
5745 return ret;
5746
5747free_dev:
5748 put_device(pmu->dev);
5749 goto out;
5750}
5751
547e9fd7 5752static struct lock_class_key cpuctx_mutex;
facc4307 5753static struct lock_class_key cpuctx_lock;
547e9fd7 5754
2e80a82a 5755int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 5756{
108b02cf 5757 int cpu, ret;
24f1e32c 5758
b0a873eb 5759 mutex_lock(&pmus_lock);
33696fc0
PZ
5760 ret = -ENOMEM;
5761 pmu->pmu_disable_count = alloc_percpu(int);
5762 if (!pmu->pmu_disable_count)
5763 goto unlock;
f29ac756 5764
2e80a82a
PZ
5765 pmu->type = -1;
5766 if (!name)
5767 goto skip_type;
5768 pmu->name = name;
5769
5770 if (type < 0) {
5771 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5772 if (!err)
5773 goto free_pdc;
5774
5775 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5776 if (err) {
5777 ret = err;
5778 goto free_pdc;
5779 }
5780 }
5781 pmu->type = type;
5782
abe43400
PZ
5783 if (pmu_bus_running) {
5784 ret = pmu_dev_alloc(pmu);
5785 if (ret)
5786 goto free_idr;
5787 }
5788
2e80a82a 5789skip_type:
8dc85d54
PZ
5790 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5791 if (pmu->pmu_cpu_context)
5792 goto got_cpu_context;
f29ac756 5793
108b02cf
PZ
5794 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5795 if (!pmu->pmu_cpu_context)
abe43400 5796 goto free_dev;
f344011c 5797
108b02cf
PZ
5798 for_each_possible_cpu(cpu) {
5799 struct perf_cpu_context *cpuctx;
5800
5801 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 5802 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 5803 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 5804 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 5805 cpuctx->ctx.type = cpu_context;
108b02cf 5806 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
5807 cpuctx->jiffies_interval = 1;
5808 INIT_LIST_HEAD(&cpuctx->rotation_list);
51676957 5809 cpuctx->active_pmu = pmu;
108b02cf 5810 }
76e1d904 5811
8dc85d54 5812got_cpu_context:
ad5133b7
PZ
5813 if (!pmu->start_txn) {
5814 if (pmu->pmu_enable) {
5815 /*
5816 * If we have pmu_enable/pmu_disable calls, install
5817 * transaction stubs that use that to try and batch
5818 * hardware accesses.
5819 */
5820 pmu->start_txn = perf_pmu_start_txn;
5821 pmu->commit_txn = perf_pmu_commit_txn;
5822 pmu->cancel_txn = perf_pmu_cancel_txn;
5823 } else {
5824 pmu->start_txn = perf_pmu_nop_void;
5825 pmu->commit_txn = perf_pmu_nop_int;
5826 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 5827 }
5c92d124 5828 }
15dbf27c 5829
ad5133b7
PZ
5830 if (!pmu->pmu_enable) {
5831 pmu->pmu_enable = perf_pmu_nop_void;
5832 pmu->pmu_disable = perf_pmu_nop_void;
5833 }
5834
35edc2a5
PZ
5835 if (!pmu->event_idx)
5836 pmu->event_idx = perf_event_idx_default;
5837
b0a873eb 5838 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
5839 ret = 0;
5840unlock:
b0a873eb
PZ
5841 mutex_unlock(&pmus_lock);
5842
33696fc0 5843 return ret;
108b02cf 5844
abe43400
PZ
5845free_dev:
5846 device_del(pmu->dev);
5847 put_device(pmu->dev);
5848
2e80a82a
PZ
5849free_idr:
5850 if (pmu->type >= PERF_TYPE_MAX)
5851 idr_remove(&pmu_idr, pmu->type);
5852
108b02cf
PZ
5853free_pdc:
5854 free_percpu(pmu->pmu_disable_count);
5855 goto unlock;
f29ac756
PZ
5856}
5857
b0a873eb 5858void perf_pmu_unregister(struct pmu *pmu)
5c92d124 5859{
b0a873eb
PZ
5860 mutex_lock(&pmus_lock);
5861 list_del_rcu(&pmu->entry);
5862 mutex_unlock(&pmus_lock);
5c92d124 5863
0475f9ea 5864 /*
cde8e884
PZ
5865 * We dereference the pmu list under both SRCU and regular RCU, so
5866 * synchronize against both of those.
0475f9ea 5867 */
b0a873eb 5868 synchronize_srcu(&pmus_srcu);
cde8e884 5869 synchronize_rcu();
d6d020e9 5870
33696fc0 5871 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
5872 if (pmu->type >= PERF_TYPE_MAX)
5873 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
5874 device_del(pmu->dev);
5875 put_device(pmu->dev);
51676957 5876 free_pmu_context(pmu);
b0a873eb 5877}
d6d020e9 5878
b0a873eb
PZ
5879struct pmu *perf_init_event(struct perf_event *event)
5880{
5881 struct pmu *pmu = NULL;
5882 int idx;
940c5b29 5883 int ret;
b0a873eb
PZ
5884
5885 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
5886
5887 rcu_read_lock();
5888 pmu = idr_find(&pmu_idr, event->attr.type);
5889 rcu_read_unlock();
940c5b29 5890 if (pmu) {
7e5b2a01 5891 event->pmu = pmu;
940c5b29
LM
5892 ret = pmu->event_init(event);
5893 if (ret)
5894 pmu = ERR_PTR(ret);
2e80a82a 5895 goto unlock;
940c5b29 5896 }
2e80a82a 5897
b0a873eb 5898 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 5899 event->pmu = pmu;
940c5b29 5900 ret = pmu->event_init(event);
b0a873eb 5901 if (!ret)
e5f4d339 5902 goto unlock;
76e1d904 5903
b0a873eb
PZ
5904 if (ret != -ENOENT) {
5905 pmu = ERR_PTR(ret);
e5f4d339 5906 goto unlock;
f344011c 5907 }
5c92d124 5908 }
e5f4d339
PZ
5909 pmu = ERR_PTR(-ENOENT);
5910unlock:
b0a873eb 5911 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 5912
4aeb0b42 5913 return pmu;
5c92d124
IM
5914}
5915
0793a61d 5916/*
cdd6c482 5917 * Allocate and initialize a event structure
0793a61d 5918 */
cdd6c482 5919static struct perf_event *
c3f00c70 5920perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
5921 struct task_struct *task,
5922 struct perf_event *group_leader,
5923 struct perf_event *parent_event,
4dc0da86
AK
5924 perf_overflow_handler_t overflow_handler,
5925 void *context)
0793a61d 5926{
51b0fe39 5927 struct pmu *pmu;
cdd6c482
IM
5928 struct perf_event *event;
5929 struct hw_perf_event *hwc;
d5d2bc0d 5930 long err;
0793a61d 5931
66832eb4
ON
5932 if ((unsigned)cpu >= nr_cpu_ids) {
5933 if (!task || cpu != -1)
5934 return ERR_PTR(-EINVAL);
5935 }
5936
c3f00c70 5937 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 5938 if (!event)
d5d2bc0d 5939 return ERR_PTR(-ENOMEM);
0793a61d 5940
04289bb9 5941 /*
cdd6c482 5942 * Single events are their own group leaders, with an
04289bb9
IM
5943 * empty sibling list:
5944 */
5945 if (!group_leader)
cdd6c482 5946 group_leader = event;
04289bb9 5947
cdd6c482
IM
5948 mutex_init(&event->child_mutex);
5949 INIT_LIST_HEAD(&event->child_list);
fccc714b 5950
cdd6c482
IM
5951 INIT_LIST_HEAD(&event->group_entry);
5952 INIT_LIST_HEAD(&event->event_entry);
5953 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
5954 INIT_LIST_HEAD(&event->rb_entry);
5955
cdd6c482 5956 init_waitqueue_head(&event->waitq);
e360adbe 5957 init_irq_work(&event->pending, perf_pending_event);
0793a61d 5958
cdd6c482 5959 mutex_init(&event->mmap_mutex);
7b732a75 5960
a6fa941d 5961 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
5962 event->cpu = cpu;
5963 event->attr = *attr;
5964 event->group_leader = group_leader;
5965 event->pmu = NULL;
cdd6c482 5966 event->oncpu = -1;
a96bbc16 5967
cdd6c482 5968 event->parent = parent_event;
b84fbc9f 5969
cdd6c482
IM
5970 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5971 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 5972
cdd6c482 5973 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 5974
d580ff86
PZ
5975 if (task) {
5976 event->attach_state = PERF_ATTACH_TASK;
5977#ifdef CONFIG_HAVE_HW_BREAKPOINT
5978 /*
5979 * hw_breakpoint is a bit difficult here..
5980 */
5981 if (attr->type == PERF_TYPE_BREAKPOINT)
5982 event->hw.bp_target = task;
5983#endif
5984 }
5985
4dc0da86 5986 if (!overflow_handler && parent_event) {
b326e956 5987 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
5988 context = parent_event->overflow_handler_context;
5989 }
66832eb4 5990
b326e956 5991 event->overflow_handler = overflow_handler;
4dc0da86 5992 event->overflow_handler_context = context;
97eaf530 5993
0d48696f 5994 if (attr->disabled)
cdd6c482 5995 event->state = PERF_EVENT_STATE_OFF;
a86ed508 5996
4aeb0b42 5997 pmu = NULL;
b8e83514 5998
cdd6c482 5999 hwc = &event->hw;
bd2b5b12 6000 hwc->sample_period = attr->sample_period;
0d48696f 6001 if (attr->freq && attr->sample_freq)
bd2b5b12 6002 hwc->sample_period = 1;
eced1dfc 6003 hwc->last_period = hwc->sample_period;
bd2b5b12 6004
e7850595 6005 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6006
2023b359 6007 /*
cdd6c482 6008 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6009 */
3dab77fb 6010 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
6011 goto done;
6012
b0a873eb 6013 pmu = perf_init_event(event);
974802ea 6014
d5d2bc0d
PM
6015done:
6016 err = 0;
4aeb0b42 6017 if (!pmu)
d5d2bc0d 6018 err = -EINVAL;
4aeb0b42
RR
6019 else if (IS_ERR(pmu))
6020 err = PTR_ERR(pmu);
5c92d124 6021
d5d2bc0d 6022 if (err) {
cdd6c482
IM
6023 if (event->ns)
6024 put_pid_ns(event->ns);
6025 kfree(event);
d5d2bc0d 6026 return ERR_PTR(err);
621a01ea 6027 }
d5d2bc0d 6028
cdd6c482 6029 if (!event->parent) {
82cd6def 6030 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 6031 static_key_slow_inc(&perf_sched_events.key);
3af9e859 6032 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
6033 atomic_inc(&nr_mmap_events);
6034 if (event->attr.comm)
6035 atomic_inc(&nr_comm_events);
6036 if (event->attr.task)
6037 atomic_inc(&nr_task_events);
927c7a9e
FW
6038 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6039 err = get_callchain_buffers();
6040 if (err) {
6041 free_event(event);
6042 return ERR_PTR(err);
6043 }
6044 }
d010b332
SE
6045 if (has_branch_stack(event)) {
6046 static_key_slow_inc(&perf_sched_events.key);
6047 if (!(event->attach_state & PERF_ATTACH_TASK))
6048 atomic_inc(&per_cpu(perf_branch_stack_events,
6049 event->cpu));
6050 }
f344011c 6051 }
9ee318a7 6052
cdd6c482 6053 return event;
0793a61d
TG
6054}
6055
cdd6c482
IM
6056static int perf_copy_attr(struct perf_event_attr __user *uattr,
6057 struct perf_event_attr *attr)
974802ea 6058{
974802ea 6059 u32 size;
cdf8073d 6060 int ret;
974802ea
PZ
6061
6062 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6063 return -EFAULT;
6064
6065 /*
6066 * zero the full structure, so that a short copy will be nice.
6067 */
6068 memset(attr, 0, sizeof(*attr));
6069
6070 ret = get_user(size, &uattr->size);
6071 if (ret)
6072 return ret;
6073
6074 if (size > PAGE_SIZE) /* silly large */
6075 goto err_size;
6076
6077 if (!size) /* abi compat */
6078 size = PERF_ATTR_SIZE_VER0;
6079
6080 if (size < PERF_ATTR_SIZE_VER0)
6081 goto err_size;
6082
6083 /*
6084 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6085 * ensure all the unknown bits are 0 - i.e. new
6086 * user-space does not rely on any kernel feature
6087 * extensions we dont know about yet.
974802ea
PZ
6088 */
6089 if (size > sizeof(*attr)) {
cdf8073d
IS
6090 unsigned char __user *addr;
6091 unsigned char __user *end;
6092 unsigned char val;
974802ea 6093
cdf8073d
IS
6094 addr = (void __user *)uattr + sizeof(*attr);
6095 end = (void __user *)uattr + size;
974802ea 6096
cdf8073d 6097 for (; addr < end; addr++) {
974802ea
PZ
6098 ret = get_user(val, addr);
6099 if (ret)
6100 return ret;
6101 if (val)
6102 goto err_size;
6103 }
b3e62e35 6104 size = sizeof(*attr);
974802ea
PZ
6105 }
6106
6107 ret = copy_from_user(attr, uattr, size);
6108 if (ret)
6109 return -EFAULT;
6110
cd757645 6111 if (attr->__reserved_1)
974802ea
PZ
6112 return -EINVAL;
6113
6114 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6115 return -EINVAL;
6116
6117 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6118 return -EINVAL;
6119
bce38cd5
SE
6120 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6121 u64 mask = attr->branch_sample_type;
6122
6123 /* only using defined bits */
6124 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6125 return -EINVAL;
6126
6127 /* at least one branch bit must be set */
6128 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6129 return -EINVAL;
6130
6131 /* kernel level capture: check permissions */
6132 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6133 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6134 return -EACCES;
6135
6136 /* propagate priv level, when not set for branch */
6137 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6138
6139 /* exclude_kernel checked on syscall entry */
6140 if (!attr->exclude_kernel)
6141 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6142
6143 if (!attr->exclude_user)
6144 mask |= PERF_SAMPLE_BRANCH_USER;
6145
6146 if (!attr->exclude_hv)
6147 mask |= PERF_SAMPLE_BRANCH_HV;
6148 /*
6149 * adjust user setting (for HW filter setup)
6150 */
6151 attr->branch_sample_type = mask;
6152 }
6153 }
974802ea
PZ
6154out:
6155 return ret;
6156
6157err_size:
6158 put_user(sizeof(*attr), &uattr->size);
6159 ret = -E2BIG;
6160 goto out;
6161}
6162
ac9721f3
PZ
6163static int
6164perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6165{
76369139 6166 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6167 int ret = -EINVAL;
6168
ac9721f3 6169 if (!output_event)
a4be7c27
PZ
6170 goto set;
6171
ac9721f3
PZ
6172 /* don't allow circular references */
6173 if (event == output_event)
a4be7c27
PZ
6174 goto out;
6175
0f139300
PZ
6176 /*
6177 * Don't allow cross-cpu buffers
6178 */
6179 if (output_event->cpu != event->cpu)
6180 goto out;
6181
6182 /*
76369139 6183 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6184 */
6185 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6186 goto out;
6187
a4be7c27 6188set:
cdd6c482 6189 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6190 /* Can't redirect output if we've got an active mmap() */
6191 if (atomic_read(&event->mmap_count))
6192 goto unlock;
a4be7c27 6193
ac9721f3 6194 if (output_event) {
76369139
FW
6195 /* get the rb we want to redirect to */
6196 rb = ring_buffer_get(output_event);
6197 if (!rb)
ac9721f3 6198 goto unlock;
a4be7c27
PZ
6199 }
6200
76369139
FW
6201 old_rb = event->rb;
6202 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
6203 if (old_rb)
6204 ring_buffer_detach(event, old_rb);
a4be7c27 6205 ret = 0;
ac9721f3
PZ
6206unlock:
6207 mutex_unlock(&event->mmap_mutex);
6208
76369139
FW
6209 if (old_rb)
6210 ring_buffer_put(old_rb);
a4be7c27 6211out:
a4be7c27
PZ
6212 return ret;
6213}
6214
0793a61d 6215/**
cdd6c482 6216 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6217 *
cdd6c482 6218 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6219 * @pid: target pid
9f66a381 6220 * @cpu: target cpu
cdd6c482 6221 * @group_fd: group leader event fd
0793a61d 6222 */
cdd6c482
IM
6223SYSCALL_DEFINE5(perf_event_open,
6224 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6225 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6226{
b04243ef
PZ
6227 struct perf_event *group_leader = NULL, *output_event = NULL;
6228 struct perf_event *event, *sibling;
cdd6c482
IM
6229 struct perf_event_attr attr;
6230 struct perf_event_context *ctx;
6231 struct file *event_file = NULL;
04289bb9 6232 struct file *group_file = NULL;
38a81da2 6233 struct task_struct *task = NULL;
89a1e187 6234 struct pmu *pmu;
ea635c64 6235 int event_fd;
b04243ef 6236 int move_group = 0;
04289bb9 6237 int fput_needed = 0;
dc86cabe 6238 int err;
0793a61d 6239
2743a5b0 6240 /* for future expandability... */
e5d1367f 6241 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6242 return -EINVAL;
6243
dc86cabe
IM
6244 err = perf_copy_attr(attr_uptr, &attr);
6245 if (err)
6246 return err;
eab656ae 6247
0764771d
PZ
6248 if (!attr.exclude_kernel) {
6249 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6250 return -EACCES;
6251 }
6252
df58ab24 6253 if (attr.freq) {
cdd6c482 6254 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6255 return -EINVAL;
6256 }
6257
e5d1367f
SE
6258 /*
6259 * In cgroup mode, the pid argument is used to pass the fd
6260 * opened to the cgroup directory in cgroupfs. The cpu argument
6261 * designates the cpu on which to monitor threads from that
6262 * cgroup.
6263 */
6264 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6265 return -EINVAL;
6266
ab72a702 6267 event_fd = get_unused_fd();
ea635c64
AV
6268 if (event_fd < 0)
6269 return event_fd;
6270
ac9721f3 6271 if (group_fd != -1) {
a6fa941d
AV
6272 group_file = perf_fget_light(group_fd, &fput_needed);
6273 if (IS_ERR(group_file)) {
6274 err = PTR_ERR(group_file);
d14b12d7 6275 goto err_fd;
ac9721f3 6276 }
a6fa941d 6277 group_leader = group_file->private_data;
ac9721f3
PZ
6278 if (flags & PERF_FLAG_FD_OUTPUT)
6279 output_event = group_leader;
6280 if (flags & PERF_FLAG_FD_NO_GROUP)
6281 group_leader = NULL;
6282 }
6283
e5d1367f 6284 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6285 task = find_lively_task_by_vpid(pid);
6286 if (IS_ERR(task)) {
6287 err = PTR_ERR(task);
6288 goto err_group_fd;
6289 }
6290 }
6291
fbfc623f
YZ
6292 get_online_cpus();
6293
4dc0da86
AK
6294 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6295 NULL, NULL);
d14b12d7
SE
6296 if (IS_ERR(event)) {
6297 err = PTR_ERR(event);
c6be5a5c 6298 goto err_task;
d14b12d7
SE
6299 }
6300
e5d1367f
SE
6301 if (flags & PERF_FLAG_PID_CGROUP) {
6302 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6303 if (err)
6304 goto err_alloc;
08309379
PZ
6305 /*
6306 * one more event:
6307 * - that has cgroup constraint on event->cpu
6308 * - that may need work on context switch
6309 */
6310 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6311 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6312 }
6313
89a1e187
PZ
6314 /*
6315 * Special case software events and allow them to be part of
6316 * any hardware group.
6317 */
6318 pmu = event->pmu;
b04243ef
PZ
6319
6320 if (group_leader &&
6321 (is_software_event(event) != is_software_event(group_leader))) {
6322 if (is_software_event(event)) {
6323 /*
6324 * If event and group_leader are not both a software
6325 * event, and event is, then group leader is not.
6326 *
6327 * Allow the addition of software events to !software
6328 * groups, this is safe because software events never
6329 * fail to schedule.
6330 */
6331 pmu = group_leader->pmu;
6332 } else if (is_software_event(group_leader) &&
6333 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6334 /*
6335 * In case the group is a pure software group, and we
6336 * try to add a hardware event, move the whole group to
6337 * the hardware context.
6338 */
6339 move_group = 1;
6340 }
6341 }
89a1e187
PZ
6342
6343 /*
6344 * Get the target context (task or percpu):
6345 */
e2d37cd2 6346 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6347 if (IS_ERR(ctx)) {
6348 err = PTR_ERR(ctx);
c6be5a5c 6349 goto err_alloc;
89a1e187
PZ
6350 }
6351
fd1edb3a
PZ
6352 if (task) {
6353 put_task_struct(task);
6354 task = NULL;
6355 }
6356
ccff286d 6357 /*
cdd6c482 6358 * Look up the group leader (we will attach this event to it):
04289bb9 6359 */
ac9721f3 6360 if (group_leader) {
dc86cabe 6361 err = -EINVAL;
04289bb9 6362
04289bb9 6363 /*
ccff286d
IM
6364 * Do not allow a recursive hierarchy (this new sibling
6365 * becoming part of another group-sibling):
6366 */
6367 if (group_leader->group_leader != group_leader)
c3f00c70 6368 goto err_context;
ccff286d
IM
6369 /*
6370 * Do not allow to attach to a group in a different
6371 * task or CPU context:
04289bb9 6372 */
b04243ef
PZ
6373 if (move_group) {
6374 if (group_leader->ctx->type != ctx->type)
6375 goto err_context;
6376 } else {
6377 if (group_leader->ctx != ctx)
6378 goto err_context;
6379 }
6380
3b6f9e5c
PM
6381 /*
6382 * Only a group leader can be exclusive or pinned
6383 */
0d48696f 6384 if (attr.exclusive || attr.pinned)
c3f00c70 6385 goto err_context;
ac9721f3
PZ
6386 }
6387
6388 if (output_event) {
6389 err = perf_event_set_output(event, output_event);
6390 if (err)
c3f00c70 6391 goto err_context;
ac9721f3 6392 }
0793a61d 6393
ea635c64
AV
6394 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6395 if (IS_ERR(event_file)) {
6396 err = PTR_ERR(event_file);
c3f00c70 6397 goto err_context;
ea635c64 6398 }
9b51f66d 6399
b04243ef
PZ
6400 if (move_group) {
6401 struct perf_event_context *gctx = group_leader->ctx;
6402
6403 mutex_lock(&gctx->mutex);
fe4b04fa 6404 perf_remove_from_context(group_leader);
b04243ef
PZ
6405 list_for_each_entry(sibling, &group_leader->sibling_list,
6406 group_entry) {
fe4b04fa 6407 perf_remove_from_context(sibling);
b04243ef
PZ
6408 put_ctx(gctx);
6409 }
6410 mutex_unlock(&gctx->mutex);
6411 put_ctx(gctx);
ea635c64 6412 }
9b51f66d 6413
ad3a37de 6414 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6415 mutex_lock(&ctx->mutex);
b04243ef
PZ
6416
6417 if (move_group) {
0cda4c02 6418 synchronize_rcu();
e2d37cd2 6419 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
6420 get_ctx(ctx);
6421 list_for_each_entry(sibling, &group_leader->sibling_list,
6422 group_entry) {
e2d37cd2 6423 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
6424 get_ctx(ctx);
6425 }
6426 }
6427
e2d37cd2 6428 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 6429 ++ctx->generation;
fe4b04fa 6430 perf_unpin_context(ctx);
d859e29f 6431 mutex_unlock(&ctx->mutex);
9b51f66d 6432
fbfc623f
YZ
6433 put_online_cpus();
6434
cdd6c482 6435 event->owner = current;
8882135b 6436
cdd6c482
IM
6437 mutex_lock(&current->perf_event_mutex);
6438 list_add_tail(&event->owner_entry, &current->perf_event_list);
6439 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6440
c320c7b7
ACM
6441 /*
6442 * Precalculate sample_data sizes
6443 */
6444 perf_event__header_size(event);
6844c09d 6445 perf_event__id_header_size(event);
c320c7b7 6446
8a49542c
PZ
6447 /*
6448 * Drop the reference on the group_event after placing the
6449 * new event on the sibling_list. This ensures destruction
6450 * of the group leader will find the pointer to itself in
6451 * perf_group_detach().
6452 */
ea635c64
AV
6453 fput_light(group_file, fput_needed);
6454 fd_install(event_fd, event_file);
6455 return event_fd;
0793a61d 6456
c3f00c70 6457err_context:
fe4b04fa 6458 perf_unpin_context(ctx);
ea635c64 6459 put_ctx(ctx);
c6be5a5c 6460err_alloc:
ea635c64 6461 free_event(event);
e7d0bc04 6462err_task:
fbfc623f 6463 put_online_cpus();
e7d0bc04
PZ
6464 if (task)
6465 put_task_struct(task);
89a1e187 6466err_group_fd:
dc86cabe 6467 fput_light(group_file, fput_needed);
ea635c64
AV
6468err_fd:
6469 put_unused_fd(event_fd);
dc86cabe 6470 return err;
0793a61d
TG
6471}
6472
fb0459d7
AV
6473/**
6474 * perf_event_create_kernel_counter
6475 *
6476 * @attr: attributes of the counter to create
6477 * @cpu: cpu in which the counter is bound
38a81da2 6478 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6479 */
6480struct perf_event *
6481perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6482 struct task_struct *task,
4dc0da86
AK
6483 perf_overflow_handler_t overflow_handler,
6484 void *context)
fb0459d7 6485{
fb0459d7 6486 struct perf_event_context *ctx;
c3f00c70 6487 struct perf_event *event;
fb0459d7 6488 int err;
d859e29f 6489
fb0459d7
AV
6490 /*
6491 * Get the target context (task or percpu):
6492 */
d859e29f 6493
4dc0da86
AK
6494 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6495 overflow_handler, context);
c3f00c70
PZ
6496 if (IS_ERR(event)) {
6497 err = PTR_ERR(event);
6498 goto err;
6499 }
d859e29f 6500
38a81da2 6501 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6502 if (IS_ERR(ctx)) {
6503 err = PTR_ERR(ctx);
c3f00c70 6504 goto err_free;
d859e29f 6505 }
fb0459d7 6506
fb0459d7
AV
6507 WARN_ON_ONCE(ctx->parent_ctx);
6508 mutex_lock(&ctx->mutex);
6509 perf_install_in_context(ctx, event, cpu);
6510 ++ctx->generation;
fe4b04fa 6511 perf_unpin_context(ctx);
fb0459d7
AV
6512 mutex_unlock(&ctx->mutex);
6513
fb0459d7
AV
6514 return event;
6515
c3f00c70
PZ
6516err_free:
6517 free_event(event);
6518err:
c6567f64 6519 return ERR_PTR(err);
9b51f66d 6520}
fb0459d7 6521EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6522
0cda4c02
YZ
6523void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6524{
6525 struct perf_event_context *src_ctx;
6526 struct perf_event_context *dst_ctx;
6527 struct perf_event *event, *tmp;
6528 LIST_HEAD(events);
6529
6530 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6531 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6532
6533 mutex_lock(&src_ctx->mutex);
6534 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6535 event_entry) {
6536 perf_remove_from_context(event);
6537 put_ctx(src_ctx);
6538 list_add(&event->event_entry, &events);
6539 }
6540 mutex_unlock(&src_ctx->mutex);
6541
6542 synchronize_rcu();
6543
6544 mutex_lock(&dst_ctx->mutex);
6545 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6546 list_del(&event->event_entry);
6547 if (event->state >= PERF_EVENT_STATE_OFF)
6548 event->state = PERF_EVENT_STATE_INACTIVE;
6549 perf_install_in_context(dst_ctx, event, dst_cpu);
6550 get_ctx(dst_ctx);
6551 }
6552 mutex_unlock(&dst_ctx->mutex);
6553}
6554EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6555
cdd6c482 6556static void sync_child_event(struct perf_event *child_event,
38b200d6 6557 struct task_struct *child)
d859e29f 6558{
cdd6c482 6559 struct perf_event *parent_event = child_event->parent;
8bc20959 6560 u64 child_val;
d859e29f 6561
cdd6c482
IM
6562 if (child_event->attr.inherit_stat)
6563 perf_event_read_event(child_event, child);
38b200d6 6564
b5e58793 6565 child_val = perf_event_count(child_event);
d859e29f
PM
6566
6567 /*
6568 * Add back the child's count to the parent's count:
6569 */
a6e6dea6 6570 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6571 atomic64_add(child_event->total_time_enabled,
6572 &parent_event->child_total_time_enabled);
6573 atomic64_add(child_event->total_time_running,
6574 &parent_event->child_total_time_running);
d859e29f
PM
6575
6576 /*
cdd6c482 6577 * Remove this event from the parent's list
d859e29f 6578 */
cdd6c482
IM
6579 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6580 mutex_lock(&parent_event->child_mutex);
6581 list_del_init(&child_event->child_list);
6582 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6583
6584 /*
cdd6c482 6585 * Release the parent event, if this was the last
d859e29f
PM
6586 * reference to it.
6587 */
a6fa941d 6588 put_event(parent_event);
d859e29f
PM
6589}
6590
9b51f66d 6591static void
cdd6c482
IM
6592__perf_event_exit_task(struct perf_event *child_event,
6593 struct perf_event_context *child_ctx,
38b200d6 6594 struct task_struct *child)
9b51f66d 6595{
38b435b1
PZ
6596 if (child_event->parent) {
6597 raw_spin_lock_irq(&child_ctx->lock);
6598 perf_group_detach(child_event);
6599 raw_spin_unlock_irq(&child_ctx->lock);
6600 }
9b51f66d 6601
fe4b04fa 6602 perf_remove_from_context(child_event);
0cc0c027 6603
9b51f66d 6604 /*
38b435b1 6605 * It can happen that the parent exits first, and has events
9b51f66d 6606 * that are still around due to the child reference. These
38b435b1 6607 * events need to be zapped.
9b51f66d 6608 */
38b435b1 6609 if (child_event->parent) {
cdd6c482
IM
6610 sync_child_event(child_event, child);
6611 free_event(child_event);
4bcf349a 6612 }
9b51f66d
IM
6613}
6614
8dc85d54 6615static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6616{
cdd6c482
IM
6617 struct perf_event *child_event, *tmp;
6618 struct perf_event_context *child_ctx;
a63eaf34 6619 unsigned long flags;
9b51f66d 6620
8dc85d54 6621 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6622 perf_event_task(child, NULL, 0);
9b51f66d 6623 return;
9f498cc5 6624 }
9b51f66d 6625
a63eaf34 6626 local_irq_save(flags);
ad3a37de
PM
6627 /*
6628 * We can't reschedule here because interrupts are disabled,
6629 * and either child is current or it is a task that can't be
6630 * scheduled, so we are now safe from rescheduling changing
6631 * our context.
6632 */
806839b2 6633 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6634
6635 /*
6636 * Take the context lock here so that if find_get_context is
cdd6c482 6637 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6638 * incremented the context's refcount before we do put_ctx below.
6639 */
e625cce1 6640 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6641 task_ctx_sched_out(child_ctx);
8dc85d54 6642 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6643 /*
6644 * If this context is a clone; unclone it so it can't get
6645 * swapped to another process while we're removing all
cdd6c482 6646 * the events from it.
71a851b4
PZ
6647 */
6648 unclone_ctx(child_ctx);
5e942bb3 6649 update_context_time(child_ctx);
e625cce1 6650 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6651
6652 /*
cdd6c482
IM
6653 * Report the task dead after unscheduling the events so that we
6654 * won't get any samples after PERF_RECORD_EXIT. We can however still
6655 * get a few PERF_RECORD_READ events.
9f498cc5 6656 */
cdd6c482 6657 perf_event_task(child, child_ctx, 0);
a63eaf34 6658
66fff224
PZ
6659 /*
6660 * We can recurse on the same lock type through:
6661 *
cdd6c482
IM
6662 * __perf_event_exit_task()
6663 * sync_child_event()
a6fa941d
AV
6664 * put_event()
6665 * mutex_lock(&ctx->mutex)
66fff224
PZ
6666 *
6667 * But since its the parent context it won't be the same instance.
6668 */
a0507c84 6669 mutex_lock(&child_ctx->mutex);
a63eaf34 6670
8bc20959 6671again:
889ff015
FW
6672 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6673 group_entry)
6674 __perf_event_exit_task(child_event, child_ctx, child);
6675
6676 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 6677 group_entry)
cdd6c482 6678 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
6679
6680 /*
cdd6c482 6681 * If the last event was a group event, it will have appended all
8bc20959
PZ
6682 * its siblings to the list, but we obtained 'tmp' before that which
6683 * will still point to the list head terminating the iteration.
6684 */
889ff015
FW
6685 if (!list_empty(&child_ctx->pinned_groups) ||
6686 !list_empty(&child_ctx->flexible_groups))
8bc20959 6687 goto again;
a63eaf34
PM
6688
6689 mutex_unlock(&child_ctx->mutex);
6690
6691 put_ctx(child_ctx);
9b51f66d
IM
6692}
6693
8dc85d54
PZ
6694/*
6695 * When a child task exits, feed back event values to parent events.
6696 */
6697void perf_event_exit_task(struct task_struct *child)
6698{
8882135b 6699 struct perf_event *event, *tmp;
8dc85d54
PZ
6700 int ctxn;
6701
8882135b
PZ
6702 mutex_lock(&child->perf_event_mutex);
6703 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6704 owner_entry) {
6705 list_del_init(&event->owner_entry);
6706
6707 /*
6708 * Ensure the list deletion is visible before we clear
6709 * the owner, closes a race against perf_release() where
6710 * we need to serialize on the owner->perf_event_mutex.
6711 */
6712 smp_wmb();
6713 event->owner = NULL;
6714 }
6715 mutex_unlock(&child->perf_event_mutex);
6716
8dc85d54
PZ
6717 for_each_task_context_nr(ctxn)
6718 perf_event_exit_task_context(child, ctxn);
6719}
6720
889ff015
FW
6721static void perf_free_event(struct perf_event *event,
6722 struct perf_event_context *ctx)
6723{
6724 struct perf_event *parent = event->parent;
6725
6726 if (WARN_ON_ONCE(!parent))
6727 return;
6728
6729 mutex_lock(&parent->child_mutex);
6730 list_del_init(&event->child_list);
6731 mutex_unlock(&parent->child_mutex);
6732
a6fa941d 6733 put_event(parent);
889ff015 6734
8a49542c 6735 perf_group_detach(event);
889ff015
FW
6736 list_del_event(event, ctx);
6737 free_event(event);
6738}
6739
bbbee908
PZ
6740/*
6741 * free an unexposed, unused context as created by inheritance by
8dc85d54 6742 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 6743 */
cdd6c482 6744void perf_event_free_task(struct task_struct *task)
bbbee908 6745{
8dc85d54 6746 struct perf_event_context *ctx;
cdd6c482 6747 struct perf_event *event, *tmp;
8dc85d54 6748 int ctxn;
bbbee908 6749
8dc85d54
PZ
6750 for_each_task_context_nr(ctxn) {
6751 ctx = task->perf_event_ctxp[ctxn];
6752 if (!ctx)
6753 continue;
bbbee908 6754
8dc85d54 6755 mutex_lock(&ctx->mutex);
bbbee908 6756again:
8dc85d54
PZ
6757 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6758 group_entry)
6759 perf_free_event(event, ctx);
bbbee908 6760
8dc85d54
PZ
6761 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6762 group_entry)
6763 perf_free_event(event, ctx);
bbbee908 6764
8dc85d54
PZ
6765 if (!list_empty(&ctx->pinned_groups) ||
6766 !list_empty(&ctx->flexible_groups))
6767 goto again;
bbbee908 6768
8dc85d54 6769 mutex_unlock(&ctx->mutex);
bbbee908 6770
8dc85d54
PZ
6771 put_ctx(ctx);
6772 }
889ff015
FW
6773}
6774
4e231c79
PZ
6775void perf_event_delayed_put(struct task_struct *task)
6776{
6777 int ctxn;
6778
6779 for_each_task_context_nr(ctxn)
6780 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6781}
6782
97dee4f3
PZ
6783/*
6784 * inherit a event from parent task to child task:
6785 */
6786static struct perf_event *
6787inherit_event(struct perf_event *parent_event,
6788 struct task_struct *parent,
6789 struct perf_event_context *parent_ctx,
6790 struct task_struct *child,
6791 struct perf_event *group_leader,
6792 struct perf_event_context *child_ctx)
6793{
6794 struct perf_event *child_event;
cee010ec 6795 unsigned long flags;
97dee4f3
PZ
6796
6797 /*
6798 * Instead of creating recursive hierarchies of events,
6799 * we link inherited events back to the original parent,
6800 * which has a filp for sure, which we use as the reference
6801 * count:
6802 */
6803 if (parent_event->parent)
6804 parent_event = parent_event->parent;
6805
6806 child_event = perf_event_alloc(&parent_event->attr,
6807 parent_event->cpu,
d580ff86 6808 child,
97dee4f3 6809 group_leader, parent_event,
4dc0da86 6810 NULL, NULL);
97dee4f3
PZ
6811 if (IS_ERR(child_event))
6812 return child_event;
a6fa941d
AV
6813
6814 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
6815 free_event(child_event);
6816 return NULL;
6817 }
6818
97dee4f3
PZ
6819 get_ctx(child_ctx);
6820
6821 /*
6822 * Make the child state follow the state of the parent event,
6823 * not its attr.disabled bit. We hold the parent's mutex,
6824 * so we won't race with perf_event_{en, dis}able_family.
6825 */
6826 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6827 child_event->state = PERF_EVENT_STATE_INACTIVE;
6828 else
6829 child_event->state = PERF_EVENT_STATE_OFF;
6830
6831 if (parent_event->attr.freq) {
6832 u64 sample_period = parent_event->hw.sample_period;
6833 struct hw_perf_event *hwc = &child_event->hw;
6834
6835 hwc->sample_period = sample_period;
6836 hwc->last_period = sample_period;
6837
6838 local64_set(&hwc->period_left, sample_period);
6839 }
6840
6841 child_event->ctx = child_ctx;
6842 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6843 child_event->overflow_handler_context
6844 = parent_event->overflow_handler_context;
97dee4f3 6845
614b6780
TG
6846 /*
6847 * Precalculate sample_data sizes
6848 */
6849 perf_event__header_size(child_event);
6844c09d 6850 perf_event__id_header_size(child_event);
614b6780 6851
97dee4f3
PZ
6852 /*
6853 * Link it up in the child's context:
6854 */
cee010ec 6855 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 6856 add_event_to_ctx(child_event, child_ctx);
cee010ec 6857 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 6858
97dee4f3
PZ
6859 /*
6860 * Link this into the parent event's child list
6861 */
6862 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6863 mutex_lock(&parent_event->child_mutex);
6864 list_add_tail(&child_event->child_list, &parent_event->child_list);
6865 mutex_unlock(&parent_event->child_mutex);
6866
6867 return child_event;
6868}
6869
6870static int inherit_group(struct perf_event *parent_event,
6871 struct task_struct *parent,
6872 struct perf_event_context *parent_ctx,
6873 struct task_struct *child,
6874 struct perf_event_context *child_ctx)
6875{
6876 struct perf_event *leader;
6877 struct perf_event *sub;
6878 struct perf_event *child_ctr;
6879
6880 leader = inherit_event(parent_event, parent, parent_ctx,
6881 child, NULL, child_ctx);
6882 if (IS_ERR(leader))
6883 return PTR_ERR(leader);
6884 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6885 child_ctr = inherit_event(sub, parent, parent_ctx,
6886 child, leader, child_ctx);
6887 if (IS_ERR(child_ctr))
6888 return PTR_ERR(child_ctr);
6889 }
6890 return 0;
889ff015
FW
6891}
6892
6893static int
6894inherit_task_group(struct perf_event *event, struct task_struct *parent,
6895 struct perf_event_context *parent_ctx,
8dc85d54 6896 struct task_struct *child, int ctxn,
889ff015
FW
6897 int *inherited_all)
6898{
6899 int ret;
8dc85d54 6900 struct perf_event_context *child_ctx;
889ff015
FW
6901
6902 if (!event->attr.inherit) {
6903 *inherited_all = 0;
6904 return 0;
bbbee908
PZ
6905 }
6906
fe4b04fa 6907 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
6908 if (!child_ctx) {
6909 /*
6910 * This is executed from the parent task context, so
6911 * inherit events that have been marked for cloning.
6912 * First allocate and initialize a context for the
6913 * child.
6914 */
bbbee908 6915
eb184479 6916 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
6917 if (!child_ctx)
6918 return -ENOMEM;
bbbee908 6919
8dc85d54 6920 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
6921 }
6922
6923 ret = inherit_group(event, parent, parent_ctx,
6924 child, child_ctx);
6925
6926 if (ret)
6927 *inherited_all = 0;
6928
6929 return ret;
bbbee908
PZ
6930}
6931
9b51f66d 6932/*
cdd6c482 6933 * Initialize the perf_event context in task_struct
9b51f66d 6934 */
8dc85d54 6935int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 6936{
889ff015 6937 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
6938 struct perf_event_context *cloned_ctx;
6939 struct perf_event *event;
9b51f66d 6940 struct task_struct *parent = current;
564c2b21 6941 int inherited_all = 1;
dddd3379 6942 unsigned long flags;
6ab423e0 6943 int ret = 0;
9b51f66d 6944
8dc85d54 6945 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
6946 return 0;
6947
ad3a37de 6948 /*
25346b93
PM
6949 * If the parent's context is a clone, pin it so it won't get
6950 * swapped under us.
ad3a37de 6951 */
8dc85d54 6952 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 6953
ad3a37de
PM
6954 /*
6955 * No need to check if parent_ctx != NULL here; since we saw
6956 * it non-NULL earlier, the only reason for it to become NULL
6957 * is if we exit, and since we're currently in the middle of
6958 * a fork we can't be exiting at the same time.
6959 */
ad3a37de 6960
9b51f66d
IM
6961 /*
6962 * Lock the parent list. No need to lock the child - not PID
6963 * hashed yet and not running, so nobody can access it.
6964 */
d859e29f 6965 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
6966
6967 /*
6968 * We dont have to disable NMIs - we are only looking at
6969 * the list, not manipulating it:
6970 */
889ff015 6971 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
6972 ret = inherit_task_group(event, parent, parent_ctx,
6973 child, ctxn, &inherited_all);
889ff015
FW
6974 if (ret)
6975 break;
6976 }
b93f7978 6977
dddd3379
TG
6978 /*
6979 * We can't hold ctx->lock when iterating the ->flexible_group list due
6980 * to allocations, but we need to prevent rotation because
6981 * rotate_ctx() will change the list from interrupt context.
6982 */
6983 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6984 parent_ctx->rotate_disable = 1;
6985 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6986
889ff015 6987 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
6988 ret = inherit_task_group(event, parent, parent_ctx,
6989 child, ctxn, &inherited_all);
889ff015 6990 if (ret)
9b51f66d 6991 break;
564c2b21
PM
6992 }
6993
dddd3379
TG
6994 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6995 parent_ctx->rotate_disable = 0;
dddd3379 6996
8dc85d54 6997 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 6998
05cbaa28 6999 if (child_ctx && inherited_all) {
564c2b21
PM
7000 /*
7001 * Mark the child context as a clone of the parent
7002 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7003 *
7004 * Note that if the parent is a clone, the holding of
7005 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7006 */
c5ed5145 7007 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7008 if (cloned_ctx) {
7009 child_ctx->parent_ctx = cloned_ctx;
25346b93 7010 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7011 } else {
7012 child_ctx->parent_ctx = parent_ctx;
7013 child_ctx->parent_gen = parent_ctx->generation;
7014 }
7015 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7016 }
7017
c5ed5145 7018 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7019 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7020
25346b93 7021 perf_unpin_context(parent_ctx);
fe4b04fa 7022 put_ctx(parent_ctx);
ad3a37de 7023
6ab423e0 7024 return ret;
9b51f66d
IM
7025}
7026
8dc85d54
PZ
7027/*
7028 * Initialize the perf_event context in task_struct
7029 */
7030int perf_event_init_task(struct task_struct *child)
7031{
7032 int ctxn, ret;
7033
8550d7cb
ON
7034 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7035 mutex_init(&child->perf_event_mutex);
7036 INIT_LIST_HEAD(&child->perf_event_list);
7037
8dc85d54
PZ
7038 for_each_task_context_nr(ctxn) {
7039 ret = perf_event_init_context(child, ctxn);
7040 if (ret)
7041 return ret;
7042 }
7043
7044 return 0;
7045}
7046
220b140b
PM
7047static void __init perf_event_init_all_cpus(void)
7048{
b28ab83c 7049 struct swevent_htable *swhash;
220b140b 7050 int cpu;
220b140b
PM
7051
7052 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7053 swhash = &per_cpu(swevent_htable, cpu);
7054 mutex_init(&swhash->hlist_mutex);
e9d2b064 7055 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7056 }
7057}
7058
cdd6c482 7059static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 7060{
108b02cf 7061 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7062
b28ab83c 7063 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7064 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7065 struct swevent_hlist *hlist;
7066
b28ab83c
PZ
7067 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7068 WARN_ON(!hlist);
7069 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7070 }
b28ab83c 7071 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7072}
7073
c277443c 7074#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7075static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7076{
e9d2b064
PZ
7077 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7078
7079 WARN_ON(!irqs_disabled());
7080
7081 list_del_init(&cpuctx->rotation_list);
7082}
7083
108b02cf 7084static void __perf_event_exit_context(void *__info)
0793a61d 7085{
108b02cf 7086 struct perf_event_context *ctx = __info;
cdd6c482 7087 struct perf_event *event, *tmp;
0793a61d 7088
108b02cf 7089 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7090
889ff015 7091 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7092 __perf_remove_from_context(event);
889ff015 7093 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7094 __perf_remove_from_context(event);
0793a61d 7095}
108b02cf
PZ
7096
7097static void perf_event_exit_cpu_context(int cpu)
7098{
7099 struct perf_event_context *ctx;
7100 struct pmu *pmu;
7101 int idx;
7102
7103 idx = srcu_read_lock(&pmus_srcu);
7104 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7105 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7106
7107 mutex_lock(&ctx->mutex);
7108 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7109 mutex_unlock(&ctx->mutex);
7110 }
7111 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7112}
7113
cdd6c482 7114static void perf_event_exit_cpu(int cpu)
0793a61d 7115{
b28ab83c 7116 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7117
b28ab83c
PZ
7118 mutex_lock(&swhash->hlist_mutex);
7119 swevent_hlist_release(swhash);
7120 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7121
108b02cf 7122 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7123}
7124#else
cdd6c482 7125static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7126#endif
7127
c277443c
PZ
7128static int
7129perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7130{
7131 int cpu;
7132
7133 for_each_online_cpu(cpu)
7134 perf_event_exit_cpu(cpu);
7135
7136 return NOTIFY_OK;
7137}
7138
7139/*
7140 * Run the perf reboot notifier at the very last possible moment so that
7141 * the generic watchdog code runs as long as possible.
7142 */
7143static struct notifier_block perf_reboot_notifier = {
7144 .notifier_call = perf_reboot,
7145 .priority = INT_MIN,
7146};
7147
0793a61d
TG
7148static int __cpuinit
7149perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7150{
7151 unsigned int cpu = (long)hcpu;
7152
4536e4d1 7153 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7154
7155 case CPU_UP_PREPARE:
5e11637e 7156 case CPU_DOWN_FAILED:
cdd6c482 7157 perf_event_init_cpu(cpu);
0793a61d
TG
7158 break;
7159
5e11637e 7160 case CPU_UP_CANCELED:
0793a61d 7161 case CPU_DOWN_PREPARE:
cdd6c482 7162 perf_event_exit_cpu(cpu);
0793a61d
TG
7163 break;
7164
7165 default:
7166 break;
7167 }
7168
7169 return NOTIFY_OK;
7170}
7171
cdd6c482 7172void __init perf_event_init(void)
0793a61d 7173{
3c502e7a
JW
7174 int ret;
7175
2e80a82a
PZ
7176 idr_init(&pmu_idr);
7177
220b140b 7178 perf_event_init_all_cpus();
b0a873eb 7179 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7180 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7181 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7182 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7183 perf_tp_register();
7184 perf_cpu_notifier(perf_cpu_notify);
c277443c 7185 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7186
7187 ret = init_hw_breakpoint();
7188 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7189
7190 /* do not patch jump label more than once per second */
7191 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7192
7193 /*
7194 * Build time assertion that we keep the data_head at the intended
7195 * location. IOW, validation we got the __reserved[] size right.
7196 */
7197 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7198 != 1024);
0793a61d 7199}
abe43400
PZ
7200
7201static int __init perf_event_sysfs_init(void)
7202{
7203 struct pmu *pmu;
7204 int ret;
7205
7206 mutex_lock(&pmus_lock);
7207
7208 ret = bus_register(&pmu_bus);
7209 if (ret)
7210 goto unlock;
7211
7212 list_for_each_entry(pmu, &pmus, entry) {
7213 if (!pmu->name || pmu->type < 0)
7214 continue;
7215
7216 ret = pmu_dev_alloc(pmu);
7217 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7218 }
7219 pmu_bus_running = 1;
7220 ret = 0;
7221
7222unlock:
7223 mutex_unlock(&pmus_lock);
7224
7225 return ret;
7226}
7227device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7228
7229#ifdef CONFIG_CGROUP_PERF
761b3ef5 7230static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
e5d1367f
SE
7231{
7232 struct perf_cgroup *jc;
e5d1367f 7233
1b15d055 7234 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7235 if (!jc)
7236 return ERR_PTR(-ENOMEM);
7237
e5d1367f
SE
7238 jc->info = alloc_percpu(struct perf_cgroup_info);
7239 if (!jc->info) {
7240 kfree(jc);
7241 return ERR_PTR(-ENOMEM);
7242 }
7243
e5d1367f
SE
7244 return &jc->css;
7245}
7246
761b3ef5 7247static void perf_cgroup_destroy(struct cgroup *cont)
e5d1367f
SE
7248{
7249 struct perf_cgroup *jc;
7250 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7251 struct perf_cgroup, css);
7252 free_percpu(jc->info);
7253 kfree(jc);
7254}
7255
7256static int __perf_cgroup_move(void *info)
7257{
7258 struct task_struct *task = info;
7259 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7260 return 0;
7261}
7262
761b3ef5 7263static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7264{
bb9d97b6
TH
7265 struct task_struct *task;
7266
7267 cgroup_taskset_for_each(task, cgrp, tset)
7268 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7269}
7270
761b3ef5
LZ
7271static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7272 struct task_struct *task)
e5d1367f
SE
7273{
7274 /*
7275 * cgroup_exit() is called in the copy_process() failure path.
7276 * Ignore this case since the task hasn't ran yet, this avoids
7277 * trying to poke a half freed task state from generic code.
7278 */
7279 if (!(task->flags & PF_EXITING))
7280 return;
7281
bb9d97b6 7282 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7283}
7284
7285struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7286 .name = "perf_event",
7287 .subsys_id = perf_subsys_id,
7288 .create = perf_cgroup_create,
7289 .destroy = perf_cgroup_destroy,
7290 .exit = perf_cgroup_exit,
bb9d97b6 7291 .attach = perf_cgroup_attach,
e5d1367f
SE
7292};
7293#endif /* CONFIG_CGROUP_PERF */
This page took 0.981447 seconds and 5 git commands to generate.