Merge tag 'perf-core-for-mingo-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
f8697762
JO
129#define EVENT_OWNER_KERNEL ((void *) -1)
130
131static bool is_kernel_event(struct perf_event *event)
132{
133 return event->owner == EVENT_OWNER_KERNEL;
134}
135
e5d1367f
SE
136#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
e5d1367f 140
bce38cd5
SE
141/*
142 * branch priv levels that need permission checks
143 */
144#define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
0b3fcf17
SE
148enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152};
153
e5d1367f
SE
154/*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
c5905afb 158struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 159static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 160static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 161
cdd6c482
IM
162static atomic_t nr_mmap_events __read_mostly;
163static atomic_t nr_comm_events __read_mostly;
164static atomic_t nr_task_events __read_mostly;
948b26b6 165static atomic_t nr_freq_events __read_mostly;
45ac1403 166static atomic_t nr_switch_events __read_mostly;
9ee318a7 167
108b02cf
PZ
168static LIST_HEAD(pmus);
169static DEFINE_MUTEX(pmus_lock);
170static struct srcu_struct pmus_srcu;
171
0764771d 172/*
cdd6c482 173 * perf event paranoia level:
0fbdea19
IM
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 176 * 1 - disallow cpu events for unpriv
0fbdea19 177 * 2 - disallow kernel profiling for unpriv
0764771d 178 */
cdd6c482 179int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 180
20443384
FW
181/* Minimum for 512 kiB + 1 user control page */
182int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
183
184/*
cdd6c482 185 * max perf event sample rate
df58ab24 186 */
14c63f17
DH
187#define DEFAULT_MAX_SAMPLE_RATE 100000
188#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189#define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
d9494cb4
PZ
196static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 198
18ab2cd3 199static void update_perf_cpu_limits(void)
14c63f17
DH
200{
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 204 do_div(tmp, 100);
d9494cb4 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 206}
163ec435 207
9e630205
SE
208static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
163ec435
PZ
210int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
723478c8 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224}
225
226int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231{
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
163ec435
PZ
238
239 return 0;
240}
1ccd1549 241
14c63f17
DH
242/*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 249static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 250
6a02ad66 251static void perf_duration_warn(struct irq_work *w)
14c63f17 252{
6a02ad66 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 254 u64 avg_local_sample_len;
e5302920 255 u64 local_samples_len;
6a02ad66 256
4a32fea9 257 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 263 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
264 sysctl_perf_event_sample_rate);
265}
266
267static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269void perf_sample_event_took(u64 sample_len_ns)
270{
d9494cb4 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
14c63f17 274
d9494cb4 275 if (allowed_ns == 0)
14c63f17
DH
276 return;
277
278 /* decay the counter by 1 average sample */
4a32fea9 279 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
4a32fea9 282 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
d9494cb4 291 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
14c63f17 301 update_perf_cpu_limits();
6a02ad66 302
cd578abb
PZ
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
14c63f17
DH
309}
310
cdd6c482 311static atomic64_t perf_event_id;
a96bbc16 312
0b3fcf17
SE
313static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320static void update_context_time(struct perf_event_context *ctx);
321static u64 perf_event_time(struct perf_event *event);
0b3fcf17 322
cdd6c482 323void __weak perf_event_print_debug(void) { }
0793a61d 324
84c79910 325extern __weak const char *perf_pmu_name(void)
0793a61d 326{
84c79910 327 return "pmu";
0793a61d
TG
328}
329
0b3fcf17
SE
330static inline u64 perf_clock(void)
331{
332 return local_clock();
333}
334
34f43927
PZ
335static inline u64 perf_event_clock(struct perf_event *event)
336{
337 return event->clock();
338}
339
e5d1367f
SE
340static inline struct perf_cpu_context *
341__get_cpu_context(struct perf_event_context *ctx)
342{
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344}
345
facc4307
PZ
346static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348{
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352}
353
354static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356{
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360}
361
e5d1367f
SE
362#ifdef CONFIG_CGROUP_PERF
363
e5d1367f
SE
364static inline bool
365perf_cgroup_match(struct perf_event *event)
366{
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
ef824fa1
TH
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
e5d1367f
SE
386}
387
e5d1367f
SE
388static inline void perf_detach_cgroup(struct perf_event *event)
389{
4e2ba650 390 css_put(&event->cgrp->css);
e5d1367f
SE
391 event->cgrp = NULL;
392}
393
394static inline int is_cgroup_event(struct perf_event *event)
395{
396 return event->cgrp != NULL;
397}
398
399static inline u64 perf_cgroup_event_time(struct perf_event *event)
400{
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405}
406
407static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408{
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418}
419
420static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421{
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425}
426
427static inline void update_cgrp_time_from_event(struct perf_event *event)
428{
3f7cce3c
SE
429 struct perf_cgroup *cgrp;
430
e5d1367f 431 /*
3f7cce3c
SE
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
e5d1367f 434 */
3f7cce3c 435 if (!is_cgroup_event(event))
e5d1367f
SE
436 return;
437
3f7cce3c
SE
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
e5d1367f
SE
444}
445
446static inline void
3f7cce3c
SE
447perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
e5d1367f
SE
449{
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
3f7cce3c
SE
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
3f7cce3c 463 info->timestamp = ctx->timestamp;
e5d1367f
SE
464}
465
466#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469/*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
18ab2cd3 475static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
476{
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
e5d1367f 498
e5d1367f
SE
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
e566b76e 520 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
e5d1367f
SE
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
facc4307
PZ
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 531 }
e5d1367f
SE
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537}
538
a8d757ef
SE
539static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
e5d1367f 541{
a8d757ef
SE
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
564}
565
a8d757ef
SE
566static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
e5d1367f 568{
a8d757ef
SE
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
587}
588
589static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592{
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
2903ff01
AV
595 struct fd f = fdget(fd);
596 int ret = 0;
e5d1367f 597
2903ff01 598 if (!f.file)
e5d1367f
SE
599 return -EBADF;
600
b583043e 601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 602 &perf_event_cgrp_subsys);
3db272c0
LZ
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
e5d1367f
SE
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
272325c4 753static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
754{
755 struct perf_cpu_context *cpuctx;
9e630205
SE
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
761 rotations = perf_rotate_context(cpuctx);
762
4cfafd30
PZ
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
9e630205 765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 769
4cfafd30 770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
771}
772
272325c4 773static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 774{
272325c4 775 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 776 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 777 u64 interval;
9e630205
SE
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
62b85639
SE
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
272325c4
PZ
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 790
272325c4 791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 792
4cfafd30
PZ
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 795 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
796}
797
272325c4 798static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 799{
272325c4 800 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 801 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 802 unsigned long flags;
9e630205
SE
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 806 return 0;
9e630205 807
4cfafd30
PZ
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 815
272325c4 816 return 0;
9e630205
SE
817}
818
33696fc0 819void perf_pmu_disable(struct pmu *pmu)
9e35ad38 820{
33696fc0
PZ
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
9e35ad38 824}
9e35ad38 825
33696fc0 826void perf_pmu_enable(struct pmu *pmu)
9e35ad38 827{
33696fc0
PZ
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
9e35ad38 831}
9e35ad38 832
2fde4f94 833static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
834
835/*
2fde4f94
MR
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 840 */
2fde4f94 841static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 842{
2fde4f94 843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 844
e9d2b064 845 WARN_ON(!irqs_disabled());
b5ab4cd5 846
2fde4f94
MR
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850}
851
852static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853{
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
9e35ad38 859}
9e35ad38 860
cdd6c482 861static void get_ctx(struct perf_event_context *ctx)
a63eaf34 862{
e5289d4a 863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
864}
865
4af57ef2
YZ
866static void free_ctx(struct rcu_head *head)
867{
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873}
874
cdd6c482 875static void put_ctx(struct perf_event_context *ctx)
a63eaf34 876{
564c2b21
PM
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
c93f7669
PM
880 if (ctx->task)
881 put_task_struct(ctx->task);
4af57ef2 882 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 883 }
a63eaf34
PM
884}
885
f63a8daa
PZ
886/*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
8b10c5e2
PZ
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
f63a8daa
PZ
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
a83fe28e
PZ
947static struct perf_event_context *
948perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
949{
950 struct perf_event_context *ctx;
951
952again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
a83fe28e 961 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969}
970
a83fe28e
PZ
971static inline struct perf_event_context *
972perf_event_ctx_lock(struct perf_event *event)
973{
974 return perf_event_ctx_lock_nested(event, 0);
975}
976
f63a8daa
PZ
977static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979{
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982}
983
211de6eb
PZ
984/*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989static __must_check struct perf_event_context *
990unclone_ctx(struct perf_event_context *ctx)
71a851b4 991{
211de6eb
PZ
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
71a851b4 997 ctx->parent_ctx = NULL;
5a3126d4 998 ctx->generation++;
211de6eb
PZ
999
1000 return parent_ctx;
71a851b4
PZ
1001}
1002
6844c09d
ACM
1003static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004{
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012}
1013
1014static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015{
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023}
1024
7f453c24 1025/*
cdd6c482 1026 * If we inherit events we want to return the parent event id
7f453c24
PZ
1027 * to userspace.
1028 */
cdd6c482 1029static u64 primary_event_id(struct perf_event *event)
7f453c24 1030{
cdd6c482 1031 u64 id = event->id;
7f453c24 1032
cdd6c482
IM
1033 if (event->parent)
1034 id = event->parent->id;
7f453c24
PZ
1035
1036 return id;
1037}
1038
25346b93 1039/*
cdd6c482 1040 * Get the perf_event_context for a task and lock it.
25346b93
PM
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
cdd6c482 1044static struct perf_event_context *
8dc85d54 1045perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1046{
cdd6c482 1047 struct perf_event_context *ctx;
25346b93 1048
9ed6060d 1049retry:
058ebd0e
PZ
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 * part of the read side critical section was preemptible -- see
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 * side critical section is non-preemptible.
1058 */
1059 preempt_disable();
1060 rcu_read_lock();
8dc85d54 1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
cdd6c482 1066 * perf_event_task_sched_out, though the
25346b93
PM
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
e625cce1 1073 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1076 rcu_read_unlock();
1077 preempt_enable();
25346b93
PM
1078 goto retry;
1079 }
b49a9e7e
PZ
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1083 ctx = NULL;
1084 }
25346b93
PM
1085 }
1086 rcu_read_unlock();
058ebd0e 1087 preempt_enable();
25346b93
PM
1088 return ctx;
1089}
1090
1091/*
1092 * Get the context for a task and increment its pin_count so it
1093 * can't get swapped to another task. This also increments its
1094 * reference count so that the context can't get freed.
1095 */
8dc85d54
PZ
1096static struct perf_event_context *
1097perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1098{
cdd6c482 1099 struct perf_event_context *ctx;
25346b93
PM
1100 unsigned long flags;
1101
8dc85d54 1102 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1103 if (ctx) {
1104 ++ctx->pin_count;
e625cce1 1105 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1106 }
1107 return ctx;
1108}
1109
cdd6c482 1110static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1111{
1112 unsigned long flags;
1113
e625cce1 1114 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1115 --ctx->pin_count;
e625cce1 1116 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1117}
1118
f67218c3
PZ
1119/*
1120 * Update the record of the current time in a context.
1121 */
1122static void update_context_time(struct perf_event_context *ctx)
1123{
1124 u64 now = perf_clock();
1125
1126 ctx->time += now - ctx->timestamp;
1127 ctx->timestamp = now;
1128}
1129
4158755d
SE
1130static u64 perf_event_time(struct perf_event *event)
1131{
1132 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1133
1134 if (is_cgroup_event(event))
1135 return perf_cgroup_event_time(event);
1136
4158755d
SE
1137 return ctx ? ctx->time : 0;
1138}
1139
f67218c3
PZ
1140/*
1141 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1142 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1143 */
1144static void update_event_times(struct perf_event *event)
1145{
1146 struct perf_event_context *ctx = event->ctx;
1147 u64 run_end;
1148
1149 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 return;
e5d1367f
SE
1152 /*
1153 * in cgroup mode, time_enabled represents
1154 * the time the event was enabled AND active
1155 * tasks were in the monitored cgroup. This is
1156 * independent of the activity of the context as
1157 * there may be a mix of cgroup and non-cgroup events.
1158 *
1159 * That is why we treat cgroup events differently
1160 * here.
1161 */
1162 if (is_cgroup_event(event))
46cd6a7f 1163 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1164 else if (ctx->is_active)
1165 run_end = ctx->time;
acd1d7c1
PZ
1166 else
1167 run_end = event->tstamp_stopped;
1168
1169 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1170
1171 if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 run_end = event->tstamp_stopped;
1173 else
4158755d 1174 run_end = perf_event_time(event);
f67218c3
PZ
1175
1176 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1177
f67218c3
PZ
1178}
1179
96c21a46
PZ
1180/*
1181 * Update total_time_enabled and total_time_running for all events in a group.
1182 */
1183static void update_group_times(struct perf_event *leader)
1184{
1185 struct perf_event *event;
1186
1187 update_event_times(leader);
1188 list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 update_event_times(event);
1190}
1191
889ff015
FW
1192static struct list_head *
1193ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194{
1195 if (event->attr.pinned)
1196 return &ctx->pinned_groups;
1197 else
1198 return &ctx->flexible_groups;
1199}
1200
fccc714b 1201/*
cdd6c482 1202 * Add a event from the lists for its context.
fccc714b
PZ
1203 * Must be called with ctx->mutex and ctx->lock held.
1204 */
04289bb9 1205static void
cdd6c482 1206list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1207{
8a49542c
PZ
1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1210
1211 /*
8a49542c
PZ
1212 * If we're a stand alone event or group leader, we go to the context
1213 * list, group events are kept attached to the group so that
1214 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1215 */
8a49542c 1216 if (event->group_leader == event) {
889ff015
FW
1217 struct list_head *list;
1218
d6f962b5
FW
1219 if (is_software_event(event))
1220 event->group_flags |= PERF_GROUP_SOFTWARE;
1221
889ff015
FW
1222 list = ctx_group_list(event, ctx);
1223 list_add_tail(&event->group_entry, list);
5c148194 1224 }
592903cd 1225
08309379 1226 if (is_cgroup_event(event))
e5d1367f 1227 ctx->nr_cgroups++;
e5d1367f 1228
cdd6c482
IM
1229 list_add_rcu(&event->event_entry, &ctx->event_list);
1230 ctx->nr_events++;
1231 if (event->attr.inherit_stat)
bfbd3381 1232 ctx->nr_stat++;
5a3126d4
PZ
1233
1234 ctx->generation++;
04289bb9
IM
1235}
1236
0231bb53
JO
1237/*
1238 * Initialize event state based on the perf_event_attr::disabled.
1239 */
1240static inline void perf_event__state_init(struct perf_event *event)
1241{
1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 PERF_EVENT_STATE_INACTIVE;
1244}
1245
a723968c 1246static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1247{
1248 int entry = sizeof(u64); /* value */
1249 int size = 0;
1250 int nr = 1;
1251
1252 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253 size += sizeof(u64);
1254
1255 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256 size += sizeof(u64);
1257
1258 if (event->attr.read_format & PERF_FORMAT_ID)
1259 entry += sizeof(u64);
1260
1261 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1262 nr += nr_siblings;
c320c7b7
ACM
1263 size += sizeof(u64);
1264 }
1265
1266 size += entry * nr;
1267 event->read_size = size;
1268}
1269
a723968c 1270static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1271{
1272 struct perf_sample_data *data;
c320c7b7
ACM
1273 u16 size = 0;
1274
c320c7b7
ACM
1275 if (sample_type & PERF_SAMPLE_IP)
1276 size += sizeof(data->ip);
1277
6844c09d
ACM
1278 if (sample_type & PERF_SAMPLE_ADDR)
1279 size += sizeof(data->addr);
1280
1281 if (sample_type & PERF_SAMPLE_PERIOD)
1282 size += sizeof(data->period);
1283
c3feedf2
AK
1284 if (sample_type & PERF_SAMPLE_WEIGHT)
1285 size += sizeof(data->weight);
1286
6844c09d
ACM
1287 if (sample_type & PERF_SAMPLE_READ)
1288 size += event->read_size;
1289
d6be9ad6
SE
1290 if (sample_type & PERF_SAMPLE_DATA_SRC)
1291 size += sizeof(data->data_src.val);
1292
fdfbbd07
AK
1293 if (sample_type & PERF_SAMPLE_TRANSACTION)
1294 size += sizeof(data->txn);
1295
6844c09d
ACM
1296 event->header_size = size;
1297}
1298
a723968c
PZ
1299/*
1300 * Called at perf_event creation and when events are attached/detached from a
1301 * group.
1302 */
1303static void perf_event__header_size(struct perf_event *event)
1304{
1305 __perf_event_read_size(event,
1306 event->group_leader->nr_siblings);
1307 __perf_event_header_size(event, event->attr.sample_type);
1308}
1309
6844c09d
ACM
1310static void perf_event__id_header_size(struct perf_event *event)
1311{
1312 struct perf_sample_data *data;
1313 u64 sample_type = event->attr.sample_type;
1314 u16 size = 0;
1315
c320c7b7
ACM
1316 if (sample_type & PERF_SAMPLE_TID)
1317 size += sizeof(data->tid_entry);
1318
1319 if (sample_type & PERF_SAMPLE_TIME)
1320 size += sizeof(data->time);
1321
ff3d527c
AH
1322 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1323 size += sizeof(data->id);
1324
c320c7b7
ACM
1325 if (sample_type & PERF_SAMPLE_ID)
1326 size += sizeof(data->id);
1327
1328 if (sample_type & PERF_SAMPLE_STREAM_ID)
1329 size += sizeof(data->stream_id);
1330
1331 if (sample_type & PERF_SAMPLE_CPU)
1332 size += sizeof(data->cpu_entry);
1333
6844c09d 1334 event->id_header_size = size;
c320c7b7
ACM
1335}
1336
a723968c
PZ
1337static bool perf_event_validate_size(struct perf_event *event)
1338{
1339 /*
1340 * The values computed here will be over-written when we actually
1341 * attach the event.
1342 */
1343 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1344 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1345 perf_event__id_header_size(event);
1346
1347 /*
1348 * Sum the lot; should not exceed the 64k limit we have on records.
1349 * Conservative limit to allow for callchains and other variable fields.
1350 */
1351 if (event->read_size + event->header_size +
1352 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1353 return false;
1354
1355 return true;
1356}
1357
8a49542c
PZ
1358static void perf_group_attach(struct perf_event *event)
1359{
c320c7b7 1360 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1361
74c3337c
PZ
1362 /*
1363 * We can have double attach due to group movement in perf_event_open.
1364 */
1365 if (event->attach_state & PERF_ATTACH_GROUP)
1366 return;
1367
8a49542c
PZ
1368 event->attach_state |= PERF_ATTACH_GROUP;
1369
1370 if (group_leader == event)
1371 return;
1372
652884fe
PZ
1373 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1374
8a49542c
PZ
1375 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1376 !is_software_event(event))
1377 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1378
1379 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1380 group_leader->nr_siblings++;
c320c7b7
ACM
1381
1382 perf_event__header_size(group_leader);
1383
1384 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1385 perf_event__header_size(pos);
8a49542c
PZ
1386}
1387
a63eaf34 1388/*
cdd6c482 1389 * Remove a event from the lists for its context.
fccc714b 1390 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1391 */
04289bb9 1392static void
cdd6c482 1393list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1394{
68cacd29 1395 struct perf_cpu_context *cpuctx;
652884fe
PZ
1396
1397 WARN_ON_ONCE(event->ctx != ctx);
1398 lockdep_assert_held(&ctx->lock);
1399
8a49542c
PZ
1400 /*
1401 * We can have double detach due to exit/hot-unplug + close.
1402 */
1403 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1404 return;
8a49542c
PZ
1405
1406 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1407
68cacd29 1408 if (is_cgroup_event(event)) {
e5d1367f 1409 ctx->nr_cgroups--;
68cacd29
SE
1410 cpuctx = __get_cpu_context(ctx);
1411 /*
1412 * if there are no more cgroup events
1413 * then cler cgrp to avoid stale pointer
1414 * in update_cgrp_time_from_cpuctx()
1415 */
1416 if (!ctx->nr_cgroups)
1417 cpuctx->cgrp = NULL;
1418 }
e5d1367f 1419
cdd6c482
IM
1420 ctx->nr_events--;
1421 if (event->attr.inherit_stat)
bfbd3381 1422 ctx->nr_stat--;
8bc20959 1423
cdd6c482 1424 list_del_rcu(&event->event_entry);
04289bb9 1425
8a49542c
PZ
1426 if (event->group_leader == event)
1427 list_del_init(&event->group_entry);
5c148194 1428
96c21a46 1429 update_group_times(event);
b2e74a26
SE
1430
1431 /*
1432 * If event was in error state, then keep it
1433 * that way, otherwise bogus counts will be
1434 * returned on read(). The only way to get out
1435 * of error state is by explicit re-enabling
1436 * of the event
1437 */
1438 if (event->state > PERF_EVENT_STATE_OFF)
1439 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1440
1441 ctx->generation++;
050735b0
PZ
1442}
1443
8a49542c 1444static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1445{
1446 struct perf_event *sibling, *tmp;
8a49542c
PZ
1447 struct list_head *list = NULL;
1448
1449 /*
1450 * We can have double detach due to exit/hot-unplug + close.
1451 */
1452 if (!(event->attach_state & PERF_ATTACH_GROUP))
1453 return;
1454
1455 event->attach_state &= ~PERF_ATTACH_GROUP;
1456
1457 /*
1458 * If this is a sibling, remove it from its group.
1459 */
1460 if (event->group_leader != event) {
1461 list_del_init(&event->group_entry);
1462 event->group_leader->nr_siblings--;
c320c7b7 1463 goto out;
8a49542c
PZ
1464 }
1465
1466 if (!list_empty(&event->group_entry))
1467 list = &event->group_entry;
2e2af50b 1468
04289bb9 1469 /*
cdd6c482
IM
1470 * If this was a group event with sibling events then
1471 * upgrade the siblings to singleton events by adding them
8a49542c 1472 * to whatever list we are on.
04289bb9 1473 */
cdd6c482 1474 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1475 if (list)
1476 list_move_tail(&sibling->group_entry, list);
04289bb9 1477 sibling->group_leader = sibling;
d6f962b5
FW
1478
1479 /* Inherit group flags from the previous leader */
1480 sibling->group_flags = event->group_flags;
652884fe
PZ
1481
1482 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1483 }
c320c7b7
ACM
1484
1485out:
1486 perf_event__header_size(event->group_leader);
1487
1488 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1489 perf_event__header_size(tmp);
04289bb9
IM
1490}
1491
fadfe7be
JO
1492/*
1493 * User event without the task.
1494 */
1495static bool is_orphaned_event(struct perf_event *event)
1496{
1497 return event && !is_kernel_event(event) && !event->owner;
1498}
1499
1500/*
1501 * Event has a parent but parent's task finished and it's
1502 * alive only because of children holding refference.
1503 */
1504static bool is_orphaned_child(struct perf_event *event)
1505{
1506 return is_orphaned_event(event->parent);
1507}
1508
1509static void orphans_remove_work(struct work_struct *work);
1510
1511static void schedule_orphans_remove(struct perf_event_context *ctx)
1512{
1513 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1514 return;
1515
1516 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1517 get_ctx(ctx);
1518 ctx->orphans_remove_sched = true;
1519 }
1520}
1521
1522static int __init perf_workqueue_init(void)
1523{
1524 perf_wq = create_singlethread_workqueue("perf");
1525 WARN(!perf_wq, "failed to create perf workqueue\n");
1526 return perf_wq ? 0 : -1;
1527}
1528
1529core_initcall(perf_workqueue_init);
1530
66eb579e
MR
1531static inline int pmu_filter_match(struct perf_event *event)
1532{
1533 struct pmu *pmu = event->pmu;
1534 return pmu->filter_match ? pmu->filter_match(event) : 1;
1535}
1536
fa66f07a
SE
1537static inline int
1538event_filter_match(struct perf_event *event)
1539{
e5d1367f 1540 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1541 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1542}
1543
9ffcfa6f
SE
1544static void
1545event_sched_out(struct perf_event *event,
3b6f9e5c 1546 struct perf_cpu_context *cpuctx,
cdd6c482 1547 struct perf_event_context *ctx)
3b6f9e5c 1548{
4158755d 1549 u64 tstamp = perf_event_time(event);
fa66f07a 1550 u64 delta;
652884fe
PZ
1551
1552 WARN_ON_ONCE(event->ctx != ctx);
1553 lockdep_assert_held(&ctx->lock);
1554
fa66f07a
SE
1555 /*
1556 * An event which could not be activated because of
1557 * filter mismatch still needs to have its timings
1558 * maintained, otherwise bogus information is return
1559 * via read() for time_enabled, time_running:
1560 */
1561 if (event->state == PERF_EVENT_STATE_INACTIVE
1562 && !event_filter_match(event)) {
e5d1367f 1563 delta = tstamp - event->tstamp_stopped;
fa66f07a 1564 event->tstamp_running += delta;
4158755d 1565 event->tstamp_stopped = tstamp;
fa66f07a
SE
1566 }
1567
cdd6c482 1568 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1569 return;
3b6f9e5c 1570
44377277
AS
1571 perf_pmu_disable(event->pmu);
1572
cdd6c482
IM
1573 event->state = PERF_EVENT_STATE_INACTIVE;
1574 if (event->pending_disable) {
1575 event->pending_disable = 0;
1576 event->state = PERF_EVENT_STATE_OFF;
970892a9 1577 }
4158755d 1578 event->tstamp_stopped = tstamp;
a4eaf7f1 1579 event->pmu->del(event, 0);
cdd6c482 1580 event->oncpu = -1;
3b6f9e5c 1581
cdd6c482 1582 if (!is_software_event(event))
3b6f9e5c 1583 cpuctx->active_oncpu--;
2fde4f94
MR
1584 if (!--ctx->nr_active)
1585 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1586 if (event->attr.freq && event->attr.sample_freq)
1587 ctx->nr_freq--;
cdd6c482 1588 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1589 cpuctx->exclusive = 0;
44377277 1590
fadfe7be
JO
1591 if (is_orphaned_child(event))
1592 schedule_orphans_remove(ctx);
1593
44377277 1594 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1595}
1596
d859e29f 1597static void
cdd6c482 1598group_sched_out(struct perf_event *group_event,
d859e29f 1599 struct perf_cpu_context *cpuctx,
cdd6c482 1600 struct perf_event_context *ctx)
d859e29f 1601{
cdd6c482 1602 struct perf_event *event;
fa66f07a 1603 int state = group_event->state;
d859e29f 1604
cdd6c482 1605 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1606
1607 /*
1608 * Schedule out siblings (if any):
1609 */
cdd6c482
IM
1610 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1611 event_sched_out(event, cpuctx, ctx);
d859e29f 1612
fa66f07a 1613 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1614 cpuctx->exclusive = 0;
1615}
1616
46ce0fe9
PZ
1617struct remove_event {
1618 struct perf_event *event;
1619 bool detach_group;
1620};
1621
0793a61d 1622/*
cdd6c482 1623 * Cross CPU call to remove a performance event
0793a61d 1624 *
cdd6c482 1625 * We disable the event on the hardware level first. After that we
0793a61d
TG
1626 * remove it from the context list.
1627 */
fe4b04fa 1628static int __perf_remove_from_context(void *info)
0793a61d 1629{
46ce0fe9
PZ
1630 struct remove_event *re = info;
1631 struct perf_event *event = re->event;
cdd6c482 1632 struct perf_event_context *ctx = event->ctx;
108b02cf 1633 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1634
e625cce1 1635 raw_spin_lock(&ctx->lock);
cdd6c482 1636 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1637 if (re->detach_group)
1638 perf_group_detach(event);
cdd6c482 1639 list_del_event(event, ctx);
64ce3126
PZ
1640 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1641 ctx->is_active = 0;
1642 cpuctx->task_ctx = NULL;
1643 }
e625cce1 1644 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1645
1646 return 0;
0793a61d
TG
1647}
1648
1649
1650/*
cdd6c482 1651 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1652 *
cdd6c482 1653 * CPU events are removed with a smp call. For task events we only
0793a61d 1654 * call when the task is on a CPU.
c93f7669 1655 *
cdd6c482
IM
1656 * If event->ctx is a cloned context, callers must make sure that
1657 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1658 * remains valid. This is OK when called from perf_release since
1659 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1660 * When called from perf_event_exit_task, it's OK because the
c93f7669 1661 * context has been detached from its task.
0793a61d 1662 */
46ce0fe9 1663static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1664{
cdd6c482 1665 struct perf_event_context *ctx = event->ctx;
0793a61d 1666 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1667 struct remove_event re = {
1668 .event = event,
1669 .detach_group = detach_group,
1670 };
0793a61d 1671
fe4b04fa
PZ
1672 lockdep_assert_held(&ctx->mutex);
1673
0793a61d
TG
1674 if (!task) {
1675 /*
226424ee
MR
1676 * Per cpu events are removed via an smp call. The removal can
1677 * fail if the CPU is currently offline, but in that case we
1678 * already called __perf_remove_from_context from
1679 * perf_event_exit_cpu.
0793a61d 1680 */
46ce0fe9 1681 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1682 return;
1683 }
1684
1685retry:
46ce0fe9 1686 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1687 return;
0793a61d 1688
e625cce1 1689 raw_spin_lock_irq(&ctx->lock);
0793a61d 1690 /*
fe4b04fa
PZ
1691 * If we failed to find a running task, but find the context active now
1692 * that we've acquired the ctx->lock, retry.
0793a61d 1693 */
fe4b04fa 1694 if (ctx->is_active) {
e625cce1 1695 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1696 /*
1697 * Reload the task pointer, it might have been changed by
1698 * a concurrent perf_event_context_sched_out().
1699 */
1700 task = ctx->task;
0793a61d
TG
1701 goto retry;
1702 }
1703
1704 /*
fe4b04fa
PZ
1705 * Since the task isn't running, its safe to remove the event, us
1706 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1707 */
46ce0fe9
PZ
1708 if (detach_group)
1709 perf_group_detach(event);
fe4b04fa 1710 list_del_event(event, ctx);
e625cce1 1711 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1712}
1713
d859e29f 1714/*
cdd6c482 1715 * Cross CPU call to disable a performance event
d859e29f 1716 */
500ad2d8 1717int __perf_event_disable(void *info)
d859e29f 1718{
cdd6c482 1719 struct perf_event *event = info;
cdd6c482 1720 struct perf_event_context *ctx = event->ctx;
108b02cf 1721 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1722
1723 /*
cdd6c482
IM
1724 * If this is a per-task event, need to check whether this
1725 * event's task is the current task on this cpu.
fe4b04fa
PZ
1726 *
1727 * Can trigger due to concurrent perf_event_context_sched_out()
1728 * flipping contexts around.
d859e29f 1729 */
665c2142 1730 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1731 return -EINVAL;
d859e29f 1732
e625cce1 1733 raw_spin_lock(&ctx->lock);
d859e29f
PM
1734
1735 /*
cdd6c482 1736 * If the event is on, turn it off.
d859e29f
PM
1737 * If it is in error state, leave it in error state.
1738 */
cdd6c482 1739 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1740 update_context_time(ctx);
e5d1367f 1741 update_cgrp_time_from_event(event);
cdd6c482
IM
1742 update_group_times(event);
1743 if (event == event->group_leader)
1744 group_sched_out(event, cpuctx, ctx);
d859e29f 1745 else
cdd6c482
IM
1746 event_sched_out(event, cpuctx, ctx);
1747 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1748 }
1749
e625cce1 1750 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1751
1752 return 0;
d859e29f
PM
1753}
1754
1755/*
cdd6c482 1756 * Disable a event.
c93f7669 1757 *
cdd6c482
IM
1758 * If event->ctx is a cloned context, callers must make sure that
1759 * every task struct that event->ctx->task could possibly point to
c93f7669 1760 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1761 * perf_event_for_each_child or perf_event_for_each because they
1762 * hold the top-level event's child_mutex, so any descendant that
1763 * goes to exit will block in sync_child_event.
1764 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1765 * is the current context on this CPU and preemption is disabled,
cdd6c482 1766 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1767 */
f63a8daa 1768static void _perf_event_disable(struct perf_event *event)
d859e29f 1769{
cdd6c482 1770 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1771 struct task_struct *task = ctx->task;
1772
1773 if (!task) {
1774 /*
cdd6c482 1775 * Disable the event on the cpu that it's on
d859e29f 1776 */
fe4b04fa 1777 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1778 return;
1779 }
1780
9ed6060d 1781retry:
fe4b04fa
PZ
1782 if (!task_function_call(task, __perf_event_disable, event))
1783 return;
d859e29f 1784
e625cce1 1785 raw_spin_lock_irq(&ctx->lock);
d859e29f 1786 /*
cdd6c482 1787 * If the event is still active, we need to retry the cross-call.
d859e29f 1788 */
cdd6c482 1789 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1790 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1791 /*
1792 * Reload the task pointer, it might have been changed by
1793 * a concurrent perf_event_context_sched_out().
1794 */
1795 task = ctx->task;
d859e29f
PM
1796 goto retry;
1797 }
1798
1799 /*
1800 * Since we have the lock this context can't be scheduled
1801 * in, so we can change the state safely.
1802 */
cdd6c482
IM
1803 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1804 update_group_times(event);
1805 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1806 }
e625cce1 1807 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1808}
f63a8daa
PZ
1809
1810/*
1811 * Strictly speaking kernel users cannot create groups and therefore this
1812 * interface does not need the perf_event_ctx_lock() magic.
1813 */
1814void perf_event_disable(struct perf_event *event)
1815{
1816 struct perf_event_context *ctx;
1817
1818 ctx = perf_event_ctx_lock(event);
1819 _perf_event_disable(event);
1820 perf_event_ctx_unlock(event, ctx);
1821}
dcfce4a0 1822EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1823
e5d1367f
SE
1824static void perf_set_shadow_time(struct perf_event *event,
1825 struct perf_event_context *ctx,
1826 u64 tstamp)
1827{
1828 /*
1829 * use the correct time source for the time snapshot
1830 *
1831 * We could get by without this by leveraging the
1832 * fact that to get to this function, the caller
1833 * has most likely already called update_context_time()
1834 * and update_cgrp_time_xx() and thus both timestamp
1835 * are identical (or very close). Given that tstamp is,
1836 * already adjusted for cgroup, we could say that:
1837 * tstamp - ctx->timestamp
1838 * is equivalent to
1839 * tstamp - cgrp->timestamp.
1840 *
1841 * Then, in perf_output_read(), the calculation would
1842 * work with no changes because:
1843 * - event is guaranteed scheduled in
1844 * - no scheduled out in between
1845 * - thus the timestamp would be the same
1846 *
1847 * But this is a bit hairy.
1848 *
1849 * So instead, we have an explicit cgroup call to remain
1850 * within the time time source all along. We believe it
1851 * is cleaner and simpler to understand.
1852 */
1853 if (is_cgroup_event(event))
1854 perf_cgroup_set_shadow_time(event, tstamp);
1855 else
1856 event->shadow_ctx_time = tstamp - ctx->timestamp;
1857}
1858
4fe757dd
PZ
1859#define MAX_INTERRUPTS (~0ULL)
1860
1861static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1862static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1863
235c7fc7 1864static int
9ffcfa6f 1865event_sched_in(struct perf_event *event,
235c7fc7 1866 struct perf_cpu_context *cpuctx,
6e37738a 1867 struct perf_event_context *ctx)
235c7fc7 1868{
4158755d 1869 u64 tstamp = perf_event_time(event);
44377277 1870 int ret = 0;
4158755d 1871
63342411
PZ
1872 lockdep_assert_held(&ctx->lock);
1873
cdd6c482 1874 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1875 return 0;
1876
cdd6c482 1877 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1878 event->oncpu = smp_processor_id();
4fe757dd
PZ
1879
1880 /*
1881 * Unthrottle events, since we scheduled we might have missed several
1882 * ticks already, also for a heavily scheduling task there is little
1883 * guarantee it'll get a tick in a timely manner.
1884 */
1885 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1886 perf_log_throttle(event, 1);
1887 event->hw.interrupts = 0;
1888 }
1889
235c7fc7
IM
1890 /*
1891 * The new state must be visible before we turn it on in the hardware:
1892 */
1893 smp_wmb();
1894
44377277
AS
1895 perf_pmu_disable(event->pmu);
1896
72f669c0
SL
1897 perf_set_shadow_time(event, ctx, tstamp);
1898
ec0d7729
AS
1899 perf_log_itrace_start(event);
1900
a4eaf7f1 1901 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1902 event->state = PERF_EVENT_STATE_INACTIVE;
1903 event->oncpu = -1;
44377277
AS
1904 ret = -EAGAIN;
1905 goto out;
235c7fc7
IM
1906 }
1907
00a2916f
PZ
1908 event->tstamp_running += tstamp - event->tstamp_stopped;
1909
cdd6c482 1910 if (!is_software_event(event))
3b6f9e5c 1911 cpuctx->active_oncpu++;
2fde4f94
MR
1912 if (!ctx->nr_active++)
1913 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1914 if (event->attr.freq && event->attr.sample_freq)
1915 ctx->nr_freq++;
235c7fc7 1916
cdd6c482 1917 if (event->attr.exclusive)
3b6f9e5c
PM
1918 cpuctx->exclusive = 1;
1919
fadfe7be
JO
1920 if (is_orphaned_child(event))
1921 schedule_orphans_remove(ctx);
1922
44377277
AS
1923out:
1924 perf_pmu_enable(event->pmu);
1925
1926 return ret;
235c7fc7
IM
1927}
1928
6751b71e 1929static int
cdd6c482 1930group_sched_in(struct perf_event *group_event,
6751b71e 1931 struct perf_cpu_context *cpuctx,
6e37738a 1932 struct perf_event_context *ctx)
6751b71e 1933{
6bde9b6c 1934 struct perf_event *event, *partial_group = NULL;
4a234593 1935 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1936 u64 now = ctx->time;
1937 bool simulate = false;
6751b71e 1938
cdd6c482 1939 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1940 return 0;
1941
fbbe0701 1942 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1943
9ffcfa6f 1944 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1945 pmu->cancel_txn(pmu);
272325c4 1946 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1947 return -EAGAIN;
90151c35 1948 }
6751b71e
PM
1949
1950 /*
1951 * Schedule in siblings as one group (if any):
1952 */
cdd6c482 1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1954 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1955 partial_group = event;
6751b71e
PM
1956 goto group_error;
1957 }
1958 }
1959
9ffcfa6f 1960 if (!pmu->commit_txn(pmu))
6e85158c 1961 return 0;
9ffcfa6f 1962
6751b71e
PM
1963group_error:
1964 /*
1965 * Groups can be scheduled in as one unit only, so undo any
1966 * partial group before returning:
d7842da4
SE
1967 * The events up to the failed event are scheduled out normally,
1968 * tstamp_stopped will be updated.
1969 *
1970 * The failed events and the remaining siblings need to have
1971 * their timings updated as if they had gone thru event_sched_in()
1972 * and event_sched_out(). This is required to get consistent timings
1973 * across the group. This also takes care of the case where the group
1974 * could never be scheduled by ensuring tstamp_stopped is set to mark
1975 * the time the event was actually stopped, such that time delta
1976 * calculation in update_event_times() is correct.
6751b71e 1977 */
cdd6c482
IM
1978 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1979 if (event == partial_group)
d7842da4
SE
1980 simulate = true;
1981
1982 if (simulate) {
1983 event->tstamp_running += now - event->tstamp_stopped;
1984 event->tstamp_stopped = now;
1985 } else {
1986 event_sched_out(event, cpuctx, ctx);
1987 }
6751b71e 1988 }
9ffcfa6f 1989 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1990
ad5133b7 1991 pmu->cancel_txn(pmu);
90151c35 1992
272325c4 1993 perf_mux_hrtimer_restart(cpuctx);
9e630205 1994
6751b71e
PM
1995 return -EAGAIN;
1996}
1997
3b6f9e5c 1998/*
cdd6c482 1999 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2000 */
cdd6c482 2001static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2002 struct perf_cpu_context *cpuctx,
2003 int can_add_hw)
2004{
2005 /*
cdd6c482 2006 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2007 */
d6f962b5 2008 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2009 return 1;
2010 /*
2011 * If an exclusive group is already on, no other hardware
cdd6c482 2012 * events can go on.
3b6f9e5c
PM
2013 */
2014 if (cpuctx->exclusive)
2015 return 0;
2016 /*
2017 * If this group is exclusive and there are already
cdd6c482 2018 * events on the CPU, it can't go on.
3b6f9e5c 2019 */
cdd6c482 2020 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2021 return 0;
2022 /*
2023 * Otherwise, try to add it if all previous groups were able
2024 * to go on.
2025 */
2026 return can_add_hw;
2027}
2028
cdd6c482
IM
2029static void add_event_to_ctx(struct perf_event *event,
2030 struct perf_event_context *ctx)
53cfbf59 2031{
4158755d
SE
2032 u64 tstamp = perf_event_time(event);
2033
cdd6c482 2034 list_add_event(event, ctx);
8a49542c 2035 perf_group_attach(event);
4158755d
SE
2036 event->tstamp_enabled = tstamp;
2037 event->tstamp_running = tstamp;
2038 event->tstamp_stopped = tstamp;
53cfbf59
PM
2039}
2040
2c29ef0f
PZ
2041static void task_ctx_sched_out(struct perf_event_context *ctx);
2042static void
2043ctx_sched_in(struct perf_event_context *ctx,
2044 struct perf_cpu_context *cpuctx,
2045 enum event_type_t event_type,
2046 struct task_struct *task);
fe4b04fa 2047
dce5855b
PZ
2048static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2049 struct perf_event_context *ctx,
2050 struct task_struct *task)
2051{
2052 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2053 if (ctx)
2054 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2055 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2056 if (ctx)
2057 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2058}
2059
0793a61d 2060/*
cdd6c482 2061 * Cross CPU call to install and enable a performance event
682076ae
PZ
2062 *
2063 * Must be called with ctx->mutex held
0793a61d 2064 */
fe4b04fa 2065static int __perf_install_in_context(void *info)
0793a61d 2066{
cdd6c482
IM
2067 struct perf_event *event = info;
2068 struct perf_event_context *ctx = event->ctx;
108b02cf 2069 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2070 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2071 struct task_struct *task = current;
2072
b58f6b0d 2073 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2074 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2075
2076 /*
2c29ef0f 2077 * If there was an active task_ctx schedule it out.
0793a61d 2078 */
b58f6b0d 2079 if (task_ctx)
2c29ef0f 2080 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2081
2082 /*
2083 * If the context we're installing events in is not the
2084 * active task_ctx, flip them.
2085 */
2086 if (ctx->task && task_ctx != ctx) {
2087 if (task_ctx)
2088 raw_spin_unlock(&task_ctx->lock);
2089 raw_spin_lock(&ctx->lock);
2090 task_ctx = ctx;
2091 }
2092
2093 if (task_ctx) {
2094 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2095 task = task_ctx->task;
2096 }
b58f6b0d 2097
2c29ef0f 2098 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2099
4af4998b 2100 update_context_time(ctx);
e5d1367f
SE
2101 /*
2102 * update cgrp time only if current cgrp
2103 * matches event->cgrp. Must be done before
2104 * calling add_event_to_ctx()
2105 */
2106 update_cgrp_time_from_event(event);
0793a61d 2107
cdd6c482 2108 add_event_to_ctx(event, ctx);
0793a61d 2109
d859e29f 2110 /*
2c29ef0f 2111 * Schedule everything back in
d859e29f 2112 */
dce5855b 2113 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2114
2115 perf_pmu_enable(cpuctx->ctx.pmu);
2116 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2117
2118 return 0;
0793a61d
TG
2119}
2120
2121/*
cdd6c482 2122 * Attach a performance event to a context
0793a61d 2123 *
cdd6c482
IM
2124 * First we add the event to the list with the hardware enable bit
2125 * in event->hw_config cleared.
0793a61d 2126 *
cdd6c482 2127 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2128 * call to enable it in the task context. The task might have been
2129 * scheduled away, but we check this in the smp call again.
2130 */
2131static void
cdd6c482
IM
2132perf_install_in_context(struct perf_event_context *ctx,
2133 struct perf_event *event,
0793a61d
TG
2134 int cpu)
2135{
2136 struct task_struct *task = ctx->task;
2137
fe4b04fa
PZ
2138 lockdep_assert_held(&ctx->mutex);
2139
c3f00c70 2140 event->ctx = ctx;
0cda4c02
YZ
2141 if (event->cpu != -1)
2142 event->cpu = cpu;
c3f00c70 2143
0793a61d
TG
2144 if (!task) {
2145 /*
cdd6c482 2146 * Per cpu events are installed via an smp call and
af901ca1 2147 * the install is always successful.
0793a61d 2148 */
fe4b04fa 2149 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2150 return;
2151 }
2152
0793a61d 2153retry:
fe4b04fa
PZ
2154 if (!task_function_call(task, __perf_install_in_context, event))
2155 return;
0793a61d 2156
e625cce1 2157 raw_spin_lock_irq(&ctx->lock);
0793a61d 2158 /*
fe4b04fa
PZ
2159 * If we failed to find a running task, but find the context active now
2160 * that we've acquired the ctx->lock, retry.
0793a61d 2161 */
fe4b04fa 2162 if (ctx->is_active) {
e625cce1 2163 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2164 /*
2165 * Reload the task pointer, it might have been changed by
2166 * a concurrent perf_event_context_sched_out().
2167 */
2168 task = ctx->task;
0793a61d
TG
2169 goto retry;
2170 }
2171
2172 /*
fe4b04fa
PZ
2173 * Since the task isn't running, its safe to add the event, us holding
2174 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2175 */
fe4b04fa 2176 add_event_to_ctx(event, ctx);
e625cce1 2177 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2178}
2179
fa289bec 2180/*
cdd6c482 2181 * Put a event into inactive state and update time fields.
fa289bec
PM
2182 * Enabling the leader of a group effectively enables all
2183 * the group members that aren't explicitly disabled, so we
2184 * have to update their ->tstamp_enabled also.
2185 * Note: this works for group members as well as group leaders
2186 * since the non-leader members' sibling_lists will be empty.
2187 */
1d9b482e 2188static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2189{
cdd6c482 2190 struct perf_event *sub;
4158755d 2191 u64 tstamp = perf_event_time(event);
fa289bec 2192
cdd6c482 2193 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2194 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2195 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2196 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2197 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2198 }
fa289bec
PM
2199}
2200
d859e29f 2201/*
cdd6c482 2202 * Cross CPU call to enable a performance event
d859e29f 2203 */
fe4b04fa 2204static int __perf_event_enable(void *info)
04289bb9 2205{
cdd6c482 2206 struct perf_event *event = info;
cdd6c482
IM
2207 struct perf_event_context *ctx = event->ctx;
2208 struct perf_event *leader = event->group_leader;
108b02cf 2209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2210 int err;
04289bb9 2211
06f41796
JO
2212 /*
2213 * There's a time window between 'ctx->is_active' check
2214 * in perf_event_enable function and this place having:
2215 * - IRQs on
2216 * - ctx->lock unlocked
2217 *
2218 * where the task could be killed and 'ctx' deactivated
2219 * by perf_event_exit_task.
2220 */
2221 if (!ctx->is_active)
fe4b04fa 2222 return -EINVAL;
3cbed429 2223
e625cce1 2224 raw_spin_lock(&ctx->lock);
4af4998b 2225 update_context_time(ctx);
d859e29f 2226
cdd6c482 2227 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2228 goto unlock;
e5d1367f
SE
2229
2230 /*
2231 * set current task's cgroup time reference point
2232 */
3f7cce3c 2233 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2234
1d9b482e 2235 __perf_event_mark_enabled(event);
04289bb9 2236
e5d1367f
SE
2237 if (!event_filter_match(event)) {
2238 if (is_cgroup_event(event))
2239 perf_cgroup_defer_enabled(event);
f4c4176f 2240 goto unlock;
e5d1367f 2241 }
f4c4176f 2242
04289bb9 2243 /*
cdd6c482 2244 * If the event is in a group and isn't the group leader,
d859e29f 2245 * then don't put it on unless the group is on.
04289bb9 2246 */
cdd6c482 2247 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2248 goto unlock;
3b6f9e5c 2249
cdd6c482 2250 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2251 err = -EEXIST;
e758a33d 2252 } else {
cdd6c482 2253 if (event == leader)
6e37738a 2254 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2255 else
6e37738a 2256 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2257 }
d859e29f
PM
2258
2259 if (err) {
2260 /*
cdd6c482 2261 * If this event can't go on and it's part of a
d859e29f
PM
2262 * group, then the whole group has to come off.
2263 */
9e630205 2264 if (leader != event) {
d859e29f 2265 group_sched_out(leader, cpuctx, ctx);
272325c4 2266 perf_mux_hrtimer_restart(cpuctx);
9e630205 2267 }
0d48696f 2268 if (leader->attr.pinned) {
53cfbf59 2269 update_group_times(leader);
cdd6c482 2270 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2271 }
d859e29f
PM
2272 }
2273
9ed6060d 2274unlock:
e625cce1 2275 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2276
2277 return 0;
d859e29f
PM
2278}
2279
2280/*
cdd6c482 2281 * Enable a event.
c93f7669 2282 *
cdd6c482
IM
2283 * If event->ctx is a cloned context, callers must make sure that
2284 * every task struct that event->ctx->task could possibly point to
c93f7669 2285 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2286 * perf_event_for_each_child or perf_event_for_each as described
2287 * for perf_event_disable.
d859e29f 2288 */
f63a8daa 2289static void _perf_event_enable(struct perf_event *event)
d859e29f 2290{
cdd6c482 2291 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2292 struct task_struct *task = ctx->task;
2293
2294 if (!task) {
2295 /*
cdd6c482 2296 * Enable the event on the cpu that it's on
d859e29f 2297 */
fe4b04fa 2298 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2299 return;
2300 }
2301
e625cce1 2302 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2303 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2304 goto out;
2305
2306 /*
cdd6c482
IM
2307 * If the event is in error state, clear that first.
2308 * That way, if we see the event in error state below, we
d859e29f
PM
2309 * know that it has gone back into error state, as distinct
2310 * from the task having been scheduled away before the
2311 * cross-call arrived.
2312 */
cdd6c482
IM
2313 if (event->state == PERF_EVENT_STATE_ERROR)
2314 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2315
9ed6060d 2316retry:
fe4b04fa 2317 if (!ctx->is_active) {
1d9b482e 2318 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2319 goto out;
2320 }
2321
e625cce1 2322 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2323
2324 if (!task_function_call(task, __perf_event_enable, event))
2325 return;
d859e29f 2326
e625cce1 2327 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2328
2329 /*
cdd6c482 2330 * If the context is active and the event is still off,
d859e29f
PM
2331 * we need to retry the cross-call.
2332 */
fe4b04fa
PZ
2333 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2334 /*
2335 * task could have been flipped by a concurrent
2336 * perf_event_context_sched_out()
2337 */
2338 task = ctx->task;
d859e29f 2339 goto retry;
fe4b04fa 2340 }
fa289bec 2341
9ed6060d 2342out:
e625cce1 2343 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2344}
f63a8daa
PZ
2345
2346/*
2347 * See perf_event_disable();
2348 */
2349void perf_event_enable(struct perf_event *event)
2350{
2351 struct perf_event_context *ctx;
2352
2353 ctx = perf_event_ctx_lock(event);
2354 _perf_event_enable(event);
2355 perf_event_ctx_unlock(event, ctx);
2356}
dcfce4a0 2357EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2358
f63a8daa 2359static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2360{
2023b359 2361 /*
cdd6c482 2362 * not supported on inherited events
2023b359 2363 */
2e939d1d 2364 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2365 return -EINVAL;
2366
cdd6c482 2367 atomic_add(refresh, &event->event_limit);
f63a8daa 2368 _perf_event_enable(event);
2023b359
PZ
2369
2370 return 0;
79f14641 2371}
f63a8daa
PZ
2372
2373/*
2374 * See perf_event_disable()
2375 */
2376int perf_event_refresh(struct perf_event *event, int refresh)
2377{
2378 struct perf_event_context *ctx;
2379 int ret;
2380
2381 ctx = perf_event_ctx_lock(event);
2382 ret = _perf_event_refresh(event, refresh);
2383 perf_event_ctx_unlock(event, ctx);
2384
2385 return ret;
2386}
26ca5c11 2387EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2388
5b0311e1
FW
2389static void ctx_sched_out(struct perf_event_context *ctx,
2390 struct perf_cpu_context *cpuctx,
2391 enum event_type_t event_type)
235c7fc7 2392{
cdd6c482 2393 struct perf_event *event;
db24d33e 2394 int is_active = ctx->is_active;
235c7fc7 2395
db24d33e 2396 ctx->is_active &= ~event_type;
cdd6c482 2397 if (likely(!ctx->nr_events))
facc4307
PZ
2398 return;
2399
4af4998b 2400 update_context_time(ctx);
e5d1367f 2401 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2402 if (!ctx->nr_active)
facc4307 2403 return;
5b0311e1 2404
075e0b00 2405 perf_pmu_disable(ctx->pmu);
db24d33e 2406 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2407 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2408 group_sched_out(event, cpuctx, ctx);
9ed6060d 2409 }
889ff015 2410
db24d33e 2411 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2412 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2413 group_sched_out(event, cpuctx, ctx);
9ed6060d 2414 }
1b9a644f 2415 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2416}
2417
564c2b21 2418/*
5a3126d4
PZ
2419 * Test whether two contexts are equivalent, i.e. whether they have both been
2420 * cloned from the same version of the same context.
2421 *
2422 * Equivalence is measured using a generation number in the context that is
2423 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2424 * and list_del_event().
564c2b21 2425 */
cdd6c482
IM
2426static int context_equiv(struct perf_event_context *ctx1,
2427 struct perf_event_context *ctx2)
564c2b21 2428{
211de6eb
PZ
2429 lockdep_assert_held(&ctx1->lock);
2430 lockdep_assert_held(&ctx2->lock);
2431
5a3126d4
PZ
2432 /* Pinning disables the swap optimization */
2433 if (ctx1->pin_count || ctx2->pin_count)
2434 return 0;
2435
2436 /* If ctx1 is the parent of ctx2 */
2437 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2438 return 1;
2439
2440 /* If ctx2 is the parent of ctx1 */
2441 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2442 return 1;
2443
2444 /*
2445 * If ctx1 and ctx2 have the same parent; we flatten the parent
2446 * hierarchy, see perf_event_init_context().
2447 */
2448 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2449 ctx1->parent_gen == ctx2->parent_gen)
2450 return 1;
2451
2452 /* Unmatched */
2453 return 0;
564c2b21
PM
2454}
2455
cdd6c482
IM
2456static void __perf_event_sync_stat(struct perf_event *event,
2457 struct perf_event *next_event)
bfbd3381
PZ
2458{
2459 u64 value;
2460
cdd6c482 2461 if (!event->attr.inherit_stat)
bfbd3381
PZ
2462 return;
2463
2464 /*
cdd6c482 2465 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2466 * because we're in the middle of a context switch and have IRQs
2467 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2468 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2469 * don't need to use it.
2470 */
cdd6c482
IM
2471 switch (event->state) {
2472 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2473 event->pmu->read(event);
2474 /* fall-through */
bfbd3381 2475
cdd6c482
IM
2476 case PERF_EVENT_STATE_INACTIVE:
2477 update_event_times(event);
bfbd3381
PZ
2478 break;
2479
2480 default:
2481 break;
2482 }
2483
2484 /*
cdd6c482 2485 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2486 * values when we flip the contexts.
2487 */
e7850595
PZ
2488 value = local64_read(&next_event->count);
2489 value = local64_xchg(&event->count, value);
2490 local64_set(&next_event->count, value);
bfbd3381 2491
cdd6c482
IM
2492 swap(event->total_time_enabled, next_event->total_time_enabled);
2493 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2494
bfbd3381 2495 /*
19d2e755 2496 * Since we swizzled the values, update the user visible data too.
bfbd3381 2497 */
cdd6c482
IM
2498 perf_event_update_userpage(event);
2499 perf_event_update_userpage(next_event);
bfbd3381
PZ
2500}
2501
cdd6c482
IM
2502static void perf_event_sync_stat(struct perf_event_context *ctx,
2503 struct perf_event_context *next_ctx)
bfbd3381 2504{
cdd6c482 2505 struct perf_event *event, *next_event;
bfbd3381
PZ
2506
2507 if (!ctx->nr_stat)
2508 return;
2509
02ffdbc8
PZ
2510 update_context_time(ctx);
2511
cdd6c482
IM
2512 event = list_first_entry(&ctx->event_list,
2513 struct perf_event, event_entry);
bfbd3381 2514
cdd6c482
IM
2515 next_event = list_first_entry(&next_ctx->event_list,
2516 struct perf_event, event_entry);
bfbd3381 2517
cdd6c482
IM
2518 while (&event->event_entry != &ctx->event_list &&
2519 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2520
cdd6c482 2521 __perf_event_sync_stat(event, next_event);
bfbd3381 2522
cdd6c482
IM
2523 event = list_next_entry(event, event_entry);
2524 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2525 }
2526}
2527
fe4b04fa
PZ
2528static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2529 struct task_struct *next)
0793a61d 2530{
8dc85d54 2531 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2532 struct perf_event_context *next_ctx;
5a3126d4 2533 struct perf_event_context *parent, *next_parent;
108b02cf 2534 struct perf_cpu_context *cpuctx;
c93f7669 2535 int do_switch = 1;
0793a61d 2536
108b02cf
PZ
2537 if (likely(!ctx))
2538 return;
10989fb2 2539
108b02cf
PZ
2540 cpuctx = __get_cpu_context(ctx);
2541 if (!cpuctx->task_ctx)
0793a61d
TG
2542 return;
2543
c93f7669 2544 rcu_read_lock();
8dc85d54 2545 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2546 if (!next_ctx)
2547 goto unlock;
2548
2549 parent = rcu_dereference(ctx->parent_ctx);
2550 next_parent = rcu_dereference(next_ctx->parent_ctx);
2551
2552 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2553 if (!parent && !next_parent)
5a3126d4
PZ
2554 goto unlock;
2555
2556 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2557 /*
2558 * Looks like the two contexts are clones, so we might be
2559 * able to optimize the context switch. We lock both
2560 * contexts and check that they are clones under the
2561 * lock (including re-checking that neither has been
2562 * uncloned in the meantime). It doesn't matter which
2563 * order we take the locks because no other cpu could
2564 * be trying to lock both of these tasks.
2565 */
e625cce1
TG
2566 raw_spin_lock(&ctx->lock);
2567 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2568 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2569 /*
2570 * XXX do we need a memory barrier of sorts
cdd6c482 2571 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2572 */
8dc85d54
PZ
2573 task->perf_event_ctxp[ctxn] = next_ctx;
2574 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2575 ctx->task = next;
2576 next_ctx->task = task;
5a158c3c
YZ
2577
2578 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2579
c93f7669 2580 do_switch = 0;
bfbd3381 2581
cdd6c482 2582 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2583 }
e625cce1
TG
2584 raw_spin_unlock(&next_ctx->lock);
2585 raw_spin_unlock(&ctx->lock);
564c2b21 2586 }
5a3126d4 2587unlock:
c93f7669 2588 rcu_read_unlock();
564c2b21 2589
c93f7669 2590 if (do_switch) {
facc4307 2591 raw_spin_lock(&ctx->lock);
5b0311e1 2592 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2593 cpuctx->task_ctx = NULL;
facc4307 2594 raw_spin_unlock(&ctx->lock);
c93f7669 2595 }
0793a61d
TG
2596}
2597
ba532500
YZ
2598void perf_sched_cb_dec(struct pmu *pmu)
2599{
2600 this_cpu_dec(perf_sched_cb_usages);
2601}
2602
2603void perf_sched_cb_inc(struct pmu *pmu)
2604{
2605 this_cpu_inc(perf_sched_cb_usages);
2606}
2607
2608/*
2609 * This function provides the context switch callback to the lower code
2610 * layer. It is invoked ONLY when the context switch callback is enabled.
2611 */
2612static void perf_pmu_sched_task(struct task_struct *prev,
2613 struct task_struct *next,
2614 bool sched_in)
2615{
2616 struct perf_cpu_context *cpuctx;
2617 struct pmu *pmu;
2618 unsigned long flags;
2619
2620 if (prev == next)
2621 return;
2622
2623 local_irq_save(flags);
2624
2625 rcu_read_lock();
2626
2627 list_for_each_entry_rcu(pmu, &pmus, entry) {
2628 if (pmu->sched_task) {
2629 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2630
2631 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2632
2633 perf_pmu_disable(pmu);
2634
2635 pmu->sched_task(cpuctx->task_ctx, sched_in);
2636
2637 perf_pmu_enable(pmu);
2638
2639 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2640 }
2641 }
2642
2643 rcu_read_unlock();
2644
2645 local_irq_restore(flags);
2646}
2647
45ac1403
AH
2648static void perf_event_switch(struct task_struct *task,
2649 struct task_struct *next_prev, bool sched_in);
2650
8dc85d54
PZ
2651#define for_each_task_context_nr(ctxn) \
2652 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2653
2654/*
2655 * Called from scheduler to remove the events of the current task,
2656 * with interrupts disabled.
2657 *
2658 * We stop each event and update the event value in event->count.
2659 *
2660 * This does not protect us against NMI, but disable()
2661 * sets the disabled bit in the control field of event _before_
2662 * accessing the event control register. If a NMI hits, then it will
2663 * not restart the event.
2664 */
ab0cce56
JO
2665void __perf_event_task_sched_out(struct task_struct *task,
2666 struct task_struct *next)
8dc85d54
PZ
2667{
2668 int ctxn;
2669
ba532500
YZ
2670 if (__this_cpu_read(perf_sched_cb_usages))
2671 perf_pmu_sched_task(task, next, false);
2672
45ac1403
AH
2673 if (atomic_read(&nr_switch_events))
2674 perf_event_switch(task, next, false);
2675
8dc85d54
PZ
2676 for_each_task_context_nr(ctxn)
2677 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2678
2679 /*
2680 * if cgroup events exist on this CPU, then we need
2681 * to check if we have to switch out PMU state.
2682 * cgroup event are system-wide mode only
2683 */
4a32fea9 2684 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2685 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2686}
2687
04dc2dbb 2688static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2689{
108b02cf 2690 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2691
a63eaf34
PM
2692 if (!cpuctx->task_ctx)
2693 return;
012b84da
IM
2694
2695 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2696 return;
2697
04dc2dbb 2698 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2699 cpuctx->task_ctx = NULL;
2700}
2701
5b0311e1
FW
2702/*
2703 * Called with IRQs disabled
2704 */
2705static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2706 enum event_type_t event_type)
2707{
2708 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2709}
2710
235c7fc7 2711static void
5b0311e1 2712ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2713 struct perf_cpu_context *cpuctx)
0793a61d 2714{
cdd6c482 2715 struct perf_event *event;
0793a61d 2716
889ff015
FW
2717 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2718 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2719 continue;
5632ab12 2720 if (!event_filter_match(event))
3b6f9e5c
PM
2721 continue;
2722
e5d1367f
SE
2723 /* may need to reset tstamp_enabled */
2724 if (is_cgroup_event(event))
2725 perf_cgroup_mark_enabled(event, ctx);
2726
8c9ed8e1 2727 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2728 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2729
2730 /*
2731 * If this pinned group hasn't been scheduled,
2732 * put it in error state.
2733 */
cdd6c482
IM
2734 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2735 update_group_times(event);
2736 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2737 }
3b6f9e5c 2738 }
5b0311e1
FW
2739}
2740
2741static void
2742ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2743 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2744{
2745 struct perf_event *event;
2746 int can_add_hw = 1;
3b6f9e5c 2747
889ff015
FW
2748 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2749 /* Ignore events in OFF or ERROR state */
2750 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2751 continue;
04289bb9
IM
2752 /*
2753 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2754 * of events:
04289bb9 2755 */
5632ab12 2756 if (!event_filter_match(event))
0793a61d
TG
2757 continue;
2758
e5d1367f
SE
2759 /* may need to reset tstamp_enabled */
2760 if (is_cgroup_event(event))
2761 perf_cgroup_mark_enabled(event, ctx);
2762
9ed6060d 2763 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2764 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2765 can_add_hw = 0;
9ed6060d 2766 }
0793a61d 2767 }
5b0311e1
FW
2768}
2769
2770static void
2771ctx_sched_in(struct perf_event_context *ctx,
2772 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2773 enum event_type_t event_type,
2774 struct task_struct *task)
5b0311e1 2775{
e5d1367f 2776 u64 now;
db24d33e 2777 int is_active = ctx->is_active;
e5d1367f 2778
db24d33e 2779 ctx->is_active |= event_type;
5b0311e1 2780 if (likely(!ctx->nr_events))
facc4307 2781 return;
5b0311e1 2782
e5d1367f
SE
2783 now = perf_clock();
2784 ctx->timestamp = now;
3f7cce3c 2785 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2786 /*
2787 * First go through the list and put on any pinned groups
2788 * in order to give them the best chance of going on.
2789 */
db24d33e 2790 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2791 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2792
2793 /* Then walk through the lower prio flexible groups */
db24d33e 2794 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2795 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2796}
2797
329c0e01 2798static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2799 enum event_type_t event_type,
2800 struct task_struct *task)
329c0e01
FW
2801{
2802 struct perf_event_context *ctx = &cpuctx->ctx;
2803
e5d1367f 2804 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2805}
2806
e5d1367f
SE
2807static void perf_event_context_sched_in(struct perf_event_context *ctx,
2808 struct task_struct *task)
235c7fc7 2809{
108b02cf 2810 struct perf_cpu_context *cpuctx;
235c7fc7 2811
108b02cf 2812 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2813 if (cpuctx->task_ctx == ctx)
2814 return;
2815
facc4307 2816 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2817 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2818 /*
2819 * We want to keep the following priority order:
2820 * cpu pinned (that don't need to move), task pinned,
2821 * cpu flexible, task flexible.
2822 */
2823 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2824
1d5f003f
GN
2825 if (ctx->nr_events)
2826 cpuctx->task_ctx = ctx;
9b33fa6b 2827
86b47c25
GN
2828 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2829
facc4307
PZ
2830 perf_pmu_enable(ctx->pmu);
2831 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2832}
2833
8dc85d54
PZ
2834/*
2835 * Called from scheduler to add the events of the current task
2836 * with interrupts disabled.
2837 *
2838 * We restore the event value and then enable it.
2839 *
2840 * This does not protect us against NMI, but enable()
2841 * sets the enabled bit in the control field of event _before_
2842 * accessing the event control register. If a NMI hits, then it will
2843 * keep the event running.
2844 */
ab0cce56
JO
2845void __perf_event_task_sched_in(struct task_struct *prev,
2846 struct task_struct *task)
8dc85d54
PZ
2847{
2848 struct perf_event_context *ctx;
2849 int ctxn;
2850
2851 for_each_task_context_nr(ctxn) {
2852 ctx = task->perf_event_ctxp[ctxn];
2853 if (likely(!ctx))
2854 continue;
2855
e5d1367f 2856 perf_event_context_sched_in(ctx, task);
8dc85d54 2857 }
e5d1367f
SE
2858 /*
2859 * if cgroup events exist on this CPU, then we need
2860 * to check if we have to switch in PMU state.
2861 * cgroup event are system-wide mode only
2862 */
4a32fea9 2863 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2864 perf_cgroup_sched_in(prev, task);
d010b332 2865
45ac1403
AH
2866 if (atomic_read(&nr_switch_events))
2867 perf_event_switch(task, prev, true);
2868
ba532500
YZ
2869 if (__this_cpu_read(perf_sched_cb_usages))
2870 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2871}
2872
abd50713
PZ
2873static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2874{
2875 u64 frequency = event->attr.sample_freq;
2876 u64 sec = NSEC_PER_SEC;
2877 u64 divisor, dividend;
2878
2879 int count_fls, nsec_fls, frequency_fls, sec_fls;
2880
2881 count_fls = fls64(count);
2882 nsec_fls = fls64(nsec);
2883 frequency_fls = fls64(frequency);
2884 sec_fls = 30;
2885
2886 /*
2887 * We got @count in @nsec, with a target of sample_freq HZ
2888 * the target period becomes:
2889 *
2890 * @count * 10^9
2891 * period = -------------------
2892 * @nsec * sample_freq
2893 *
2894 */
2895
2896 /*
2897 * Reduce accuracy by one bit such that @a and @b converge
2898 * to a similar magnitude.
2899 */
fe4b04fa 2900#define REDUCE_FLS(a, b) \
abd50713
PZ
2901do { \
2902 if (a##_fls > b##_fls) { \
2903 a >>= 1; \
2904 a##_fls--; \
2905 } else { \
2906 b >>= 1; \
2907 b##_fls--; \
2908 } \
2909} while (0)
2910
2911 /*
2912 * Reduce accuracy until either term fits in a u64, then proceed with
2913 * the other, so that finally we can do a u64/u64 division.
2914 */
2915 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2916 REDUCE_FLS(nsec, frequency);
2917 REDUCE_FLS(sec, count);
2918 }
2919
2920 if (count_fls + sec_fls > 64) {
2921 divisor = nsec * frequency;
2922
2923 while (count_fls + sec_fls > 64) {
2924 REDUCE_FLS(count, sec);
2925 divisor >>= 1;
2926 }
2927
2928 dividend = count * sec;
2929 } else {
2930 dividend = count * sec;
2931
2932 while (nsec_fls + frequency_fls > 64) {
2933 REDUCE_FLS(nsec, frequency);
2934 dividend >>= 1;
2935 }
2936
2937 divisor = nsec * frequency;
2938 }
2939
f6ab91ad
PZ
2940 if (!divisor)
2941 return dividend;
2942
abd50713
PZ
2943 return div64_u64(dividend, divisor);
2944}
2945
e050e3f0
SE
2946static DEFINE_PER_CPU(int, perf_throttled_count);
2947static DEFINE_PER_CPU(u64, perf_throttled_seq);
2948
f39d47ff 2949static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2950{
cdd6c482 2951 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2952 s64 period, sample_period;
bd2b5b12
PZ
2953 s64 delta;
2954
abd50713 2955 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2956
2957 delta = (s64)(period - hwc->sample_period);
2958 delta = (delta + 7) / 8; /* low pass filter */
2959
2960 sample_period = hwc->sample_period + delta;
2961
2962 if (!sample_period)
2963 sample_period = 1;
2964
bd2b5b12 2965 hwc->sample_period = sample_period;
abd50713 2966
e7850595 2967 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2968 if (disable)
2969 event->pmu->stop(event, PERF_EF_UPDATE);
2970
e7850595 2971 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2972
2973 if (disable)
2974 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2975 }
bd2b5b12
PZ
2976}
2977
e050e3f0
SE
2978/*
2979 * combine freq adjustment with unthrottling to avoid two passes over the
2980 * events. At the same time, make sure, having freq events does not change
2981 * the rate of unthrottling as that would introduce bias.
2982 */
2983static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2984 int needs_unthr)
60db5e09 2985{
cdd6c482
IM
2986 struct perf_event *event;
2987 struct hw_perf_event *hwc;
e050e3f0 2988 u64 now, period = TICK_NSEC;
abd50713 2989 s64 delta;
60db5e09 2990
e050e3f0
SE
2991 /*
2992 * only need to iterate over all events iff:
2993 * - context have events in frequency mode (needs freq adjust)
2994 * - there are events to unthrottle on this cpu
2995 */
2996 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2997 return;
2998
e050e3f0 2999 raw_spin_lock(&ctx->lock);
f39d47ff 3000 perf_pmu_disable(ctx->pmu);
e050e3f0 3001
03541f8b 3002 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3003 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3004 continue;
3005
5632ab12 3006 if (!event_filter_match(event))
5d27c23d
PZ
3007 continue;
3008
44377277
AS
3009 perf_pmu_disable(event->pmu);
3010
cdd6c482 3011 hwc = &event->hw;
6a24ed6c 3012
ae23bff1 3013 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3014 hwc->interrupts = 0;
cdd6c482 3015 perf_log_throttle(event, 1);
a4eaf7f1 3016 event->pmu->start(event, 0);
a78ac325
PZ
3017 }
3018
cdd6c482 3019 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3020 goto next;
60db5e09 3021
e050e3f0
SE
3022 /*
3023 * stop the event and update event->count
3024 */
3025 event->pmu->stop(event, PERF_EF_UPDATE);
3026
e7850595 3027 now = local64_read(&event->count);
abd50713
PZ
3028 delta = now - hwc->freq_count_stamp;
3029 hwc->freq_count_stamp = now;
60db5e09 3030
e050e3f0
SE
3031 /*
3032 * restart the event
3033 * reload only if value has changed
f39d47ff
SE
3034 * we have stopped the event so tell that
3035 * to perf_adjust_period() to avoid stopping it
3036 * twice.
e050e3f0 3037 */
abd50713 3038 if (delta > 0)
f39d47ff 3039 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3040
3041 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3042 next:
3043 perf_pmu_enable(event->pmu);
60db5e09 3044 }
e050e3f0 3045
f39d47ff 3046 perf_pmu_enable(ctx->pmu);
e050e3f0 3047 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3048}
3049
235c7fc7 3050/*
cdd6c482 3051 * Round-robin a context's events:
235c7fc7 3052 */
cdd6c482 3053static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3054{
dddd3379
TG
3055 /*
3056 * Rotate the first entry last of non-pinned groups. Rotation might be
3057 * disabled by the inheritance code.
3058 */
3059 if (!ctx->rotate_disable)
3060 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3061}
3062
9e630205 3063static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3064{
8dc85d54 3065 struct perf_event_context *ctx = NULL;
2fde4f94 3066 int rotate = 0;
7fc23a53 3067
b5ab4cd5 3068 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3069 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3070 rotate = 1;
3071 }
235c7fc7 3072
8dc85d54 3073 ctx = cpuctx->task_ctx;
b5ab4cd5 3074 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3075 if (ctx->nr_events != ctx->nr_active)
3076 rotate = 1;
3077 }
9717e6cd 3078
e050e3f0 3079 if (!rotate)
0f5a2601
PZ
3080 goto done;
3081
facc4307 3082 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3083 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3084
e050e3f0
SE
3085 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3086 if (ctx)
3087 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3088
e050e3f0
SE
3089 rotate_ctx(&cpuctx->ctx);
3090 if (ctx)
3091 rotate_ctx(ctx);
235c7fc7 3092
e050e3f0 3093 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3094
0f5a2601
PZ
3095 perf_pmu_enable(cpuctx->ctx.pmu);
3096 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3097done:
9e630205
SE
3098
3099 return rotate;
e9d2b064
PZ
3100}
3101
026249ef
FW
3102#ifdef CONFIG_NO_HZ_FULL
3103bool perf_event_can_stop_tick(void)
3104{
948b26b6 3105 if (atomic_read(&nr_freq_events) ||
d84153d6 3106 __this_cpu_read(perf_throttled_count))
026249ef 3107 return false;
d84153d6
FW
3108 else
3109 return true;
026249ef
FW
3110}
3111#endif
3112
e9d2b064
PZ
3113void perf_event_task_tick(void)
3114{
2fde4f94
MR
3115 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3116 struct perf_event_context *ctx, *tmp;
e050e3f0 3117 int throttled;
b5ab4cd5 3118
e9d2b064
PZ
3119 WARN_ON(!irqs_disabled());
3120
e050e3f0
SE
3121 __this_cpu_inc(perf_throttled_seq);
3122 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3123
2fde4f94 3124 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3125 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3126}
3127
889ff015
FW
3128static int event_enable_on_exec(struct perf_event *event,
3129 struct perf_event_context *ctx)
3130{
3131 if (!event->attr.enable_on_exec)
3132 return 0;
3133
3134 event->attr.enable_on_exec = 0;
3135 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3136 return 0;
3137
1d9b482e 3138 __perf_event_mark_enabled(event);
889ff015
FW
3139
3140 return 1;
3141}
3142
57e7986e 3143/*
cdd6c482 3144 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3145 * This expects task == current.
3146 */
8dc85d54 3147static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3148{
211de6eb 3149 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3150 struct perf_event *event;
57e7986e
PM
3151 unsigned long flags;
3152 int enabled = 0;
889ff015 3153 int ret;
57e7986e
PM
3154
3155 local_irq_save(flags);
cdd6c482 3156 if (!ctx || !ctx->nr_events)
57e7986e
PM
3157 goto out;
3158
e566b76e
SE
3159 /*
3160 * We must ctxsw out cgroup events to avoid conflict
3161 * when invoking perf_task_event_sched_in() later on
3162 * in this function. Otherwise we end up trying to
3163 * ctxswin cgroup events which are already scheduled
3164 * in.
3165 */
a8d757ef 3166 perf_cgroup_sched_out(current, NULL);
57e7986e 3167
e625cce1 3168 raw_spin_lock(&ctx->lock);
04dc2dbb 3169 task_ctx_sched_out(ctx);
57e7986e 3170
b79387ef 3171 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3172 ret = event_enable_on_exec(event, ctx);
3173 if (ret)
3174 enabled = 1;
57e7986e
PM
3175 }
3176
3177 /*
cdd6c482 3178 * Unclone this context if we enabled any event.
57e7986e 3179 */
71a851b4 3180 if (enabled)
211de6eb 3181 clone_ctx = unclone_ctx(ctx);
57e7986e 3182
e625cce1 3183 raw_spin_unlock(&ctx->lock);
57e7986e 3184
e566b76e
SE
3185 /*
3186 * Also calls ctxswin for cgroup events, if any:
3187 */
e5d1367f 3188 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3189out:
57e7986e 3190 local_irq_restore(flags);
211de6eb
PZ
3191
3192 if (clone_ctx)
3193 put_ctx(clone_ctx);
57e7986e
PM
3194}
3195
e041e328
PZ
3196void perf_event_exec(void)
3197{
3198 struct perf_event_context *ctx;
3199 int ctxn;
3200
3201 rcu_read_lock();
3202 for_each_task_context_nr(ctxn) {
3203 ctx = current->perf_event_ctxp[ctxn];
3204 if (!ctx)
3205 continue;
3206
3207 perf_event_enable_on_exec(ctx);
3208 }
3209 rcu_read_unlock();
3210}
3211
0492d4c5
PZ
3212struct perf_read_data {
3213 struct perf_event *event;
3214 bool group;
7d88962e 3215 int ret;
0492d4c5
PZ
3216};
3217
0793a61d 3218/*
cdd6c482 3219 * Cross CPU call to read the hardware event
0793a61d 3220 */
cdd6c482 3221static void __perf_event_read(void *info)
0793a61d 3222{
0492d4c5
PZ
3223 struct perf_read_data *data = info;
3224 struct perf_event *sub, *event = data->event;
cdd6c482 3225 struct perf_event_context *ctx = event->ctx;
108b02cf 3226 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3227 struct pmu *pmu = event->pmu;
621a01ea 3228
e1ac3614
PM
3229 /*
3230 * If this is a task context, we need to check whether it is
3231 * the current task context of this cpu. If not it has been
3232 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3233 * event->count would have been updated to a recent sample
3234 * when the event was scheduled out.
e1ac3614
PM
3235 */
3236 if (ctx->task && cpuctx->task_ctx != ctx)
3237 return;
3238
e625cce1 3239 raw_spin_lock(&ctx->lock);
e5d1367f 3240 if (ctx->is_active) {
542e72fc 3241 update_context_time(ctx);
e5d1367f
SE
3242 update_cgrp_time_from_event(event);
3243 }
0492d4c5 3244
cdd6c482 3245 update_event_times(event);
4a00c16e
SB
3246 if (event->state != PERF_EVENT_STATE_ACTIVE)
3247 goto unlock;
0492d4c5 3248
4a00c16e
SB
3249 if (!data->group) {
3250 pmu->read(event);
3251 data->ret = 0;
0492d4c5 3252 goto unlock;
4a00c16e
SB
3253 }
3254
3255 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3256
3257 pmu->read(event);
0492d4c5
PZ
3258
3259 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3260 update_event_times(sub);
4a00c16e
SB
3261 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3262 /*
3263 * Use sibling's PMU rather than @event's since
3264 * sibling could be on different (eg: software) PMU.
3265 */
0492d4c5 3266 sub->pmu->read(sub);
4a00c16e 3267 }
0492d4c5 3268 }
4a00c16e
SB
3269
3270 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3271
3272unlock:
e625cce1 3273 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3274}
3275
b5e58793
PZ
3276static inline u64 perf_event_count(struct perf_event *event)
3277{
eacd3ecc
MF
3278 if (event->pmu->count)
3279 return event->pmu->count(event);
3280
3281 return __perf_event_count(event);
b5e58793
PZ
3282}
3283
ffe8690c
KX
3284/*
3285 * NMI-safe method to read a local event, that is an event that
3286 * is:
3287 * - either for the current task, or for this CPU
3288 * - does not have inherit set, for inherited task events
3289 * will not be local and we cannot read them atomically
3290 * - must not have a pmu::count method
3291 */
3292u64 perf_event_read_local(struct perf_event *event)
3293{
3294 unsigned long flags;
3295 u64 val;
3296
3297 /*
3298 * Disabling interrupts avoids all counter scheduling (context
3299 * switches, timer based rotation and IPIs).
3300 */
3301 local_irq_save(flags);
3302
3303 /* If this is a per-task event, it must be for current */
3304 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3305 event->hw.target != current);
3306
3307 /* If this is a per-CPU event, it must be for this CPU */
3308 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3309 event->cpu != smp_processor_id());
3310
3311 /*
3312 * It must not be an event with inherit set, we cannot read
3313 * all child counters from atomic context.
3314 */
3315 WARN_ON_ONCE(event->attr.inherit);
3316
3317 /*
3318 * It must not have a pmu::count method, those are not
3319 * NMI safe.
3320 */
3321 WARN_ON_ONCE(event->pmu->count);
3322
3323 /*
3324 * If the event is currently on this CPU, its either a per-task event,
3325 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3326 * oncpu == -1).
3327 */
3328 if (event->oncpu == smp_processor_id())
3329 event->pmu->read(event);
3330
3331 val = local64_read(&event->count);
3332 local_irq_restore(flags);
3333
3334 return val;
3335}
3336
7d88962e 3337static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3338{
7d88962e
SB
3339 int ret = 0;
3340
0793a61d 3341 /*
cdd6c482
IM
3342 * If event is enabled and currently active on a CPU, update the
3343 * value in the event structure:
0793a61d 3344 */
cdd6c482 3345 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3346 struct perf_read_data data = {
3347 .event = event,
3348 .group = group,
7d88962e 3349 .ret = 0,
0492d4c5 3350 };
cdd6c482 3351 smp_call_function_single(event->oncpu,
0492d4c5 3352 __perf_event_read, &data, 1);
7d88962e 3353 ret = data.ret;
cdd6c482 3354 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3355 struct perf_event_context *ctx = event->ctx;
3356 unsigned long flags;
3357
e625cce1 3358 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3359 /*
3360 * may read while context is not active
3361 * (e.g., thread is blocked), in that case
3362 * we cannot update context time
3363 */
e5d1367f 3364 if (ctx->is_active) {
c530ccd9 3365 update_context_time(ctx);
e5d1367f
SE
3366 update_cgrp_time_from_event(event);
3367 }
0492d4c5
PZ
3368 if (group)
3369 update_group_times(event);
3370 else
3371 update_event_times(event);
e625cce1 3372 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3373 }
7d88962e
SB
3374
3375 return ret;
0793a61d
TG
3376}
3377
a63eaf34 3378/*
cdd6c482 3379 * Initialize the perf_event context in a task_struct:
a63eaf34 3380 */
eb184479 3381static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3382{
e625cce1 3383 raw_spin_lock_init(&ctx->lock);
a63eaf34 3384 mutex_init(&ctx->mutex);
2fde4f94 3385 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3386 INIT_LIST_HEAD(&ctx->pinned_groups);
3387 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3388 INIT_LIST_HEAD(&ctx->event_list);
3389 atomic_set(&ctx->refcount, 1);
fadfe7be 3390 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3391}
3392
3393static struct perf_event_context *
3394alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3395{
3396 struct perf_event_context *ctx;
3397
3398 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3399 if (!ctx)
3400 return NULL;
3401
3402 __perf_event_init_context(ctx);
3403 if (task) {
3404 ctx->task = task;
3405 get_task_struct(task);
0793a61d 3406 }
eb184479
PZ
3407 ctx->pmu = pmu;
3408
3409 return ctx;
a63eaf34
PM
3410}
3411
2ebd4ffb
MH
3412static struct task_struct *
3413find_lively_task_by_vpid(pid_t vpid)
3414{
3415 struct task_struct *task;
3416 int err;
0793a61d
TG
3417
3418 rcu_read_lock();
2ebd4ffb 3419 if (!vpid)
0793a61d
TG
3420 task = current;
3421 else
2ebd4ffb 3422 task = find_task_by_vpid(vpid);
0793a61d
TG
3423 if (task)
3424 get_task_struct(task);
3425 rcu_read_unlock();
3426
3427 if (!task)
3428 return ERR_PTR(-ESRCH);
3429
0793a61d 3430 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3431 err = -EACCES;
3432 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3433 goto errout;
3434
2ebd4ffb
MH
3435 return task;
3436errout:
3437 put_task_struct(task);
3438 return ERR_PTR(err);
3439
3440}
3441
fe4b04fa
PZ
3442/*
3443 * Returns a matching context with refcount and pincount.
3444 */
108b02cf 3445static struct perf_event_context *
4af57ef2
YZ
3446find_get_context(struct pmu *pmu, struct task_struct *task,
3447 struct perf_event *event)
0793a61d 3448{
211de6eb 3449 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3450 struct perf_cpu_context *cpuctx;
4af57ef2 3451 void *task_ctx_data = NULL;
25346b93 3452 unsigned long flags;
8dc85d54 3453 int ctxn, err;
4af57ef2 3454 int cpu = event->cpu;
0793a61d 3455
22a4ec72 3456 if (!task) {
cdd6c482 3457 /* Must be root to operate on a CPU event: */
0764771d 3458 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3459 return ERR_PTR(-EACCES);
3460
0793a61d 3461 /*
cdd6c482 3462 * We could be clever and allow to attach a event to an
0793a61d
TG
3463 * offline CPU and activate it when the CPU comes up, but
3464 * that's for later.
3465 */
f6325e30 3466 if (!cpu_online(cpu))
0793a61d
TG
3467 return ERR_PTR(-ENODEV);
3468
108b02cf 3469 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3470 ctx = &cpuctx->ctx;
c93f7669 3471 get_ctx(ctx);
fe4b04fa 3472 ++ctx->pin_count;
0793a61d 3473
0793a61d
TG
3474 return ctx;
3475 }
3476
8dc85d54
PZ
3477 err = -EINVAL;
3478 ctxn = pmu->task_ctx_nr;
3479 if (ctxn < 0)
3480 goto errout;
3481
4af57ef2
YZ
3482 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3483 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3484 if (!task_ctx_data) {
3485 err = -ENOMEM;
3486 goto errout;
3487 }
3488 }
3489
9ed6060d 3490retry:
8dc85d54 3491 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3492 if (ctx) {
211de6eb 3493 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3494 ++ctx->pin_count;
4af57ef2
YZ
3495
3496 if (task_ctx_data && !ctx->task_ctx_data) {
3497 ctx->task_ctx_data = task_ctx_data;
3498 task_ctx_data = NULL;
3499 }
e625cce1 3500 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3501
3502 if (clone_ctx)
3503 put_ctx(clone_ctx);
9137fb28 3504 } else {
eb184479 3505 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3506 err = -ENOMEM;
3507 if (!ctx)
3508 goto errout;
eb184479 3509
4af57ef2
YZ
3510 if (task_ctx_data) {
3511 ctx->task_ctx_data = task_ctx_data;
3512 task_ctx_data = NULL;
3513 }
3514
dbe08d82
ON
3515 err = 0;
3516 mutex_lock(&task->perf_event_mutex);
3517 /*
3518 * If it has already passed perf_event_exit_task().
3519 * we must see PF_EXITING, it takes this mutex too.
3520 */
3521 if (task->flags & PF_EXITING)
3522 err = -ESRCH;
3523 else if (task->perf_event_ctxp[ctxn])
3524 err = -EAGAIN;
fe4b04fa 3525 else {
9137fb28 3526 get_ctx(ctx);
fe4b04fa 3527 ++ctx->pin_count;
dbe08d82 3528 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3529 }
dbe08d82
ON
3530 mutex_unlock(&task->perf_event_mutex);
3531
3532 if (unlikely(err)) {
9137fb28 3533 put_ctx(ctx);
dbe08d82
ON
3534
3535 if (err == -EAGAIN)
3536 goto retry;
3537 goto errout;
a63eaf34
PM
3538 }
3539 }
3540
4af57ef2 3541 kfree(task_ctx_data);
0793a61d 3542 return ctx;
c93f7669 3543
9ed6060d 3544errout:
4af57ef2 3545 kfree(task_ctx_data);
c93f7669 3546 return ERR_PTR(err);
0793a61d
TG
3547}
3548
6fb2915d 3549static void perf_event_free_filter(struct perf_event *event);
2541517c 3550static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3551
cdd6c482 3552static void free_event_rcu(struct rcu_head *head)
592903cd 3553{
cdd6c482 3554 struct perf_event *event;
592903cd 3555
cdd6c482
IM
3556 event = container_of(head, struct perf_event, rcu_head);
3557 if (event->ns)
3558 put_pid_ns(event->ns);
6fb2915d 3559 perf_event_free_filter(event);
cdd6c482 3560 kfree(event);
592903cd
PZ
3561}
3562
b69cf536
PZ
3563static void ring_buffer_attach(struct perf_event *event,
3564 struct ring_buffer *rb);
925d519a 3565
4beb31f3 3566static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3567{
4beb31f3
FW
3568 if (event->parent)
3569 return;
3570
4beb31f3
FW
3571 if (is_cgroup_event(event))
3572 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3573}
925d519a 3574
4beb31f3
FW
3575static void unaccount_event(struct perf_event *event)
3576{
3577 if (event->parent)
3578 return;
3579
3580 if (event->attach_state & PERF_ATTACH_TASK)
3581 static_key_slow_dec_deferred(&perf_sched_events);
3582 if (event->attr.mmap || event->attr.mmap_data)
3583 atomic_dec(&nr_mmap_events);
3584 if (event->attr.comm)
3585 atomic_dec(&nr_comm_events);
3586 if (event->attr.task)
3587 atomic_dec(&nr_task_events);
948b26b6
FW
3588 if (event->attr.freq)
3589 atomic_dec(&nr_freq_events);
45ac1403
AH
3590 if (event->attr.context_switch) {
3591 static_key_slow_dec_deferred(&perf_sched_events);
3592 atomic_dec(&nr_switch_events);
3593 }
4beb31f3
FW
3594 if (is_cgroup_event(event))
3595 static_key_slow_dec_deferred(&perf_sched_events);
3596 if (has_branch_stack(event))
3597 static_key_slow_dec_deferred(&perf_sched_events);
3598
3599 unaccount_event_cpu(event, event->cpu);
3600}
925d519a 3601
bed5b25a
AS
3602/*
3603 * The following implement mutual exclusion of events on "exclusive" pmus
3604 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3605 * at a time, so we disallow creating events that might conflict, namely:
3606 *
3607 * 1) cpu-wide events in the presence of per-task events,
3608 * 2) per-task events in the presence of cpu-wide events,
3609 * 3) two matching events on the same context.
3610 *
3611 * The former two cases are handled in the allocation path (perf_event_alloc(),
3612 * __free_event()), the latter -- before the first perf_install_in_context().
3613 */
3614static int exclusive_event_init(struct perf_event *event)
3615{
3616 struct pmu *pmu = event->pmu;
3617
3618 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3619 return 0;
3620
3621 /*
3622 * Prevent co-existence of per-task and cpu-wide events on the
3623 * same exclusive pmu.
3624 *
3625 * Negative pmu::exclusive_cnt means there are cpu-wide
3626 * events on this "exclusive" pmu, positive means there are
3627 * per-task events.
3628 *
3629 * Since this is called in perf_event_alloc() path, event::ctx
3630 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3631 * to mean "per-task event", because unlike other attach states it
3632 * never gets cleared.
3633 */
3634 if (event->attach_state & PERF_ATTACH_TASK) {
3635 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3636 return -EBUSY;
3637 } else {
3638 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3639 return -EBUSY;
3640 }
3641
3642 return 0;
3643}
3644
3645static void exclusive_event_destroy(struct perf_event *event)
3646{
3647 struct pmu *pmu = event->pmu;
3648
3649 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3650 return;
3651
3652 /* see comment in exclusive_event_init() */
3653 if (event->attach_state & PERF_ATTACH_TASK)
3654 atomic_dec(&pmu->exclusive_cnt);
3655 else
3656 atomic_inc(&pmu->exclusive_cnt);
3657}
3658
3659static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3660{
3661 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3662 (e1->cpu == e2->cpu ||
3663 e1->cpu == -1 ||
3664 e2->cpu == -1))
3665 return true;
3666 return false;
3667}
3668
3669/* Called under the same ctx::mutex as perf_install_in_context() */
3670static bool exclusive_event_installable(struct perf_event *event,
3671 struct perf_event_context *ctx)
3672{
3673 struct perf_event *iter_event;
3674 struct pmu *pmu = event->pmu;
3675
3676 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3677 return true;
3678
3679 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3680 if (exclusive_event_match(iter_event, event))
3681 return false;
3682 }
3683
3684 return true;
3685}
3686
766d6c07
FW
3687static void __free_event(struct perf_event *event)
3688{
cdd6c482 3689 if (!event->parent) {
927c7a9e
FW
3690 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3691 put_callchain_buffers();
f344011c 3692 }
9ee318a7 3693
dead9f29
AS
3694 perf_event_free_bpf_prog(event);
3695
766d6c07
FW
3696 if (event->destroy)
3697 event->destroy(event);
3698
3699 if (event->ctx)
3700 put_ctx(event->ctx);
3701
bed5b25a
AS
3702 if (event->pmu) {
3703 exclusive_event_destroy(event);
c464c76e 3704 module_put(event->pmu->module);
bed5b25a 3705 }
c464c76e 3706
766d6c07
FW
3707 call_rcu(&event->rcu_head, free_event_rcu);
3708}
683ede43
PZ
3709
3710static void _free_event(struct perf_event *event)
f1600952 3711{
e360adbe 3712 irq_work_sync(&event->pending);
925d519a 3713
4beb31f3 3714 unaccount_event(event);
9ee318a7 3715
76369139 3716 if (event->rb) {
9bb5d40c
PZ
3717 /*
3718 * Can happen when we close an event with re-directed output.
3719 *
3720 * Since we have a 0 refcount, perf_mmap_close() will skip
3721 * over us; possibly making our ring_buffer_put() the last.
3722 */
3723 mutex_lock(&event->mmap_mutex);
b69cf536 3724 ring_buffer_attach(event, NULL);
9bb5d40c 3725 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3726 }
3727
e5d1367f
SE
3728 if (is_cgroup_event(event))
3729 perf_detach_cgroup(event);
3730
766d6c07 3731 __free_event(event);
f1600952
PZ
3732}
3733
683ede43
PZ
3734/*
3735 * Used to free events which have a known refcount of 1, such as in error paths
3736 * where the event isn't exposed yet and inherited events.
3737 */
3738static void free_event(struct perf_event *event)
0793a61d 3739{
683ede43
PZ
3740 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3741 "unexpected event refcount: %ld; ptr=%p\n",
3742 atomic_long_read(&event->refcount), event)) {
3743 /* leak to avoid use-after-free */
3744 return;
3745 }
0793a61d 3746
683ede43 3747 _free_event(event);
0793a61d
TG
3748}
3749
a66a3052 3750/*
f8697762 3751 * Remove user event from the owner task.
a66a3052 3752 */
f8697762 3753static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3754{
8882135b 3755 struct task_struct *owner;
fb0459d7 3756
8882135b
PZ
3757 rcu_read_lock();
3758 owner = ACCESS_ONCE(event->owner);
3759 /*
3760 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3761 * !owner it means the list deletion is complete and we can indeed
3762 * free this event, otherwise we need to serialize on
3763 * owner->perf_event_mutex.
3764 */
3765 smp_read_barrier_depends();
3766 if (owner) {
3767 /*
3768 * Since delayed_put_task_struct() also drops the last
3769 * task reference we can safely take a new reference
3770 * while holding the rcu_read_lock().
3771 */
3772 get_task_struct(owner);
3773 }
3774 rcu_read_unlock();
3775
3776 if (owner) {
f63a8daa
PZ
3777 /*
3778 * If we're here through perf_event_exit_task() we're already
3779 * holding ctx->mutex which would be an inversion wrt. the
3780 * normal lock order.
3781 *
3782 * However we can safely take this lock because its the child
3783 * ctx->mutex.
3784 */
3785 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3786
8882135b
PZ
3787 /*
3788 * We have to re-check the event->owner field, if it is cleared
3789 * we raced with perf_event_exit_task(), acquiring the mutex
3790 * ensured they're done, and we can proceed with freeing the
3791 * event.
3792 */
3793 if (event->owner)
3794 list_del_init(&event->owner_entry);
3795 mutex_unlock(&owner->perf_event_mutex);
3796 put_task_struct(owner);
3797 }
f8697762
JO
3798}
3799
f8697762
JO
3800static void put_event(struct perf_event *event)
3801{
a83fe28e 3802 struct perf_event_context *ctx;
f8697762
JO
3803
3804 if (!atomic_long_dec_and_test(&event->refcount))
3805 return;
3806
3807 if (!is_kernel_event(event))
3808 perf_remove_from_owner(event);
8882135b 3809
683ede43
PZ
3810 /*
3811 * There are two ways this annotation is useful:
3812 *
3813 * 1) there is a lock recursion from perf_event_exit_task
3814 * see the comment there.
3815 *
3816 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3817 * perf_read_group(), which takes faults while
683ede43
PZ
3818 * holding ctx->mutex, however this is called after
3819 * the last filedesc died, so there is no possibility
3820 * to trigger the AB-BA case.
3821 */
a83fe28e
PZ
3822 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3823 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3824 perf_remove_from_context(event, true);
d415a7f1 3825 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3826
3827 _free_event(event);
a6fa941d
AV
3828}
3829
683ede43
PZ
3830int perf_event_release_kernel(struct perf_event *event)
3831{
3832 put_event(event);
3833 return 0;
3834}
3835EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3836
8b10c5e2
PZ
3837/*
3838 * Called when the last reference to the file is gone.
3839 */
a6fa941d
AV
3840static int perf_release(struct inode *inode, struct file *file)
3841{
3842 put_event(file->private_data);
3843 return 0;
fb0459d7 3844}
fb0459d7 3845
fadfe7be
JO
3846/*
3847 * Remove all orphanes events from the context.
3848 */
3849static void orphans_remove_work(struct work_struct *work)
3850{
3851 struct perf_event_context *ctx;
3852 struct perf_event *event, *tmp;
3853
3854 ctx = container_of(work, struct perf_event_context,
3855 orphans_remove.work);
3856
3857 mutex_lock(&ctx->mutex);
3858 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3859 struct perf_event *parent_event = event->parent;
3860
3861 if (!is_orphaned_child(event))
3862 continue;
3863
3864 perf_remove_from_context(event, true);
3865
3866 mutex_lock(&parent_event->child_mutex);
3867 list_del_init(&event->child_list);
3868 mutex_unlock(&parent_event->child_mutex);
3869
3870 free_event(event);
3871 put_event(parent_event);
3872 }
3873
3874 raw_spin_lock_irq(&ctx->lock);
3875 ctx->orphans_remove_sched = false;
3876 raw_spin_unlock_irq(&ctx->lock);
3877 mutex_unlock(&ctx->mutex);
3878
3879 put_ctx(ctx);
3880}
3881
59ed446f 3882u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3883{
cdd6c482 3884 struct perf_event *child;
e53c0994
PZ
3885 u64 total = 0;
3886
59ed446f
PZ
3887 *enabled = 0;
3888 *running = 0;
3889
6f10581a 3890 mutex_lock(&event->child_mutex);
01add3ea 3891
7d88962e 3892 (void)perf_event_read(event, false);
01add3ea
SB
3893 total += perf_event_count(event);
3894
59ed446f
PZ
3895 *enabled += event->total_time_enabled +
3896 atomic64_read(&event->child_total_time_enabled);
3897 *running += event->total_time_running +
3898 atomic64_read(&event->child_total_time_running);
3899
3900 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3901 (void)perf_event_read(child, false);
01add3ea 3902 total += perf_event_count(child);
59ed446f
PZ
3903 *enabled += child->total_time_enabled;
3904 *running += child->total_time_running;
3905 }
6f10581a 3906 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3907
3908 return total;
3909}
fb0459d7 3910EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3911
7d88962e 3912static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3913 u64 read_format, u64 *values)
3dab77fb 3914{
fa8c2693
PZ
3915 struct perf_event *sub;
3916 int n = 1; /* skip @nr */
7d88962e 3917 int ret;
f63a8daa 3918
7d88962e
SB
3919 ret = perf_event_read(leader, true);
3920 if (ret)
3921 return ret;
abf4868b 3922
fa8c2693
PZ
3923 /*
3924 * Since we co-schedule groups, {enabled,running} times of siblings
3925 * will be identical to those of the leader, so we only publish one
3926 * set.
3927 */
3928 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3929 values[n++] += leader->total_time_enabled +
3930 atomic64_read(&leader->child_total_time_enabled);
3931 }
3dab77fb 3932
fa8c2693
PZ
3933 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3934 values[n++] += leader->total_time_running +
3935 atomic64_read(&leader->child_total_time_running);
3936 }
3937
3938 /*
3939 * Write {count,id} tuples for every sibling.
3940 */
3941 values[n++] += perf_event_count(leader);
abf4868b
PZ
3942 if (read_format & PERF_FORMAT_ID)
3943 values[n++] = primary_event_id(leader);
3dab77fb 3944
fa8c2693
PZ
3945 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3946 values[n++] += perf_event_count(sub);
3947 if (read_format & PERF_FORMAT_ID)
3948 values[n++] = primary_event_id(sub);
3949 }
7d88962e
SB
3950
3951 return 0;
fa8c2693 3952}
3dab77fb 3953
fa8c2693
PZ
3954static int perf_read_group(struct perf_event *event,
3955 u64 read_format, char __user *buf)
3956{
3957 struct perf_event *leader = event->group_leader, *child;
3958 struct perf_event_context *ctx = leader->ctx;
7d88962e 3959 int ret;
fa8c2693 3960 u64 *values;
3dab77fb 3961
fa8c2693 3962 lockdep_assert_held(&ctx->mutex);
3dab77fb 3963
fa8c2693
PZ
3964 values = kzalloc(event->read_size, GFP_KERNEL);
3965 if (!values)
3966 return -ENOMEM;
3dab77fb 3967
fa8c2693
PZ
3968 values[0] = 1 + leader->nr_siblings;
3969
3970 /*
3971 * By locking the child_mutex of the leader we effectively
3972 * lock the child list of all siblings.. XXX explain how.
3973 */
3974 mutex_lock(&leader->child_mutex);
abf4868b 3975
7d88962e
SB
3976 ret = __perf_read_group_add(leader, read_format, values);
3977 if (ret)
3978 goto unlock;
3979
3980 list_for_each_entry(child, &leader->child_list, child_list) {
3981 ret = __perf_read_group_add(child, read_format, values);
3982 if (ret)
3983 goto unlock;
3984 }
abf4868b 3985
fa8c2693 3986 mutex_unlock(&leader->child_mutex);
abf4868b 3987
7d88962e 3988 ret = event->read_size;
fa8c2693
PZ
3989 if (copy_to_user(buf, values, event->read_size))
3990 ret = -EFAULT;
7d88962e 3991 goto out;
fa8c2693 3992
7d88962e
SB
3993unlock:
3994 mutex_unlock(&leader->child_mutex);
3995out:
fa8c2693 3996 kfree(values);
abf4868b 3997 return ret;
3dab77fb
PZ
3998}
3999
b15f495b 4000static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4001 u64 read_format, char __user *buf)
4002{
59ed446f 4003 u64 enabled, running;
3dab77fb
PZ
4004 u64 values[4];
4005 int n = 0;
4006
59ed446f
PZ
4007 values[n++] = perf_event_read_value(event, &enabled, &running);
4008 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4009 values[n++] = enabled;
4010 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4011 values[n++] = running;
3dab77fb 4012 if (read_format & PERF_FORMAT_ID)
cdd6c482 4013 values[n++] = primary_event_id(event);
3dab77fb
PZ
4014
4015 if (copy_to_user(buf, values, n * sizeof(u64)))
4016 return -EFAULT;
4017
4018 return n * sizeof(u64);
4019}
4020
dc633982
JO
4021static bool is_event_hup(struct perf_event *event)
4022{
4023 bool no_children;
4024
4025 if (event->state != PERF_EVENT_STATE_EXIT)
4026 return false;
4027
4028 mutex_lock(&event->child_mutex);
4029 no_children = list_empty(&event->child_list);
4030 mutex_unlock(&event->child_mutex);
4031 return no_children;
4032}
4033
0793a61d 4034/*
cdd6c482 4035 * Read the performance event - simple non blocking version for now
0793a61d
TG
4036 */
4037static ssize_t
b15f495b 4038__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4039{
cdd6c482 4040 u64 read_format = event->attr.read_format;
3dab77fb 4041 int ret;
0793a61d 4042
3b6f9e5c 4043 /*
cdd6c482 4044 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4045 * error state (i.e. because it was pinned but it couldn't be
4046 * scheduled on to the CPU at some point).
4047 */
cdd6c482 4048 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4049 return 0;
4050
c320c7b7 4051 if (count < event->read_size)
3dab77fb
PZ
4052 return -ENOSPC;
4053
cdd6c482 4054 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4055 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4056 ret = perf_read_group(event, read_format, buf);
3dab77fb 4057 else
b15f495b 4058 ret = perf_read_one(event, read_format, buf);
0793a61d 4059
3dab77fb 4060 return ret;
0793a61d
TG
4061}
4062
0793a61d
TG
4063static ssize_t
4064perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4065{
cdd6c482 4066 struct perf_event *event = file->private_data;
f63a8daa
PZ
4067 struct perf_event_context *ctx;
4068 int ret;
0793a61d 4069
f63a8daa 4070 ctx = perf_event_ctx_lock(event);
b15f495b 4071 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4072 perf_event_ctx_unlock(event, ctx);
4073
4074 return ret;
0793a61d
TG
4075}
4076
4077static unsigned int perf_poll(struct file *file, poll_table *wait)
4078{
cdd6c482 4079 struct perf_event *event = file->private_data;
76369139 4080 struct ring_buffer *rb;
61b67684 4081 unsigned int events = POLLHUP;
c7138f37 4082
e708d7ad 4083 poll_wait(file, &event->waitq, wait);
179033b3 4084
dc633982 4085 if (is_event_hup(event))
179033b3 4086 return events;
c7138f37 4087
10c6db11 4088 /*
9bb5d40c
PZ
4089 * Pin the event->rb by taking event->mmap_mutex; otherwise
4090 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4091 */
4092 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4093 rb = event->rb;
4094 if (rb)
76369139 4095 events = atomic_xchg(&rb->poll, 0);
10c6db11 4096 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4097 return events;
4098}
4099
f63a8daa 4100static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4101{
7d88962e 4102 (void)perf_event_read(event, false);
e7850595 4103 local64_set(&event->count, 0);
cdd6c482 4104 perf_event_update_userpage(event);
3df5edad
PZ
4105}
4106
c93f7669 4107/*
cdd6c482
IM
4108 * Holding the top-level event's child_mutex means that any
4109 * descendant process that has inherited this event will block
4110 * in sync_child_event if it goes to exit, thus satisfying the
4111 * task existence requirements of perf_event_enable/disable.
c93f7669 4112 */
cdd6c482
IM
4113static void perf_event_for_each_child(struct perf_event *event,
4114 void (*func)(struct perf_event *))
3df5edad 4115{
cdd6c482 4116 struct perf_event *child;
3df5edad 4117
cdd6c482 4118 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4119
cdd6c482
IM
4120 mutex_lock(&event->child_mutex);
4121 func(event);
4122 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4123 func(child);
cdd6c482 4124 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4125}
4126
cdd6c482
IM
4127static void perf_event_for_each(struct perf_event *event,
4128 void (*func)(struct perf_event *))
3df5edad 4129{
cdd6c482
IM
4130 struct perf_event_context *ctx = event->ctx;
4131 struct perf_event *sibling;
3df5edad 4132
f63a8daa
PZ
4133 lockdep_assert_held(&ctx->mutex);
4134
cdd6c482 4135 event = event->group_leader;
75f937f2 4136
cdd6c482 4137 perf_event_for_each_child(event, func);
cdd6c482 4138 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4139 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4140}
4141
c7999c6f
PZ
4142struct period_event {
4143 struct perf_event *event;
08247e31 4144 u64 value;
c7999c6f 4145};
08247e31 4146
c7999c6f
PZ
4147static int __perf_event_period(void *info)
4148{
4149 struct period_event *pe = info;
4150 struct perf_event *event = pe->event;
4151 struct perf_event_context *ctx = event->ctx;
4152 u64 value = pe->value;
4153 bool active;
08247e31 4154
c7999c6f 4155 raw_spin_lock(&ctx->lock);
cdd6c482 4156 if (event->attr.freq) {
cdd6c482 4157 event->attr.sample_freq = value;
08247e31 4158 } else {
cdd6c482
IM
4159 event->attr.sample_period = value;
4160 event->hw.sample_period = value;
08247e31 4161 }
bad7192b
PZ
4162
4163 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4164 if (active) {
4165 perf_pmu_disable(ctx->pmu);
4166 event->pmu->stop(event, PERF_EF_UPDATE);
4167 }
4168
4169 local64_set(&event->hw.period_left, 0);
4170
4171 if (active) {
4172 event->pmu->start(event, PERF_EF_RELOAD);
4173 perf_pmu_enable(ctx->pmu);
4174 }
c7999c6f 4175 raw_spin_unlock(&ctx->lock);
bad7192b 4176
c7999c6f
PZ
4177 return 0;
4178}
4179
4180static int perf_event_period(struct perf_event *event, u64 __user *arg)
4181{
4182 struct period_event pe = { .event = event, };
4183 struct perf_event_context *ctx = event->ctx;
4184 struct task_struct *task;
4185 u64 value;
4186
4187 if (!is_sampling_event(event))
4188 return -EINVAL;
4189
4190 if (copy_from_user(&value, arg, sizeof(value)))
4191 return -EFAULT;
4192
4193 if (!value)
4194 return -EINVAL;
4195
4196 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4197 return -EINVAL;
4198
4199 task = ctx->task;
4200 pe.value = value;
4201
4202 if (!task) {
4203 cpu_function_call(event->cpu, __perf_event_period, &pe);
4204 return 0;
4205 }
4206
4207retry:
4208 if (!task_function_call(task, __perf_event_period, &pe))
4209 return 0;
4210
4211 raw_spin_lock_irq(&ctx->lock);
4212 if (ctx->is_active) {
4213 raw_spin_unlock_irq(&ctx->lock);
4214 task = ctx->task;
4215 goto retry;
4216 }
4217
4218 __perf_event_period(&pe);
e625cce1 4219 raw_spin_unlock_irq(&ctx->lock);
08247e31 4220
c7999c6f 4221 return 0;
08247e31
PZ
4222}
4223
ac9721f3
PZ
4224static const struct file_operations perf_fops;
4225
2903ff01 4226static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4227{
2903ff01
AV
4228 struct fd f = fdget(fd);
4229 if (!f.file)
4230 return -EBADF;
ac9721f3 4231
2903ff01
AV
4232 if (f.file->f_op != &perf_fops) {
4233 fdput(f);
4234 return -EBADF;
ac9721f3 4235 }
2903ff01
AV
4236 *p = f;
4237 return 0;
ac9721f3
PZ
4238}
4239
4240static int perf_event_set_output(struct perf_event *event,
4241 struct perf_event *output_event);
6fb2915d 4242static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4243static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4244
f63a8daa 4245static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4246{
cdd6c482 4247 void (*func)(struct perf_event *);
3df5edad 4248 u32 flags = arg;
d859e29f
PM
4249
4250 switch (cmd) {
cdd6c482 4251 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4252 func = _perf_event_enable;
d859e29f 4253 break;
cdd6c482 4254 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4255 func = _perf_event_disable;
79f14641 4256 break;
cdd6c482 4257 case PERF_EVENT_IOC_RESET:
f63a8daa 4258 func = _perf_event_reset;
6de6a7b9 4259 break;
3df5edad 4260
cdd6c482 4261 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4262 return _perf_event_refresh(event, arg);
08247e31 4263
cdd6c482
IM
4264 case PERF_EVENT_IOC_PERIOD:
4265 return perf_event_period(event, (u64 __user *)arg);
08247e31 4266
cf4957f1
JO
4267 case PERF_EVENT_IOC_ID:
4268 {
4269 u64 id = primary_event_id(event);
4270
4271 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4272 return -EFAULT;
4273 return 0;
4274 }
4275
cdd6c482 4276 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4277 {
ac9721f3 4278 int ret;
ac9721f3 4279 if (arg != -1) {
2903ff01
AV
4280 struct perf_event *output_event;
4281 struct fd output;
4282 ret = perf_fget_light(arg, &output);
4283 if (ret)
4284 return ret;
4285 output_event = output.file->private_data;
4286 ret = perf_event_set_output(event, output_event);
4287 fdput(output);
4288 } else {
4289 ret = perf_event_set_output(event, NULL);
ac9721f3 4290 }
ac9721f3
PZ
4291 return ret;
4292 }
a4be7c27 4293
6fb2915d
LZ
4294 case PERF_EVENT_IOC_SET_FILTER:
4295 return perf_event_set_filter(event, (void __user *)arg);
4296
2541517c
AS
4297 case PERF_EVENT_IOC_SET_BPF:
4298 return perf_event_set_bpf_prog(event, arg);
4299
d859e29f 4300 default:
3df5edad 4301 return -ENOTTY;
d859e29f 4302 }
3df5edad
PZ
4303
4304 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4305 perf_event_for_each(event, func);
3df5edad 4306 else
cdd6c482 4307 perf_event_for_each_child(event, func);
3df5edad
PZ
4308
4309 return 0;
d859e29f
PM
4310}
4311
f63a8daa
PZ
4312static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4313{
4314 struct perf_event *event = file->private_data;
4315 struct perf_event_context *ctx;
4316 long ret;
4317
4318 ctx = perf_event_ctx_lock(event);
4319 ret = _perf_ioctl(event, cmd, arg);
4320 perf_event_ctx_unlock(event, ctx);
4321
4322 return ret;
4323}
4324
b3f20785
PM
4325#ifdef CONFIG_COMPAT
4326static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4327 unsigned long arg)
4328{
4329 switch (_IOC_NR(cmd)) {
4330 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4331 case _IOC_NR(PERF_EVENT_IOC_ID):
4332 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4333 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4334 cmd &= ~IOCSIZE_MASK;
4335 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4336 }
4337 break;
4338 }
4339 return perf_ioctl(file, cmd, arg);
4340}
4341#else
4342# define perf_compat_ioctl NULL
4343#endif
4344
cdd6c482 4345int perf_event_task_enable(void)
771d7cde 4346{
f63a8daa 4347 struct perf_event_context *ctx;
cdd6c482 4348 struct perf_event *event;
771d7cde 4349
cdd6c482 4350 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4351 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4352 ctx = perf_event_ctx_lock(event);
4353 perf_event_for_each_child(event, _perf_event_enable);
4354 perf_event_ctx_unlock(event, ctx);
4355 }
cdd6c482 4356 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4357
4358 return 0;
4359}
4360
cdd6c482 4361int perf_event_task_disable(void)
771d7cde 4362{
f63a8daa 4363 struct perf_event_context *ctx;
cdd6c482 4364 struct perf_event *event;
771d7cde 4365
cdd6c482 4366 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4367 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4368 ctx = perf_event_ctx_lock(event);
4369 perf_event_for_each_child(event, _perf_event_disable);
4370 perf_event_ctx_unlock(event, ctx);
4371 }
cdd6c482 4372 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4373
4374 return 0;
4375}
4376
cdd6c482 4377static int perf_event_index(struct perf_event *event)
194002b2 4378{
a4eaf7f1
PZ
4379 if (event->hw.state & PERF_HES_STOPPED)
4380 return 0;
4381
cdd6c482 4382 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4383 return 0;
4384
35edc2a5 4385 return event->pmu->event_idx(event);
194002b2
PZ
4386}
4387
c4794295 4388static void calc_timer_values(struct perf_event *event,
e3f3541c 4389 u64 *now,
7f310a5d
EM
4390 u64 *enabled,
4391 u64 *running)
c4794295 4392{
e3f3541c 4393 u64 ctx_time;
c4794295 4394
e3f3541c
PZ
4395 *now = perf_clock();
4396 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4397 *enabled = ctx_time - event->tstamp_enabled;
4398 *running = ctx_time - event->tstamp_running;
4399}
4400
fa731587
PZ
4401static void perf_event_init_userpage(struct perf_event *event)
4402{
4403 struct perf_event_mmap_page *userpg;
4404 struct ring_buffer *rb;
4405
4406 rcu_read_lock();
4407 rb = rcu_dereference(event->rb);
4408 if (!rb)
4409 goto unlock;
4410
4411 userpg = rb->user_page;
4412
4413 /* Allow new userspace to detect that bit 0 is deprecated */
4414 userpg->cap_bit0_is_deprecated = 1;
4415 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4416 userpg->data_offset = PAGE_SIZE;
4417 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4418
4419unlock:
4420 rcu_read_unlock();
4421}
4422
c1317ec2
AL
4423void __weak arch_perf_update_userpage(
4424 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4425{
4426}
4427
38ff667b
PZ
4428/*
4429 * Callers need to ensure there can be no nesting of this function, otherwise
4430 * the seqlock logic goes bad. We can not serialize this because the arch
4431 * code calls this from NMI context.
4432 */
cdd6c482 4433void perf_event_update_userpage(struct perf_event *event)
37d81828 4434{
cdd6c482 4435 struct perf_event_mmap_page *userpg;
76369139 4436 struct ring_buffer *rb;
e3f3541c 4437 u64 enabled, running, now;
38ff667b
PZ
4438
4439 rcu_read_lock();
5ec4c599
PZ
4440 rb = rcu_dereference(event->rb);
4441 if (!rb)
4442 goto unlock;
4443
0d641208
EM
4444 /*
4445 * compute total_time_enabled, total_time_running
4446 * based on snapshot values taken when the event
4447 * was last scheduled in.
4448 *
4449 * we cannot simply called update_context_time()
4450 * because of locking issue as we can be called in
4451 * NMI context
4452 */
e3f3541c 4453 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4454
76369139 4455 userpg = rb->user_page;
7b732a75
PZ
4456 /*
4457 * Disable preemption so as to not let the corresponding user-space
4458 * spin too long if we get preempted.
4459 */
4460 preempt_disable();
37d81828 4461 ++userpg->lock;
92f22a38 4462 barrier();
cdd6c482 4463 userpg->index = perf_event_index(event);
b5e58793 4464 userpg->offset = perf_event_count(event);
365a4038 4465 if (userpg->index)
e7850595 4466 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4467
0d641208 4468 userpg->time_enabled = enabled +
cdd6c482 4469 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4470
0d641208 4471 userpg->time_running = running +
cdd6c482 4472 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4473
c1317ec2 4474 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4475
92f22a38 4476 barrier();
37d81828 4477 ++userpg->lock;
7b732a75 4478 preempt_enable();
38ff667b 4479unlock:
7b732a75 4480 rcu_read_unlock();
37d81828
PM
4481}
4482
906010b2
PZ
4483static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4484{
4485 struct perf_event *event = vma->vm_file->private_data;
76369139 4486 struct ring_buffer *rb;
906010b2
PZ
4487 int ret = VM_FAULT_SIGBUS;
4488
4489 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4490 if (vmf->pgoff == 0)
4491 ret = 0;
4492 return ret;
4493 }
4494
4495 rcu_read_lock();
76369139
FW
4496 rb = rcu_dereference(event->rb);
4497 if (!rb)
906010b2
PZ
4498 goto unlock;
4499
4500 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4501 goto unlock;
4502
76369139 4503 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4504 if (!vmf->page)
4505 goto unlock;
4506
4507 get_page(vmf->page);
4508 vmf->page->mapping = vma->vm_file->f_mapping;
4509 vmf->page->index = vmf->pgoff;
4510
4511 ret = 0;
4512unlock:
4513 rcu_read_unlock();
4514
4515 return ret;
4516}
4517
10c6db11
PZ
4518static void ring_buffer_attach(struct perf_event *event,
4519 struct ring_buffer *rb)
4520{
b69cf536 4521 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4522 unsigned long flags;
4523
b69cf536
PZ
4524 if (event->rb) {
4525 /*
4526 * Should be impossible, we set this when removing
4527 * event->rb_entry and wait/clear when adding event->rb_entry.
4528 */
4529 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4530
b69cf536 4531 old_rb = event->rb;
b69cf536
PZ
4532 spin_lock_irqsave(&old_rb->event_lock, flags);
4533 list_del_rcu(&event->rb_entry);
4534 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4535
2f993cf0
ON
4536 event->rcu_batches = get_state_synchronize_rcu();
4537 event->rcu_pending = 1;
b69cf536 4538 }
10c6db11 4539
b69cf536 4540 if (rb) {
2f993cf0
ON
4541 if (event->rcu_pending) {
4542 cond_synchronize_rcu(event->rcu_batches);
4543 event->rcu_pending = 0;
4544 }
4545
b69cf536
PZ
4546 spin_lock_irqsave(&rb->event_lock, flags);
4547 list_add_rcu(&event->rb_entry, &rb->event_list);
4548 spin_unlock_irqrestore(&rb->event_lock, flags);
4549 }
4550
4551 rcu_assign_pointer(event->rb, rb);
4552
4553 if (old_rb) {
4554 ring_buffer_put(old_rb);
4555 /*
4556 * Since we detached before setting the new rb, so that we
4557 * could attach the new rb, we could have missed a wakeup.
4558 * Provide it now.
4559 */
4560 wake_up_all(&event->waitq);
4561 }
10c6db11
PZ
4562}
4563
4564static void ring_buffer_wakeup(struct perf_event *event)
4565{
4566 struct ring_buffer *rb;
4567
4568 rcu_read_lock();
4569 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4570 if (rb) {
4571 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4572 wake_up_all(&event->waitq);
4573 }
10c6db11
PZ
4574 rcu_read_unlock();
4575}
4576
fdc26706 4577struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4578{
76369139 4579 struct ring_buffer *rb;
7b732a75 4580
ac9721f3 4581 rcu_read_lock();
76369139
FW
4582 rb = rcu_dereference(event->rb);
4583 if (rb) {
4584 if (!atomic_inc_not_zero(&rb->refcount))
4585 rb = NULL;
ac9721f3
PZ
4586 }
4587 rcu_read_unlock();
4588
76369139 4589 return rb;
ac9721f3
PZ
4590}
4591
fdc26706 4592void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4593{
76369139 4594 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4595 return;
7b732a75 4596
9bb5d40c 4597 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4598
76369139 4599 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4600}
4601
4602static void perf_mmap_open(struct vm_area_struct *vma)
4603{
cdd6c482 4604 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4605
cdd6c482 4606 atomic_inc(&event->mmap_count);
9bb5d40c 4607 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4608
45bfb2e5
PZ
4609 if (vma->vm_pgoff)
4610 atomic_inc(&event->rb->aux_mmap_count);
4611
1e0fb9ec
AL
4612 if (event->pmu->event_mapped)
4613 event->pmu->event_mapped(event);
7b732a75
PZ
4614}
4615
9bb5d40c
PZ
4616/*
4617 * A buffer can be mmap()ed multiple times; either directly through the same
4618 * event, or through other events by use of perf_event_set_output().
4619 *
4620 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4621 * the buffer here, where we still have a VM context. This means we need
4622 * to detach all events redirecting to us.
4623 */
7b732a75
PZ
4624static void perf_mmap_close(struct vm_area_struct *vma)
4625{
cdd6c482 4626 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4627
b69cf536 4628 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4629 struct user_struct *mmap_user = rb->mmap_user;
4630 int mmap_locked = rb->mmap_locked;
4631 unsigned long size = perf_data_size(rb);
789f90fc 4632
1e0fb9ec
AL
4633 if (event->pmu->event_unmapped)
4634 event->pmu->event_unmapped(event);
4635
45bfb2e5
PZ
4636 /*
4637 * rb->aux_mmap_count will always drop before rb->mmap_count and
4638 * event->mmap_count, so it is ok to use event->mmap_mutex to
4639 * serialize with perf_mmap here.
4640 */
4641 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4642 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4643 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4644 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4645
4646 rb_free_aux(rb);
4647 mutex_unlock(&event->mmap_mutex);
4648 }
4649
9bb5d40c
PZ
4650 atomic_dec(&rb->mmap_count);
4651
4652 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4653 goto out_put;
9bb5d40c 4654
b69cf536 4655 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4656 mutex_unlock(&event->mmap_mutex);
4657
4658 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4659 if (atomic_read(&rb->mmap_count))
4660 goto out_put;
ac9721f3 4661
9bb5d40c
PZ
4662 /*
4663 * No other mmap()s, detach from all other events that might redirect
4664 * into the now unreachable buffer. Somewhat complicated by the
4665 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4666 */
4667again:
4668 rcu_read_lock();
4669 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4670 if (!atomic_long_inc_not_zero(&event->refcount)) {
4671 /*
4672 * This event is en-route to free_event() which will
4673 * detach it and remove it from the list.
4674 */
4675 continue;
4676 }
4677 rcu_read_unlock();
789f90fc 4678
9bb5d40c
PZ
4679 mutex_lock(&event->mmap_mutex);
4680 /*
4681 * Check we didn't race with perf_event_set_output() which can
4682 * swizzle the rb from under us while we were waiting to
4683 * acquire mmap_mutex.
4684 *
4685 * If we find a different rb; ignore this event, a next
4686 * iteration will no longer find it on the list. We have to
4687 * still restart the iteration to make sure we're not now
4688 * iterating the wrong list.
4689 */
b69cf536
PZ
4690 if (event->rb == rb)
4691 ring_buffer_attach(event, NULL);
4692
cdd6c482 4693 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4694 put_event(event);
ac9721f3 4695
9bb5d40c
PZ
4696 /*
4697 * Restart the iteration; either we're on the wrong list or
4698 * destroyed its integrity by doing a deletion.
4699 */
4700 goto again;
7b732a75 4701 }
9bb5d40c
PZ
4702 rcu_read_unlock();
4703
4704 /*
4705 * It could be there's still a few 0-ref events on the list; they'll
4706 * get cleaned up by free_event() -- they'll also still have their
4707 * ref on the rb and will free it whenever they are done with it.
4708 *
4709 * Aside from that, this buffer is 'fully' detached and unmapped,
4710 * undo the VM accounting.
4711 */
4712
4713 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4714 vma->vm_mm->pinned_vm -= mmap_locked;
4715 free_uid(mmap_user);
4716
b69cf536 4717out_put:
9bb5d40c 4718 ring_buffer_put(rb); /* could be last */
37d81828
PM
4719}
4720
f0f37e2f 4721static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4722 .open = perf_mmap_open,
45bfb2e5 4723 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4724 .fault = perf_mmap_fault,
4725 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4726};
4727
4728static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4729{
cdd6c482 4730 struct perf_event *event = file->private_data;
22a4f650 4731 unsigned long user_locked, user_lock_limit;
789f90fc 4732 struct user_struct *user = current_user();
22a4f650 4733 unsigned long locked, lock_limit;
45bfb2e5 4734 struct ring_buffer *rb = NULL;
7b732a75
PZ
4735 unsigned long vma_size;
4736 unsigned long nr_pages;
45bfb2e5 4737 long user_extra = 0, extra = 0;
d57e34fd 4738 int ret = 0, flags = 0;
37d81828 4739
c7920614
PZ
4740 /*
4741 * Don't allow mmap() of inherited per-task counters. This would
4742 * create a performance issue due to all children writing to the
76369139 4743 * same rb.
c7920614
PZ
4744 */
4745 if (event->cpu == -1 && event->attr.inherit)
4746 return -EINVAL;
4747
43a21ea8 4748 if (!(vma->vm_flags & VM_SHARED))
37d81828 4749 return -EINVAL;
7b732a75
PZ
4750
4751 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4752
4753 if (vma->vm_pgoff == 0) {
4754 nr_pages = (vma_size / PAGE_SIZE) - 1;
4755 } else {
4756 /*
4757 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4758 * mapped, all subsequent mappings should have the same size
4759 * and offset. Must be above the normal perf buffer.
4760 */
4761 u64 aux_offset, aux_size;
4762
4763 if (!event->rb)
4764 return -EINVAL;
4765
4766 nr_pages = vma_size / PAGE_SIZE;
4767
4768 mutex_lock(&event->mmap_mutex);
4769 ret = -EINVAL;
4770
4771 rb = event->rb;
4772 if (!rb)
4773 goto aux_unlock;
4774
4775 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4776 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4777
4778 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4779 goto aux_unlock;
4780
4781 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4782 goto aux_unlock;
4783
4784 /* already mapped with a different offset */
4785 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4786 goto aux_unlock;
4787
4788 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4789 goto aux_unlock;
4790
4791 /* already mapped with a different size */
4792 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4793 goto aux_unlock;
4794
4795 if (!is_power_of_2(nr_pages))
4796 goto aux_unlock;
4797
4798 if (!atomic_inc_not_zero(&rb->mmap_count))
4799 goto aux_unlock;
4800
4801 if (rb_has_aux(rb)) {
4802 atomic_inc(&rb->aux_mmap_count);
4803 ret = 0;
4804 goto unlock;
4805 }
4806
4807 atomic_set(&rb->aux_mmap_count, 1);
4808 user_extra = nr_pages;
4809
4810 goto accounting;
4811 }
7b732a75 4812
7730d865 4813 /*
76369139 4814 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4815 * can do bitmasks instead of modulo.
4816 */
2ed11312 4817 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4818 return -EINVAL;
4819
7b732a75 4820 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4821 return -EINVAL;
4822
cdd6c482 4823 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4824again:
cdd6c482 4825 mutex_lock(&event->mmap_mutex);
76369139 4826 if (event->rb) {
9bb5d40c 4827 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4828 ret = -EINVAL;
9bb5d40c
PZ
4829 goto unlock;
4830 }
4831
4832 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4833 /*
4834 * Raced against perf_mmap_close() through
4835 * perf_event_set_output(). Try again, hope for better
4836 * luck.
4837 */
4838 mutex_unlock(&event->mmap_mutex);
4839 goto again;
4840 }
4841
ebb3c4c4
PZ
4842 goto unlock;
4843 }
4844
789f90fc 4845 user_extra = nr_pages + 1;
45bfb2e5
PZ
4846
4847accounting:
cdd6c482 4848 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4849
4850 /*
4851 * Increase the limit linearly with more CPUs:
4852 */
4853 user_lock_limit *= num_online_cpus();
4854
789f90fc 4855 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4856
789f90fc
PZ
4857 if (user_locked > user_lock_limit)
4858 extra = user_locked - user_lock_limit;
7b732a75 4859
78d7d407 4860 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4861 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4862 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4863
459ec28a
IM
4864 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4865 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4866 ret = -EPERM;
4867 goto unlock;
4868 }
7b732a75 4869
45bfb2e5 4870 WARN_ON(!rb && event->rb);
906010b2 4871
d57e34fd 4872 if (vma->vm_flags & VM_WRITE)
76369139 4873 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4874
76369139 4875 if (!rb) {
45bfb2e5
PZ
4876 rb = rb_alloc(nr_pages,
4877 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4878 event->cpu, flags);
26cb63ad 4879
45bfb2e5
PZ
4880 if (!rb) {
4881 ret = -ENOMEM;
4882 goto unlock;
4883 }
43a21ea8 4884
45bfb2e5
PZ
4885 atomic_set(&rb->mmap_count, 1);
4886 rb->mmap_user = get_current_user();
4887 rb->mmap_locked = extra;
26cb63ad 4888
45bfb2e5 4889 ring_buffer_attach(event, rb);
ac9721f3 4890
45bfb2e5
PZ
4891 perf_event_init_userpage(event);
4892 perf_event_update_userpage(event);
4893 } else {
1a594131
AS
4894 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4895 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4896 if (!ret)
4897 rb->aux_mmap_locked = extra;
4898 }
9a0f05cb 4899
ebb3c4c4 4900unlock:
45bfb2e5
PZ
4901 if (!ret) {
4902 atomic_long_add(user_extra, &user->locked_vm);
4903 vma->vm_mm->pinned_vm += extra;
4904
ac9721f3 4905 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4906 } else if (rb) {
4907 atomic_dec(&rb->mmap_count);
4908 }
4909aux_unlock:
cdd6c482 4910 mutex_unlock(&event->mmap_mutex);
37d81828 4911
9bb5d40c
PZ
4912 /*
4913 * Since pinned accounting is per vm we cannot allow fork() to copy our
4914 * vma.
4915 */
26cb63ad 4916 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4917 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4918
1e0fb9ec
AL
4919 if (event->pmu->event_mapped)
4920 event->pmu->event_mapped(event);
4921
7b732a75 4922 return ret;
37d81828
PM
4923}
4924
3c446b3d
PZ
4925static int perf_fasync(int fd, struct file *filp, int on)
4926{
496ad9aa 4927 struct inode *inode = file_inode(filp);
cdd6c482 4928 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4929 int retval;
4930
4931 mutex_lock(&inode->i_mutex);
cdd6c482 4932 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4933 mutex_unlock(&inode->i_mutex);
4934
4935 if (retval < 0)
4936 return retval;
4937
4938 return 0;
4939}
4940
0793a61d 4941static const struct file_operations perf_fops = {
3326c1ce 4942 .llseek = no_llseek,
0793a61d
TG
4943 .release = perf_release,
4944 .read = perf_read,
4945 .poll = perf_poll,
d859e29f 4946 .unlocked_ioctl = perf_ioctl,
b3f20785 4947 .compat_ioctl = perf_compat_ioctl,
37d81828 4948 .mmap = perf_mmap,
3c446b3d 4949 .fasync = perf_fasync,
0793a61d
TG
4950};
4951
925d519a 4952/*
cdd6c482 4953 * Perf event wakeup
925d519a
PZ
4954 *
4955 * If there's data, ensure we set the poll() state and publish everything
4956 * to user-space before waking everybody up.
4957 */
4958
fed66e2c
PZ
4959static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4960{
4961 /* only the parent has fasync state */
4962 if (event->parent)
4963 event = event->parent;
4964 return &event->fasync;
4965}
4966
cdd6c482 4967void perf_event_wakeup(struct perf_event *event)
925d519a 4968{
10c6db11 4969 ring_buffer_wakeup(event);
4c9e2542 4970
cdd6c482 4971 if (event->pending_kill) {
fed66e2c 4972 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4973 event->pending_kill = 0;
4c9e2542 4974 }
925d519a
PZ
4975}
4976
e360adbe 4977static void perf_pending_event(struct irq_work *entry)
79f14641 4978{
cdd6c482
IM
4979 struct perf_event *event = container_of(entry,
4980 struct perf_event, pending);
d525211f
PZ
4981 int rctx;
4982
4983 rctx = perf_swevent_get_recursion_context();
4984 /*
4985 * If we 'fail' here, that's OK, it means recursion is already disabled
4986 * and we won't recurse 'further'.
4987 */
79f14641 4988
cdd6c482
IM
4989 if (event->pending_disable) {
4990 event->pending_disable = 0;
4991 __perf_event_disable(event);
79f14641
PZ
4992 }
4993
cdd6c482
IM
4994 if (event->pending_wakeup) {
4995 event->pending_wakeup = 0;
4996 perf_event_wakeup(event);
79f14641 4997 }
d525211f
PZ
4998
4999 if (rctx >= 0)
5000 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5001}
5002
39447b38
ZY
5003/*
5004 * We assume there is only KVM supporting the callbacks.
5005 * Later on, we might change it to a list if there is
5006 * another virtualization implementation supporting the callbacks.
5007 */
5008struct perf_guest_info_callbacks *perf_guest_cbs;
5009
5010int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5011{
5012 perf_guest_cbs = cbs;
5013 return 0;
5014}
5015EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5016
5017int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5018{
5019 perf_guest_cbs = NULL;
5020 return 0;
5021}
5022EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5023
4018994f
JO
5024static void
5025perf_output_sample_regs(struct perf_output_handle *handle,
5026 struct pt_regs *regs, u64 mask)
5027{
5028 int bit;
5029
5030 for_each_set_bit(bit, (const unsigned long *) &mask,
5031 sizeof(mask) * BITS_PER_BYTE) {
5032 u64 val;
5033
5034 val = perf_reg_value(regs, bit);
5035 perf_output_put(handle, val);
5036 }
5037}
5038
60e2364e 5039static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5040 struct pt_regs *regs,
5041 struct pt_regs *regs_user_copy)
4018994f 5042{
88a7c26a
AL
5043 if (user_mode(regs)) {
5044 regs_user->abi = perf_reg_abi(current);
2565711f 5045 regs_user->regs = regs;
88a7c26a
AL
5046 } else if (current->mm) {
5047 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5048 } else {
5049 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5050 regs_user->regs = NULL;
4018994f
JO
5051 }
5052}
5053
60e2364e
SE
5054static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5055 struct pt_regs *regs)
5056{
5057 regs_intr->regs = regs;
5058 regs_intr->abi = perf_reg_abi(current);
5059}
5060
5061
c5ebcedb
JO
5062/*
5063 * Get remaining task size from user stack pointer.
5064 *
5065 * It'd be better to take stack vma map and limit this more
5066 * precisly, but there's no way to get it safely under interrupt,
5067 * so using TASK_SIZE as limit.
5068 */
5069static u64 perf_ustack_task_size(struct pt_regs *regs)
5070{
5071 unsigned long addr = perf_user_stack_pointer(regs);
5072
5073 if (!addr || addr >= TASK_SIZE)
5074 return 0;
5075
5076 return TASK_SIZE - addr;
5077}
5078
5079static u16
5080perf_sample_ustack_size(u16 stack_size, u16 header_size,
5081 struct pt_regs *regs)
5082{
5083 u64 task_size;
5084
5085 /* No regs, no stack pointer, no dump. */
5086 if (!regs)
5087 return 0;
5088
5089 /*
5090 * Check if we fit in with the requested stack size into the:
5091 * - TASK_SIZE
5092 * If we don't, we limit the size to the TASK_SIZE.
5093 *
5094 * - remaining sample size
5095 * If we don't, we customize the stack size to
5096 * fit in to the remaining sample size.
5097 */
5098
5099 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5100 stack_size = min(stack_size, (u16) task_size);
5101
5102 /* Current header size plus static size and dynamic size. */
5103 header_size += 2 * sizeof(u64);
5104
5105 /* Do we fit in with the current stack dump size? */
5106 if ((u16) (header_size + stack_size) < header_size) {
5107 /*
5108 * If we overflow the maximum size for the sample,
5109 * we customize the stack dump size to fit in.
5110 */
5111 stack_size = USHRT_MAX - header_size - sizeof(u64);
5112 stack_size = round_up(stack_size, sizeof(u64));
5113 }
5114
5115 return stack_size;
5116}
5117
5118static void
5119perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5120 struct pt_regs *regs)
5121{
5122 /* Case of a kernel thread, nothing to dump */
5123 if (!regs) {
5124 u64 size = 0;
5125 perf_output_put(handle, size);
5126 } else {
5127 unsigned long sp;
5128 unsigned int rem;
5129 u64 dyn_size;
5130
5131 /*
5132 * We dump:
5133 * static size
5134 * - the size requested by user or the best one we can fit
5135 * in to the sample max size
5136 * data
5137 * - user stack dump data
5138 * dynamic size
5139 * - the actual dumped size
5140 */
5141
5142 /* Static size. */
5143 perf_output_put(handle, dump_size);
5144
5145 /* Data. */
5146 sp = perf_user_stack_pointer(regs);
5147 rem = __output_copy_user(handle, (void *) sp, dump_size);
5148 dyn_size = dump_size - rem;
5149
5150 perf_output_skip(handle, rem);
5151
5152 /* Dynamic size. */
5153 perf_output_put(handle, dyn_size);
5154 }
5155}
5156
c980d109
ACM
5157static void __perf_event_header__init_id(struct perf_event_header *header,
5158 struct perf_sample_data *data,
5159 struct perf_event *event)
6844c09d
ACM
5160{
5161 u64 sample_type = event->attr.sample_type;
5162
5163 data->type = sample_type;
5164 header->size += event->id_header_size;
5165
5166 if (sample_type & PERF_SAMPLE_TID) {
5167 /* namespace issues */
5168 data->tid_entry.pid = perf_event_pid(event, current);
5169 data->tid_entry.tid = perf_event_tid(event, current);
5170 }
5171
5172 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5173 data->time = perf_event_clock(event);
6844c09d 5174
ff3d527c 5175 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5176 data->id = primary_event_id(event);
5177
5178 if (sample_type & PERF_SAMPLE_STREAM_ID)
5179 data->stream_id = event->id;
5180
5181 if (sample_type & PERF_SAMPLE_CPU) {
5182 data->cpu_entry.cpu = raw_smp_processor_id();
5183 data->cpu_entry.reserved = 0;
5184 }
5185}
5186
76369139
FW
5187void perf_event_header__init_id(struct perf_event_header *header,
5188 struct perf_sample_data *data,
5189 struct perf_event *event)
c980d109
ACM
5190{
5191 if (event->attr.sample_id_all)
5192 __perf_event_header__init_id(header, data, event);
5193}
5194
5195static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5196 struct perf_sample_data *data)
5197{
5198 u64 sample_type = data->type;
5199
5200 if (sample_type & PERF_SAMPLE_TID)
5201 perf_output_put(handle, data->tid_entry);
5202
5203 if (sample_type & PERF_SAMPLE_TIME)
5204 perf_output_put(handle, data->time);
5205
5206 if (sample_type & PERF_SAMPLE_ID)
5207 perf_output_put(handle, data->id);
5208
5209 if (sample_type & PERF_SAMPLE_STREAM_ID)
5210 perf_output_put(handle, data->stream_id);
5211
5212 if (sample_type & PERF_SAMPLE_CPU)
5213 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5214
5215 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5216 perf_output_put(handle, data->id);
c980d109
ACM
5217}
5218
76369139
FW
5219void perf_event__output_id_sample(struct perf_event *event,
5220 struct perf_output_handle *handle,
5221 struct perf_sample_data *sample)
c980d109
ACM
5222{
5223 if (event->attr.sample_id_all)
5224 __perf_event__output_id_sample(handle, sample);
5225}
5226
3dab77fb 5227static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5228 struct perf_event *event,
5229 u64 enabled, u64 running)
3dab77fb 5230{
cdd6c482 5231 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5232 u64 values[4];
5233 int n = 0;
5234
b5e58793 5235 values[n++] = perf_event_count(event);
3dab77fb 5236 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5237 values[n++] = enabled +
cdd6c482 5238 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5239 }
5240 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5241 values[n++] = running +
cdd6c482 5242 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5243 }
5244 if (read_format & PERF_FORMAT_ID)
cdd6c482 5245 values[n++] = primary_event_id(event);
3dab77fb 5246
76369139 5247 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5248}
5249
5250/*
cdd6c482 5251 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5252 */
5253static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5254 struct perf_event *event,
5255 u64 enabled, u64 running)
3dab77fb 5256{
cdd6c482
IM
5257 struct perf_event *leader = event->group_leader, *sub;
5258 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5259 u64 values[5];
5260 int n = 0;
5261
5262 values[n++] = 1 + leader->nr_siblings;
5263
5264 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5265 values[n++] = enabled;
3dab77fb
PZ
5266
5267 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5268 values[n++] = running;
3dab77fb 5269
cdd6c482 5270 if (leader != event)
3dab77fb
PZ
5271 leader->pmu->read(leader);
5272
b5e58793 5273 values[n++] = perf_event_count(leader);
3dab77fb 5274 if (read_format & PERF_FORMAT_ID)
cdd6c482 5275 values[n++] = primary_event_id(leader);
3dab77fb 5276
76369139 5277 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5278
65abc865 5279 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5280 n = 0;
5281
6f5ab001
JO
5282 if ((sub != event) &&
5283 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5284 sub->pmu->read(sub);
5285
b5e58793 5286 values[n++] = perf_event_count(sub);
3dab77fb 5287 if (read_format & PERF_FORMAT_ID)
cdd6c482 5288 values[n++] = primary_event_id(sub);
3dab77fb 5289
76369139 5290 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5291 }
5292}
5293
eed01528
SE
5294#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5295 PERF_FORMAT_TOTAL_TIME_RUNNING)
5296
3dab77fb 5297static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5298 struct perf_event *event)
3dab77fb 5299{
e3f3541c 5300 u64 enabled = 0, running = 0, now;
eed01528
SE
5301 u64 read_format = event->attr.read_format;
5302
5303 /*
5304 * compute total_time_enabled, total_time_running
5305 * based on snapshot values taken when the event
5306 * was last scheduled in.
5307 *
5308 * we cannot simply called update_context_time()
5309 * because of locking issue as we are called in
5310 * NMI context
5311 */
c4794295 5312 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5313 calc_timer_values(event, &now, &enabled, &running);
eed01528 5314
cdd6c482 5315 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5316 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5317 else
eed01528 5318 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5319}
5320
5622f295
MM
5321void perf_output_sample(struct perf_output_handle *handle,
5322 struct perf_event_header *header,
5323 struct perf_sample_data *data,
cdd6c482 5324 struct perf_event *event)
5622f295
MM
5325{
5326 u64 sample_type = data->type;
5327
5328 perf_output_put(handle, *header);
5329
ff3d527c
AH
5330 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5331 perf_output_put(handle, data->id);
5332
5622f295
MM
5333 if (sample_type & PERF_SAMPLE_IP)
5334 perf_output_put(handle, data->ip);
5335
5336 if (sample_type & PERF_SAMPLE_TID)
5337 perf_output_put(handle, data->tid_entry);
5338
5339 if (sample_type & PERF_SAMPLE_TIME)
5340 perf_output_put(handle, data->time);
5341
5342 if (sample_type & PERF_SAMPLE_ADDR)
5343 perf_output_put(handle, data->addr);
5344
5345 if (sample_type & PERF_SAMPLE_ID)
5346 perf_output_put(handle, data->id);
5347
5348 if (sample_type & PERF_SAMPLE_STREAM_ID)
5349 perf_output_put(handle, data->stream_id);
5350
5351 if (sample_type & PERF_SAMPLE_CPU)
5352 perf_output_put(handle, data->cpu_entry);
5353
5354 if (sample_type & PERF_SAMPLE_PERIOD)
5355 perf_output_put(handle, data->period);
5356
5357 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5358 perf_output_read(handle, event);
5622f295
MM
5359
5360 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5361 if (data->callchain) {
5362 int size = 1;
5363
5364 if (data->callchain)
5365 size += data->callchain->nr;
5366
5367 size *= sizeof(u64);
5368
76369139 5369 __output_copy(handle, data->callchain, size);
5622f295
MM
5370 } else {
5371 u64 nr = 0;
5372 perf_output_put(handle, nr);
5373 }
5374 }
5375
5376 if (sample_type & PERF_SAMPLE_RAW) {
5377 if (data->raw) {
5378 perf_output_put(handle, data->raw->size);
76369139
FW
5379 __output_copy(handle, data->raw->data,
5380 data->raw->size);
5622f295
MM
5381 } else {
5382 struct {
5383 u32 size;
5384 u32 data;
5385 } raw = {
5386 .size = sizeof(u32),
5387 .data = 0,
5388 };
5389 perf_output_put(handle, raw);
5390 }
5391 }
a7ac67ea 5392
bce38cd5
SE
5393 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5394 if (data->br_stack) {
5395 size_t size;
5396
5397 size = data->br_stack->nr
5398 * sizeof(struct perf_branch_entry);
5399
5400 perf_output_put(handle, data->br_stack->nr);
5401 perf_output_copy(handle, data->br_stack->entries, size);
5402 } else {
5403 /*
5404 * we always store at least the value of nr
5405 */
5406 u64 nr = 0;
5407 perf_output_put(handle, nr);
5408 }
5409 }
4018994f
JO
5410
5411 if (sample_type & PERF_SAMPLE_REGS_USER) {
5412 u64 abi = data->regs_user.abi;
5413
5414 /*
5415 * If there are no regs to dump, notice it through
5416 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5417 */
5418 perf_output_put(handle, abi);
5419
5420 if (abi) {
5421 u64 mask = event->attr.sample_regs_user;
5422 perf_output_sample_regs(handle,
5423 data->regs_user.regs,
5424 mask);
5425 }
5426 }
c5ebcedb 5427
a5cdd40c 5428 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5429 perf_output_sample_ustack(handle,
5430 data->stack_user_size,
5431 data->regs_user.regs);
a5cdd40c 5432 }
c3feedf2
AK
5433
5434 if (sample_type & PERF_SAMPLE_WEIGHT)
5435 perf_output_put(handle, data->weight);
d6be9ad6
SE
5436
5437 if (sample_type & PERF_SAMPLE_DATA_SRC)
5438 perf_output_put(handle, data->data_src.val);
a5cdd40c 5439
fdfbbd07
AK
5440 if (sample_type & PERF_SAMPLE_TRANSACTION)
5441 perf_output_put(handle, data->txn);
5442
60e2364e
SE
5443 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5444 u64 abi = data->regs_intr.abi;
5445 /*
5446 * If there are no regs to dump, notice it through
5447 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5448 */
5449 perf_output_put(handle, abi);
5450
5451 if (abi) {
5452 u64 mask = event->attr.sample_regs_intr;
5453
5454 perf_output_sample_regs(handle,
5455 data->regs_intr.regs,
5456 mask);
5457 }
5458 }
5459
a5cdd40c
PZ
5460 if (!event->attr.watermark) {
5461 int wakeup_events = event->attr.wakeup_events;
5462
5463 if (wakeup_events) {
5464 struct ring_buffer *rb = handle->rb;
5465 int events = local_inc_return(&rb->events);
5466
5467 if (events >= wakeup_events) {
5468 local_sub(wakeup_events, &rb->events);
5469 local_inc(&rb->wakeup);
5470 }
5471 }
5472 }
5622f295
MM
5473}
5474
5475void perf_prepare_sample(struct perf_event_header *header,
5476 struct perf_sample_data *data,
cdd6c482 5477 struct perf_event *event,
5622f295 5478 struct pt_regs *regs)
7b732a75 5479{
cdd6c482 5480 u64 sample_type = event->attr.sample_type;
7b732a75 5481
cdd6c482 5482 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5483 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5484
5485 header->misc = 0;
5486 header->misc |= perf_misc_flags(regs);
6fab0192 5487
c980d109 5488 __perf_event_header__init_id(header, data, event);
6844c09d 5489
c320c7b7 5490 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5491 data->ip = perf_instruction_pointer(regs);
5492
b23f3325 5493 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5494 int size = 1;
394ee076 5495
e6dab5ff 5496 data->callchain = perf_callchain(event, regs);
5622f295
MM
5497
5498 if (data->callchain)
5499 size += data->callchain->nr;
5500
5501 header->size += size * sizeof(u64);
394ee076
PZ
5502 }
5503
3a43ce68 5504 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5505 int size = sizeof(u32);
5506
5507 if (data->raw)
5508 size += data->raw->size;
5509 else
5510 size += sizeof(u32);
5511
5512 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5513 header->size += size;
7f453c24 5514 }
bce38cd5
SE
5515
5516 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5517 int size = sizeof(u64); /* nr */
5518 if (data->br_stack) {
5519 size += data->br_stack->nr
5520 * sizeof(struct perf_branch_entry);
5521 }
5522 header->size += size;
5523 }
4018994f 5524
2565711f 5525 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5526 perf_sample_regs_user(&data->regs_user, regs,
5527 &data->regs_user_copy);
2565711f 5528
4018994f
JO
5529 if (sample_type & PERF_SAMPLE_REGS_USER) {
5530 /* regs dump ABI info */
5531 int size = sizeof(u64);
5532
4018994f
JO
5533 if (data->regs_user.regs) {
5534 u64 mask = event->attr.sample_regs_user;
5535 size += hweight64(mask) * sizeof(u64);
5536 }
5537
5538 header->size += size;
5539 }
c5ebcedb
JO
5540
5541 if (sample_type & PERF_SAMPLE_STACK_USER) {
5542 /*
5543 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5544 * processed as the last one or have additional check added
5545 * in case new sample type is added, because we could eat
5546 * up the rest of the sample size.
5547 */
c5ebcedb
JO
5548 u16 stack_size = event->attr.sample_stack_user;
5549 u16 size = sizeof(u64);
5550
c5ebcedb 5551 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5552 data->regs_user.regs);
c5ebcedb
JO
5553
5554 /*
5555 * If there is something to dump, add space for the dump
5556 * itself and for the field that tells the dynamic size,
5557 * which is how many have been actually dumped.
5558 */
5559 if (stack_size)
5560 size += sizeof(u64) + stack_size;
5561
5562 data->stack_user_size = stack_size;
5563 header->size += size;
5564 }
60e2364e
SE
5565
5566 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5567 /* regs dump ABI info */
5568 int size = sizeof(u64);
5569
5570 perf_sample_regs_intr(&data->regs_intr, regs);
5571
5572 if (data->regs_intr.regs) {
5573 u64 mask = event->attr.sample_regs_intr;
5574
5575 size += hweight64(mask) * sizeof(u64);
5576 }
5577
5578 header->size += size;
5579 }
5622f295 5580}
7f453c24 5581
21509084
YZ
5582void perf_event_output(struct perf_event *event,
5583 struct perf_sample_data *data,
5584 struct pt_regs *regs)
5622f295
MM
5585{
5586 struct perf_output_handle handle;
5587 struct perf_event_header header;
689802b2 5588
927c7a9e
FW
5589 /* protect the callchain buffers */
5590 rcu_read_lock();
5591
cdd6c482 5592 perf_prepare_sample(&header, data, event, regs);
5c148194 5593
a7ac67ea 5594 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5595 goto exit;
0322cd6e 5596
cdd6c482 5597 perf_output_sample(&handle, &header, data, event);
f413cdb8 5598
8a057d84 5599 perf_output_end(&handle);
927c7a9e
FW
5600
5601exit:
5602 rcu_read_unlock();
0322cd6e
PZ
5603}
5604
38b200d6 5605/*
cdd6c482 5606 * read event_id
38b200d6
PZ
5607 */
5608
5609struct perf_read_event {
5610 struct perf_event_header header;
5611
5612 u32 pid;
5613 u32 tid;
38b200d6
PZ
5614};
5615
5616static void
cdd6c482 5617perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5618 struct task_struct *task)
5619{
5620 struct perf_output_handle handle;
c980d109 5621 struct perf_sample_data sample;
dfc65094 5622 struct perf_read_event read_event = {
38b200d6 5623 .header = {
cdd6c482 5624 .type = PERF_RECORD_READ,
38b200d6 5625 .misc = 0,
c320c7b7 5626 .size = sizeof(read_event) + event->read_size,
38b200d6 5627 },
cdd6c482
IM
5628 .pid = perf_event_pid(event, task),
5629 .tid = perf_event_tid(event, task),
38b200d6 5630 };
3dab77fb 5631 int ret;
38b200d6 5632
c980d109 5633 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5634 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5635 if (ret)
5636 return;
5637
dfc65094 5638 perf_output_put(&handle, read_event);
cdd6c482 5639 perf_output_read(&handle, event);
c980d109 5640 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5641
38b200d6
PZ
5642 perf_output_end(&handle);
5643}
5644
52d857a8
JO
5645typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5646
5647static void
5648perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5649 perf_event_aux_output_cb output,
5650 void *data)
5651{
5652 struct perf_event *event;
5653
5654 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5655 if (event->state < PERF_EVENT_STATE_INACTIVE)
5656 continue;
5657 if (!event_filter_match(event))
5658 continue;
67516844 5659 output(event, data);
52d857a8
JO
5660 }
5661}
5662
5663static void
67516844 5664perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5665 struct perf_event_context *task_ctx)
5666{
5667 struct perf_cpu_context *cpuctx;
5668 struct perf_event_context *ctx;
5669 struct pmu *pmu;
5670 int ctxn;
5671
5672 rcu_read_lock();
5673 list_for_each_entry_rcu(pmu, &pmus, entry) {
5674 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5675 if (cpuctx->unique_pmu != pmu)
5676 goto next;
67516844 5677 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5678 if (task_ctx)
5679 goto next;
5680 ctxn = pmu->task_ctx_nr;
5681 if (ctxn < 0)
5682 goto next;
5683 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5684 if (ctx)
67516844 5685 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5686next:
5687 put_cpu_ptr(pmu->pmu_cpu_context);
5688 }
5689
5690 if (task_ctx) {
5691 preempt_disable();
67516844 5692 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5693 preempt_enable();
5694 }
5695 rcu_read_unlock();
5696}
5697
60313ebe 5698/*
9f498cc5
PZ
5699 * task tracking -- fork/exit
5700 *
13d7a241 5701 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5702 */
5703
9f498cc5 5704struct perf_task_event {
3a80b4a3 5705 struct task_struct *task;
cdd6c482 5706 struct perf_event_context *task_ctx;
60313ebe
PZ
5707
5708 struct {
5709 struct perf_event_header header;
5710
5711 u32 pid;
5712 u32 ppid;
9f498cc5
PZ
5713 u32 tid;
5714 u32 ptid;
393b2ad8 5715 u64 time;
cdd6c482 5716 } event_id;
60313ebe
PZ
5717};
5718
67516844
JO
5719static int perf_event_task_match(struct perf_event *event)
5720{
13d7a241
SE
5721 return event->attr.comm || event->attr.mmap ||
5722 event->attr.mmap2 || event->attr.mmap_data ||
5723 event->attr.task;
67516844
JO
5724}
5725
cdd6c482 5726static void perf_event_task_output(struct perf_event *event,
52d857a8 5727 void *data)
60313ebe 5728{
52d857a8 5729 struct perf_task_event *task_event = data;
60313ebe 5730 struct perf_output_handle handle;
c980d109 5731 struct perf_sample_data sample;
9f498cc5 5732 struct task_struct *task = task_event->task;
c980d109 5733 int ret, size = task_event->event_id.header.size;
8bb39f9a 5734
67516844
JO
5735 if (!perf_event_task_match(event))
5736 return;
5737
c980d109 5738 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5739
c980d109 5740 ret = perf_output_begin(&handle, event,
a7ac67ea 5741 task_event->event_id.header.size);
ef60777c 5742 if (ret)
c980d109 5743 goto out;
60313ebe 5744
cdd6c482
IM
5745 task_event->event_id.pid = perf_event_pid(event, task);
5746 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5747
cdd6c482
IM
5748 task_event->event_id.tid = perf_event_tid(event, task);
5749 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5750
34f43927
PZ
5751 task_event->event_id.time = perf_event_clock(event);
5752
cdd6c482 5753 perf_output_put(&handle, task_event->event_id);
393b2ad8 5754
c980d109
ACM
5755 perf_event__output_id_sample(event, &handle, &sample);
5756
60313ebe 5757 perf_output_end(&handle);
c980d109
ACM
5758out:
5759 task_event->event_id.header.size = size;
60313ebe
PZ
5760}
5761
cdd6c482
IM
5762static void perf_event_task(struct task_struct *task,
5763 struct perf_event_context *task_ctx,
3a80b4a3 5764 int new)
60313ebe 5765{
9f498cc5 5766 struct perf_task_event task_event;
60313ebe 5767
cdd6c482
IM
5768 if (!atomic_read(&nr_comm_events) &&
5769 !atomic_read(&nr_mmap_events) &&
5770 !atomic_read(&nr_task_events))
60313ebe
PZ
5771 return;
5772
9f498cc5 5773 task_event = (struct perf_task_event){
3a80b4a3
PZ
5774 .task = task,
5775 .task_ctx = task_ctx,
cdd6c482 5776 .event_id = {
60313ebe 5777 .header = {
cdd6c482 5778 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5779 .misc = 0,
cdd6c482 5780 .size = sizeof(task_event.event_id),
60313ebe 5781 },
573402db
PZ
5782 /* .pid */
5783 /* .ppid */
9f498cc5
PZ
5784 /* .tid */
5785 /* .ptid */
34f43927 5786 /* .time */
60313ebe
PZ
5787 },
5788 };
5789
67516844 5790 perf_event_aux(perf_event_task_output,
52d857a8
JO
5791 &task_event,
5792 task_ctx);
9f498cc5
PZ
5793}
5794
cdd6c482 5795void perf_event_fork(struct task_struct *task)
9f498cc5 5796{
cdd6c482 5797 perf_event_task(task, NULL, 1);
60313ebe
PZ
5798}
5799
8d1b2d93
PZ
5800/*
5801 * comm tracking
5802 */
5803
5804struct perf_comm_event {
22a4f650
IM
5805 struct task_struct *task;
5806 char *comm;
8d1b2d93
PZ
5807 int comm_size;
5808
5809 struct {
5810 struct perf_event_header header;
5811
5812 u32 pid;
5813 u32 tid;
cdd6c482 5814 } event_id;
8d1b2d93
PZ
5815};
5816
67516844
JO
5817static int perf_event_comm_match(struct perf_event *event)
5818{
5819 return event->attr.comm;
5820}
5821
cdd6c482 5822static void perf_event_comm_output(struct perf_event *event,
52d857a8 5823 void *data)
8d1b2d93 5824{
52d857a8 5825 struct perf_comm_event *comm_event = data;
8d1b2d93 5826 struct perf_output_handle handle;
c980d109 5827 struct perf_sample_data sample;
cdd6c482 5828 int size = comm_event->event_id.header.size;
c980d109
ACM
5829 int ret;
5830
67516844
JO
5831 if (!perf_event_comm_match(event))
5832 return;
5833
c980d109
ACM
5834 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5835 ret = perf_output_begin(&handle, event,
a7ac67ea 5836 comm_event->event_id.header.size);
8d1b2d93
PZ
5837
5838 if (ret)
c980d109 5839 goto out;
8d1b2d93 5840
cdd6c482
IM
5841 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5842 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5843
cdd6c482 5844 perf_output_put(&handle, comm_event->event_id);
76369139 5845 __output_copy(&handle, comm_event->comm,
8d1b2d93 5846 comm_event->comm_size);
c980d109
ACM
5847
5848 perf_event__output_id_sample(event, &handle, &sample);
5849
8d1b2d93 5850 perf_output_end(&handle);
c980d109
ACM
5851out:
5852 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5853}
5854
cdd6c482 5855static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5856{
413ee3b4 5857 char comm[TASK_COMM_LEN];
8d1b2d93 5858 unsigned int size;
8d1b2d93 5859
413ee3b4 5860 memset(comm, 0, sizeof(comm));
96b02d78 5861 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5862 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5863
5864 comm_event->comm = comm;
5865 comm_event->comm_size = size;
5866
cdd6c482 5867 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5868
67516844 5869 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5870 comm_event,
5871 NULL);
8d1b2d93
PZ
5872}
5873
82b89778 5874void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5875{
9ee318a7
PZ
5876 struct perf_comm_event comm_event;
5877
cdd6c482 5878 if (!atomic_read(&nr_comm_events))
9ee318a7 5879 return;
a63eaf34 5880
9ee318a7 5881 comm_event = (struct perf_comm_event){
8d1b2d93 5882 .task = task,
573402db
PZ
5883 /* .comm */
5884 /* .comm_size */
cdd6c482 5885 .event_id = {
573402db 5886 .header = {
cdd6c482 5887 .type = PERF_RECORD_COMM,
82b89778 5888 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5889 /* .size */
5890 },
5891 /* .pid */
5892 /* .tid */
8d1b2d93
PZ
5893 },
5894 };
5895
cdd6c482 5896 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5897}
5898
0a4a9391
PZ
5899/*
5900 * mmap tracking
5901 */
5902
5903struct perf_mmap_event {
089dd79d
PZ
5904 struct vm_area_struct *vma;
5905
5906 const char *file_name;
5907 int file_size;
13d7a241
SE
5908 int maj, min;
5909 u64 ino;
5910 u64 ino_generation;
f972eb63 5911 u32 prot, flags;
0a4a9391
PZ
5912
5913 struct {
5914 struct perf_event_header header;
5915
5916 u32 pid;
5917 u32 tid;
5918 u64 start;
5919 u64 len;
5920 u64 pgoff;
cdd6c482 5921 } event_id;
0a4a9391
PZ
5922};
5923
67516844
JO
5924static int perf_event_mmap_match(struct perf_event *event,
5925 void *data)
5926{
5927 struct perf_mmap_event *mmap_event = data;
5928 struct vm_area_struct *vma = mmap_event->vma;
5929 int executable = vma->vm_flags & VM_EXEC;
5930
5931 return (!executable && event->attr.mmap_data) ||
13d7a241 5932 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5933}
5934
cdd6c482 5935static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5936 void *data)
0a4a9391 5937{
52d857a8 5938 struct perf_mmap_event *mmap_event = data;
0a4a9391 5939 struct perf_output_handle handle;
c980d109 5940 struct perf_sample_data sample;
cdd6c482 5941 int size = mmap_event->event_id.header.size;
c980d109 5942 int ret;
0a4a9391 5943
67516844
JO
5944 if (!perf_event_mmap_match(event, data))
5945 return;
5946
13d7a241
SE
5947 if (event->attr.mmap2) {
5948 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5949 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5950 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5951 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5952 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5953 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5954 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5955 }
5956
c980d109
ACM
5957 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5958 ret = perf_output_begin(&handle, event,
a7ac67ea 5959 mmap_event->event_id.header.size);
0a4a9391 5960 if (ret)
c980d109 5961 goto out;
0a4a9391 5962
cdd6c482
IM
5963 mmap_event->event_id.pid = perf_event_pid(event, current);
5964 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5965
cdd6c482 5966 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5967
5968 if (event->attr.mmap2) {
5969 perf_output_put(&handle, mmap_event->maj);
5970 perf_output_put(&handle, mmap_event->min);
5971 perf_output_put(&handle, mmap_event->ino);
5972 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5973 perf_output_put(&handle, mmap_event->prot);
5974 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5975 }
5976
76369139 5977 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5978 mmap_event->file_size);
c980d109
ACM
5979
5980 perf_event__output_id_sample(event, &handle, &sample);
5981
78d613eb 5982 perf_output_end(&handle);
c980d109
ACM
5983out:
5984 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5985}
5986
cdd6c482 5987static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5988{
089dd79d
PZ
5989 struct vm_area_struct *vma = mmap_event->vma;
5990 struct file *file = vma->vm_file;
13d7a241
SE
5991 int maj = 0, min = 0;
5992 u64 ino = 0, gen = 0;
f972eb63 5993 u32 prot = 0, flags = 0;
0a4a9391
PZ
5994 unsigned int size;
5995 char tmp[16];
5996 char *buf = NULL;
2c42cfbf 5997 char *name;
413ee3b4 5998
0a4a9391 5999 if (file) {
13d7a241
SE
6000 struct inode *inode;
6001 dev_t dev;
3ea2f2b9 6002
2c42cfbf 6003 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6004 if (!buf) {
c7e548b4
ON
6005 name = "//enomem";
6006 goto cpy_name;
0a4a9391 6007 }
413ee3b4 6008 /*
3ea2f2b9 6009 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6010 * need to add enough zero bytes after the string to handle
6011 * the 64bit alignment we do later.
6012 */
9bf39ab2 6013 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6014 if (IS_ERR(name)) {
c7e548b4
ON
6015 name = "//toolong";
6016 goto cpy_name;
0a4a9391 6017 }
13d7a241
SE
6018 inode = file_inode(vma->vm_file);
6019 dev = inode->i_sb->s_dev;
6020 ino = inode->i_ino;
6021 gen = inode->i_generation;
6022 maj = MAJOR(dev);
6023 min = MINOR(dev);
f972eb63
PZ
6024
6025 if (vma->vm_flags & VM_READ)
6026 prot |= PROT_READ;
6027 if (vma->vm_flags & VM_WRITE)
6028 prot |= PROT_WRITE;
6029 if (vma->vm_flags & VM_EXEC)
6030 prot |= PROT_EXEC;
6031
6032 if (vma->vm_flags & VM_MAYSHARE)
6033 flags = MAP_SHARED;
6034 else
6035 flags = MAP_PRIVATE;
6036
6037 if (vma->vm_flags & VM_DENYWRITE)
6038 flags |= MAP_DENYWRITE;
6039 if (vma->vm_flags & VM_MAYEXEC)
6040 flags |= MAP_EXECUTABLE;
6041 if (vma->vm_flags & VM_LOCKED)
6042 flags |= MAP_LOCKED;
6043 if (vma->vm_flags & VM_HUGETLB)
6044 flags |= MAP_HUGETLB;
6045
c7e548b4 6046 goto got_name;
0a4a9391 6047 } else {
fbe26abe
JO
6048 if (vma->vm_ops && vma->vm_ops->name) {
6049 name = (char *) vma->vm_ops->name(vma);
6050 if (name)
6051 goto cpy_name;
6052 }
6053
2c42cfbf 6054 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6055 if (name)
6056 goto cpy_name;
089dd79d 6057
32c5fb7e 6058 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6059 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6060 name = "[heap]";
6061 goto cpy_name;
32c5fb7e
ON
6062 }
6063 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6064 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6065 name = "[stack]";
6066 goto cpy_name;
089dd79d
PZ
6067 }
6068
c7e548b4
ON
6069 name = "//anon";
6070 goto cpy_name;
0a4a9391
PZ
6071 }
6072
c7e548b4
ON
6073cpy_name:
6074 strlcpy(tmp, name, sizeof(tmp));
6075 name = tmp;
0a4a9391 6076got_name:
2c42cfbf
PZ
6077 /*
6078 * Since our buffer works in 8 byte units we need to align our string
6079 * size to a multiple of 8. However, we must guarantee the tail end is
6080 * zero'd out to avoid leaking random bits to userspace.
6081 */
6082 size = strlen(name)+1;
6083 while (!IS_ALIGNED(size, sizeof(u64)))
6084 name[size++] = '\0';
0a4a9391
PZ
6085
6086 mmap_event->file_name = name;
6087 mmap_event->file_size = size;
13d7a241
SE
6088 mmap_event->maj = maj;
6089 mmap_event->min = min;
6090 mmap_event->ino = ino;
6091 mmap_event->ino_generation = gen;
f972eb63
PZ
6092 mmap_event->prot = prot;
6093 mmap_event->flags = flags;
0a4a9391 6094
2fe85427
SE
6095 if (!(vma->vm_flags & VM_EXEC))
6096 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6097
cdd6c482 6098 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6099
67516844 6100 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6101 mmap_event,
6102 NULL);
665c2142 6103
0a4a9391
PZ
6104 kfree(buf);
6105}
6106
3af9e859 6107void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6108{
9ee318a7
PZ
6109 struct perf_mmap_event mmap_event;
6110
cdd6c482 6111 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6112 return;
6113
6114 mmap_event = (struct perf_mmap_event){
089dd79d 6115 .vma = vma,
573402db
PZ
6116 /* .file_name */
6117 /* .file_size */
cdd6c482 6118 .event_id = {
573402db 6119 .header = {
cdd6c482 6120 .type = PERF_RECORD_MMAP,
39447b38 6121 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6122 /* .size */
6123 },
6124 /* .pid */
6125 /* .tid */
089dd79d
PZ
6126 .start = vma->vm_start,
6127 .len = vma->vm_end - vma->vm_start,
3a0304e9 6128 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6129 },
13d7a241
SE
6130 /* .maj (attr_mmap2 only) */
6131 /* .min (attr_mmap2 only) */
6132 /* .ino (attr_mmap2 only) */
6133 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6134 /* .prot (attr_mmap2 only) */
6135 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6136 };
6137
cdd6c482 6138 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6139}
6140
68db7e98
AS
6141void perf_event_aux_event(struct perf_event *event, unsigned long head,
6142 unsigned long size, u64 flags)
6143{
6144 struct perf_output_handle handle;
6145 struct perf_sample_data sample;
6146 struct perf_aux_event {
6147 struct perf_event_header header;
6148 u64 offset;
6149 u64 size;
6150 u64 flags;
6151 } rec = {
6152 .header = {
6153 .type = PERF_RECORD_AUX,
6154 .misc = 0,
6155 .size = sizeof(rec),
6156 },
6157 .offset = head,
6158 .size = size,
6159 .flags = flags,
6160 };
6161 int ret;
6162
6163 perf_event_header__init_id(&rec.header, &sample, event);
6164 ret = perf_output_begin(&handle, event, rec.header.size);
6165
6166 if (ret)
6167 return;
6168
6169 perf_output_put(&handle, rec);
6170 perf_event__output_id_sample(event, &handle, &sample);
6171
6172 perf_output_end(&handle);
6173}
6174
f38b0dbb
KL
6175/*
6176 * Lost/dropped samples logging
6177 */
6178void perf_log_lost_samples(struct perf_event *event, u64 lost)
6179{
6180 struct perf_output_handle handle;
6181 struct perf_sample_data sample;
6182 int ret;
6183
6184 struct {
6185 struct perf_event_header header;
6186 u64 lost;
6187 } lost_samples_event = {
6188 .header = {
6189 .type = PERF_RECORD_LOST_SAMPLES,
6190 .misc = 0,
6191 .size = sizeof(lost_samples_event),
6192 },
6193 .lost = lost,
6194 };
6195
6196 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6197
6198 ret = perf_output_begin(&handle, event,
6199 lost_samples_event.header.size);
6200 if (ret)
6201 return;
6202
6203 perf_output_put(&handle, lost_samples_event);
6204 perf_event__output_id_sample(event, &handle, &sample);
6205 perf_output_end(&handle);
6206}
6207
45ac1403
AH
6208/*
6209 * context_switch tracking
6210 */
6211
6212struct perf_switch_event {
6213 struct task_struct *task;
6214 struct task_struct *next_prev;
6215
6216 struct {
6217 struct perf_event_header header;
6218 u32 next_prev_pid;
6219 u32 next_prev_tid;
6220 } event_id;
6221};
6222
6223static int perf_event_switch_match(struct perf_event *event)
6224{
6225 return event->attr.context_switch;
6226}
6227
6228static void perf_event_switch_output(struct perf_event *event, void *data)
6229{
6230 struct perf_switch_event *se = data;
6231 struct perf_output_handle handle;
6232 struct perf_sample_data sample;
6233 int ret;
6234
6235 if (!perf_event_switch_match(event))
6236 return;
6237
6238 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6239 if (event->ctx->task) {
6240 se->event_id.header.type = PERF_RECORD_SWITCH;
6241 se->event_id.header.size = sizeof(se->event_id.header);
6242 } else {
6243 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6244 se->event_id.header.size = sizeof(se->event_id);
6245 se->event_id.next_prev_pid =
6246 perf_event_pid(event, se->next_prev);
6247 se->event_id.next_prev_tid =
6248 perf_event_tid(event, se->next_prev);
6249 }
6250
6251 perf_event_header__init_id(&se->event_id.header, &sample, event);
6252
6253 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6254 if (ret)
6255 return;
6256
6257 if (event->ctx->task)
6258 perf_output_put(&handle, se->event_id.header);
6259 else
6260 perf_output_put(&handle, se->event_id);
6261
6262 perf_event__output_id_sample(event, &handle, &sample);
6263
6264 perf_output_end(&handle);
6265}
6266
6267static void perf_event_switch(struct task_struct *task,
6268 struct task_struct *next_prev, bool sched_in)
6269{
6270 struct perf_switch_event switch_event;
6271
6272 /* N.B. caller checks nr_switch_events != 0 */
6273
6274 switch_event = (struct perf_switch_event){
6275 .task = task,
6276 .next_prev = next_prev,
6277 .event_id = {
6278 .header = {
6279 /* .type */
6280 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6281 /* .size */
6282 },
6283 /* .next_prev_pid */
6284 /* .next_prev_tid */
6285 },
6286 };
6287
6288 perf_event_aux(perf_event_switch_output,
6289 &switch_event,
6290 NULL);
6291}
6292
a78ac325
PZ
6293/*
6294 * IRQ throttle logging
6295 */
6296
cdd6c482 6297static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6298{
6299 struct perf_output_handle handle;
c980d109 6300 struct perf_sample_data sample;
a78ac325
PZ
6301 int ret;
6302
6303 struct {
6304 struct perf_event_header header;
6305 u64 time;
cca3f454 6306 u64 id;
7f453c24 6307 u64 stream_id;
a78ac325
PZ
6308 } throttle_event = {
6309 .header = {
cdd6c482 6310 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6311 .misc = 0,
6312 .size = sizeof(throttle_event),
6313 },
34f43927 6314 .time = perf_event_clock(event),
cdd6c482
IM
6315 .id = primary_event_id(event),
6316 .stream_id = event->id,
a78ac325
PZ
6317 };
6318
966ee4d6 6319 if (enable)
cdd6c482 6320 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6321
c980d109
ACM
6322 perf_event_header__init_id(&throttle_event.header, &sample, event);
6323
6324 ret = perf_output_begin(&handle, event,
a7ac67ea 6325 throttle_event.header.size);
a78ac325
PZ
6326 if (ret)
6327 return;
6328
6329 perf_output_put(&handle, throttle_event);
c980d109 6330 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6331 perf_output_end(&handle);
6332}
6333
ec0d7729
AS
6334static void perf_log_itrace_start(struct perf_event *event)
6335{
6336 struct perf_output_handle handle;
6337 struct perf_sample_data sample;
6338 struct perf_aux_event {
6339 struct perf_event_header header;
6340 u32 pid;
6341 u32 tid;
6342 } rec;
6343 int ret;
6344
6345 if (event->parent)
6346 event = event->parent;
6347
6348 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6349 event->hw.itrace_started)
6350 return;
6351
ec0d7729
AS
6352 rec.header.type = PERF_RECORD_ITRACE_START;
6353 rec.header.misc = 0;
6354 rec.header.size = sizeof(rec);
6355 rec.pid = perf_event_pid(event, current);
6356 rec.tid = perf_event_tid(event, current);
6357
6358 perf_event_header__init_id(&rec.header, &sample, event);
6359 ret = perf_output_begin(&handle, event, rec.header.size);
6360
6361 if (ret)
6362 return;
6363
6364 perf_output_put(&handle, rec);
6365 perf_event__output_id_sample(event, &handle, &sample);
6366
6367 perf_output_end(&handle);
6368}
6369
f6c7d5fe 6370/*
cdd6c482 6371 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6372 */
6373
a8b0ca17 6374static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6375 int throttle, struct perf_sample_data *data,
6376 struct pt_regs *regs)
f6c7d5fe 6377{
cdd6c482
IM
6378 int events = atomic_read(&event->event_limit);
6379 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6380 u64 seq;
79f14641
PZ
6381 int ret = 0;
6382
96398826
PZ
6383 /*
6384 * Non-sampling counters might still use the PMI to fold short
6385 * hardware counters, ignore those.
6386 */
6387 if (unlikely(!is_sampling_event(event)))
6388 return 0;
6389
e050e3f0
SE
6390 seq = __this_cpu_read(perf_throttled_seq);
6391 if (seq != hwc->interrupts_seq) {
6392 hwc->interrupts_seq = seq;
6393 hwc->interrupts = 1;
6394 } else {
6395 hwc->interrupts++;
6396 if (unlikely(throttle
6397 && hwc->interrupts >= max_samples_per_tick)) {
6398 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6399 hwc->interrupts = MAX_INTERRUPTS;
6400 perf_log_throttle(event, 0);
d84153d6 6401 tick_nohz_full_kick();
a78ac325
PZ
6402 ret = 1;
6403 }
e050e3f0 6404 }
60db5e09 6405
cdd6c482 6406 if (event->attr.freq) {
def0a9b2 6407 u64 now = perf_clock();
abd50713 6408 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6409
abd50713 6410 hwc->freq_time_stamp = now;
bd2b5b12 6411
abd50713 6412 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6413 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6414 }
6415
2023b359
PZ
6416 /*
6417 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6418 * events
2023b359
PZ
6419 */
6420
cdd6c482
IM
6421 event->pending_kill = POLL_IN;
6422 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6423 ret = 1;
cdd6c482 6424 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6425 event->pending_disable = 1;
6426 irq_work_queue(&event->pending);
79f14641
PZ
6427 }
6428
453f19ee 6429 if (event->overflow_handler)
a8b0ca17 6430 event->overflow_handler(event, data, regs);
453f19ee 6431 else
a8b0ca17 6432 perf_event_output(event, data, regs);
453f19ee 6433
fed66e2c 6434 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6435 event->pending_wakeup = 1;
6436 irq_work_queue(&event->pending);
f506b3dc
PZ
6437 }
6438
79f14641 6439 return ret;
f6c7d5fe
PZ
6440}
6441
a8b0ca17 6442int perf_event_overflow(struct perf_event *event,
5622f295
MM
6443 struct perf_sample_data *data,
6444 struct pt_regs *regs)
850bc73f 6445{
a8b0ca17 6446 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6447}
6448
15dbf27c 6449/*
cdd6c482 6450 * Generic software event infrastructure
15dbf27c
PZ
6451 */
6452
b28ab83c
PZ
6453struct swevent_htable {
6454 struct swevent_hlist *swevent_hlist;
6455 struct mutex hlist_mutex;
6456 int hlist_refcount;
6457
6458 /* Recursion avoidance in each contexts */
6459 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6460
6461 /* Keeps track of cpu being initialized/exited */
6462 bool online;
b28ab83c
PZ
6463};
6464
6465static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6466
7b4b6658 6467/*
cdd6c482
IM
6468 * We directly increment event->count and keep a second value in
6469 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6470 * is kept in the range [-sample_period, 0] so that we can use the
6471 * sign as trigger.
6472 */
6473
ab573844 6474u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6475{
cdd6c482 6476 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6477 u64 period = hwc->last_period;
6478 u64 nr, offset;
6479 s64 old, val;
6480
6481 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6482
6483again:
e7850595 6484 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6485 if (val < 0)
6486 return 0;
15dbf27c 6487
7b4b6658
PZ
6488 nr = div64_u64(period + val, period);
6489 offset = nr * period;
6490 val -= offset;
e7850595 6491 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6492 goto again;
15dbf27c 6493
7b4b6658 6494 return nr;
15dbf27c
PZ
6495}
6496
0cff784a 6497static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6498 struct perf_sample_data *data,
5622f295 6499 struct pt_regs *regs)
15dbf27c 6500{
cdd6c482 6501 struct hw_perf_event *hwc = &event->hw;
850bc73f 6502 int throttle = 0;
15dbf27c 6503
0cff784a
PZ
6504 if (!overflow)
6505 overflow = perf_swevent_set_period(event);
15dbf27c 6506
7b4b6658
PZ
6507 if (hwc->interrupts == MAX_INTERRUPTS)
6508 return;
15dbf27c 6509
7b4b6658 6510 for (; overflow; overflow--) {
a8b0ca17 6511 if (__perf_event_overflow(event, throttle,
5622f295 6512 data, regs)) {
7b4b6658
PZ
6513 /*
6514 * We inhibit the overflow from happening when
6515 * hwc->interrupts == MAX_INTERRUPTS.
6516 */
6517 break;
6518 }
cf450a73 6519 throttle = 1;
7b4b6658 6520 }
15dbf27c
PZ
6521}
6522
a4eaf7f1 6523static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6524 struct perf_sample_data *data,
5622f295 6525 struct pt_regs *regs)
7b4b6658 6526{
cdd6c482 6527 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6528
e7850595 6529 local64_add(nr, &event->count);
d6d020e9 6530
0cff784a
PZ
6531 if (!regs)
6532 return;
6533
6c7e550f 6534 if (!is_sampling_event(event))
7b4b6658 6535 return;
d6d020e9 6536
5d81e5cf
AV
6537 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6538 data->period = nr;
6539 return perf_swevent_overflow(event, 1, data, regs);
6540 } else
6541 data->period = event->hw.last_period;
6542
0cff784a 6543 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6544 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6545
e7850595 6546 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6547 return;
df1a132b 6548
a8b0ca17 6549 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6550}
6551
f5ffe02e
FW
6552static int perf_exclude_event(struct perf_event *event,
6553 struct pt_regs *regs)
6554{
a4eaf7f1 6555 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6556 return 1;
a4eaf7f1 6557
f5ffe02e
FW
6558 if (regs) {
6559 if (event->attr.exclude_user && user_mode(regs))
6560 return 1;
6561
6562 if (event->attr.exclude_kernel && !user_mode(regs))
6563 return 1;
6564 }
6565
6566 return 0;
6567}
6568
cdd6c482 6569static int perf_swevent_match(struct perf_event *event,
1c432d89 6570 enum perf_type_id type,
6fb2915d
LZ
6571 u32 event_id,
6572 struct perf_sample_data *data,
6573 struct pt_regs *regs)
15dbf27c 6574{
cdd6c482 6575 if (event->attr.type != type)
a21ca2ca 6576 return 0;
f5ffe02e 6577
cdd6c482 6578 if (event->attr.config != event_id)
15dbf27c
PZ
6579 return 0;
6580
f5ffe02e
FW
6581 if (perf_exclude_event(event, regs))
6582 return 0;
15dbf27c
PZ
6583
6584 return 1;
6585}
6586
76e1d904
FW
6587static inline u64 swevent_hash(u64 type, u32 event_id)
6588{
6589 u64 val = event_id | (type << 32);
6590
6591 return hash_64(val, SWEVENT_HLIST_BITS);
6592}
6593
49f135ed
FW
6594static inline struct hlist_head *
6595__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6596{
49f135ed
FW
6597 u64 hash = swevent_hash(type, event_id);
6598
6599 return &hlist->heads[hash];
6600}
76e1d904 6601
49f135ed
FW
6602/* For the read side: events when they trigger */
6603static inline struct hlist_head *
b28ab83c 6604find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6605{
6606 struct swevent_hlist *hlist;
76e1d904 6607
b28ab83c 6608 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6609 if (!hlist)
6610 return NULL;
6611
49f135ed
FW
6612 return __find_swevent_head(hlist, type, event_id);
6613}
6614
6615/* For the event head insertion and removal in the hlist */
6616static inline struct hlist_head *
b28ab83c 6617find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6618{
6619 struct swevent_hlist *hlist;
6620 u32 event_id = event->attr.config;
6621 u64 type = event->attr.type;
6622
6623 /*
6624 * Event scheduling is always serialized against hlist allocation
6625 * and release. Which makes the protected version suitable here.
6626 * The context lock guarantees that.
6627 */
b28ab83c 6628 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6629 lockdep_is_held(&event->ctx->lock));
6630 if (!hlist)
6631 return NULL;
6632
6633 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6634}
6635
6636static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6637 u64 nr,
76e1d904
FW
6638 struct perf_sample_data *data,
6639 struct pt_regs *regs)
15dbf27c 6640{
4a32fea9 6641 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6642 struct perf_event *event;
76e1d904 6643 struct hlist_head *head;
15dbf27c 6644
76e1d904 6645 rcu_read_lock();
b28ab83c 6646 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6647 if (!head)
6648 goto end;
6649
b67bfe0d 6650 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6651 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6652 perf_swevent_event(event, nr, data, regs);
15dbf27c 6653 }
76e1d904
FW
6654end:
6655 rcu_read_unlock();
15dbf27c
PZ
6656}
6657
86038c5e
PZI
6658DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6659
4ed7c92d 6660int perf_swevent_get_recursion_context(void)
96f6d444 6661{
4a32fea9 6662 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6663
b28ab83c 6664 return get_recursion_context(swhash->recursion);
96f6d444 6665}
645e8cc0 6666EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6667
fa9f90be 6668inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6669{
4a32fea9 6670 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6671
b28ab83c 6672 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6673}
15dbf27c 6674
86038c5e 6675void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6676{
a4234bfc 6677 struct perf_sample_data data;
4ed7c92d 6678
86038c5e 6679 if (WARN_ON_ONCE(!regs))
4ed7c92d 6680 return;
a4234bfc 6681
fd0d000b 6682 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6683 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6684}
6685
6686void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6687{
6688 int rctx;
6689
6690 preempt_disable_notrace();
6691 rctx = perf_swevent_get_recursion_context();
6692 if (unlikely(rctx < 0))
6693 goto fail;
6694
6695 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6696
6697 perf_swevent_put_recursion_context(rctx);
86038c5e 6698fail:
1c024eca 6699 preempt_enable_notrace();
b8e83514
PZ
6700}
6701
cdd6c482 6702static void perf_swevent_read(struct perf_event *event)
15dbf27c 6703{
15dbf27c
PZ
6704}
6705
a4eaf7f1 6706static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6707{
4a32fea9 6708 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6709 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6710 struct hlist_head *head;
6711
6c7e550f 6712 if (is_sampling_event(event)) {
7b4b6658 6713 hwc->last_period = hwc->sample_period;
cdd6c482 6714 perf_swevent_set_period(event);
7b4b6658 6715 }
76e1d904 6716
a4eaf7f1
PZ
6717 hwc->state = !(flags & PERF_EF_START);
6718
b28ab83c 6719 head = find_swevent_head(swhash, event);
39af6b16
JO
6720 if (!head) {
6721 /*
6722 * We can race with cpu hotplug code. Do not
6723 * WARN if the cpu just got unplugged.
6724 */
6725 WARN_ON_ONCE(swhash->online);
76e1d904 6726 return -EINVAL;
39af6b16 6727 }
76e1d904
FW
6728
6729 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6730 perf_event_update_userpage(event);
76e1d904 6731
15dbf27c
PZ
6732 return 0;
6733}
6734
a4eaf7f1 6735static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6736{
76e1d904 6737 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6738}
6739
a4eaf7f1 6740static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6741{
a4eaf7f1 6742 event->hw.state = 0;
d6d020e9 6743}
aa9c4c0f 6744
a4eaf7f1 6745static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6746{
a4eaf7f1 6747 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6748}
6749
49f135ed
FW
6750/* Deref the hlist from the update side */
6751static inline struct swevent_hlist *
b28ab83c 6752swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6753{
b28ab83c
PZ
6754 return rcu_dereference_protected(swhash->swevent_hlist,
6755 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6756}
6757
b28ab83c 6758static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6759{
b28ab83c 6760 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6761
49f135ed 6762 if (!hlist)
76e1d904
FW
6763 return;
6764
70691d4a 6765 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6766 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6767}
6768
6769static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6770{
b28ab83c 6771 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6772
b28ab83c 6773 mutex_lock(&swhash->hlist_mutex);
76e1d904 6774
b28ab83c
PZ
6775 if (!--swhash->hlist_refcount)
6776 swevent_hlist_release(swhash);
76e1d904 6777
b28ab83c 6778 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6779}
6780
6781static void swevent_hlist_put(struct perf_event *event)
6782{
6783 int cpu;
6784
76e1d904
FW
6785 for_each_possible_cpu(cpu)
6786 swevent_hlist_put_cpu(event, cpu);
6787}
6788
6789static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6790{
b28ab83c 6791 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6792 int err = 0;
6793
b28ab83c 6794 mutex_lock(&swhash->hlist_mutex);
76e1d904 6795
b28ab83c 6796 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6797 struct swevent_hlist *hlist;
6798
6799 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6800 if (!hlist) {
6801 err = -ENOMEM;
6802 goto exit;
6803 }
b28ab83c 6804 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6805 }
b28ab83c 6806 swhash->hlist_refcount++;
9ed6060d 6807exit:
b28ab83c 6808 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6809
6810 return err;
6811}
6812
6813static int swevent_hlist_get(struct perf_event *event)
6814{
6815 int err;
6816 int cpu, failed_cpu;
6817
76e1d904
FW
6818 get_online_cpus();
6819 for_each_possible_cpu(cpu) {
6820 err = swevent_hlist_get_cpu(event, cpu);
6821 if (err) {
6822 failed_cpu = cpu;
6823 goto fail;
6824 }
6825 }
6826 put_online_cpus();
6827
6828 return 0;
9ed6060d 6829fail:
76e1d904
FW
6830 for_each_possible_cpu(cpu) {
6831 if (cpu == failed_cpu)
6832 break;
6833 swevent_hlist_put_cpu(event, cpu);
6834 }
6835
6836 put_online_cpus();
6837 return err;
6838}
6839
c5905afb 6840struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6841
b0a873eb
PZ
6842static void sw_perf_event_destroy(struct perf_event *event)
6843{
6844 u64 event_id = event->attr.config;
95476b64 6845
b0a873eb
PZ
6846 WARN_ON(event->parent);
6847
c5905afb 6848 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6849 swevent_hlist_put(event);
6850}
6851
6852static int perf_swevent_init(struct perf_event *event)
6853{
8176cced 6854 u64 event_id = event->attr.config;
b0a873eb
PZ
6855
6856 if (event->attr.type != PERF_TYPE_SOFTWARE)
6857 return -ENOENT;
6858
2481c5fa
SE
6859 /*
6860 * no branch sampling for software events
6861 */
6862 if (has_branch_stack(event))
6863 return -EOPNOTSUPP;
6864
b0a873eb
PZ
6865 switch (event_id) {
6866 case PERF_COUNT_SW_CPU_CLOCK:
6867 case PERF_COUNT_SW_TASK_CLOCK:
6868 return -ENOENT;
6869
6870 default:
6871 break;
6872 }
6873
ce677831 6874 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6875 return -ENOENT;
6876
6877 if (!event->parent) {
6878 int err;
6879
6880 err = swevent_hlist_get(event);
6881 if (err)
6882 return err;
6883
c5905afb 6884 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6885 event->destroy = sw_perf_event_destroy;
6886 }
6887
6888 return 0;
6889}
6890
6891static struct pmu perf_swevent = {
89a1e187 6892 .task_ctx_nr = perf_sw_context,
95476b64 6893
34f43927
PZ
6894 .capabilities = PERF_PMU_CAP_NO_NMI,
6895
b0a873eb 6896 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6897 .add = perf_swevent_add,
6898 .del = perf_swevent_del,
6899 .start = perf_swevent_start,
6900 .stop = perf_swevent_stop,
1c024eca 6901 .read = perf_swevent_read,
1c024eca
PZ
6902};
6903
b0a873eb
PZ
6904#ifdef CONFIG_EVENT_TRACING
6905
1c024eca
PZ
6906static int perf_tp_filter_match(struct perf_event *event,
6907 struct perf_sample_data *data)
6908{
6909 void *record = data->raw->data;
6910
6911 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6912 return 1;
6913 return 0;
6914}
6915
6916static int perf_tp_event_match(struct perf_event *event,
6917 struct perf_sample_data *data,
6918 struct pt_regs *regs)
6919{
a0f7d0f7
FW
6920 if (event->hw.state & PERF_HES_STOPPED)
6921 return 0;
580d607c
PZ
6922 /*
6923 * All tracepoints are from kernel-space.
6924 */
6925 if (event->attr.exclude_kernel)
1c024eca
PZ
6926 return 0;
6927
6928 if (!perf_tp_filter_match(event, data))
6929 return 0;
6930
6931 return 1;
6932}
6933
6934void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6935 struct pt_regs *regs, struct hlist_head *head, int rctx,
6936 struct task_struct *task)
95476b64
FW
6937{
6938 struct perf_sample_data data;
1c024eca 6939 struct perf_event *event;
1c024eca 6940
95476b64
FW
6941 struct perf_raw_record raw = {
6942 .size = entry_size,
6943 .data = record,
6944 };
6945
fd0d000b 6946 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6947 data.raw = &raw;
6948
b67bfe0d 6949 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6950 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6951 perf_swevent_event(event, count, &data, regs);
4f41c013 6952 }
ecc55f84 6953
e6dab5ff
AV
6954 /*
6955 * If we got specified a target task, also iterate its context and
6956 * deliver this event there too.
6957 */
6958 if (task && task != current) {
6959 struct perf_event_context *ctx;
6960 struct trace_entry *entry = record;
6961
6962 rcu_read_lock();
6963 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6964 if (!ctx)
6965 goto unlock;
6966
6967 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6968 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6969 continue;
6970 if (event->attr.config != entry->type)
6971 continue;
6972 if (perf_tp_event_match(event, &data, regs))
6973 perf_swevent_event(event, count, &data, regs);
6974 }
6975unlock:
6976 rcu_read_unlock();
6977 }
6978
ecc55f84 6979 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6980}
6981EXPORT_SYMBOL_GPL(perf_tp_event);
6982
cdd6c482 6983static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6984{
1c024eca 6985 perf_trace_destroy(event);
e077df4f
PZ
6986}
6987
b0a873eb 6988static int perf_tp_event_init(struct perf_event *event)
e077df4f 6989{
76e1d904
FW
6990 int err;
6991
b0a873eb
PZ
6992 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6993 return -ENOENT;
6994
2481c5fa
SE
6995 /*
6996 * no branch sampling for tracepoint events
6997 */
6998 if (has_branch_stack(event))
6999 return -EOPNOTSUPP;
7000
1c024eca
PZ
7001 err = perf_trace_init(event);
7002 if (err)
b0a873eb 7003 return err;
e077df4f 7004
cdd6c482 7005 event->destroy = tp_perf_event_destroy;
e077df4f 7006
b0a873eb
PZ
7007 return 0;
7008}
7009
7010static struct pmu perf_tracepoint = {
89a1e187
PZ
7011 .task_ctx_nr = perf_sw_context,
7012
b0a873eb 7013 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7014 .add = perf_trace_add,
7015 .del = perf_trace_del,
7016 .start = perf_swevent_start,
7017 .stop = perf_swevent_stop,
b0a873eb 7018 .read = perf_swevent_read,
b0a873eb
PZ
7019};
7020
7021static inline void perf_tp_register(void)
7022{
2e80a82a 7023 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7024}
6fb2915d
LZ
7025
7026static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7027{
7028 char *filter_str;
7029 int ret;
7030
7031 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7032 return -EINVAL;
7033
7034 filter_str = strndup_user(arg, PAGE_SIZE);
7035 if (IS_ERR(filter_str))
7036 return PTR_ERR(filter_str);
7037
7038 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7039
7040 kfree(filter_str);
7041 return ret;
7042}
7043
7044static void perf_event_free_filter(struct perf_event *event)
7045{
7046 ftrace_profile_free_filter(event);
7047}
7048
2541517c
AS
7049static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7050{
7051 struct bpf_prog *prog;
7052
7053 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7054 return -EINVAL;
7055
7056 if (event->tp_event->prog)
7057 return -EEXIST;
7058
04a22fae
WN
7059 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7060 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7061 return -EINVAL;
7062
7063 prog = bpf_prog_get(prog_fd);
7064 if (IS_ERR(prog))
7065 return PTR_ERR(prog);
7066
6c373ca8 7067 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7068 /* valid fd, but invalid bpf program type */
7069 bpf_prog_put(prog);
7070 return -EINVAL;
7071 }
7072
7073 event->tp_event->prog = prog;
7074
7075 return 0;
7076}
7077
7078static void perf_event_free_bpf_prog(struct perf_event *event)
7079{
7080 struct bpf_prog *prog;
7081
7082 if (!event->tp_event)
7083 return;
7084
7085 prog = event->tp_event->prog;
7086 if (prog) {
7087 event->tp_event->prog = NULL;
7088 bpf_prog_put(prog);
7089 }
7090}
7091
e077df4f 7092#else
6fb2915d 7093
b0a873eb 7094static inline void perf_tp_register(void)
e077df4f 7095{
e077df4f 7096}
6fb2915d
LZ
7097
7098static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7099{
7100 return -ENOENT;
7101}
7102
7103static void perf_event_free_filter(struct perf_event *event)
7104{
7105}
7106
2541517c
AS
7107static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7108{
7109 return -ENOENT;
7110}
7111
7112static void perf_event_free_bpf_prog(struct perf_event *event)
7113{
7114}
07b139c8 7115#endif /* CONFIG_EVENT_TRACING */
e077df4f 7116
24f1e32c 7117#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7118void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7119{
f5ffe02e
FW
7120 struct perf_sample_data sample;
7121 struct pt_regs *regs = data;
7122
fd0d000b 7123 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7124
a4eaf7f1 7125 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7126 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7127}
7128#endif
7129
b0a873eb
PZ
7130/*
7131 * hrtimer based swevent callback
7132 */
f29ac756 7133
b0a873eb 7134static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7135{
b0a873eb
PZ
7136 enum hrtimer_restart ret = HRTIMER_RESTART;
7137 struct perf_sample_data data;
7138 struct pt_regs *regs;
7139 struct perf_event *event;
7140 u64 period;
f29ac756 7141
b0a873eb 7142 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7143
7144 if (event->state != PERF_EVENT_STATE_ACTIVE)
7145 return HRTIMER_NORESTART;
7146
b0a873eb 7147 event->pmu->read(event);
f344011c 7148
fd0d000b 7149 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7150 regs = get_irq_regs();
7151
7152 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7153 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7154 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7155 ret = HRTIMER_NORESTART;
7156 }
24f1e32c 7157
b0a873eb
PZ
7158 period = max_t(u64, 10000, event->hw.sample_period);
7159 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7160
b0a873eb 7161 return ret;
f29ac756
PZ
7162}
7163
b0a873eb 7164static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7165{
b0a873eb 7166 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7167 s64 period;
7168
7169 if (!is_sampling_event(event))
7170 return;
f5ffe02e 7171
5d508e82
FBH
7172 period = local64_read(&hwc->period_left);
7173 if (period) {
7174 if (period < 0)
7175 period = 10000;
fa407f35 7176
5d508e82
FBH
7177 local64_set(&hwc->period_left, 0);
7178 } else {
7179 period = max_t(u64, 10000, hwc->sample_period);
7180 }
3497d206
TG
7181 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7182 HRTIMER_MODE_REL_PINNED);
24f1e32c 7183}
b0a873eb
PZ
7184
7185static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7186{
b0a873eb
PZ
7187 struct hw_perf_event *hwc = &event->hw;
7188
6c7e550f 7189 if (is_sampling_event(event)) {
b0a873eb 7190 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7191 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7192
7193 hrtimer_cancel(&hwc->hrtimer);
7194 }
24f1e32c
FW
7195}
7196
ba3dd36c
PZ
7197static void perf_swevent_init_hrtimer(struct perf_event *event)
7198{
7199 struct hw_perf_event *hwc = &event->hw;
7200
7201 if (!is_sampling_event(event))
7202 return;
7203
7204 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7205 hwc->hrtimer.function = perf_swevent_hrtimer;
7206
7207 /*
7208 * Since hrtimers have a fixed rate, we can do a static freq->period
7209 * mapping and avoid the whole period adjust feedback stuff.
7210 */
7211 if (event->attr.freq) {
7212 long freq = event->attr.sample_freq;
7213
7214 event->attr.sample_period = NSEC_PER_SEC / freq;
7215 hwc->sample_period = event->attr.sample_period;
7216 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7217 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7218 event->attr.freq = 0;
7219 }
7220}
7221
b0a873eb
PZ
7222/*
7223 * Software event: cpu wall time clock
7224 */
7225
7226static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7227{
b0a873eb
PZ
7228 s64 prev;
7229 u64 now;
7230
a4eaf7f1 7231 now = local_clock();
b0a873eb
PZ
7232 prev = local64_xchg(&event->hw.prev_count, now);
7233 local64_add(now - prev, &event->count);
24f1e32c 7234}
24f1e32c 7235
a4eaf7f1 7236static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7237{
a4eaf7f1 7238 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7239 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7240}
7241
a4eaf7f1 7242static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7243{
b0a873eb
PZ
7244 perf_swevent_cancel_hrtimer(event);
7245 cpu_clock_event_update(event);
7246}
f29ac756 7247
a4eaf7f1
PZ
7248static int cpu_clock_event_add(struct perf_event *event, int flags)
7249{
7250 if (flags & PERF_EF_START)
7251 cpu_clock_event_start(event, flags);
6a694a60 7252 perf_event_update_userpage(event);
a4eaf7f1
PZ
7253
7254 return 0;
7255}
7256
7257static void cpu_clock_event_del(struct perf_event *event, int flags)
7258{
7259 cpu_clock_event_stop(event, flags);
7260}
7261
b0a873eb
PZ
7262static void cpu_clock_event_read(struct perf_event *event)
7263{
7264 cpu_clock_event_update(event);
7265}
f344011c 7266
b0a873eb
PZ
7267static int cpu_clock_event_init(struct perf_event *event)
7268{
7269 if (event->attr.type != PERF_TYPE_SOFTWARE)
7270 return -ENOENT;
7271
7272 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7273 return -ENOENT;
7274
2481c5fa
SE
7275 /*
7276 * no branch sampling for software events
7277 */
7278 if (has_branch_stack(event))
7279 return -EOPNOTSUPP;
7280
ba3dd36c
PZ
7281 perf_swevent_init_hrtimer(event);
7282
b0a873eb 7283 return 0;
f29ac756
PZ
7284}
7285
b0a873eb 7286static struct pmu perf_cpu_clock = {
89a1e187
PZ
7287 .task_ctx_nr = perf_sw_context,
7288
34f43927
PZ
7289 .capabilities = PERF_PMU_CAP_NO_NMI,
7290
b0a873eb 7291 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7292 .add = cpu_clock_event_add,
7293 .del = cpu_clock_event_del,
7294 .start = cpu_clock_event_start,
7295 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7296 .read = cpu_clock_event_read,
7297};
7298
7299/*
7300 * Software event: task time clock
7301 */
7302
7303static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7304{
b0a873eb
PZ
7305 u64 prev;
7306 s64 delta;
5c92d124 7307
b0a873eb
PZ
7308 prev = local64_xchg(&event->hw.prev_count, now);
7309 delta = now - prev;
7310 local64_add(delta, &event->count);
7311}
5c92d124 7312
a4eaf7f1 7313static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7314{
a4eaf7f1 7315 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7316 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7317}
7318
a4eaf7f1 7319static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7320{
7321 perf_swevent_cancel_hrtimer(event);
7322 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7323}
7324
7325static int task_clock_event_add(struct perf_event *event, int flags)
7326{
7327 if (flags & PERF_EF_START)
7328 task_clock_event_start(event, flags);
6a694a60 7329 perf_event_update_userpage(event);
b0a873eb 7330
a4eaf7f1
PZ
7331 return 0;
7332}
7333
7334static void task_clock_event_del(struct perf_event *event, int flags)
7335{
7336 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7337}
7338
7339static void task_clock_event_read(struct perf_event *event)
7340{
768a06e2
PZ
7341 u64 now = perf_clock();
7342 u64 delta = now - event->ctx->timestamp;
7343 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7344
7345 task_clock_event_update(event, time);
7346}
7347
7348static int task_clock_event_init(struct perf_event *event)
6fb2915d 7349{
b0a873eb
PZ
7350 if (event->attr.type != PERF_TYPE_SOFTWARE)
7351 return -ENOENT;
7352
7353 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7354 return -ENOENT;
7355
2481c5fa
SE
7356 /*
7357 * no branch sampling for software events
7358 */
7359 if (has_branch_stack(event))
7360 return -EOPNOTSUPP;
7361
ba3dd36c
PZ
7362 perf_swevent_init_hrtimer(event);
7363
b0a873eb 7364 return 0;
6fb2915d
LZ
7365}
7366
b0a873eb 7367static struct pmu perf_task_clock = {
89a1e187
PZ
7368 .task_ctx_nr = perf_sw_context,
7369
34f43927
PZ
7370 .capabilities = PERF_PMU_CAP_NO_NMI,
7371
b0a873eb 7372 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7373 .add = task_clock_event_add,
7374 .del = task_clock_event_del,
7375 .start = task_clock_event_start,
7376 .stop = task_clock_event_stop,
b0a873eb
PZ
7377 .read = task_clock_event_read,
7378};
6fb2915d 7379
ad5133b7 7380static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7381{
e077df4f 7382}
6fb2915d 7383
fbbe0701
SB
7384static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7385{
7386}
7387
ad5133b7 7388static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7389{
ad5133b7 7390 return 0;
6fb2915d
LZ
7391}
7392
18ab2cd3 7393static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7394
7395static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7396{
fbbe0701
SB
7397 __this_cpu_write(nop_txn_flags, flags);
7398
7399 if (flags & ~PERF_PMU_TXN_ADD)
7400 return;
7401
ad5133b7 7402 perf_pmu_disable(pmu);
6fb2915d
LZ
7403}
7404
ad5133b7
PZ
7405static int perf_pmu_commit_txn(struct pmu *pmu)
7406{
fbbe0701
SB
7407 unsigned int flags = __this_cpu_read(nop_txn_flags);
7408
7409 __this_cpu_write(nop_txn_flags, 0);
7410
7411 if (flags & ~PERF_PMU_TXN_ADD)
7412 return 0;
7413
ad5133b7
PZ
7414 perf_pmu_enable(pmu);
7415 return 0;
7416}
e077df4f 7417
ad5133b7 7418static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7419{
fbbe0701
SB
7420 unsigned int flags = __this_cpu_read(nop_txn_flags);
7421
7422 __this_cpu_write(nop_txn_flags, 0);
7423
7424 if (flags & ~PERF_PMU_TXN_ADD)
7425 return;
7426
ad5133b7 7427 perf_pmu_enable(pmu);
24f1e32c
FW
7428}
7429
35edc2a5
PZ
7430static int perf_event_idx_default(struct perf_event *event)
7431{
c719f560 7432 return 0;
35edc2a5
PZ
7433}
7434
8dc85d54
PZ
7435/*
7436 * Ensures all contexts with the same task_ctx_nr have the same
7437 * pmu_cpu_context too.
7438 */
9e317041 7439static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7440{
8dc85d54 7441 struct pmu *pmu;
b326e956 7442
8dc85d54
PZ
7443 if (ctxn < 0)
7444 return NULL;
24f1e32c 7445
8dc85d54
PZ
7446 list_for_each_entry(pmu, &pmus, entry) {
7447 if (pmu->task_ctx_nr == ctxn)
7448 return pmu->pmu_cpu_context;
7449 }
24f1e32c 7450
8dc85d54 7451 return NULL;
24f1e32c
FW
7452}
7453
51676957 7454static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7455{
51676957
PZ
7456 int cpu;
7457
7458 for_each_possible_cpu(cpu) {
7459 struct perf_cpu_context *cpuctx;
7460
7461 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7462
3f1f3320
PZ
7463 if (cpuctx->unique_pmu == old_pmu)
7464 cpuctx->unique_pmu = pmu;
51676957
PZ
7465 }
7466}
7467
7468static void free_pmu_context(struct pmu *pmu)
7469{
7470 struct pmu *i;
f5ffe02e 7471
8dc85d54 7472 mutex_lock(&pmus_lock);
0475f9ea 7473 /*
8dc85d54 7474 * Like a real lame refcount.
0475f9ea 7475 */
51676957
PZ
7476 list_for_each_entry(i, &pmus, entry) {
7477 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7478 update_pmu_context(i, pmu);
8dc85d54 7479 goto out;
51676957 7480 }
8dc85d54 7481 }
d6d020e9 7482
51676957 7483 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7484out:
7485 mutex_unlock(&pmus_lock);
24f1e32c 7486}
2e80a82a 7487static struct idr pmu_idr;
d6d020e9 7488
abe43400
PZ
7489static ssize_t
7490type_show(struct device *dev, struct device_attribute *attr, char *page)
7491{
7492 struct pmu *pmu = dev_get_drvdata(dev);
7493
7494 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7495}
90826ca7 7496static DEVICE_ATTR_RO(type);
abe43400 7497
62b85639
SE
7498static ssize_t
7499perf_event_mux_interval_ms_show(struct device *dev,
7500 struct device_attribute *attr,
7501 char *page)
7502{
7503 struct pmu *pmu = dev_get_drvdata(dev);
7504
7505 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7506}
7507
272325c4
PZ
7508static DEFINE_MUTEX(mux_interval_mutex);
7509
62b85639
SE
7510static ssize_t
7511perf_event_mux_interval_ms_store(struct device *dev,
7512 struct device_attribute *attr,
7513 const char *buf, size_t count)
7514{
7515 struct pmu *pmu = dev_get_drvdata(dev);
7516 int timer, cpu, ret;
7517
7518 ret = kstrtoint(buf, 0, &timer);
7519 if (ret)
7520 return ret;
7521
7522 if (timer < 1)
7523 return -EINVAL;
7524
7525 /* same value, noting to do */
7526 if (timer == pmu->hrtimer_interval_ms)
7527 return count;
7528
272325c4 7529 mutex_lock(&mux_interval_mutex);
62b85639
SE
7530 pmu->hrtimer_interval_ms = timer;
7531
7532 /* update all cpuctx for this PMU */
272325c4
PZ
7533 get_online_cpus();
7534 for_each_online_cpu(cpu) {
62b85639
SE
7535 struct perf_cpu_context *cpuctx;
7536 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7537 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7538
272325c4
PZ
7539 cpu_function_call(cpu,
7540 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7541 }
272325c4
PZ
7542 put_online_cpus();
7543 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7544
7545 return count;
7546}
90826ca7 7547static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7548
90826ca7
GKH
7549static struct attribute *pmu_dev_attrs[] = {
7550 &dev_attr_type.attr,
7551 &dev_attr_perf_event_mux_interval_ms.attr,
7552 NULL,
abe43400 7553};
90826ca7 7554ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7555
7556static int pmu_bus_running;
7557static struct bus_type pmu_bus = {
7558 .name = "event_source",
90826ca7 7559 .dev_groups = pmu_dev_groups,
abe43400
PZ
7560};
7561
7562static void pmu_dev_release(struct device *dev)
7563{
7564 kfree(dev);
7565}
7566
7567static int pmu_dev_alloc(struct pmu *pmu)
7568{
7569 int ret = -ENOMEM;
7570
7571 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7572 if (!pmu->dev)
7573 goto out;
7574
0c9d42ed 7575 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7576 device_initialize(pmu->dev);
7577 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7578 if (ret)
7579 goto free_dev;
7580
7581 dev_set_drvdata(pmu->dev, pmu);
7582 pmu->dev->bus = &pmu_bus;
7583 pmu->dev->release = pmu_dev_release;
7584 ret = device_add(pmu->dev);
7585 if (ret)
7586 goto free_dev;
7587
7588out:
7589 return ret;
7590
7591free_dev:
7592 put_device(pmu->dev);
7593 goto out;
7594}
7595
547e9fd7 7596static struct lock_class_key cpuctx_mutex;
facc4307 7597static struct lock_class_key cpuctx_lock;
547e9fd7 7598
03d8e80b 7599int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7600{
108b02cf 7601 int cpu, ret;
24f1e32c 7602
b0a873eb 7603 mutex_lock(&pmus_lock);
33696fc0
PZ
7604 ret = -ENOMEM;
7605 pmu->pmu_disable_count = alloc_percpu(int);
7606 if (!pmu->pmu_disable_count)
7607 goto unlock;
f29ac756 7608
2e80a82a
PZ
7609 pmu->type = -1;
7610 if (!name)
7611 goto skip_type;
7612 pmu->name = name;
7613
7614 if (type < 0) {
0e9c3be2
TH
7615 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7616 if (type < 0) {
7617 ret = type;
2e80a82a
PZ
7618 goto free_pdc;
7619 }
7620 }
7621 pmu->type = type;
7622
abe43400
PZ
7623 if (pmu_bus_running) {
7624 ret = pmu_dev_alloc(pmu);
7625 if (ret)
7626 goto free_idr;
7627 }
7628
2e80a82a 7629skip_type:
8dc85d54
PZ
7630 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7631 if (pmu->pmu_cpu_context)
7632 goto got_cpu_context;
f29ac756 7633
c4814202 7634 ret = -ENOMEM;
108b02cf
PZ
7635 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7636 if (!pmu->pmu_cpu_context)
abe43400 7637 goto free_dev;
f344011c 7638
108b02cf
PZ
7639 for_each_possible_cpu(cpu) {
7640 struct perf_cpu_context *cpuctx;
7641
7642 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7643 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7644 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7645 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7646 cpuctx->ctx.pmu = pmu;
9e630205 7647
272325c4 7648 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7649
3f1f3320 7650 cpuctx->unique_pmu = pmu;
108b02cf 7651 }
76e1d904 7652
8dc85d54 7653got_cpu_context:
ad5133b7
PZ
7654 if (!pmu->start_txn) {
7655 if (pmu->pmu_enable) {
7656 /*
7657 * If we have pmu_enable/pmu_disable calls, install
7658 * transaction stubs that use that to try and batch
7659 * hardware accesses.
7660 */
7661 pmu->start_txn = perf_pmu_start_txn;
7662 pmu->commit_txn = perf_pmu_commit_txn;
7663 pmu->cancel_txn = perf_pmu_cancel_txn;
7664 } else {
fbbe0701 7665 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7666 pmu->commit_txn = perf_pmu_nop_int;
7667 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7668 }
5c92d124 7669 }
15dbf27c 7670
ad5133b7
PZ
7671 if (!pmu->pmu_enable) {
7672 pmu->pmu_enable = perf_pmu_nop_void;
7673 pmu->pmu_disable = perf_pmu_nop_void;
7674 }
7675
35edc2a5
PZ
7676 if (!pmu->event_idx)
7677 pmu->event_idx = perf_event_idx_default;
7678
b0a873eb 7679 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7680 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7681 ret = 0;
7682unlock:
b0a873eb
PZ
7683 mutex_unlock(&pmus_lock);
7684
33696fc0 7685 return ret;
108b02cf 7686
abe43400
PZ
7687free_dev:
7688 device_del(pmu->dev);
7689 put_device(pmu->dev);
7690
2e80a82a
PZ
7691free_idr:
7692 if (pmu->type >= PERF_TYPE_MAX)
7693 idr_remove(&pmu_idr, pmu->type);
7694
108b02cf
PZ
7695free_pdc:
7696 free_percpu(pmu->pmu_disable_count);
7697 goto unlock;
f29ac756 7698}
c464c76e 7699EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7700
b0a873eb 7701void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7702{
b0a873eb
PZ
7703 mutex_lock(&pmus_lock);
7704 list_del_rcu(&pmu->entry);
7705 mutex_unlock(&pmus_lock);
5c92d124 7706
0475f9ea 7707 /*
cde8e884
PZ
7708 * We dereference the pmu list under both SRCU and regular RCU, so
7709 * synchronize against both of those.
0475f9ea 7710 */
b0a873eb 7711 synchronize_srcu(&pmus_srcu);
cde8e884 7712 synchronize_rcu();
d6d020e9 7713
33696fc0 7714 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7715 if (pmu->type >= PERF_TYPE_MAX)
7716 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7717 device_del(pmu->dev);
7718 put_device(pmu->dev);
51676957 7719 free_pmu_context(pmu);
b0a873eb 7720}
c464c76e 7721EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7722
cc34b98b
MR
7723static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7724{
ccd41c86 7725 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7726 int ret;
7727
7728 if (!try_module_get(pmu->module))
7729 return -ENODEV;
ccd41c86
PZ
7730
7731 if (event->group_leader != event) {
8b10c5e2
PZ
7732 /*
7733 * This ctx->mutex can nest when we're called through
7734 * inheritance. See the perf_event_ctx_lock_nested() comment.
7735 */
7736 ctx = perf_event_ctx_lock_nested(event->group_leader,
7737 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7738 BUG_ON(!ctx);
7739 }
7740
cc34b98b
MR
7741 event->pmu = pmu;
7742 ret = pmu->event_init(event);
ccd41c86
PZ
7743
7744 if (ctx)
7745 perf_event_ctx_unlock(event->group_leader, ctx);
7746
cc34b98b
MR
7747 if (ret)
7748 module_put(pmu->module);
7749
7750 return ret;
7751}
7752
18ab2cd3 7753static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7754{
7755 struct pmu *pmu = NULL;
7756 int idx;
940c5b29 7757 int ret;
b0a873eb
PZ
7758
7759 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7760
7761 rcu_read_lock();
7762 pmu = idr_find(&pmu_idr, event->attr.type);
7763 rcu_read_unlock();
940c5b29 7764 if (pmu) {
cc34b98b 7765 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7766 if (ret)
7767 pmu = ERR_PTR(ret);
2e80a82a 7768 goto unlock;
940c5b29 7769 }
2e80a82a 7770
b0a873eb 7771 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7772 ret = perf_try_init_event(pmu, event);
b0a873eb 7773 if (!ret)
e5f4d339 7774 goto unlock;
76e1d904 7775
b0a873eb
PZ
7776 if (ret != -ENOENT) {
7777 pmu = ERR_PTR(ret);
e5f4d339 7778 goto unlock;
f344011c 7779 }
5c92d124 7780 }
e5f4d339
PZ
7781 pmu = ERR_PTR(-ENOENT);
7782unlock:
b0a873eb 7783 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7784
4aeb0b42 7785 return pmu;
5c92d124
IM
7786}
7787
4beb31f3
FW
7788static void account_event_cpu(struct perf_event *event, int cpu)
7789{
7790 if (event->parent)
7791 return;
7792
4beb31f3
FW
7793 if (is_cgroup_event(event))
7794 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7795}
7796
766d6c07
FW
7797static void account_event(struct perf_event *event)
7798{
4beb31f3
FW
7799 if (event->parent)
7800 return;
7801
766d6c07
FW
7802 if (event->attach_state & PERF_ATTACH_TASK)
7803 static_key_slow_inc(&perf_sched_events.key);
7804 if (event->attr.mmap || event->attr.mmap_data)
7805 atomic_inc(&nr_mmap_events);
7806 if (event->attr.comm)
7807 atomic_inc(&nr_comm_events);
7808 if (event->attr.task)
7809 atomic_inc(&nr_task_events);
948b26b6
FW
7810 if (event->attr.freq) {
7811 if (atomic_inc_return(&nr_freq_events) == 1)
7812 tick_nohz_full_kick_all();
7813 }
45ac1403
AH
7814 if (event->attr.context_switch) {
7815 atomic_inc(&nr_switch_events);
7816 static_key_slow_inc(&perf_sched_events.key);
7817 }
4beb31f3 7818 if (has_branch_stack(event))
766d6c07 7819 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7820 if (is_cgroup_event(event))
766d6c07 7821 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7822
7823 account_event_cpu(event, event->cpu);
766d6c07
FW
7824}
7825
0793a61d 7826/*
cdd6c482 7827 * Allocate and initialize a event structure
0793a61d 7828 */
cdd6c482 7829static struct perf_event *
c3f00c70 7830perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7831 struct task_struct *task,
7832 struct perf_event *group_leader,
7833 struct perf_event *parent_event,
4dc0da86 7834 perf_overflow_handler_t overflow_handler,
79dff51e 7835 void *context, int cgroup_fd)
0793a61d 7836{
51b0fe39 7837 struct pmu *pmu;
cdd6c482
IM
7838 struct perf_event *event;
7839 struct hw_perf_event *hwc;
90983b16 7840 long err = -EINVAL;
0793a61d 7841
66832eb4
ON
7842 if ((unsigned)cpu >= nr_cpu_ids) {
7843 if (!task || cpu != -1)
7844 return ERR_PTR(-EINVAL);
7845 }
7846
c3f00c70 7847 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7848 if (!event)
d5d2bc0d 7849 return ERR_PTR(-ENOMEM);
0793a61d 7850
04289bb9 7851 /*
cdd6c482 7852 * Single events are their own group leaders, with an
04289bb9
IM
7853 * empty sibling list:
7854 */
7855 if (!group_leader)
cdd6c482 7856 group_leader = event;
04289bb9 7857
cdd6c482
IM
7858 mutex_init(&event->child_mutex);
7859 INIT_LIST_HEAD(&event->child_list);
fccc714b 7860
cdd6c482
IM
7861 INIT_LIST_HEAD(&event->group_entry);
7862 INIT_LIST_HEAD(&event->event_entry);
7863 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7864 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7865 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7866 INIT_HLIST_NODE(&event->hlist_entry);
7867
10c6db11 7868
cdd6c482 7869 init_waitqueue_head(&event->waitq);
e360adbe 7870 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7871
cdd6c482 7872 mutex_init(&event->mmap_mutex);
7b732a75 7873
a6fa941d 7874 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7875 event->cpu = cpu;
7876 event->attr = *attr;
7877 event->group_leader = group_leader;
7878 event->pmu = NULL;
cdd6c482 7879 event->oncpu = -1;
a96bbc16 7880
cdd6c482 7881 event->parent = parent_event;
b84fbc9f 7882
17cf22c3 7883 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7884 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7885
cdd6c482 7886 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7887
d580ff86
PZ
7888 if (task) {
7889 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7890 /*
50f16a8b
PZ
7891 * XXX pmu::event_init needs to know what task to account to
7892 * and we cannot use the ctx information because we need the
7893 * pmu before we get a ctx.
d580ff86 7894 */
50f16a8b 7895 event->hw.target = task;
d580ff86
PZ
7896 }
7897
34f43927
PZ
7898 event->clock = &local_clock;
7899 if (parent_event)
7900 event->clock = parent_event->clock;
7901
4dc0da86 7902 if (!overflow_handler && parent_event) {
b326e956 7903 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7904 context = parent_event->overflow_handler_context;
7905 }
66832eb4 7906
b326e956 7907 event->overflow_handler = overflow_handler;
4dc0da86 7908 event->overflow_handler_context = context;
97eaf530 7909
0231bb53 7910 perf_event__state_init(event);
a86ed508 7911
4aeb0b42 7912 pmu = NULL;
b8e83514 7913
cdd6c482 7914 hwc = &event->hw;
bd2b5b12 7915 hwc->sample_period = attr->sample_period;
0d48696f 7916 if (attr->freq && attr->sample_freq)
bd2b5b12 7917 hwc->sample_period = 1;
eced1dfc 7918 hwc->last_period = hwc->sample_period;
bd2b5b12 7919
e7850595 7920 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7921
2023b359 7922 /*
cdd6c482 7923 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7924 */
3dab77fb 7925 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7926 goto err_ns;
a46a2300
YZ
7927
7928 if (!has_branch_stack(event))
7929 event->attr.branch_sample_type = 0;
2023b359 7930
79dff51e
MF
7931 if (cgroup_fd != -1) {
7932 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7933 if (err)
7934 goto err_ns;
7935 }
7936
b0a873eb 7937 pmu = perf_init_event(event);
4aeb0b42 7938 if (!pmu)
90983b16
FW
7939 goto err_ns;
7940 else if (IS_ERR(pmu)) {
4aeb0b42 7941 err = PTR_ERR(pmu);
90983b16 7942 goto err_ns;
621a01ea 7943 }
d5d2bc0d 7944
bed5b25a
AS
7945 err = exclusive_event_init(event);
7946 if (err)
7947 goto err_pmu;
7948
cdd6c482 7949 if (!event->parent) {
927c7a9e
FW
7950 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7951 err = get_callchain_buffers();
90983b16 7952 if (err)
bed5b25a 7953 goto err_per_task;
d010b332 7954 }
f344011c 7955 }
9ee318a7 7956
cdd6c482 7957 return event;
90983b16 7958
bed5b25a
AS
7959err_per_task:
7960 exclusive_event_destroy(event);
7961
90983b16
FW
7962err_pmu:
7963 if (event->destroy)
7964 event->destroy(event);
c464c76e 7965 module_put(pmu->module);
90983b16 7966err_ns:
79dff51e
MF
7967 if (is_cgroup_event(event))
7968 perf_detach_cgroup(event);
90983b16
FW
7969 if (event->ns)
7970 put_pid_ns(event->ns);
7971 kfree(event);
7972
7973 return ERR_PTR(err);
0793a61d
TG
7974}
7975
cdd6c482
IM
7976static int perf_copy_attr(struct perf_event_attr __user *uattr,
7977 struct perf_event_attr *attr)
974802ea 7978{
974802ea 7979 u32 size;
cdf8073d 7980 int ret;
974802ea
PZ
7981
7982 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7983 return -EFAULT;
7984
7985 /*
7986 * zero the full structure, so that a short copy will be nice.
7987 */
7988 memset(attr, 0, sizeof(*attr));
7989
7990 ret = get_user(size, &uattr->size);
7991 if (ret)
7992 return ret;
7993
7994 if (size > PAGE_SIZE) /* silly large */
7995 goto err_size;
7996
7997 if (!size) /* abi compat */
7998 size = PERF_ATTR_SIZE_VER0;
7999
8000 if (size < PERF_ATTR_SIZE_VER0)
8001 goto err_size;
8002
8003 /*
8004 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8005 * ensure all the unknown bits are 0 - i.e. new
8006 * user-space does not rely on any kernel feature
8007 * extensions we dont know about yet.
974802ea
PZ
8008 */
8009 if (size > sizeof(*attr)) {
cdf8073d
IS
8010 unsigned char __user *addr;
8011 unsigned char __user *end;
8012 unsigned char val;
974802ea 8013
cdf8073d
IS
8014 addr = (void __user *)uattr + sizeof(*attr);
8015 end = (void __user *)uattr + size;
974802ea 8016
cdf8073d 8017 for (; addr < end; addr++) {
974802ea
PZ
8018 ret = get_user(val, addr);
8019 if (ret)
8020 return ret;
8021 if (val)
8022 goto err_size;
8023 }
b3e62e35 8024 size = sizeof(*attr);
974802ea
PZ
8025 }
8026
8027 ret = copy_from_user(attr, uattr, size);
8028 if (ret)
8029 return -EFAULT;
8030
cd757645 8031 if (attr->__reserved_1)
974802ea
PZ
8032 return -EINVAL;
8033
8034 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8035 return -EINVAL;
8036
8037 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8038 return -EINVAL;
8039
bce38cd5
SE
8040 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8041 u64 mask = attr->branch_sample_type;
8042
8043 /* only using defined bits */
8044 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8045 return -EINVAL;
8046
8047 /* at least one branch bit must be set */
8048 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8049 return -EINVAL;
8050
bce38cd5
SE
8051 /* propagate priv level, when not set for branch */
8052 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8053
8054 /* exclude_kernel checked on syscall entry */
8055 if (!attr->exclude_kernel)
8056 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8057
8058 if (!attr->exclude_user)
8059 mask |= PERF_SAMPLE_BRANCH_USER;
8060
8061 if (!attr->exclude_hv)
8062 mask |= PERF_SAMPLE_BRANCH_HV;
8063 /*
8064 * adjust user setting (for HW filter setup)
8065 */
8066 attr->branch_sample_type = mask;
8067 }
e712209a
SE
8068 /* privileged levels capture (kernel, hv): check permissions */
8069 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8070 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8071 return -EACCES;
bce38cd5 8072 }
4018994f 8073
c5ebcedb 8074 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8075 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8076 if (ret)
8077 return ret;
8078 }
8079
8080 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8081 if (!arch_perf_have_user_stack_dump())
8082 return -ENOSYS;
8083
8084 /*
8085 * We have __u32 type for the size, but so far
8086 * we can only use __u16 as maximum due to the
8087 * __u16 sample size limit.
8088 */
8089 if (attr->sample_stack_user >= USHRT_MAX)
8090 ret = -EINVAL;
8091 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8092 ret = -EINVAL;
8093 }
4018994f 8094
60e2364e
SE
8095 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8096 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8097out:
8098 return ret;
8099
8100err_size:
8101 put_user(sizeof(*attr), &uattr->size);
8102 ret = -E2BIG;
8103 goto out;
8104}
8105
ac9721f3
PZ
8106static int
8107perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8108{
b69cf536 8109 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8110 int ret = -EINVAL;
8111
ac9721f3 8112 if (!output_event)
a4be7c27
PZ
8113 goto set;
8114
ac9721f3
PZ
8115 /* don't allow circular references */
8116 if (event == output_event)
a4be7c27
PZ
8117 goto out;
8118
0f139300
PZ
8119 /*
8120 * Don't allow cross-cpu buffers
8121 */
8122 if (output_event->cpu != event->cpu)
8123 goto out;
8124
8125 /*
76369139 8126 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8127 */
8128 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8129 goto out;
8130
34f43927
PZ
8131 /*
8132 * Mixing clocks in the same buffer is trouble you don't need.
8133 */
8134 if (output_event->clock != event->clock)
8135 goto out;
8136
45bfb2e5
PZ
8137 /*
8138 * If both events generate aux data, they must be on the same PMU
8139 */
8140 if (has_aux(event) && has_aux(output_event) &&
8141 event->pmu != output_event->pmu)
8142 goto out;
8143
a4be7c27 8144set:
cdd6c482 8145 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8146 /* Can't redirect output if we've got an active mmap() */
8147 if (atomic_read(&event->mmap_count))
8148 goto unlock;
a4be7c27 8149
ac9721f3 8150 if (output_event) {
76369139
FW
8151 /* get the rb we want to redirect to */
8152 rb = ring_buffer_get(output_event);
8153 if (!rb)
ac9721f3 8154 goto unlock;
a4be7c27
PZ
8155 }
8156
b69cf536 8157 ring_buffer_attach(event, rb);
9bb5d40c 8158
a4be7c27 8159 ret = 0;
ac9721f3
PZ
8160unlock:
8161 mutex_unlock(&event->mmap_mutex);
8162
a4be7c27 8163out:
a4be7c27
PZ
8164 return ret;
8165}
8166
f63a8daa
PZ
8167static void mutex_lock_double(struct mutex *a, struct mutex *b)
8168{
8169 if (b < a)
8170 swap(a, b);
8171
8172 mutex_lock(a);
8173 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8174}
8175
34f43927
PZ
8176static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8177{
8178 bool nmi_safe = false;
8179
8180 switch (clk_id) {
8181 case CLOCK_MONOTONIC:
8182 event->clock = &ktime_get_mono_fast_ns;
8183 nmi_safe = true;
8184 break;
8185
8186 case CLOCK_MONOTONIC_RAW:
8187 event->clock = &ktime_get_raw_fast_ns;
8188 nmi_safe = true;
8189 break;
8190
8191 case CLOCK_REALTIME:
8192 event->clock = &ktime_get_real_ns;
8193 break;
8194
8195 case CLOCK_BOOTTIME:
8196 event->clock = &ktime_get_boot_ns;
8197 break;
8198
8199 case CLOCK_TAI:
8200 event->clock = &ktime_get_tai_ns;
8201 break;
8202
8203 default:
8204 return -EINVAL;
8205 }
8206
8207 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8208 return -EINVAL;
8209
8210 return 0;
8211}
8212
0793a61d 8213/**
cdd6c482 8214 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8215 *
cdd6c482 8216 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8217 * @pid: target pid
9f66a381 8218 * @cpu: target cpu
cdd6c482 8219 * @group_fd: group leader event fd
0793a61d 8220 */
cdd6c482
IM
8221SYSCALL_DEFINE5(perf_event_open,
8222 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8223 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8224{
b04243ef
PZ
8225 struct perf_event *group_leader = NULL, *output_event = NULL;
8226 struct perf_event *event, *sibling;
cdd6c482 8227 struct perf_event_attr attr;
f63a8daa 8228 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8229 struct file *event_file = NULL;
2903ff01 8230 struct fd group = {NULL, 0};
38a81da2 8231 struct task_struct *task = NULL;
89a1e187 8232 struct pmu *pmu;
ea635c64 8233 int event_fd;
b04243ef 8234 int move_group = 0;
dc86cabe 8235 int err;
a21b0b35 8236 int f_flags = O_RDWR;
79dff51e 8237 int cgroup_fd = -1;
0793a61d 8238
2743a5b0 8239 /* for future expandability... */
e5d1367f 8240 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8241 return -EINVAL;
8242
dc86cabe
IM
8243 err = perf_copy_attr(attr_uptr, &attr);
8244 if (err)
8245 return err;
eab656ae 8246
0764771d
PZ
8247 if (!attr.exclude_kernel) {
8248 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8249 return -EACCES;
8250 }
8251
df58ab24 8252 if (attr.freq) {
cdd6c482 8253 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8254 return -EINVAL;
0819b2e3
PZ
8255 } else {
8256 if (attr.sample_period & (1ULL << 63))
8257 return -EINVAL;
df58ab24
PZ
8258 }
8259
e5d1367f
SE
8260 /*
8261 * In cgroup mode, the pid argument is used to pass the fd
8262 * opened to the cgroup directory in cgroupfs. The cpu argument
8263 * designates the cpu on which to monitor threads from that
8264 * cgroup.
8265 */
8266 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8267 return -EINVAL;
8268
a21b0b35
YD
8269 if (flags & PERF_FLAG_FD_CLOEXEC)
8270 f_flags |= O_CLOEXEC;
8271
8272 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8273 if (event_fd < 0)
8274 return event_fd;
8275
ac9721f3 8276 if (group_fd != -1) {
2903ff01
AV
8277 err = perf_fget_light(group_fd, &group);
8278 if (err)
d14b12d7 8279 goto err_fd;
2903ff01 8280 group_leader = group.file->private_data;
ac9721f3
PZ
8281 if (flags & PERF_FLAG_FD_OUTPUT)
8282 output_event = group_leader;
8283 if (flags & PERF_FLAG_FD_NO_GROUP)
8284 group_leader = NULL;
8285 }
8286
e5d1367f 8287 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8288 task = find_lively_task_by_vpid(pid);
8289 if (IS_ERR(task)) {
8290 err = PTR_ERR(task);
8291 goto err_group_fd;
8292 }
8293 }
8294
1f4ee503
PZ
8295 if (task && group_leader &&
8296 group_leader->attr.inherit != attr.inherit) {
8297 err = -EINVAL;
8298 goto err_task;
8299 }
8300
fbfc623f
YZ
8301 get_online_cpus();
8302
79dff51e
MF
8303 if (flags & PERF_FLAG_PID_CGROUP)
8304 cgroup_fd = pid;
8305
4dc0da86 8306 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8307 NULL, NULL, cgroup_fd);
d14b12d7
SE
8308 if (IS_ERR(event)) {
8309 err = PTR_ERR(event);
1f4ee503 8310 goto err_cpus;
d14b12d7
SE
8311 }
8312
53b25335
VW
8313 if (is_sampling_event(event)) {
8314 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8315 err = -ENOTSUPP;
8316 goto err_alloc;
8317 }
8318 }
8319
766d6c07
FW
8320 account_event(event);
8321
89a1e187
PZ
8322 /*
8323 * Special case software events and allow them to be part of
8324 * any hardware group.
8325 */
8326 pmu = event->pmu;
b04243ef 8327
34f43927
PZ
8328 if (attr.use_clockid) {
8329 err = perf_event_set_clock(event, attr.clockid);
8330 if (err)
8331 goto err_alloc;
8332 }
8333
b04243ef
PZ
8334 if (group_leader &&
8335 (is_software_event(event) != is_software_event(group_leader))) {
8336 if (is_software_event(event)) {
8337 /*
8338 * If event and group_leader are not both a software
8339 * event, and event is, then group leader is not.
8340 *
8341 * Allow the addition of software events to !software
8342 * groups, this is safe because software events never
8343 * fail to schedule.
8344 */
8345 pmu = group_leader->pmu;
8346 } else if (is_software_event(group_leader) &&
8347 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8348 /*
8349 * In case the group is a pure software group, and we
8350 * try to add a hardware event, move the whole group to
8351 * the hardware context.
8352 */
8353 move_group = 1;
8354 }
8355 }
89a1e187
PZ
8356
8357 /*
8358 * Get the target context (task or percpu):
8359 */
4af57ef2 8360 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8361 if (IS_ERR(ctx)) {
8362 err = PTR_ERR(ctx);
c6be5a5c 8363 goto err_alloc;
89a1e187
PZ
8364 }
8365
bed5b25a
AS
8366 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8367 err = -EBUSY;
8368 goto err_context;
8369 }
8370
fd1edb3a
PZ
8371 if (task) {
8372 put_task_struct(task);
8373 task = NULL;
8374 }
8375
ccff286d 8376 /*
cdd6c482 8377 * Look up the group leader (we will attach this event to it):
04289bb9 8378 */
ac9721f3 8379 if (group_leader) {
dc86cabe 8380 err = -EINVAL;
04289bb9 8381
04289bb9 8382 /*
ccff286d
IM
8383 * Do not allow a recursive hierarchy (this new sibling
8384 * becoming part of another group-sibling):
8385 */
8386 if (group_leader->group_leader != group_leader)
c3f00c70 8387 goto err_context;
34f43927
PZ
8388
8389 /* All events in a group should have the same clock */
8390 if (group_leader->clock != event->clock)
8391 goto err_context;
8392
ccff286d
IM
8393 /*
8394 * Do not allow to attach to a group in a different
8395 * task or CPU context:
04289bb9 8396 */
b04243ef 8397 if (move_group) {
c3c87e77
PZ
8398 /*
8399 * Make sure we're both on the same task, or both
8400 * per-cpu events.
8401 */
8402 if (group_leader->ctx->task != ctx->task)
8403 goto err_context;
8404
8405 /*
8406 * Make sure we're both events for the same CPU;
8407 * grouping events for different CPUs is broken; since
8408 * you can never concurrently schedule them anyhow.
8409 */
8410 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8411 goto err_context;
8412 } else {
8413 if (group_leader->ctx != ctx)
8414 goto err_context;
8415 }
8416
3b6f9e5c
PM
8417 /*
8418 * Only a group leader can be exclusive or pinned
8419 */
0d48696f 8420 if (attr.exclusive || attr.pinned)
c3f00c70 8421 goto err_context;
ac9721f3
PZ
8422 }
8423
8424 if (output_event) {
8425 err = perf_event_set_output(event, output_event);
8426 if (err)
c3f00c70 8427 goto err_context;
ac9721f3 8428 }
0793a61d 8429
a21b0b35
YD
8430 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8431 f_flags);
ea635c64
AV
8432 if (IS_ERR(event_file)) {
8433 err = PTR_ERR(event_file);
c3f00c70 8434 goto err_context;
ea635c64 8435 }
9b51f66d 8436
b04243ef 8437 if (move_group) {
f63a8daa 8438 gctx = group_leader->ctx;
f55fc2a5
PZ
8439 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8440 } else {
8441 mutex_lock(&ctx->mutex);
8442 }
8443
a723968c
PZ
8444 if (!perf_event_validate_size(event)) {
8445 err = -E2BIG;
8446 goto err_locked;
8447 }
8448
f55fc2a5
PZ
8449 /*
8450 * Must be under the same ctx::mutex as perf_install_in_context(),
8451 * because we need to serialize with concurrent event creation.
8452 */
8453 if (!exclusive_event_installable(event, ctx)) {
8454 /* exclusive and group stuff are assumed mutually exclusive */
8455 WARN_ON_ONCE(move_group);
f63a8daa 8456
f55fc2a5
PZ
8457 err = -EBUSY;
8458 goto err_locked;
8459 }
f63a8daa 8460
f55fc2a5
PZ
8461 WARN_ON_ONCE(ctx->parent_ctx);
8462
8463 if (move_group) {
f63a8daa
PZ
8464 /*
8465 * See perf_event_ctx_lock() for comments on the details
8466 * of swizzling perf_event::ctx.
8467 */
46ce0fe9 8468 perf_remove_from_context(group_leader, false);
0231bb53 8469
b04243ef
PZ
8470 list_for_each_entry(sibling, &group_leader->sibling_list,
8471 group_entry) {
46ce0fe9 8472 perf_remove_from_context(sibling, false);
b04243ef
PZ
8473 put_ctx(gctx);
8474 }
b04243ef 8475
f63a8daa
PZ
8476 /*
8477 * Wait for everybody to stop referencing the events through
8478 * the old lists, before installing it on new lists.
8479 */
0cda4c02 8480 synchronize_rcu();
f63a8daa 8481
8f95b435
PZI
8482 /*
8483 * Install the group siblings before the group leader.
8484 *
8485 * Because a group leader will try and install the entire group
8486 * (through the sibling list, which is still in-tact), we can
8487 * end up with siblings installed in the wrong context.
8488 *
8489 * By installing siblings first we NO-OP because they're not
8490 * reachable through the group lists.
8491 */
b04243ef
PZ
8492 list_for_each_entry(sibling, &group_leader->sibling_list,
8493 group_entry) {
8f95b435 8494 perf_event__state_init(sibling);
9fc81d87 8495 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8496 get_ctx(ctx);
8497 }
8f95b435
PZI
8498
8499 /*
8500 * Removing from the context ends up with disabled
8501 * event. What we want here is event in the initial
8502 * startup state, ready to be add into new context.
8503 */
8504 perf_event__state_init(group_leader);
8505 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8506 get_ctx(ctx);
b04243ef 8507
f55fc2a5
PZ
8508 /*
8509 * Now that all events are installed in @ctx, nothing
8510 * references @gctx anymore, so drop the last reference we have
8511 * on it.
8512 */
8513 put_ctx(gctx);
bed5b25a
AS
8514 }
8515
f73e22ab
PZ
8516 /*
8517 * Precalculate sample_data sizes; do while holding ctx::mutex such
8518 * that we're serialized against further additions and before
8519 * perf_install_in_context() which is the point the event is active and
8520 * can use these values.
8521 */
8522 perf_event__header_size(event);
8523 perf_event__id_header_size(event);
8524
e2d37cd2 8525 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8526 perf_unpin_context(ctx);
f63a8daa 8527
f55fc2a5 8528 if (move_group)
f63a8daa 8529 mutex_unlock(&gctx->mutex);
d859e29f 8530 mutex_unlock(&ctx->mutex);
9b51f66d 8531
fbfc623f
YZ
8532 put_online_cpus();
8533
cdd6c482 8534 event->owner = current;
8882135b 8535
cdd6c482
IM
8536 mutex_lock(&current->perf_event_mutex);
8537 list_add_tail(&event->owner_entry, &current->perf_event_list);
8538 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8539
8a49542c
PZ
8540 /*
8541 * Drop the reference on the group_event after placing the
8542 * new event on the sibling_list. This ensures destruction
8543 * of the group leader will find the pointer to itself in
8544 * perf_group_detach().
8545 */
2903ff01 8546 fdput(group);
ea635c64
AV
8547 fd_install(event_fd, event_file);
8548 return event_fd;
0793a61d 8549
f55fc2a5
PZ
8550err_locked:
8551 if (move_group)
8552 mutex_unlock(&gctx->mutex);
8553 mutex_unlock(&ctx->mutex);
8554/* err_file: */
8555 fput(event_file);
c3f00c70 8556err_context:
fe4b04fa 8557 perf_unpin_context(ctx);
ea635c64 8558 put_ctx(ctx);
c6be5a5c 8559err_alloc:
ea635c64 8560 free_event(event);
1f4ee503 8561err_cpus:
fbfc623f 8562 put_online_cpus();
1f4ee503 8563err_task:
e7d0bc04
PZ
8564 if (task)
8565 put_task_struct(task);
89a1e187 8566err_group_fd:
2903ff01 8567 fdput(group);
ea635c64
AV
8568err_fd:
8569 put_unused_fd(event_fd);
dc86cabe 8570 return err;
0793a61d
TG
8571}
8572
fb0459d7
AV
8573/**
8574 * perf_event_create_kernel_counter
8575 *
8576 * @attr: attributes of the counter to create
8577 * @cpu: cpu in which the counter is bound
38a81da2 8578 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8579 */
8580struct perf_event *
8581perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8582 struct task_struct *task,
4dc0da86
AK
8583 perf_overflow_handler_t overflow_handler,
8584 void *context)
fb0459d7 8585{
fb0459d7 8586 struct perf_event_context *ctx;
c3f00c70 8587 struct perf_event *event;
fb0459d7 8588 int err;
d859e29f 8589
fb0459d7
AV
8590 /*
8591 * Get the target context (task or percpu):
8592 */
d859e29f 8593
4dc0da86 8594 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8595 overflow_handler, context, -1);
c3f00c70
PZ
8596 if (IS_ERR(event)) {
8597 err = PTR_ERR(event);
8598 goto err;
8599 }
d859e29f 8600
f8697762
JO
8601 /* Mark owner so we could distinguish it from user events. */
8602 event->owner = EVENT_OWNER_KERNEL;
8603
766d6c07
FW
8604 account_event(event);
8605
4af57ef2 8606 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8607 if (IS_ERR(ctx)) {
8608 err = PTR_ERR(ctx);
c3f00c70 8609 goto err_free;
d859e29f 8610 }
fb0459d7 8611
fb0459d7
AV
8612 WARN_ON_ONCE(ctx->parent_ctx);
8613 mutex_lock(&ctx->mutex);
bed5b25a
AS
8614 if (!exclusive_event_installable(event, ctx)) {
8615 mutex_unlock(&ctx->mutex);
8616 perf_unpin_context(ctx);
8617 put_ctx(ctx);
8618 err = -EBUSY;
8619 goto err_free;
8620 }
8621
fb0459d7 8622 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8623 perf_unpin_context(ctx);
fb0459d7
AV
8624 mutex_unlock(&ctx->mutex);
8625
fb0459d7
AV
8626 return event;
8627
c3f00c70
PZ
8628err_free:
8629 free_event(event);
8630err:
c6567f64 8631 return ERR_PTR(err);
9b51f66d 8632}
fb0459d7 8633EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8634
0cda4c02
YZ
8635void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8636{
8637 struct perf_event_context *src_ctx;
8638 struct perf_event_context *dst_ctx;
8639 struct perf_event *event, *tmp;
8640 LIST_HEAD(events);
8641
8642 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8643 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8644
f63a8daa
PZ
8645 /*
8646 * See perf_event_ctx_lock() for comments on the details
8647 * of swizzling perf_event::ctx.
8648 */
8649 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8650 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8651 event_entry) {
46ce0fe9 8652 perf_remove_from_context(event, false);
9a545de0 8653 unaccount_event_cpu(event, src_cpu);
0cda4c02 8654 put_ctx(src_ctx);
9886167d 8655 list_add(&event->migrate_entry, &events);
0cda4c02 8656 }
0cda4c02 8657
8f95b435
PZI
8658 /*
8659 * Wait for the events to quiesce before re-instating them.
8660 */
0cda4c02
YZ
8661 synchronize_rcu();
8662
8f95b435
PZI
8663 /*
8664 * Re-instate events in 2 passes.
8665 *
8666 * Skip over group leaders and only install siblings on this first
8667 * pass, siblings will not get enabled without a leader, however a
8668 * leader will enable its siblings, even if those are still on the old
8669 * context.
8670 */
8671 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8672 if (event->group_leader == event)
8673 continue;
8674
8675 list_del(&event->migrate_entry);
8676 if (event->state >= PERF_EVENT_STATE_OFF)
8677 event->state = PERF_EVENT_STATE_INACTIVE;
8678 account_event_cpu(event, dst_cpu);
8679 perf_install_in_context(dst_ctx, event, dst_cpu);
8680 get_ctx(dst_ctx);
8681 }
8682
8683 /*
8684 * Once all the siblings are setup properly, install the group leaders
8685 * to make it go.
8686 */
9886167d
PZ
8687 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8688 list_del(&event->migrate_entry);
0cda4c02
YZ
8689 if (event->state >= PERF_EVENT_STATE_OFF)
8690 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8691 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8692 perf_install_in_context(dst_ctx, event, dst_cpu);
8693 get_ctx(dst_ctx);
8694 }
8695 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8696 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8697}
8698EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8699
cdd6c482 8700static void sync_child_event(struct perf_event *child_event,
38b200d6 8701 struct task_struct *child)
d859e29f 8702{
cdd6c482 8703 struct perf_event *parent_event = child_event->parent;
8bc20959 8704 u64 child_val;
d859e29f 8705
cdd6c482
IM
8706 if (child_event->attr.inherit_stat)
8707 perf_event_read_event(child_event, child);
38b200d6 8708
b5e58793 8709 child_val = perf_event_count(child_event);
d859e29f
PM
8710
8711 /*
8712 * Add back the child's count to the parent's count:
8713 */
a6e6dea6 8714 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8715 atomic64_add(child_event->total_time_enabled,
8716 &parent_event->child_total_time_enabled);
8717 atomic64_add(child_event->total_time_running,
8718 &parent_event->child_total_time_running);
d859e29f
PM
8719
8720 /*
cdd6c482 8721 * Remove this event from the parent's list
d859e29f 8722 */
cdd6c482
IM
8723 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8724 mutex_lock(&parent_event->child_mutex);
8725 list_del_init(&child_event->child_list);
8726 mutex_unlock(&parent_event->child_mutex);
d859e29f 8727
dc633982
JO
8728 /*
8729 * Make sure user/parent get notified, that we just
8730 * lost one event.
8731 */
8732 perf_event_wakeup(parent_event);
8733
d859e29f 8734 /*
cdd6c482 8735 * Release the parent event, if this was the last
d859e29f
PM
8736 * reference to it.
8737 */
a6fa941d 8738 put_event(parent_event);
d859e29f
PM
8739}
8740
9b51f66d 8741static void
cdd6c482
IM
8742__perf_event_exit_task(struct perf_event *child_event,
8743 struct perf_event_context *child_ctx,
38b200d6 8744 struct task_struct *child)
9b51f66d 8745{
1903d50c
PZ
8746 /*
8747 * Do not destroy the 'original' grouping; because of the context
8748 * switch optimization the original events could've ended up in a
8749 * random child task.
8750 *
8751 * If we were to destroy the original group, all group related
8752 * operations would cease to function properly after this random
8753 * child dies.
8754 *
8755 * Do destroy all inherited groups, we don't care about those
8756 * and being thorough is better.
8757 */
8758 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8759
9b51f66d 8760 /*
38b435b1 8761 * It can happen that the parent exits first, and has events
9b51f66d 8762 * that are still around due to the child reference. These
38b435b1 8763 * events need to be zapped.
9b51f66d 8764 */
38b435b1 8765 if (child_event->parent) {
cdd6c482
IM
8766 sync_child_event(child_event, child);
8767 free_event(child_event);
179033b3
JO
8768 } else {
8769 child_event->state = PERF_EVENT_STATE_EXIT;
8770 perf_event_wakeup(child_event);
4bcf349a 8771 }
9b51f66d
IM
8772}
8773
8dc85d54 8774static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8775{
ebf905fc 8776 struct perf_event *child_event, *next;
211de6eb 8777 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8778 unsigned long flags;
9b51f66d 8779
8dc85d54 8780 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8781 perf_event_task(child, NULL, 0);
9b51f66d 8782 return;
9f498cc5 8783 }
9b51f66d 8784
a63eaf34 8785 local_irq_save(flags);
ad3a37de
PM
8786 /*
8787 * We can't reschedule here because interrupts are disabled,
8788 * and either child is current or it is a task that can't be
8789 * scheduled, so we are now safe from rescheduling changing
8790 * our context.
8791 */
806839b2 8792 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8793
8794 /*
8795 * Take the context lock here so that if find_get_context is
cdd6c482 8796 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8797 * incremented the context's refcount before we do put_ctx below.
8798 */
e625cce1 8799 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8800 task_ctx_sched_out(child_ctx);
8dc85d54 8801 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8802
71a851b4
PZ
8803 /*
8804 * If this context is a clone; unclone it so it can't get
8805 * swapped to another process while we're removing all
cdd6c482 8806 * the events from it.
71a851b4 8807 */
211de6eb 8808 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8809 update_context_time(child_ctx);
e625cce1 8810 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8811
211de6eb
PZ
8812 if (clone_ctx)
8813 put_ctx(clone_ctx);
4a1c0f26 8814
9f498cc5 8815 /*
cdd6c482
IM
8816 * Report the task dead after unscheduling the events so that we
8817 * won't get any samples after PERF_RECORD_EXIT. We can however still
8818 * get a few PERF_RECORD_READ events.
9f498cc5 8819 */
cdd6c482 8820 perf_event_task(child, child_ctx, 0);
a63eaf34 8821
66fff224
PZ
8822 /*
8823 * We can recurse on the same lock type through:
8824 *
cdd6c482
IM
8825 * __perf_event_exit_task()
8826 * sync_child_event()
a6fa941d
AV
8827 * put_event()
8828 * mutex_lock(&ctx->mutex)
66fff224
PZ
8829 *
8830 * But since its the parent context it won't be the same instance.
8831 */
a0507c84 8832 mutex_lock(&child_ctx->mutex);
a63eaf34 8833
ebf905fc 8834 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8835 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8836
a63eaf34
PM
8837 mutex_unlock(&child_ctx->mutex);
8838
8839 put_ctx(child_ctx);
9b51f66d
IM
8840}
8841
8dc85d54
PZ
8842/*
8843 * When a child task exits, feed back event values to parent events.
8844 */
8845void perf_event_exit_task(struct task_struct *child)
8846{
8882135b 8847 struct perf_event *event, *tmp;
8dc85d54
PZ
8848 int ctxn;
8849
8882135b
PZ
8850 mutex_lock(&child->perf_event_mutex);
8851 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8852 owner_entry) {
8853 list_del_init(&event->owner_entry);
8854
8855 /*
8856 * Ensure the list deletion is visible before we clear
8857 * the owner, closes a race against perf_release() where
8858 * we need to serialize on the owner->perf_event_mutex.
8859 */
8860 smp_wmb();
8861 event->owner = NULL;
8862 }
8863 mutex_unlock(&child->perf_event_mutex);
8864
8dc85d54
PZ
8865 for_each_task_context_nr(ctxn)
8866 perf_event_exit_task_context(child, ctxn);
8867}
8868
889ff015
FW
8869static void perf_free_event(struct perf_event *event,
8870 struct perf_event_context *ctx)
8871{
8872 struct perf_event *parent = event->parent;
8873
8874 if (WARN_ON_ONCE(!parent))
8875 return;
8876
8877 mutex_lock(&parent->child_mutex);
8878 list_del_init(&event->child_list);
8879 mutex_unlock(&parent->child_mutex);
8880
a6fa941d 8881 put_event(parent);
889ff015 8882
652884fe 8883 raw_spin_lock_irq(&ctx->lock);
8a49542c 8884 perf_group_detach(event);
889ff015 8885 list_del_event(event, ctx);
652884fe 8886 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8887 free_event(event);
8888}
8889
bbbee908 8890/*
652884fe 8891 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8892 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8893 *
8894 * Not all locks are strictly required, but take them anyway to be nice and
8895 * help out with the lockdep assertions.
bbbee908 8896 */
cdd6c482 8897void perf_event_free_task(struct task_struct *task)
bbbee908 8898{
8dc85d54 8899 struct perf_event_context *ctx;
cdd6c482 8900 struct perf_event *event, *tmp;
8dc85d54 8901 int ctxn;
bbbee908 8902
8dc85d54
PZ
8903 for_each_task_context_nr(ctxn) {
8904 ctx = task->perf_event_ctxp[ctxn];
8905 if (!ctx)
8906 continue;
bbbee908 8907
8dc85d54 8908 mutex_lock(&ctx->mutex);
bbbee908 8909again:
8dc85d54
PZ
8910 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8911 group_entry)
8912 perf_free_event(event, ctx);
bbbee908 8913
8dc85d54
PZ
8914 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8915 group_entry)
8916 perf_free_event(event, ctx);
bbbee908 8917
8dc85d54
PZ
8918 if (!list_empty(&ctx->pinned_groups) ||
8919 !list_empty(&ctx->flexible_groups))
8920 goto again;
bbbee908 8921
8dc85d54 8922 mutex_unlock(&ctx->mutex);
bbbee908 8923
8dc85d54
PZ
8924 put_ctx(ctx);
8925 }
889ff015
FW
8926}
8927
4e231c79
PZ
8928void perf_event_delayed_put(struct task_struct *task)
8929{
8930 int ctxn;
8931
8932 for_each_task_context_nr(ctxn)
8933 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8934}
8935
ffe8690c
KX
8936struct perf_event *perf_event_get(unsigned int fd)
8937{
8938 int err;
8939 struct fd f;
8940 struct perf_event *event;
8941
8942 err = perf_fget_light(fd, &f);
8943 if (err)
8944 return ERR_PTR(err);
8945
8946 event = f.file->private_data;
8947 atomic_long_inc(&event->refcount);
8948 fdput(f);
8949
8950 return event;
8951}
8952
8953const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8954{
8955 if (!event)
8956 return ERR_PTR(-EINVAL);
8957
8958 return &event->attr;
8959}
8960
97dee4f3
PZ
8961/*
8962 * inherit a event from parent task to child task:
8963 */
8964static struct perf_event *
8965inherit_event(struct perf_event *parent_event,
8966 struct task_struct *parent,
8967 struct perf_event_context *parent_ctx,
8968 struct task_struct *child,
8969 struct perf_event *group_leader,
8970 struct perf_event_context *child_ctx)
8971{
1929def9 8972 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8973 struct perf_event *child_event;
cee010ec 8974 unsigned long flags;
97dee4f3
PZ
8975
8976 /*
8977 * Instead of creating recursive hierarchies of events,
8978 * we link inherited events back to the original parent,
8979 * which has a filp for sure, which we use as the reference
8980 * count:
8981 */
8982 if (parent_event->parent)
8983 parent_event = parent_event->parent;
8984
8985 child_event = perf_event_alloc(&parent_event->attr,
8986 parent_event->cpu,
d580ff86 8987 child,
97dee4f3 8988 group_leader, parent_event,
79dff51e 8989 NULL, NULL, -1);
97dee4f3
PZ
8990 if (IS_ERR(child_event))
8991 return child_event;
a6fa941d 8992
fadfe7be
JO
8993 if (is_orphaned_event(parent_event) ||
8994 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8995 free_event(child_event);
8996 return NULL;
8997 }
8998
97dee4f3
PZ
8999 get_ctx(child_ctx);
9000
9001 /*
9002 * Make the child state follow the state of the parent event,
9003 * not its attr.disabled bit. We hold the parent's mutex,
9004 * so we won't race with perf_event_{en, dis}able_family.
9005 */
1929def9 9006 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9007 child_event->state = PERF_EVENT_STATE_INACTIVE;
9008 else
9009 child_event->state = PERF_EVENT_STATE_OFF;
9010
9011 if (parent_event->attr.freq) {
9012 u64 sample_period = parent_event->hw.sample_period;
9013 struct hw_perf_event *hwc = &child_event->hw;
9014
9015 hwc->sample_period = sample_period;
9016 hwc->last_period = sample_period;
9017
9018 local64_set(&hwc->period_left, sample_period);
9019 }
9020
9021 child_event->ctx = child_ctx;
9022 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9023 child_event->overflow_handler_context
9024 = parent_event->overflow_handler_context;
97dee4f3 9025
614b6780
TG
9026 /*
9027 * Precalculate sample_data sizes
9028 */
9029 perf_event__header_size(child_event);
6844c09d 9030 perf_event__id_header_size(child_event);
614b6780 9031
97dee4f3
PZ
9032 /*
9033 * Link it up in the child's context:
9034 */
cee010ec 9035 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9036 add_event_to_ctx(child_event, child_ctx);
cee010ec 9037 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9038
97dee4f3
PZ
9039 /*
9040 * Link this into the parent event's child list
9041 */
9042 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9043 mutex_lock(&parent_event->child_mutex);
9044 list_add_tail(&child_event->child_list, &parent_event->child_list);
9045 mutex_unlock(&parent_event->child_mutex);
9046
9047 return child_event;
9048}
9049
9050static int inherit_group(struct perf_event *parent_event,
9051 struct task_struct *parent,
9052 struct perf_event_context *parent_ctx,
9053 struct task_struct *child,
9054 struct perf_event_context *child_ctx)
9055{
9056 struct perf_event *leader;
9057 struct perf_event *sub;
9058 struct perf_event *child_ctr;
9059
9060 leader = inherit_event(parent_event, parent, parent_ctx,
9061 child, NULL, child_ctx);
9062 if (IS_ERR(leader))
9063 return PTR_ERR(leader);
9064 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9065 child_ctr = inherit_event(sub, parent, parent_ctx,
9066 child, leader, child_ctx);
9067 if (IS_ERR(child_ctr))
9068 return PTR_ERR(child_ctr);
9069 }
9070 return 0;
889ff015
FW
9071}
9072
9073static int
9074inherit_task_group(struct perf_event *event, struct task_struct *parent,
9075 struct perf_event_context *parent_ctx,
8dc85d54 9076 struct task_struct *child, int ctxn,
889ff015
FW
9077 int *inherited_all)
9078{
9079 int ret;
8dc85d54 9080 struct perf_event_context *child_ctx;
889ff015
FW
9081
9082 if (!event->attr.inherit) {
9083 *inherited_all = 0;
9084 return 0;
bbbee908
PZ
9085 }
9086
fe4b04fa 9087 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9088 if (!child_ctx) {
9089 /*
9090 * This is executed from the parent task context, so
9091 * inherit events that have been marked for cloning.
9092 * First allocate and initialize a context for the
9093 * child.
9094 */
bbbee908 9095
734df5ab 9096 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9097 if (!child_ctx)
9098 return -ENOMEM;
bbbee908 9099
8dc85d54 9100 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9101 }
9102
9103 ret = inherit_group(event, parent, parent_ctx,
9104 child, child_ctx);
9105
9106 if (ret)
9107 *inherited_all = 0;
9108
9109 return ret;
bbbee908
PZ
9110}
9111
9b51f66d 9112/*
cdd6c482 9113 * Initialize the perf_event context in task_struct
9b51f66d 9114 */
985c8dcb 9115static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9116{
889ff015 9117 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9118 struct perf_event_context *cloned_ctx;
9119 struct perf_event *event;
9b51f66d 9120 struct task_struct *parent = current;
564c2b21 9121 int inherited_all = 1;
dddd3379 9122 unsigned long flags;
6ab423e0 9123 int ret = 0;
9b51f66d 9124
8dc85d54 9125 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9126 return 0;
9127
ad3a37de 9128 /*
25346b93
PM
9129 * If the parent's context is a clone, pin it so it won't get
9130 * swapped under us.
ad3a37de 9131 */
8dc85d54 9132 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9133 if (!parent_ctx)
9134 return 0;
25346b93 9135
ad3a37de
PM
9136 /*
9137 * No need to check if parent_ctx != NULL here; since we saw
9138 * it non-NULL earlier, the only reason for it to become NULL
9139 * is if we exit, and since we're currently in the middle of
9140 * a fork we can't be exiting at the same time.
9141 */
ad3a37de 9142
9b51f66d
IM
9143 /*
9144 * Lock the parent list. No need to lock the child - not PID
9145 * hashed yet and not running, so nobody can access it.
9146 */
d859e29f 9147 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9148
9149 /*
9150 * We dont have to disable NMIs - we are only looking at
9151 * the list, not manipulating it:
9152 */
889ff015 9153 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9154 ret = inherit_task_group(event, parent, parent_ctx,
9155 child, ctxn, &inherited_all);
889ff015
FW
9156 if (ret)
9157 break;
9158 }
b93f7978 9159
dddd3379
TG
9160 /*
9161 * We can't hold ctx->lock when iterating the ->flexible_group list due
9162 * to allocations, but we need to prevent rotation because
9163 * rotate_ctx() will change the list from interrupt context.
9164 */
9165 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9166 parent_ctx->rotate_disable = 1;
9167 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9168
889ff015 9169 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9170 ret = inherit_task_group(event, parent, parent_ctx,
9171 child, ctxn, &inherited_all);
889ff015 9172 if (ret)
9b51f66d 9173 break;
564c2b21
PM
9174 }
9175
dddd3379
TG
9176 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9177 parent_ctx->rotate_disable = 0;
dddd3379 9178
8dc85d54 9179 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9180
05cbaa28 9181 if (child_ctx && inherited_all) {
564c2b21
PM
9182 /*
9183 * Mark the child context as a clone of the parent
9184 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9185 *
9186 * Note that if the parent is a clone, the holding of
9187 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9188 */
c5ed5145 9189 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9190 if (cloned_ctx) {
9191 child_ctx->parent_ctx = cloned_ctx;
25346b93 9192 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9193 } else {
9194 child_ctx->parent_ctx = parent_ctx;
9195 child_ctx->parent_gen = parent_ctx->generation;
9196 }
9197 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9198 }
9199
c5ed5145 9200 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9201 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9202
25346b93 9203 perf_unpin_context(parent_ctx);
fe4b04fa 9204 put_ctx(parent_ctx);
ad3a37de 9205
6ab423e0 9206 return ret;
9b51f66d
IM
9207}
9208
8dc85d54
PZ
9209/*
9210 * Initialize the perf_event context in task_struct
9211 */
9212int perf_event_init_task(struct task_struct *child)
9213{
9214 int ctxn, ret;
9215
8550d7cb
ON
9216 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9217 mutex_init(&child->perf_event_mutex);
9218 INIT_LIST_HEAD(&child->perf_event_list);
9219
8dc85d54
PZ
9220 for_each_task_context_nr(ctxn) {
9221 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9222 if (ret) {
9223 perf_event_free_task(child);
8dc85d54 9224 return ret;
6c72e350 9225 }
8dc85d54
PZ
9226 }
9227
9228 return 0;
9229}
9230
220b140b
PM
9231static void __init perf_event_init_all_cpus(void)
9232{
b28ab83c 9233 struct swevent_htable *swhash;
220b140b 9234 int cpu;
220b140b
PM
9235
9236 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9237 swhash = &per_cpu(swevent_htable, cpu);
9238 mutex_init(&swhash->hlist_mutex);
2fde4f94 9239 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9240 }
9241}
9242
0db0628d 9243static void perf_event_init_cpu(int cpu)
0793a61d 9244{
108b02cf 9245 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9246
b28ab83c 9247 mutex_lock(&swhash->hlist_mutex);
39af6b16 9248 swhash->online = true;
4536e4d1 9249 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9250 struct swevent_hlist *hlist;
9251
b28ab83c
PZ
9252 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9253 WARN_ON(!hlist);
9254 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9255 }
b28ab83c 9256 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9257}
9258
2965faa5 9259#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9260static void __perf_event_exit_context(void *__info)
0793a61d 9261{
226424ee 9262 struct remove_event re = { .detach_group = true };
108b02cf 9263 struct perf_event_context *ctx = __info;
0793a61d 9264
e3703f8c 9265 rcu_read_lock();
46ce0fe9
PZ
9266 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9267 __perf_remove_from_context(&re);
e3703f8c 9268 rcu_read_unlock();
0793a61d 9269}
108b02cf
PZ
9270
9271static void perf_event_exit_cpu_context(int cpu)
9272{
9273 struct perf_event_context *ctx;
9274 struct pmu *pmu;
9275 int idx;
9276
9277 idx = srcu_read_lock(&pmus_srcu);
9278 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9279 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9280
9281 mutex_lock(&ctx->mutex);
9282 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9283 mutex_unlock(&ctx->mutex);
9284 }
9285 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9286}
9287
cdd6c482 9288static void perf_event_exit_cpu(int cpu)
0793a61d 9289{
b28ab83c 9290 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 9291
e3703f8c
PZ
9292 perf_event_exit_cpu_context(cpu);
9293
b28ab83c 9294 mutex_lock(&swhash->hlist_mutex);
39af6b16 9295 swhash->online = false;
b28ab83c
PZ
9296 swevent_hlist_release(swhash);
9297 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9298}
9299#else
cdd6c482 9300static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9301#endif
9302
c277443c
PZ
9303static int
9304perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9305{
9306 int cpu;
9307
9308 for_each_online_cpu(cpu)
9309 perf_event_exit_cpu(cpu);
9310
9311 return NOTIFY_OK;
9312}
9313
9314/*
9315 * Run the perf reboot notifier at the very last possible moment so that
9316 * the generic watchdog code runs as long as possible.
9317 */
9318static struct notifier_block perf_reboot_notifier = {
9319 .notifier_call = perf_reboot,
9320 .priority = INT_MIN,
9321};
9322
0db0628d 9323static int
0793a61d
TG
9324perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9325{
9326 unsigned int cpu = (long)hcpu;
9327
4536e4d1 9328 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9329
9330 case CPU_UP_PREPARE:
5e11637e 9331 case CPU_DOWN_FAILED:
cdd6c482 9332 perf_event_init_cpu(cpu);
0793a61d
TG
9333 break;
9334
5e11637e 9335 case CPU_UP_CANCELED:
0793a61d 9336 case CPU_DOWN_PREPARE:
cdd6c482 9337 perf_event_exit_cpu(cpu);
0793a61d 9338 break;
0793a61d
TG
9339 default:
9340 break;
9341 }
9342
9343 return NOTIFY_OK;
9344}
9345
cdd6c482 9346void __init perf_event_init(void)
0793a61d 9347{
3c502e7a
JW
9348 int ret;
9349
2e80a82a
PZ
9350 idr_init(&pmu_idr);
9351
220b140b 9352 perf_event_init_all_cpus();
b0a873eb 9353 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9354 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9355 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9356 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9357 perf_tp_register();
9358 perf_cpu_notifier(perf_cpu_notify);
c277443c 9359 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9360
9361 ret = init_hw_breakpoint();
9362 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9363
9364 /* do not patch jump label more than once per second */
9365 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9366
9367 /*
9368 * Build time assertion that we keep the data_head at the intended
9369 * location. IOW, validation we got the __reserved[] size right.
9370 */
9371 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9372 != 1024);
0793a61d 9373}
abe43400 9374
fd979c01
CS
9375ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9376 char *page)
9377{
9378 struct perf_pmu_events_attr *pmu_attr =
9379 container_of(attr, struct perf_pmu_events_attr, attr);
9380
9381 if (pmu_attr->event_str)
9382 return sprintf(page, "%s\n", pmu_attr->event_str);
9383
9384 return 0;
9385}
9386
abe43400
PZ
9387static int __init perf_event_sysfs_init(void)
9388{
9389 struct pmu *pmu;
9390 int ret;
9391
9392 mutex_lock(&pmus_lock);
9393
9394 ret = bus_register(&pmu_bus);
9395 if (ret)
9396 goto unlock;
9397
9398 list_for_each_entry(pmu, &pmus, entry) {
9399 if (!pmu->name || pmu->type < 0)
9400 continue;
9401
9402 ret = pmu_dev_alloc(pmu);
9403 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9404 }
9405 pmu_bus_running = 1;
9406 ret = 0;
9407
9408unlock:
9409 mutex_unlock(&pmus_lock);
9410
9411 return ret;
9412}
9413device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9414
9415#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9416static struct cgroup_subsys_state *
9417perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9418{
9419 struct perf_cgroup *jc;
e5d1367f 9420
1b15d055 9421 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9422 if (!jc)
9423 return ERR_PTR(-ENOMEM);
9424
e5d1367f
SE
9425 jc->info = alloc_percpu(struct perf_cgroup_info);
9426 if (!jc->info) {
9427 kfree(jc);
9428 return ERR_PTR(-ENOMEM);
9429 }
9430
e5d1367f
SE
9431 return &jc->css;
9432}
9433
eb95419b 9434static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9435{
eb95419b
TH
9436 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9437
e5d1367f
SE
9438 free_percpu(jc->info);
9439 kfree(jc);
9440}
9441
9442static int __perf_cgroup_move(void *info)
9443{
9444 struct task_struct *task = info;
9445 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9446 return 0;
9447}
9448
eb95419b
TH
9449static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9450 struct cgroup_taskset *tset)
e5d1367f 9451{
bb9d97b6
TH
9452 struct task_struct *task;
9453
924f0d9a 9454 cgroup_taskset_for_each(task, tset)
bb9d97b6 9455 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9456}
9457
eb95419b
TH
9458static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9459 struct cgroup_subsys_state *old_css,
761b3ef5 9460 struct task_struct *task)
e5d1367f 9461{
bb9d97b6 9462 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9463}
9464
073219e9 9465struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9466 .css_alloc = perf_cgroup_css_alloc,
9467 .css_free = perf_cgroup_css_free,
e7e7ee2e 9468 .exit = perf_cgroup_exit,
bb9d97b6 9469 .attach = perf_cgroup_attach,
e5d1367f
SE
9470};
9471#endif /* CONFIG_CGROUP_PERF */
This page took 1.445029 seconds and 5 git commands to generate.