uprobes: Kill uprobe_events, use RB_EMPTY_ROOT() instead
[deliverable/linux.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
32cdba1e 36#include <linux/percpu-rwsem.h>
7b2d81d4 37
2b144498
SD
38#include <linux/uprobes.h>
39
d4b3b638
SD
40#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
41#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
42
2b144498 43static struct rb_root uprobes_tree = RB_ROOT;
441f1eb7
ON
44/*
45 * allows us to skip the uprobe_mmap if there are no uprobe events active
46 * at this time. Probably a fine grained per inode count is better?
47 */
48#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
7b2d81d4 49
2b144498
SD
50static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
51
52#define UPROBES_HASH_SZ 13
7b2d81d4 53
c5784de2
PZ
54/*
55 * We need separate register/unregister and mmap/munmap lock hashes because
56 * of mmap_sem nesting.
57 *
58 * uprobe_register() needs to install probes on (potentially) all processes
59 * and thus needs to acquire multiple mmap_sems (consequtively, not
60 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
61 * for the particular process doing the mmap.
62 *
63 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
64 * because of lock order against i_mmap_mutex. This means there's a hole in
65 * the register vma iteration where a mmap() can happen.
66 *
67 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
68 * install a probe where one is already installed.
69 */
70
2b144498
SD
71/* serialize (un)register */
72static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
73
74#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
75
76/* serialize uprobe->pending_list */
77static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 78#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 79
32cdba1e
ON
80static struct percpu_rw_semaphore dup_mmap_sem;
81
cb9a19fe 82/* Have a copy of original instruction */
71434f2f 83#define UPROBE_COPY_INSN 0
cb9a19fe 84/* Can skip singlestep */
bb929284 85#define UPROBE_SKIP_SSTEP 1
cb9a19fe 86
3ff54efd
SD
87struct uprobe {
88 struct rb_node rb_node; /* node in the rb tree */
89 atomic_t ref;
e591c8d7 90 struct rw_semaphore register_rwsem;
3ff54efd
SD
91 struct rw_semaphore consumer_rwsem;
92 struct list_head pending_list;
93 struct uprobe_consumer *consumers;
94 struct inode *inode; /* Also hold a ref to inode */
95 loff_t offset;
71434f2f 96 unsigned long flags;
3ff54efd
SD
97 struct arch_uprobe arch;
98};
99
2b144498
SD
100/*
101 * valid_vma: Verify if the specified vma is an executable vma
102 * Relax restrictions while unregistering: vm_flags might have
103 * changed after breakpoint was inserted.
104 * - is_register: indicates if we are in register context.
105 * - Return 1 if the specified virtual address is in an
106 * executable vma.
107 */
108static bool valid_vma(struct vm_area_struct *vma, bool is_register)
109{
e40cfce6 110 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 111
e40cfce6
ON
112 if (is_register)
113 flags |= VM_WRITE;
2b144498 114
e40cfce6 115 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
116}
117
57683f72 118static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 119{
57683f72 120 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
121}
122
cb113b47
ON
123static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
124{
125 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
126}
127
2b144498
SD
128/**
129 * __replace_page - replace page in vma by new page.
130 * based on replace_page in mm/ksm.c
131 *
132 * @vma: vma that holds the pte pointing to page
c517ee74 133 * @addr: address the old @page is mapped at
2b144498
SD
134 * @page: the cowed page we are replacing by kpage
135 * @kpage: the modified page we replace page by
136 *
137 * Returns 0 on success, -EFAULT on failure.
138 */
c517ee74
ON
139static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
140 struct page *page, struct page *kpage)
2b144498
SD
141{
142 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
143 spinlock_t *ptl;
144 pte_t *ptep;
9f92448c 145 int err;
6bdb913f
HE
146 /* For mmu_notifiers */
147 const unsigned long mmun_start = addr;
148 const unsigned long mmun_end = addr + PAGE_SIZE;
2b144498 149
194f8dcb 150 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
151 lock_page(page);
152
6bdb913f 153 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
9f92448c 154 err = -EAGAIN;
5323ce71 155 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 156 if (!ptep)
9f92448c 157 goto unlock;
2b144498
SD
158
159 get_page(kpage);
160 page_add_new_anon_rmap(kpage, vma, addr);
161
7396fa81
SD
162 if (!PageAnon(page)) {
163 dec_mm_counter(mm, MM_FILEPAGES);
164 inc_mm_counter(mm, MM_ANONPAGES);
165 }
166
2b144498
SD
167 flush_cache_page(vma, addr, pte_pfn(*ptep));
168 ptep_clear_flush(vma, addr, ptep);
169 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
170
171 page_remove_rmap(page);
172 if (!page_mapped(page))
173 try_to_free_swap(page);
2b144498 174 pte_unmap_unlock(ptep, ptl);
2b144498 175
194f8dcb
ON
176 if (vma->vm_flags & VM_LOCKED)
177 munlock_vma_page(page);
178 put_page(page);
179
9f92448c
ON
180 err = 0;
181 unlock:
6bdb913f 182 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
9f92448c
ON
183 unlock_page(page);
184 return err;
2b144498
SD
185}
186
187/**
5cb4ac3a 188 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 189 * @insn: instruction to be checked.
5cb4ac3a 190 * Default implementation of is_swbp_insn
2b144498
SD
191 * Returns true if @insn is a breakpoint instruction.
192 */
5cb4ac3a 193bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 194{
5cb4ac3a 195 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
196}
197
cceb55aa
ON
198static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
199{
200 void *kaddr = kmap_atomic(page);
201 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
202 kunmap_atomic(kaddr);
203}
204
ed6f6a50
ON
205static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
206{
207 uprobe_opcode_t old_opcode;
208 bool is_swbp;
209
210 copy_opcode(page, vaddr, &old_opcode);
211 is_swbp = is_swbp_insn(&old_opcode);
212
213 if (is_swbp_insn(new_opcode)) {
214 if (is_swbp) /* register: already installed? */
215 return 0;
216 } else {
217 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 218 return 0;
ed6f6a50
ON
219 }
220
221 return 1;
222}
223
2b144498
SD
224/*
225 * NOTE:
226 * Expect the breakpoint instruction to be the smallest size instruction for
227 * the architecture. If an arch has variable length instruction and the
228 * breakpoint instruction is not of the smallest length instruction
cceb55aa 229 * supported by that architecture then we need to modify is_swbp_at_addr and
2b144498
SD
230 * write_opcode accordingly. This would never be a problem for archs that
231 * have fixed length instructions.
232 */
233
234/*
235 * write_opcode - write the opcode at a given virtual address.
236 * @mm: the probed process address space.
2b144498
SD
237 * @vaddr: the virtual address to store the opcode.
238 * @opcode: opcode to be written at @vaddr.
239 *
240 * Called with mm->mmap_sem held (for read and with a reference to
241 * mm).
242 *
243 * For mm @mm, write the opcode at @vaddr.
244 * Return 0 (success) or a negative errno.
245 */
cceb55aa
ON
246static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
247 uprobe_opcode_t opcode)
2b144498
SD
248{
249 struct page *old_page, *new_page;
2b144498
SD
250 void *vaddr_old, *vaddr_new;
251 struct vm_area_struct *vma;
2b144498 252 int ret;
f403072c 253
5323ce71 254retry:
2b144498 255 /* Read the page with vaddr into memory */
75ed82ea 256 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
257 if (ret <= 0)
258 return ret;
7b2d81d4 259
ed6f6a50
ON
260 ret = verify_opcode(old_page, vaddr, &opcode);
261 if (ret <= 0)
262 goto put_old;
263
2b144498
SD
264 ret = -ENOMEM;
265 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
266 if (!new_page)
9f92448c 267 goto put_old;
2b144498
SD
268
269 __SetPageUptodate(new_page);
270
2b144498
SD
271 /* copy the page now that we've got it stable */
272 vaddr_old = kmap_atomic(old_page);
273 vaddr_new = kmap_atomic(new_page);
274
275 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 276 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
277
278 kunmap_atomic(vaddr_new);
279 kunmap_atomic(vaddr_old);
280
281 ret = anon_vma_prepare(vma);
282 if (ret)
9f92448c 283 goto put_new;
2b144498 284
c517ee74 285 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 286
9f92448c 287put_new:
2b144498 288 page_cache_release(new_page);
9f92448c 289put_old:
7b2d81d4
IM
290 put_page(old_page);
291
5323ce71
ON
292 if (unlikely(ret == -EAGAIN))
293 goto retry;
2b144498
SD
294 return ret;
295}
296
2b144498 297/**
5cb4ac3a 298 * set_swbp - store breakpoint at a given address.
e3343e6a 299 * @auprobe: arch specific probepoint information.
2b144498 300 * @mm: the probed process address space.
2b144498
SD
301 * @vaddr: the virtual address to insert the opcode.
302 *
303 * For mm @mm, store the breakpoint instruction at @vaddr.
304 * Return 0 (success) or a negative errno.
305 */
5cb4ac3a 306int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 307{
cceb55aa 308 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
309}
310
311/**
312 * set_orig_insn - Restore the original instruction.
313 * @mm: the probed process address space.
e3343e6a 314 * @auprobe: arch specific probepoint information.
2b144498 315 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
316 *
317 * For mm @mm, restore the original opcode (opcode) at @vaddr.
318 * Return 0 (success) or a negative errno.
319 */
7b2d81d4 320int __weak
ded86e7c 321set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 322{
cceb55aa 323 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
324}
325
326static int match_uprobe(struct uprobe *l, struct uprobe *r)
327{
328 if (l->inode < r->inode)
329 return -1;
7b2d81d4 330
2b144498
SD
331 if (l->inode > r->inode)
332 return 1;
2b144498 333
7b2d81d4
IM
334 if (l->offset < r->offset)
335 return -1;
336
337 if (l->offset > r->offset)
338 return 1;
2b144498
SD
339
340 return 0;
341}
342
343static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
344{
345 struct uprobe u = { .inode = inode, .offset = offset };
346 struct rb_node *n = uprobes_tree.rb_node;
347 struct uprobe *uprobe;
348 int match;
349
350 while (n) {
351 uprobe = rb_entry(n, struct uprobe, rb_node);
352 match = match_uprobe(&u, uprobe);
353 if (!match) {
354 atomic_inc(&uprobe->ref);
355 return uprobe;
356 }
7b2d81d4 357
2b144498
SD
358 if (match < 0)
359 n = n->rb_left;
360 else
361 n = n->rb_right;
362 }
363 return NULL;
364}
365
366/*
367 * Find a uprobe corresponding to a given inode:offset
368 * Acquires uprobes_treelock
369 */
370static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
371{
372 struct uprobe *uprobe;
2b144498 373
6f47caa0 374 spin_lock(&uprobes_treelock);
2b144498 375 uprobe = __find_uprobe(inode, offset);
6f47caa0 376 spin_unlock(&uprobes_treelock);
7b2d81d4 377
2b144498
SD
378 return uprobe;
379}
380
381static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
382{
383 struct rb_node **p = &uprobes_tree.rb_node;
384 struct rb_node *parent = NULL;
385 struct uprobe *u;
386 int match;
387
388 while (*p) {
389 parent = *p;
390 u = rb_entry(parent, struct uprobe, rb_node);
391 match = match_uprobe(uprobe, u);
392 if (!match) {
393 atomic_inc(&u->ref);
394 return u;
395 }
396
397 if (match < 0)
398 p = &parent->rb_left;
399 else
400 p = &parent->rb_right;
401
402 }
7b2d81d4 403
2b144498
SD
404 u = NULL;
405 rb_link_node(&uprobe->rb_node, parent, p);
406 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
407 /* get access + creation ref */
408 atomic_set(&uprobe->ref, 2);
7b2d81d4 409
2b144498
SD
410 return u;
411}
412
413/*
7b2d81d4 414 * Acquire uprobes_treelock.
2b144498
SD
415 * Matching uprobe already exists in rbtree;
416 * increment (access refcount) and return the matching uprobe.
417 *
418 * No matching uprobe; insert the uprobe in rb_tree;
419 * get a double refcount (access + creation) and return NULL.
420 */
421static struct uprobe *insert_uprobe(struct uprobe *uprobe)
422{
2b144498
SD
423 struct uprobe *u;
424
6f47caa0 425 spin_lock(&uprobes_treelock);
2b144498 426 u = __insert_uprobe(uprobe);
6f47caa0 427 spin_unlock(&uprobes_treelock);
7b2d81d4 428
2b144498
SD
429 return u;
430}
431
432static void put_uprobe(struct uprobe *uprobe)
433{
434 if (atomic_dec_and_test(&uprobe->ref))
435 kfree(uprobe);
436}
437
438static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
439{
440 struct uprobe *uprobe, *cur_uprobe;
441
442 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
443 if (!uprobe)
444 return NULL;
445
446 uprobe->inode = igrab(inode);
447 uprobe->offset = offset;
e591c8d7 448 init_rwsem(&uprobe->register_rwsem);
2b144498 449 init_rwsem(&uprobe->consumer_rwsem);
bbc33d05
ON
450 /* For now assume that the instruction need not be single-stepped */
451 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
2b144498
SD
452
453 /* add to uprobes_tree, sorted on inode:offset */
454 cur_uprobe = insert_uprobe(uprobe);
455
456 /* a uprobe exists for this inode:offset combination */
457 if (cur_uprobe) {
458 kfree(uprobe);
459 uprobe = cur_uprobe;
460 iput(inode);
7b2d81d4
IM
461 }
462
2b144498
SD
463 return uprobe;
464}
465
0326f5a9
SD
466static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
467{
468 struct uprobe_consumer *uc;
469
e591c8d7 470 down_read(&uprobe->register_rwsem);
fe20d71f
ON
471 for (uc = uprobe->consumers; uc; uc = uc->next)
472 uc->handler(uc, regs);
e591c8d7 473 up_read(&uprobe->register_rwsem);
0326f5a9
SD
474}
475
9a98e03c 476static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
477{
478 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
479 uc->next = uprobe->consumers;
480 uprobe->consumers = uc;
2b144498 481 up_write(&uprobe->consumer_rwsem);
2b144498
SD
482}
483
484/*
e3343e6a
SD
485 * For uprobe @uprobe, delete the consumer @uc.
486 * Return true if the @uc is deleted successfully
2b144498
SD
487 * or return false.
488 */
e3343e6a 489static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
490{
491 struct uprobe_consumer **con;
492 bool ret = false;
493
494 down_write(&uprobe->consumer_rwsem);
495 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
496 if (*con == uc) {
497 *con = uc->next;
2b144498
SD
498 ret = true;
499 break;
500 }
501 }
502 up_write(&uprobe->consumer_rwsem);
7b2d81d4 503
2b144498
SD
504 return ret;
505}
506
e3343e6a 507static int
d436615e 508__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 509 unsigned long nbytes, loff_t offset)
2b144498 510{
2b144498
SD
511 struct page *page;
512 void *vaddr;
593609a5
ON
513 unsigned long off;
514 pgoff_t idx;
2b144498
SD
515
516 if (!filp)
517 return -EINVAL;
518
cc359d18
ON
519 if (!mapping->a_ops->readpage)
520 return -EIO;
521
593609a5
ON
522 idx = offset >> PAGE_CACHE_SHIFT;
523 off = offset & ~PAGE_MASK;
2b144498
SD
524
525 /*
526 * Ensure that the page that has the original instruction is
527 * populated and in page-cache.
528 */
529 page = read_mapping_page(mapping, idx, filp);
530 if (IS_ERR(page))
531 return PTR_ERR(page);
532
533 vaddr = kmap_atomic(page);
593609a5 534 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
535 kunmap_atomic(vaddr);
536 page_cache_release(page);
7b2d81d4 537
2b144498
SD
538 return 0;
539}
540
d436615e 541static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
542{
543 struct address_space *mapping;
2b144498 544 unsigned long nbytes;
7b2d81d4 545 int bytes;
2b144498 546
d436615e 547 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
548 mapping = uprobe->inode->i_mapping;
549
550 /* Instruction at end of binary; copy only available bytes */
551 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
552 bytes = uprobe->inode->i_size - uprobe->offset;
553 else
554 bytes = MAX_UINSN_BYTES;
555
556 /* Instruction at the page-boundary; copy bytes in second page */
557 if (nbytes < bytes) {
fc36f595
ON
558 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
559 bytes - nbytes, uprobe->offset + nbytes);
560 if (err)
561 return err;
2b144498
SD
562 bytes = nbytes;
563 }
d436615e 564 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
565}
566
cb9a19fe
ON
567static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
568 struct mm_struct *mm, unsigned long vaddr)
569{
570 int ret = 0;
571
71434f2f 572 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
573 return ret;
574
d4d3ccc6
ON
575 /* TODO: move this into _register, until then we abuse this sem. */
576 down_write(&uprobe->consumer_rwsem);
71434f2f 577 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
578 goto out;
579
cb9a19fe
ON
580 ret = copy_insn(uprobe, file);
581 if (ret)
582 goto out;
583
584 ret = -ENOTSUPP;
585 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
586 goto out;
587
588 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
589 if (ret)
590 goto out;
591
592 /* write_opcode() assumes we don't cross page boundary */
593 BUG_ON((uprobe->offset & ~PAGE_MASK) +
594 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
595
596 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
71434f2f 597 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
598
599 out:
d4d3ccc6 600 up_write(&uprobe->consumer_rwsem);
4710f05f 601
cb9a19fe
ON
602 return ret;
603}
604
63633cbf
ON
605static bool filter_chain(struct uprobe *uprobe)
606{
1ff6fee5
ON
607 struct uprobe_consumer *uc;
608 bool ret = false;
609
610 down_read(&uprobe->consumer_rwsem);
611 for (uc = uprobe->consumers; uc; uc = uc->next) {
612 /* TODO: ret = uc->filter(...) */
613 ret = true;
614 if (ret)
615 break;
616 }
617 up_read(&uprobe->consumer_rwsem);
618
619 return ret;
63633cbf
ON
620}
621
e3343e6a
SD
622static int
623install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 624 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 625{
f8ac4ec9 626 bool first_uprobe;
2b144498
SD
627 int ret;
628
629 /*
630 * If probe is being deleted, unregister thread could be done with
631 * the vma-rmap-walk through. Adding a probe now can be fatal since
63633cbf
ON
632 * nobody will be able to cleanup. But in this case filter_chain()
633 * must return false, all consumers have gone away.
2b144498 634 */
63633cbf 635 if (!filter_chain(uprobe))
78f74116 636 return 0;
2b144498 637
cb9a19fe
ON
638 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
639 if (ret)
640 return ret;
682968e0 641
f8ac4ec9
ON
642 /*
643 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
644 * the task can hit this breakpoint right after __replace_page().
645 */
646 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
647 if (first_uprobe)
648 set_bit(MMF_HAS_UPROBES, &mm->flags);
649
816c03fb 650 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
651 if (!ret)
652 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
653 else if (first_uprobe)
f8ac4ec9 654 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
655
656 return ret;
657}
658
076a365b 659static int
816c03fb 660remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 661{
9f68f672 662 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
076a365b 663 return 0;
9f68f672 664
63633cbf
ON
665 if (filter_chain(uprobe))
666 return 0;
667
9f68f672 668 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 669 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
670}
671
0326f5a9 672/*
778b032d
ON
673 * There could be threads that have already hit the breakpoint. They
674 * will recheck the current insn and restart if find_uprobe() fails.
675 * See find_active_uprobe().
0326f5a9 676 */
2b144498
SD
677static void delete_uprobe(struct uprobe *uprobe)
678{
6f47caa0 679 spin_lock(&uprobes_treelock);
2b144498 680 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 681 spin_unlock(&uprobes_treelock);
2b144498
SD
682 iput(uprobe->inode);
683 put_uprobe(uprobe);
2b144498
SD
684}
685
26872090
ON
686struct map_info {
687 struct map_info *next;
688 struct mm_struct *mm;
816c03fb 689 unsigned long vaddr;
26872090
ON
690};
691
692static inline struct map_info *free_map_info(struct map_info *info)
2b144498 693{
26872090
ON
694 struct map_info *next = info->next;
695 kfree(info);
696 return next;
697}
698
699static struct map_info *
700build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
701{
702 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 703 struct vm_area_struct *vma;
26872090
ON
704 struct map_info *curr = NULL;
705 struct map_info *prev = NULL;
706 struct map_info *info;
707 int more = 0;
2b144498 708
26872090
ON
709 again:
710 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 711 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
712 if (!valid_vma(vma, is_register))
713 continue;
714
7a5bfb66
ON
715 if (!prev && !more) {
716 /*
717 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
718 * reclaim. This is optimistic, no harm done if it fails.
719 */
720 prev = kmalloc(sizeof(struct map_info),
721 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
722 if (prev)
723 prev->next = NULL;
724 }
26872090
ON
725 if (!prev) {
726 more++;
727 continue;
2b144498 728 }
2b144498 729
26872090
ON
730 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
731 continue;
7b2d81d4 732
26872090
ON
733 info = prev;
734 prev = prev->next;
735 info->next = curr;
736 curr = info;
2b144498 737
26872090 738 info->mm = vma->vm_mm;
57683f72 739 info->vaddr = offset_to_vaddr(vma, offset);
26872090 740 }
2b144498
SD
741 mutex_unlock(&mapping->i_mmap_mutex);
742
26872090
ON
743 if (!more)
744 goto out;
745
746 prev = curr;
747 while (curr) {
748 mmput(curr->mm);
749 curr = curr->next;
750 }
7b2d81d4 751
26872090
ON
752 do {
753 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
754 if (!info) {
755 curr = ERR_PTR(-ENOMEM);
756 goto out;
757 }
758 info->next = prev;
759 prev = info;
760 } while (--more);
761
762 goto again;
763 out:
764 while (prev)
765 prev = free_map_info(prev);
766 return curr;
2b144498
SD
767}
768
769static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
770{
26872090
ON
771 struct map_info *info;
772 int err = 0;
2b144498 773
32cdba1e 774 percpu_down_write(&dup_mmap_sem);
26872090
ON
775 info = build_map_info(uprobe->inode->i_mapping,
776 uprobe->offset, is_register);
32cdba1e
ON
777 if (IS_ERR(info)) {
778 err = PTR_ERR(info);
779 goto out;
780 }
7b2d81d4 781
26872090
ON
782 while (info) {
783 struct mm_struct *mm = info->mm;
784 struct vm_area_struct *vma;
7b2d81d4 785
076a365b 786 if (err && is_register)
26872090 787 goto free;
7b2d81d4 788
77fc4af1 789 down_write(&mm->mmap_sem);
f4d6dfe5
ON
790 vma = find_vma(mm, info->vaddr);
791 if (!vma || !valid_vma(vma, is_register) ||
792 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
793 goto unlock;
794
f4d6dfe5
ON
795 if (vma->vm_start > info->vaddr ||
796 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 797 goto unlock;
2b144498 798
78f74116 799 if (is_register)
26872090 800 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 801 else
076a365b 802 err |= remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 803
26872090
ON
804 unlock:
805 up_write(&mm->mmap_sem);
806 free:
807 mmput(mm);
808 info = free_map_info(info);
2b144498 809 }
32cdba1e
ON
810 out:
811 percpu_up_write(&dup_mmap_sem);
26872090 812 return err;
2b144498
SD
813}
814
9a98e03c 815static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 816{
9a98e03c 817 consumer_add(uprobe, uc);
bb929284 818 return register_for_each_vma(uprobe, true);
2b144498
SD
819}
820
04aab9b2 821static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 822{
04aab9b2
ON
823 int err;
824
825 if (!consumer_del(uprobe, uc)) /* WARN? */
826 return;
2b144498 827
04aab9b2 828 err = register_for_each_vma(uprobe, false);
bb929284
ON
829 /* TODO : cant unregister? schedule a worker thread */
830 if (!uprobe->consumers && !err)
831 delete_uprobe(uprobe);
2b144498
SD
832}
833
834/*
7b2d81d4 835 * uprobe_register - register a probe
2b144498
SD
836 * @inode: the file in which the probe has to be placed.
837 * @offset: offset from the start of the file.
e3343e6a 838 * @uc: information on howto handle the probe..
2b144498 839 *
7b2d81d4 840 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
841 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
842 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 843 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 844 * @uprobe even before the register operation is complete. Creation
e3343e6a 845 * refcount is released when the last @uc for the @uprobe
2b144498
SD
846 * unregisters.
847 *
848 * Return errno if it cannot successully install probes
849 * else return 0 (success)
850 */
e3343e6a 851int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
852{
853 struct uprobe *uprobe;
7b2d81d4 854 int ret;
2b144498 855
f0744af7 856 /* Racy, just to catch the obvious mistakes */
2b144498 857 if (offset > i_size_read(inode))
7b2d81d4 858 return -EINVAL;
2b144498 859
9a98e03c 860 ret = -ENOMEM;
2b144498
SD
861 mutex_lock(uprobes_hash(inode));
862 uprobe = alloc_uprobe(inode, offset);
9a98e03c 863 if (uprobe) {
e591c8d7 864 down_write(&uprobe->register_rwsem);
9a98e03c
ON
865 ret = __uprobe_register(uprobe, uc);
866 if (ret)
04aab9b2 867 __uprobe_unregister(uprobe, uc);
e591c8d7 868 up_write(&uprobe->register_rwsem);
2b144498 869 }
2b144498 870 mutex_unlock(uprobes_hash(inode));
6d1d8dfa
SAS
871 if (uprobe)
872 put_uprobe(uprobe);
2b144498
SD
873
874 return ret;
875}
876
877/*
7b2d81d4 878 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
879 * @inode: the file in which the probe has to be removed.
880 * @offset: offset from the start of the file.
e3343e6a 881 * @uc: identify which probe if multiple probes are colocated.
2b144498 882 */
e3343e6a 883void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 884{
7b2d81d4 885 struct uprobe *uprobe;
2b144498 886
2b144498
SD
887 uprobe = find_uprobe(inode, offset);
888 if (!uprobe)
889 return;
890
891 mutex_lock(uprobes_hash(inode));
e591c8d7 892 down_write(&uprobe->register_rwsem);
04aab9b2 893 __uprobe_unregister(uprobe, uc);
e591c8d7 894 up_write(&uprobe->register_rwsem);
2b144498 895 mutex_unlock(uprobes_hash(inode));
c91368c4 896 put_uprobe(uprobe);
2b144498
SD
897}
898
891c3970
ON
899static struct rb_node *
900find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 901{
2b144498 902 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
903
904 while (n) {
891c3970 905 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 906
891c3970 907 if (inode < u->inode) {
2b144498 908 n = n->rb_left;
891c3970 909 } else if (inode > u->inode) {
2b144498 910 n = n->rb_right;
891c3970
ON
911 } else {
912 if (max < u->offset)
913 n = n->rb_left;
914 else if (min > u->offset)
915 n = n->rb_right;
916 else
917 break;
918 }
2b144498 919 }
7b2d81d4 920
891c3970 921 return n;
2b144498
SD
922}
923
924/*
891c3970 925 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 926 */
891c3970
ON
927static void build_probe_list(struct inode *inode,
928 struct vm_area_struct *vma,
929 unsigned long start, unsigned long end,
930 struct list_head *head)
2b144498 931{
891c3970 932 loff_t min, max;
891c3970
ON
933 struct rb_node *n, *t;
934 struct uprobe *u;
7b2d81d4 935
891c3970 936 INIT_LIST_HEAD(head);
cb113b47 937 min = vaddr_to_offset(vma, start);
891c3970 938 max = min + (end - start) - 1;
2b144498 939
6f47caa0 940 spin_lock(&uprobes_treelock);
891c3970
ON
941 n = find_node_in_range(inode, min, max);
942 if (n) {
943 for (t = n; t; t = rb_prev(t)) {
944 u = rb_entry(t, struct uprobe, rb_node);
945 if (u->inode != inode || u->offset < min)
946 break;
947 list_add(&u->pending_list, head);
948 atomic_inc(&u->ref);
949 }
950 for (t = n; (t = rb_next(t)); ) {
951 u = rb_entry(t, struct uprobe, rb_node);
952 if (u->inode != inode || u->offset > max)
953 break;
954 list_add(&u->pending_list, head);
955 atomic_inc(&u->ref);
956 }
2b144498 957 }
6f47caa0 958 spin_unlock(&uprobes_treelock);
2b144498
SD
959}
960
961/*
5e5be71a 962 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 963 *
5e5be71a
ON
964 * Currently we ignore all errors and always return 0, the callers
965 * can't handle the failure anyway.
2b144498 966 */
7b2d81d4 967int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
968{
969 struct list_head tmp_list;
665605a2 970 struct uprobe *uprobe, *u;
2b144498 971 struct inode *inode;
2b144498 972
441f1eb7 973 if (no_uprobe_events() || !valid_vma(vma, true))
7b2d81d4 974 return 0;
2b144498
SD
975
976 inode = vma->vm_file->f_mapping->host;
977 if (!inode)
7b2d81d4 978 return 0;
2b144498 979
2b144498 980 mutex_lock(uprobes_mmap_hash(inode));
891c3970 981 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 982
665605a2 983 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 984 if (!fatal_signal_pending(current)) {
57683f72 985 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 986 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
987 }
988 put_uprobe(uprobe);
989 }
2b144498
SD
990 mutex_unlock(uprobes_mmap_hash(inode));
991
5e5be71a 992 return 0;
2b144498
SD
993}
994
9f68f672
ON
995static bool
996vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
997{
998 loff_t min, max;
999 struct inode *inode;
1000 struct rb_node *n;
1001
1002 inode = vma->vm_file->f_mapping->host;
1003
1004 min = vaddr_to_offset(vma, start);
1005 max = min + (end - start) - 1;
1006
1007 spin_lock(&uprobes_treelock);
1008 n = find_node_in_range(inode, min, max);
1009 spin_unlock(&uprobes_treelock);
1010
1011 return !!n;
1012}
1013
682968e0
SD
1014/*
1015 * Called in context of a munmap of a vma.
1016 */
cbc91f71 1017void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1018{
441f1eb7 1019 if (no_uprobe_events() || !valid_vma(vma, false))
682968e0
SD
1020 return;
1021
2fd611a9
ON
1022 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1023 return;
1024
9f68f672
ON
1025 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1026 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1027 return;
1028
9f68f672
ON
1029 if (vma_has_uprobes(vma, start, end))
1030 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1031}
1032
d4b3b638
SD
1033/* Slot allocation for XOL */
1034static int xol_add_vma(struct xol_area *area)
1035{
1036 struct mm_struct *mm;
1037 int ret;
1038
1039 area->page = alloc_page(GFP_HIGHUSER);
1040 if (!area->page)
1041 return -ENOMEM;
1042
1043 ret = -EALREADY;
1044 mm = current->mm;
1045
1046 down_write(&mm->mmap_sem);
1047 if (mm->uprobes_state.xol_area)
1048 goto fail;
1049
1050 ret = -ENOMEM;
1051
1052 /* Try to map as high as possible, this is only a hint. */
1053 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1054 if (area->vaddr & ~PAGE_MASK) {
1055 ret = area->vaddr;
1056 goto fail;
1057 }
1058
1059 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1060 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1061 if (ret)
1062 goto fail;
1063
1064 smp_wmb(); /* pairs with get_xol_area() */
1065 mm->uprobes_state.xol_area = area;
1066 ret = 0;
1067
1068fail:
1069 up_write(&mm->mmap_sem);
1070 if (ret)
1071 __free_page(area->page);
1072
1073 return ret;
1074}
1075
1076static struct xol_area *get_xol_area(struct mm_struct *mm)
1077{
1078 struct xol_area *area;
1079
1080 area = mm->uprobes_state.xol_area;
1081 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1082
1083 return area;
1084}
1085
1086/*
1087 * xol_alloc_area - Allocate process's xol_area.
1088 * This area will be used for storing instructions for execution out of
1089 * line.
1090 *
1091 * Returns the allocated area or NULL.
1092 */
1093static struct xol_area *xol_alloc_area(void)
1094{
1095 struct xol_area *area;
1096
1097 area = kzalloc(sizeof(*area), GFP_KERNEL);
1098 if (unlikely(!area))
1099 return NULL;
1100
1101 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1102
1103 if (!area->bitmap)
1104 goto fail;
1105
1106 init_waitqueue_head(&area->wq);
1107 if (!xol_add_vma(area))
1108 return area;
1109
1110fail:
1111 kfree(area->bitmap);
1112 kfree(area);
1113
1114 return get_xol_area(current->mm);
1115}
1116
1117/*
1118 * uprobe_clear_state - Free the area allocated for slots.
1119 */
1120void uprobe_clear_state(struct mm_struct *mm)
1121{
1122 struct xol_area *area = mm->uprobes_state.xol_area;
1123
1124 if (!area)
1125 return;
1126
1127 put_page(area->page);
1128 kfree(area->bitmap);
1129 kfree(area);
1130}
1131
32cdba1e
ON
1132void uprobe_start_dup_mmap(void)
1133{
1134 percpu_down_read(&dup_mmap_sem);
1135}
1136
1137void uprobe_end_dup_mmap(void)
1138{
1139 percpu_up_read(&dup_mmap_sem);
1140}
1141
f8ac4ec9
ON
1142void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1143{
61559a81
ON
1144 newmm->uprobes_state.xol_area = NULL;
1145
9f68f672 1146 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1147 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1148 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1149 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1150 }
f8ac4ec9
ON
1151}
1152
d4b3b638
SD
1153/*
1154 * - search for a free slot.
1155 */
1156static unsigned long xol_take_insn_slot(struct xol_area *area)
1157{
1158 unsigned long slot_addr;
1159 int slot_nr;
1160
1161 do {
1162 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1163 if (slot_nr < UINSNS_PER_PAGE) {
1164 if (!test_and_set_bit(slot_nr, area->bitmap))
1165 break;
1166
1167 slot_nr = UINSNS_PER_PAGE;
1168 continue;
1169 }
1170 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1171 } while (slot_nr >= UINSNS_PER_PAGE);
1172
1173 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1174 atomic_inc(&area->slot_count);
1175
1176 return slot_addr;
1177}
1178
1179/*
1180 * xol_get_insn_slot - If was not allocated a slot, then
1181 * allocate a slot.
1182 * Returns the allocated slot address or 0.
1183 */
1184static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1185{
1186 struct xol_area *area;
1187 unsigned long offset;
1188 void *vaddr;
1189
1190 area = get_xol_area(current->mm);
1191 if (!area) {
1192 area = xol_alloc_area();
1193 if (!area)
1194 return 0;
1195 }
1196 current->utask->xol_vaddr = xol_take_insn_slot(area);
1197
1198 /*
1199 * Initialize the slot if xol_vaddr points to valid
1200 * instruction slot.
1201 */
1202 if (unlikely(!current->utask->xol_vaddr))
1203 return 0;
1204
1205 current->utask->vaddr = slot_addr;
1206 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1207 vaddr = kmap_atomic(area->page);
1208 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1209 kunmap_atomic(vaddr);
65b6ecc0
RV
1210 /*
1211 * We probably need flush_icache_user_range() but it needs vma.
1212 * This should work on supported architectures too.
1213 */
1214 flush_dcache_page(area->page);
d4b3b638
SD
1215
1216 return current->utask->xol_vaddr;
1217}
1218
1219/*
1220 * xol_free_insn_slot - If slot was earlier allocated by
1221 * @xol_get_insn_slot(), make the slot available for
1222 * subsequent requests.
1223 */
1224static void xol_free_insn_slot(struct task_struct *tsk)
1225{
1226 struct xol_area *area;
1227 unsigned long vma_end;
1228 unsigned long slot_addr;
1229
1230 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1231 return;
1232
1233 slot_addr = tsk->utask->xol_vaddr;
1234
1235 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1236 return;
1237
1238 area = tsk->mm->uprobes_state.xol_area;
1239 vma_end = area->vaddr + PAGE_SIZE;
1240 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1241 unsigned long offset;
1242 int slot_nr;
1243
1244 offset = slot_addr - area->vaddr;
1245 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1246 if (slot_nr >= UINSNS_PER_PAGE)
1247 return;
1248
1249 clear_bit(slot_nr, area->bitmap);
1250 atomic_dec(&area->slot_count);
1251 if (waitqueue_active(&area->wq))
1252 wake_up(&area->wq);
1253
1254 tsk->utask->xol_vaddr = 0;
1255 }
1256}
1257
0326f5a9
SD
1258/**
1259 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1260 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1261 * instruction.
1262 * Return the address of the breakpoint instruction.
1263 */
1264unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1265{
1266 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1267}
1268
1269/*
1270 * Called with no locks held.
1271 * Called in context of a exiting or a exec-ing thread.
1272 */
1273void uprobe_free_utask(struct task_struct *t)
1274{
1275 struct uprobe_task *utask = t->utask;
1276
0326f5a9
SD
1277 if (!utask)
1278 return;
1279
1280 if (utask->active_uprobe)
1281 put_uprobe(utask->active_uprobe);
1282
d4b3b638 1283 xol_free_insn_slot(t);
0326f5a9
SD
1284 kfree(utask);
1285 t->utask = NULL;
1286}
1287
1288/*
1289 * Called in context of a new clone/fork from copy_process.
1290 */
1291void uprobe_copy_process(struct task_struct *t)
1292{
1293 t->utask = NULL;
0326f5a9
SD
1294}
1295
1296/*
1297 * Allocate a uprobe_task object for the task.
1298 * Called when the thread hits a breakpoint for the first time.
1299 *
1300 * Returns:
1301 * - pointer to new uprobe_task on success
1302 * - NULL otherwise
1303 */
1304static struct uprobe_task *add_utask(void)
1305{
1306 struct uprobe_task *utask;
1307
1308 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1309 if (unlikely(!utask))
1310 return NULL;
1311
0326f5a9
SD
1312 current->utask = utask;
1313 return utask;
1314}
1315
1316/* Prepare to single-step probed instruction out of line. */
1317static int
1318pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1319{
d4b3b638
SD
1320 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1321 return 0;
1322
0326f5a9
SD
1323 return -EFAULT;
1324}
1325
1326/*
1327 * If we are singlestepping, then ensure this thread is not connected to
1328 * non-fatal signals until completion of singlestep. When xol insn itself
1329 * triggers the signal, restart the original insn even if the task is
1330 * already SIGKILL'ed (since coredump should report the correct ip). This
1331 * is even more important if the task has a handler for SIGSEGV/etc, The
1332 * _same_ instruction should be repeated again after return from the signal
1333 * handler, and SSTEP can never finish in this case.
1334 */
1335bool uprobe_deny_signal(void)
1336{
1337 struct task_struct *t = current;
1338 struct uprobe_task *utask = t->utask;
1339
1340 if (likely(!utask || !utask->active_uprobe))
1341 return false;
1342
1343 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1344
1345 if (signal_pending(t)) {
1346 spin_lock_irq(&t->sighand->siglock);
1347 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1348 spin_unlock_irq(&t->sighand->siglock);
1349
1350 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1351 utask->state = UTASK_SSTEP_TRAPPED;
1352 set_tsk_thread_flag(t, TIF_UPROBE);
1353 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1354 }
1355 }
1356
1357 return true;
1358}
1359
1360/*
1361 * Avoid singlestepping the original instruction if the original instruction
1362 * is a NOP or can be emulated.
1363 */
1364static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1365{
71434f2f 1366 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
0578a970
ON
1367 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1368 return true;
71434f2f 1369 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
0578a970 1370 }
0326f5a9
SD
1371 return false;
1372}
1373
499a4f3e
ON
1374static void mmf_recalc_uprobes(struct mm_struct *mm)
1375{
1376 struct vm_area_struct *vma;
1377
1378 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1379 if (!valid_vma(vma, false))
1380 continue;
1381 /*
1382 * This is not strictly accurate, we can race with
1383 * uprobe_unregister() and see the already removed
1384 * uprobe if delete_uprobe() was not yet called.
63633cbf 1385 * Or this uprobe can be filtered out.
499a4f3e
ON
1386 */
1387 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1388 return;
1389 }
1390
1391 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1392}
1393
ec75fba9
ON
1394static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1395{
1396 struct page *page;
1397 uprobe_opcode_t opcode;
1398 int result;
1399
1400 pagefault_disable();
1401 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1402 sizeof(opcode));
1403 pagefault_enable();
1404
1405 if (likely(result == 0))
1406 goto out;
1407
1408 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1409 if (result < 0)
1410 return result;
1411
1412 copy_opcode(page, vaddr, &opcode);
1413 put_page(page);
1414 out:
1415 return is_swbp_insn(&opcode);
1416}
1417
d790d346 1418static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1419{
3a9ea052
ON
1420 struct mm_struct *mm = current->mm;
1421 struct uprobe *uprobe = NULL;
0326f5a9 1422 struct vm_area_struct *vma;
0326f5a9 1423
0326f5a9
SD
1424 down_read(&mm->mmap_sem);
1425 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1426 if (vma && vma->vm_start <= bp_vaddr) {
1427 if (valid_vma(vma, false)) {
cb113b47
ON
1428 struct inode *inode = vma->vm_file->f_mapping->host;
1429 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1430
3a9ea052
ON
1431 uprobe = find_uprobe(inode, offset);
1432 }
d790d346
ON
1433
1434 if (!uprobe)
1435 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1436 } else {
1437 *is_swbp = -EFAULT;
0326f5a9 1438 }
499a4f3e
ON
1439
1440 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1441 mmf_recalc_uprobes(mm);
0326f5a9
SD
1442 up_read(&mm->mmap_sem);
1443
3a9ea052
ON
1444 return uprobe;
1445}
1446
1447/*
1448 * Run handler and ask thread to singlestep.
1449 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1450 */
1451static void handle_swbp(struct pt_regs *regs)
1452{
1453 struct uprobe_task *utask;
1454 struct uprobe *uprobe;
1455 unsigned long bp_vaddr;
56bb4cf6 1456 int uninitialized_var(is_swbp);
3a9ea052
ON
1457
1458 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1459 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1460
0326f5a9 1461 if (!uprobe) {
56bb4cf6
ON
1462 if (is_swbp > 0) {
1463 /* No matching uprobe; signal SIGTRAP. */
1464 send_sig(SIGTRAP, current, 0);
1465 } else {
1466 /*
1467 * Either we raced with uprobe_unregister() or we can't
1468 * access this memory. The latter is only possible if
1469 * another thread plays with our ->mm. In both cases
1470 * we can simply restart. If this vma was unmapped we
1471 * can pretend this insn was not executed yet and get
1472 * the (correct) SIGSEGV after restart.
1473 */
1474 instruction_pointer_set(regs, bp_vaddr);
1475 }
0326f5a9
SD
1476 return;
1477 }
142b18dd
ON
1478 /*
1479 * TODO: move copy_insn/etc into _register and remove this hack.
1480 * After we hit the bp, _unregister + _register can install the
1481 * new and not-yet-analyzed uprobe at the same address, restart.
1482 */
1483 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
71434f2f 1484 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
142b18dd 1485 goto restart;
0326f5a9
SD
1486
1487 utask = current->utask;
1488 if (!utask) {
1489 utask = add_utask();
1490 /* Cannot allocate; re-execute the instruction. */
1491 if (!utask)
0578a970 1492 goto restart;
0326f5a9 1493 }
746a9e6b 1494
0326f5a9 1495 handler_chain(uprobe, regs);
0578a970
ON
1496 if (can_skip_sstep(uprobe, regs))
1497 goto out;
0326f5a9 1498
0326f5a9 1499 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
746a9e6b
ON
1500 utask->active_uprobe = uprobe;
1501 utask->state = UTASK_SSTEP;
0326f5a9
SD
1502 return;
1503 }
1504
0578a970
ON
1505restart:
1506 /*
1507 * cannot singlestep; cannot skip instruction;
1508 * re-execute the instruction.
1509 */
1510 instruction_pointer_set(regs, bp_vaddr);
1511out:
8bd87445 1512 put_uprobe(uprobe);
0326f5a9
SD
1513}
1514
1515/*
1516 * Perform required fix-ups and disable singlestep.
1517 * Allow pending signals to take effect.
1518 */
1519static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1520{
1521 struct uprobe *uprobe;
1522
1523 uprobe = utask->active_uprobe;
1524 if (utask->state == UTASK_SSTEP_ACK)
1525 arch_uprobe_post_xol(&uprobe->arch, regs);
1526 else if (utask->state == UTASK_SSTEP_TRAPPED)
1527 arch_uprobe_abort_xol(&uprobe->arch, regs);
1528 else
1529 WARN_ON_ONCE(1);
1530
1531 put_uprobe(uprobe);
1532 utask->active_uprobe = NULL;
1533 utask->state = UTASK_RUNNING;
d4b3b638 1534 xol_free_insn_slot(current);
0326f5a9
SD
1535
1536 spin_lock_irq(&current->sighand->siglock);
1537 recalc_sigpending(); /* see uprobe_deny_signal() */
1538 spin_unlock_irq(&current->sighand->siglock);
1539}
1540
1541/*
1b08e907
ON
1542 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1543 * allows the thread to return from interrupt. After that handle_swbp()
1544 * sets utask->active_uprobe.
0326f5a9 1545 *
1b08e907
ON
1546 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1547 * and allows the thread to return from interrupt.
0326f5a9
SD
1548 *
1549 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1550 * uprobe_notify_resume().
1551 */
1552void uprobe_notify_resume(struct pt_regs *regs)
1553{
1554 struct uprobe_task *utask;
1555
db023ea5
ON
1556 clear_thread_flag(TIF_UPROBE);
1557
0326f5a9 1558 utask = current->utask;
1b08e907 1559 if (utask && utask->active_uprobe)
0326f5a9 1560 handle_singlestep(utask, regs);
1b08e907
ON
1561 else
1562 handle_swbp(regs);
0326f5a9
SD
1563}
1564
1565/*
1566 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1567 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1568 */
1569int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1570{
f8ac4ec9 1571 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1572 return 0;
1573
0326f5a9 1574 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1575 return 1;
1576}
1577
1578/*
1579 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1580 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1581 */
1582int uprobe_post_sstep_notifier(struct pt_regs *regs)
1583{
1584 struct uprobe_task *utask = current->utask;
1585
1586 if (!current->mm || !utask || !utask->active_uprobe)
1587 /* task is currently not uprobed */
1588 return 0;
1589
1590 utask->state = UTASK_SSTEP_ACK;
1591 set_thread_flag(TIF_UPROBE);
1592 return 1;
1593}
1594
1595static struct notifier_block uprobe_exception_nb = {
1596 .notifier_call = arch_uprobe_exception_notify,
1597 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1598};
1599
2b144498
SD
1600static int __init init_uprobes(void)
1601{
1602 int i;
1603
1604 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1605 mutex_init(&uprobes_mutex[i]);
1606 mutex_init(&uprobes_mmap_mutex[i]);
1607 }
0326f5a9 1608
32cdba1e
ON
1609 if (percpu_init_rwsem(&dup_mmap_sem))
1610 return -ENOMEM;
1611
0326f5a9 1612 return register_die_notifier(&uprobe_exception_nb);
2b144498 1613}
0326f5a9 1614module_init(init_uprobes);
2b144498
SD
1615
1616static void __exit exit_uprobes(void)
1617{
1618}
2b144498 1619module_exit(exit_uprobes);
This page took 0.16286 seconds and 5 git commands to generate.