workqueue: make workqueue_lock irq-safe
[deliverable/linux.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
b488893a 64
4732efbe 65#include <asm/futex.h>
1da177e4 66
c87e2837
IM
67#include "rtmutex_common.h"
68
a0c1e907
TG
69int __read_mostly futex_cmpxchg_enabled;
70
1da177e4
LT
71#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72
b41277dc
DH
73/*
74 * Futex flags used to encode options to functions and preserve them across
75 * restarts.
76 */
77#define FLAGS_SHARED 0x01
78#define FLAGS_CLOCKRT 0x02
79#define FLAGS_HAS_TIMEOUT 0x04
80
c87e2837
IM
81/*
82 * Priority Inheritance state:
83 */
84struct futex_pi_state {
85 /*
86 * list of 'owned' pi_state instances - these have to be
87 * cleaned up in do_exit() if the task exits prematurely:
88 */
89 struct list_head list;
90
91 /*
92 * The PI object:
93 */
94 struct rt_mutex pi_mutex;
95
96 struct task_struct *owner;
97 atomic_t refcount;
98
99 union futex_key key;
100};
101
d8d88fbb
DH
102/**
103 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 104 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
105 * @task: the task waiting on the futex
106 * @lock_ptr: the hash bucket lock
107 * @key: the key the futex is hashed on
108 * @pi_state: optional priority inheritance state
109 * @rt_waiter: rt_waiter storage for use with requeue_pi
110 * @requeue_pi_key: the requeue_pi target futex key
111 * @bitset: bitset for the optional bitmasked wakeup
112 *
113 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
114 * we can wake only the relevant ones (hashed queues may be shared).
115 *
116 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 117 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 118 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
119 * the second.
120 *
121 * PI futexes are typically woken before they are removed from the hash list via
122 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
123 */
124struct futex_q {
ec92d082 125 struct plist_node list;
1da177e4 126
d8d88fbb 127 struct task_struct *task;
1da177e4 128 spinlock_t *lock_ptr;
1da177e4 129 union futex_key key;
c87e2837 130 struct futex_pi_state *pi_state;
52400ba9 131 struct rt_mutex_waiter *rt_waiter;
84bc4af5 132 union futex_key *requeue_pi_key;
cd689985 133 u32 bitset;
1da177e4
LT
134};
135
5bdb05f9
DH
136static const struct futex_q futex_q_init = {
137 /* list gets initialized in queue_me()*/
138 .key = FUTEX_KEY_INIT,
139 .bitset = FUTEX_BITSET_MATCH_ANY
140};
141
1da177e4 142/*
b2d0994b
DH
143 * Hash buckets are shared by all the futex_keys that hash to the same
144 * location. Each key may have multiple futex_q structures, one for each task
145 * waiting on a futex.
1da177e4
LT
146 */
147struct futex_hash_bucket {
ec92d082
PP
148 spinlock_t lock;
149 struct plist_head chain;
1da177e4
LT
150};
151
152static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
153
1da177e4
LT
154/*
155 * We hash on the keys returned from get_futex_key (see below).
156 */
157static struct futex_hash_bucket *hash_futex(union futex_key *key)
158{
159 u32 hash = jhash2((u32*)&key->both.word,
160 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
161 key->both.offset);
162 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
163}
164
165/*
166 * Return 1 if two futex_keys are equal, 0 otherwise.
167 */
168static inline int match_futex(union futex_key *key1, union futex_key *key2)
169{
2bc87203
DH
170 return (key1 && key2
171 && key1->both.word == key2->both.word
1da177e4
LT
172 && key1->both.ptr == key2->both.ptr
173 && key1->both.offset == key2->both.offset);
174}
175
38d47c1b
PZ
176/*
177 * Take a reference to the resource addressed by a key.
178 * Can be called while holding spinlocks.
179 *
180 */
181static void get_futex_key_refs(union futex_key *key)
182{
183 if (!key->both.ptr)
184 return;
185
186 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
187 case FUT_OFF_INODE:
7de9c6ee 188 ihold(key->shared.inode);
38d47c1b
PZ
189 break;
190 case FUT_OFF_MMSHARED:
191 atomic_inc(&key->private.mm->mm_count);
192 break;
193 }
194}
195
196/*
197 * Drop a reference to the resource addressed by a key.
198 * The hash bucket spinlock must not be held.
199 */
200static void drop_futex_key_refs(union futex_key *key)
201{
90621c40
DH
202 if (!key->both.ptr) {
203 /* If we're here then we tried to put a key we failed to get */
204 WARN_ON_ONCE(1);
38d47c1b 205 return;
90621c40 206 }
38d47c1b
PZ
207
208 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
209 case FUT_OFF_INODE:
210 iput(key->shared.inode);
211 break;
212 case FUT_OFF_MMSHARED:
213 mmdrop(key->private.mm);
214 break;
215 }
216}
217
34f01cc1 218/**
d96ee56c
DH
219 * get_futex_key() - Get parameters which are the keys for a futex
220 * @uaddr: virtual address of the futex
221 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
222 * @key: address where result is stored.
9ea71503
SB
223 * @rw: mapping needs to be read/write (values: VERIFY_READ,
224 * VERIFY_WRITE)
34f01cc1
ED
225 *
226 * Returns a negative error code or 0
227 * The key words are stored in *key on success.
1da177e4 228 *
6131ffaa 229 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
230 * offset_within_page). For private mappings, it's (uaddr, current->mm).
231 * We can usually work out the index without swapping in the page.
232 *
b2d0994b 233 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 234 */
64d1304a 235static int
9ea71503 236get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 237{
e2970f2f 238 unsigned long address = (unsigned long)uaddr;
1da177e4 239 struct mm_struct *mm = current->mm;
a5b338f2 240 struct page *page, *page_head;
9ea71503 241 int err, ro = 0;
1da177e4
LT
242
243 /*
244 * The futex address must be "naturally" aligned.
245 */
e2970f2f 246 key->both.offset = address % PAGE_SIZE;
34f01cc1 247 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 248 return -EINVAL;
e2970f2f 249 address -= key->both.offset;
1da177e4 250
34f01cc1
ED
251 /*
252 * PROCESS_PRIVATE futexes are fast.
253 * As the mm cannot disappear under us and the 'key' only needs
254 * virtual address, we dont even have to find the underlying vma.
255 * Note : We do have to check 'uaddr' is a valid user address,
256 * but access_ok() should be faster than find_vma()
257 */
258 if (!fshared) {
7485d0d3 259 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
34f01cc1
ED
260 return -EFAULT;
261 key->private.mm = mm;
262 key->private.address = address;
42569c39 263 get_futex_key_refs(key);
34f01cc1
ED
264 return 0;
265 }
1da177e4 266
38d47c1b 267again:
7485d0d3 268 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
269 /*
270 * If write access is not required (eg. FUTEX_WAIT), try
271 * and get read-only access.
272 */
273 if (err == -EFAULT && rw == VERIFY_READ) {
274 err = get_user_pages_fast(address, 1, 0, &page);
275 ro = 1;
276 }
38d47c1b
PZ
277 if (err < 0)
278 return err;
9ea71503
SB
279 else
280 err = 0;
38d47c1b 281
a5b338f2
AA
282#ifdef CONFIG_TRANSPARENT_HUGEPAGE
283 page_head = page;
284 if (unlikely(PageTail(page))) {
38d47c1b 285 put_page(page);
a5b338f2
AA
286 /* serialize against __split_huge_page_splitting() */
287 local_irq_disable();
288 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
289 page_head = compound_head(page);
290 /*
291 * page_head is valid pointer but we must pin
292 * it before taking the PG_lock and/or
293 * PG_compound_lock. The moment we re-enable
294 * irqs __split_huge_page_splitting() can
295 * return and the head page can be freed from
296 * under us. We can't take the PG_lock and/or
297 * PG_compound_lock on a page that could be
298 * freed from under us.
299 */
300 if (page != page_head) {
301 get_page(page_head);
302 put_page(page);
303 }
304 local_irq_enable();
305 } else {
306 local_irq_enable();
307 goto again;
308 }
309 }
310#else
311 page_head = compound_head(page);
312 if (page != page_head) {
313 get_page(page_head);
314 put_page(page);
315 }
316#endif
317
318 lock_page(page_head);
e6780f72
HD
319
320 /*
321 * If page_head->mapping is NULL, then it cannot be a PageAnon
322 * page; but it might be the ZERO_PAGE or in the gate area or
323 * in a special mapping (all cases which we are happy to fail);
324 * or it may have been a good file page when get_user_pages_fast
325 * found it, but truncated or holepunched or subjected to
326 * invalidate_complete_page2 before we got the page lock (also
327 * cases which we are happy to fail). And we hold a reference,
328 * so refcount care in invalidate_complete_page's remove_mapping
329 * prevents drop_caches from setting mapping to NULL beneath us.
330 *
331 * The case we do have to guard against is when memory pressure made
332 * shmem_writepage move it from filecache to swapcache beneath us:
333 * an unlikely race, but we do need to retry for page_head->mapping.
334 */
a5b338f2 335 if (!page_head->mapping) {
e6780f72 336 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
337 unlock_page(page_head);
338 put_page(page_head);
e6780f72
HD
339 if (shmem_swizzled)
340 goto again;
341 return -EFAULT;
38d47c1b 342 }
1da177e4
LT
343
344 /*
345 * Private mappings are handled in a simple way.
346 *
347 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
348 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 349 * the object not the particular process.
1da177e4 350 */
a5b338f2 351 if (PageAnon(page_head)) {
9ea71503
SB
352 /*
353 * A RO anonymous page will never change and thus doesn't make
354 * sense for futex operations.
355 */
356 if (ro) {
357 err = -EFAULT;
358 goto out;
359 }
360
38d47c1b 361 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 362 key->private.mm = mm;
e2970f2f 363 key->private.address = address;
38d47c1b
PZ
364 } else {
365 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2
AA
366 key->shared.inode = page_head->mapping->host;
367 key->shared.pgoff = page_head->index;
1da177e4
LT
368 }
369
38d47c1b 370 get_futex_key_refs(key);
1da177e4 371
9ea71503 372out:
a5b338f2
AA
373 unlock_page(page_head);
374 put_page(page_head);
9ea71503 375 return err;
1da177e4
LT
376}
377
ae791a2d 378static inline void put_futex_key(union futex_key *key)
1da177e4 379{
38d47c1b 380 drop_futex_key_refs(key);
1da177e4
LT
381}
382
d96ee56c
DH
383/**
384 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
385 * @uaddr: pointer to faulting user space address
386 *
387 * Slow path to fixup the fault we just took in the atomic write
388 * access to @uaddr.
389 *
fb62db2b 390 * We have no generic implementation of a non-destructive write to the
d0725992
TG
391 * user address. We know that we faulted in the atomic pagefault
392 * disabled section so we can as well avoid the #PF overhead by
393 * calling get_user_pages() right away.
394 */
395static int fault_in_user_writeable(u32 __user *uaddr)
396{
722d0172
AK
397 struct mm_struct *mm = current->mm;
398 int ret;
399
400 down_read(&mm->mmap_sem);
2efaca92
BH
401 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
402 FAULT_FLAG_WRITE);
722d0172
AK
403 up_read(&mm->mmap_sem);
404
d0725992
TG
405 return ret < 0 ? ret : 0;
406}
407
4b1c486b
DH
408/**
409 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
410 * @hb: the hash bucket the futex_q's reside in
411 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
412 *
413 * Must be called with the hb lock held.
414 */
415static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
416 union futex_key *key)
417{
418 struct futex_q *this;
419
420 plist_for_each_entry(this, &hb->chain, list) {
421 if (match_futex(&this->key, key))
422 return this;
423 }
424 return NULL;
425}
426
37a9d912
ML
427static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
428 u32 uval, u32 newval)
36cf3b5c 429{
37a9d912 430 int ret;
36cf3b5c
TG
431
432 pagefault_disable();
37a9d912 433 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
434 pagefault_enable();
435
37a9d912 436 return ret;
36cf3b5c
TG
437}
438
439static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
440{
441 int ret;
442
a866374a 443 pagefault_disable();
e2970f2f 444 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 445 pagefault_enable();
1da177e4
LT
446
447 return ret ? -EFAULT : 0;
448}
449
c87e2837
IM
450
451/*
452 * PI code:
453 */
454static int refill_pi_state_cache(void)
455{
456 struct futex_pi_state *pi_state;
457
458 if (likely(current->pi_state_cache))
459 return 0;
460
4668edc3 461 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
462
463 if (!pi_state)
464 return -ENOMEM;
465
c87e2837
IM
466 INIT_LIST_HEAD(&pi_state->list);
467 /* pi_mutex gets initialized later */
468 pi_state->owner = NULL;
469 atomic_set(&pi_state->refcount, 1);
38d47c1b 470 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
471
472 current->pi_state_cache = pi_state;
473
474 return 0;
475}
476
477static struct futex_pi_state * alloc_pi_state(void)
478{
479 struct futex_pi_state *pi_state = current->pi_state_cache;
480
481 WARN_ON(!pi_state);
482 current->pi_state_cache = NULL;
483
484 return pi_state;
485}
486
487static void free_pi_state(struct futex_pi_state *pi_state)
488{
489 if (!atomic_dec_and_test(&pi_state->refcount))
490 return;
491
492 /*
493 * If pi_state->owner is NULL, the owner is most probably dying
494 * and has cleaned up the pi_state already
495 */
496 if (pi_state->owner) {
1d615482 497 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 498 list_del_init(&pi_state->list);
1d615482 499 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
500
501 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
502 }
503
504 if (current->pi_state_cache)
505 kfree(pi_state);
506 else {
507 /*
508 * pi_state->list is already empty.
509 * clear pi_state->owner.
510 * refcount is at 0 - put it back to 1.
511 */
512 pi_state->owner = NULL;
513 atomic_set(&pi_state->refcount, 1);
514 current->pi_state_cache = pi_state;
515 }
516}
517
518/*
519 * Look up the task based on what TID userspace gave us.
520 * We dont trust it.
521 */
522static struct task_struct * futex_find_get_task(pid_t pid)
523{
524 struct task_struct *p;
525
d359b549 526 rcu_read_lock();
228ebcbe 527 p = find_task_by_vpid(pid);
7a0ea09a
MH
528 if (p)
529 get_task_struct(p);
a06381fe 530
d359b549 531 rcu_read_unlock();
c87e2837
IM
532
533 return p;
534}
535
536/*
537 * This task is holding PI mutexes at exit time => bad.
538 * Kernel cleans up PI-state, but userspace is likely hosed.
539 * (Robust-futex cleanup is separate and might save the day for userspace.)
540 */
541void exit_pi_state_list(struct task_struct *curr)
542{
c87e2837
IM
543 struct list_head *next, *head = &curr->pi_state_list;
544 struct futex_pi_state *pi_state;
627371d7 545 struct futex_hash_bucket *hb;
38d47c1b 546 union futex_key key = FUTEX_KEY_INIT;
c87e2837 547
a0c1e907
TG
548 if (!futex_cmpxchg_enabled)
549 return;
c87e2837
IM
550 /*
551 * We are a ZOMBIE and nobody can enqueue itself on
552 * pi_state_list anymore, but we have to be careful
627371d7 553 * versus waiters unqueueing themselves:
c87e2837 554 */
1d615482 555 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
556 while (!list_empty(head)) {
557
558 next = head->next;
559 pi_state = list_entry(next, struct futex_pi_state, list);
560 key = pi_state->key;
627371d7 561 hb = hash_futex(&key);
1d615482 562 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 563
c87e2837
IM
564 spin_lock(&hb->lock);
565
1d615482 566 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
567 /*
568 * We dropped the pi-lock, so re-check whether this
569 * task still owns the PI-state:
570 */
c87e2837
IM
571 if (head->next != next) {
572 spin_unlock(&hb->lock);
573 continue;
574 }
575
c87e2837 576 WARN_ON(pi_state->owner != curr);
627371d7
IM
577 WARN_ON(list_empty(&pi_state->list));
578 list_del_init(&pi_state->list);
c87e2837 579 pi_state->owner = NULL;
1d615482 580 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
581
582 rt_mutex_unlock(&pi_state->pi_mutex);
583
584 spin_unlock(&hb->lock);
585
1d615482 586 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 587 }
1d615482 588 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
589}
590
591static int
d0aa7a70
PP
592lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
593 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
594{
595 struct futex_pi_state *pi_state = NULL;
596 struct futex_q *this, *next;
ec92d082 597 struct plist_head *head;
c87e2837 598 struct task_struct *p;
778e9a9c 599 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
600
601 head = &hb->chain;
602
ec92d082 603 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 604 if (match_futex(&this->key, key)) {
c87e2837
IM
605 /*
606 * Another waiter already exists - bump up
607 * the refcount and return its pi_state:
608 */
609 pi_state = this->pi_state;
06a9ec29 610 /*
fb62db2b 611 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
612 */
613 if (unlikely(!pi_state))
614 return -EINVAL;
615
627371d7 616 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
617
618 /*
619 * When pi_state->owner is NULL then the owner died
620 * and another waiter is on the fly. pi_state->owner
621 * is fixed up by the task which acquires
622 * pi_state->rt_mutex.
623 *
624 * We do not check for pid == 0 which can happen when
625 * the owner died and robust_list_exit() cleared the
626 * TID.
627 */
628 if (pid && pi_state->owner) {
629 /*
630 * Bail out if user space manipulated the
631 * futex value.
632 */
633 if (pid != task_pid_vnr(pi_state->owner))
634 return -EINVAL;
635 }
627371d7 636
c87e2837 637 atomic_inc(&pi_state->refcount);
d0aa7a70 638 *ps = pi_state;
c87e2837
IM
639
640 return 0;
641 }
642 }
643
644 /*
e3f2ddea 645 * We are the first waiter - try to look up the real owner and attach
778e9a9c 646 * the new pi_state to it, but bail out when TID = 0
c87e2837 647 */
778e9a9c 648 if (!pid)
e3f2ddea 649 return -ESRCH;
c87e2837 650 p = futex_find_get_task(pid);
7a0ea09a
MH
651 if (!p)
652 return -ESRCH;
778e9a9c
AK
653
654 /*
655 * We need to look at the task state flags to figure out,
656 * whether the task is exiting. To protect against the do_exit
657 * change of the task flags, we do this protected by
658 * p->pi_lock:
659 */
1d615482 660 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
661 if (unlikely(p->flags & PF_EXITING)) {
662 /*
663 * The task is on the way out. When PF_EXITPIDONE is
664 * set, we know that the task has finished the
665 * cleanup:
666 */
667 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
668
1d615482 669 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
670 put_task_struct(p);
671 return ret;
672 }
c87e2837
IM
673
674 pi_state = alloc_pi_state();
675
676 /*
677 * Initialize the pi_mutex in locked state and make 'p'
678 * the owner of it:
679 */
680 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
681
682 /* Store the key for possible exit cleanups: */
d0aa7a70 683 pi_state->key = *key;
c87e2837 684
627371d7 685 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
686 list_add(&pi_state->list, &p->pi_state_list);
687 pi_state->owner = p;
1d615482 688 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
689
690 put_task_struct(p);
691
d0aa7a70 692 *ps = pi_state;
c87e2837
IM
693
694 return 0;
695}
696
1a52084d 697/**
d96ee56c 698 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
699 * @uaddr: the pi futex user address
700 * @hb: the pi futex hash bucket
701 * @key: the futex key associated with uaddr and hb
702 * @ps: the pi_state pointer where we store the result of the
703 * lookup
704 * @task: the task to perform the atomic lock work for. This will
705 * be "current" except in the case of requeue pi.
706 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d
DH
707 *
708 * Returns:
709 * 0 - ready to wait
710 * 1 - acquired the lock
711 * <0 - error
712 *
713 * The hb->lock and futex_key refs shall be held by the caller.
714 */
715static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
716 union futex_key *key,
717 struct futex_pi_state **ps,
bab5bc9e 718 struct task_struct *task, int set_waiters)
1a52084d 719{
59fa6245 720 int lock_taken, ret, force_take = 0;
c0c9ed15 721 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
722
723retry:
724 ret = lock_taken = 0;
725
726 /*
727 * To avoid races, we attempt to take the lock here again
728 * (by doing a 0 -> TID atomic cmpxchg), while holding all
729 * the locks. It will most likely not succeed.
730 */
c0c9ed15 731 newval = vpid;
bab5bc9e
DH
732 if (set_waiters)
733 newval |= FUTEX_WAITERS;
1a52084d 734
37a9d912 735 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
736 return -EFAULT;
737
738 /*
739 * Detect deadlocks.
740 */
c0c9ed15 741 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
742 return -EDEADLK;
743
744 /*
745 * Surprise - we got the lock. Just return to userspace:
746 */
747 if (unlikely(!curval))
748 return 1;
749
750 uval = curval;
751
752 /*
753 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
754 * to wake at the next unlock.
755 */
756 newval = curval | FUTEX_WAITERS;
757
758 /*
59fa6245 759 * Should we force take the futex? See below.
1a52084d 760 */
59fa6245
TG
761 if (unlikely(force_take)) {
762 /*
763 * Keep the OWNER_DIED and the WAITERS bit and set the
764 * new TID value.
765 */
c0c9ed15 766 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 767 force_take = 0;
1a52084d
DH
768 lock_taken = 1;
769 }
770
37a9d912 771 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
772 return -EFAULT;
773 if (unlikely(curval != uval))
774 goto retry;
775
776 /*
59fa6245 777 * We took the lock due to forced take over.
1a52084d
DH
778 */
779 if (unlikely(lock_taken))
780 return 1;
781
782 /*
783 * We dont have the lock. Look up the PI state (or create it if
784 * we are the first waiter):
785 */
786 ret = lookup_pi_state(uval, hb, key, ps);
787
788 if (unlikely(ret)) {
789 switch (ret) {
790 case -ESRCH:
791 /*
59fa6245
TG
792 * We failed to find an owner for this
793 * futex. So we have no pi_state to block
794 * on. This can happen in two cases:
795 *
796 * 1) The owner died
797 * 2) A stale FUTEX_WAITERS bit
798 *
799 * Re-read the futex value.
1a52084d
DH
800 */
801 if (get_futex_value_locked(&curval, uaddr))
802 return -EFAULT;
803
804 /*
59fa6245
TG
805 * If the owner died or we have a stale
806 * WAITERS bit the owner TID in the user space
807 * futex is 0.
1a52084d 808 */
59fa6245
TG
809 if (!(curval & FUTEX_TID_MASK)) {
810 force_take = 1;
1a52084d
DH
811 goto retry;
812 }
813 default:
814 break;
815 }
816 }
817
818 return ret;
819}
820
2e12978a
LJ
821/**
822 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
823 * @q: The futex_q to unqueue
824 *
825 * The q->lock_ptr must not be NULL and must be held by the caller.
826 */
827static void __unqueue_futex(struct futex_q *q)
828{
829 struct futex_hash_bucket *hb;
830
29096202
SR
831 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
832 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
833 return;
834
835 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
836 plist_del(&q->list, &hb->chain);
837}
838
1da177e4
LT
839/*
840 * The hash bucket lock must be held when this is called.
841 * Afterwards, the futex_q must not be accessed.
842 */
843static void wake_futex(struct futex_q *q)
844{
f1a11e05
TG
845 struct task_struct *p = q->task;
846
aa10990e
DH
847 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
848 return;
849
1da177e4 850 /*
f1a11e05 851 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
852 * a non-futex wake up happens on another CPU then the task
853 * might exit and p would dereference a non-existing task
f1a11e05
TG
854 * struct. Prevent this by holding a reference on p across the
855 * wake up.
1da177e4 856 */
f1a11e05
TG
857 get_task_struct(p);
858
2e12978a 859 __unqueue_futex(q);
1da177e4 860 /*
f1a11e05
TG
861 * The waiting task can free the futex_q as soon as
862 * q->lock_ptr = NULL is written, without taking any locks. A
863 * memory barrier is required here to prevent the following
864 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 865 */
ccdea2f8 866 smp_wmb();
1da177e4 867 q->lock_ptr = NULL;
f1a11e05
TG
868
869 wake_up_state(p, TASK_NORMAL);
870 put_task_struct(p);
1da177e4
LT
871}
872
c87e2837
IM
873static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
874{
875 struct task_struct *new_owner;
876 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 877 u32 uninitialized_var(curval), newval;
c87e2837
IM
878
879 if (!pi_state)
880 return -EINVAL;
881
51246bfd
TG
882 /*
883 * If current does not own the pi_state then the futex is
884 * inconsistent and user space fiddled with the futex value.
885 */
886 if (pi_state->owner != current)
887 return -EINVAL;
888
d209d74d 889 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
890 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
891
892 /*
f123c98e
SR
893 * It is possible that the next waiter (the one that brought
894 * this owner to the kernel) timed out and is no longer
895 * waiting on the lock.
c87e2837
IM
896 */
897 if (!new_owner)
898 new_owner = this->task;
899
900 /*
901 * We pass it to the next owner. (The WAITERS bit is always
902 * kept enabled while there is PI state around. We must also
903 * preserve the owner died bit.)
904 */
e3f2ddea 905 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
906 int ret = 0;
907
b488893a 908 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 909
37a9d912 910 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 911 ret = -EFAULT;
cde898fa 912 else if (curval != uval)
778e9a9c
AK
913 ret = -EINVAL;
914 if (ret) {
d209d74d 915 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
916 return ret;
917 }
e3f2ddea 918 }
c87e2837 919
1d615482 920 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
921 WARN_ON(list_empty(&pi_state->list));
922 list_del_init(&pi_state->list);
1d615482 923 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 924
1d615482 925 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 926 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
927 list_add(&pi_state->list, &new_owner->pi_state_list);
928 pi_state->owner = new_owner;
1d615482 929 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 930
d209d74d 931 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
932 rt_mutex_unlock(&pi_state->pi_mutex);
933
934 return 0;
935}
936
937static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
938{
7cfdaf38 939 u32 uninitialized_var(oldval);
c87e2837
IM
940
941 /*
942 * There is no waiter, so we unlock the futex. The owner died
943 * bit has not to be preserved here. We are the owner:
944 */
37a9d912
ML
945 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
946 return -EFAULT;
c87e2837
IM
947 if (oldval != uval)
948 return -EAGAIN;
949
950 return 0;
951}
952
8b8f319f
IM
953/*
954 * Express the locking dependencies for lockdep:
955 */
956static inline void
957double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
958{
959 if (hb1 <= hb2) {
960 spin_lock(&hb1->lock);
961 if (hb1 < hb2)
962 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
963 } else { /* hb1 > hb2 */
964 spin_lock(&hb2->lock);
965 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
966 }
967}
968
5eb3dc62
DH
969static inline void
970double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
971{
f061d351 972 spin_unlock(&hb1->lock);
88f502fe
IM
973 if (hb1 != hb2)
974 spin_unlock(&hb2->lock);
5eb3dc62
DH
975}
976
1da177e4 977/*
b2d0994b 978 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 979 */
b41277dc
DH
980static int
981futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 982{
e2970f2f 983 struct futex_hash_bucket *hb;
1da177e4 984 struct futex_q *this, *next;
ec92d082 985 struct plist_head *head;
38d47c1b 986 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
987 int ret;
988
cd689985
TG
989 if (!bitset)
990 return -EINVAL;
991
9ea71503 992 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
993 if (unlikely(ret != 0))
994 goto out;
995
e2970f2f
IM
996 hb = hash_futex(&key);
997 spin_lock(&hb->lock);
998 head = &hb->chain;
1da177e4 999
ec92d082 1000 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 1001 if (match_futex (&this->key, &key)) {
52400ba9 1002 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1003 ret = -EINVAL;
1004 break;
1005 }
cd689985
TG
1006
1007 /* Check if one of the bits is set in both bitsets */
1008 if (!(this->bitset & bitset))
1009 continue;
1010
1da177e4
LT
1011 wake_futex(this);
1012 if (++ret >= nr_wake)
1013 break;
1014 }
1015 }
1016
e2970f2f 1017 spin_unlock(&hb->lock);
ae791a2d 1018 put_futex_key(&key);
42d35d48 1019out:
1da177e4
LT
1020 return ret;
1021}
1022
4732efbe
JJ
1023/*
1024 * Wake up all waiters hashed on the physical page that is mapped
1025 * to this virtual address:
1026 */
e2970f2f 1027static int
b41277dc 1028futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1029 int nr_wake, int nr_wake2, int op)
4732efbe 1030{
38d47c1b 1031 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1032 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1033 struct plist_head *head;
4732efbe 1034 struct futex_q *this, *next;
e4dc5b7a 1035 int ret, op_ret;
4732efbe 1036
e4dc5b7a 1037retry:
9ea71503 1038 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1039 if (unlikely(ret != 0))
1040 goto out;
9ea71503 1041 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1042 if (unlikely(ret != 0))
42d35d48 1043 goto out_put_key1;
4732efbe 1044
e2970f2f
IM
1045 hb1 = hash_futex(&key1);
1046 hb2 = hash_futex(&key2);
4732efbe 1047
e4dc5b7a 1048retry_private:
eaaea803 1049 double_lock_hb(hb1, hb2);
e2970f2f 1050 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1051 if (unlikely(op_ret < 0)) {
4732efbe 1052
5eb3dc62 1053 double_unlock_hb(hb1, hb2);
4732efbe 1054
7ee1dd3f 1055#ifndef CONFIG_MMU
e2970f2f
IM
1056 /*
1057 * we don't get EFAULT from MMU faults if we don't have an MMU,
1058 * but we might get them from range checking
1059 */
7ee1dd3f 1060 ret = op_ret;
42d35d48 1061 goto out_put_keys;
7ee1dd3f
DH
1062#endif
1063
796f8d9b
DG
1064 if (unlikely(op_ret != -EFAULT)) {
1065 ret = op_ret;
42d35d48 1066 goto out_put_keys;
796f8d9b
DG
1067 }
1068
d0725992 1069 ret = fault_in_user_writeable(uaddr2);
4732efbe 1070 if (ret)
de87fcc1 1071 goto out_put_keys;
4732efbe 1072
b41277dc 1073 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1074 goto retry_private;
1075
ae791a2d
TG
1076 put_futex_key(&key2);
1077 put_futex_key(&key1);
e4dc5b7a 1078 goto retry;
4732efbe
JJ
1079 }
1080
e2970f2f 1081 head = &hb1->chain;
4732efbe 1082
ec92d082 1083 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1084 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1085 if (this->pi_state || this->rt_waiter) {
1086 ret = -EINVAL;
1087 goto out_unlock;
1088 }
4732efbe
JJ
1089 wake_futex(this);
1090 if (++ret >= nr_wake)
1091 break;
1092 }
1093 }
1094
1095 if (op_ret > 0) {
e2970f2f 1096 head = &hb2->chain;
4732efbe
JJ
1097
1098 op_ret = 0;
ec92d082 1099 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1100 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1101 if (this->pi_state || this->rt_waiter) {
1102 ret = -EINVAL;
1103 goto out_unlock;
1104 }
4732efbe
JJ
1105 wake_futex(this);
1106 if (++op_ret >= nr_wake2)
1107 break;
1108 }
1109 }
1110 ret += op_ret;
1111 }
1112
aa10990e 1113out_unlock:
5eb3dc62 1114 double_unlock_hb(hb1, hb2);
42d35d48 1115out_put_keys:
ae791a2d 1116 put_futex_key(&key2);
42d35d48 1117out_put_key1:
ae791a2d 1118 put_futex_key(&key1);
42d35d48 1119out:
4732efbe
JJ
1120 return ret;
1121}
1122
9121e478
DH
1123/**
1124 * requeue_futex() - Requeue a futex_q from one hb to another
1125 * @q: the futex_q to requeue
1126 * @hb1: the source hash_bucket
1127 * @hb2: the target hash_bucket
1128 * @key2: the new key for the requeued futex_q
1129 */
1130static inline
1131void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1132 struct futex_hash_bucket *hb2, union futex_key *key2)
1133{
1134
1135 /*
1136 * If key1 and key2 hash to the same bucket, no need to
1137 * requeue.
1138 */
1139 if (likely(&hb1->chain != &hb2->chain)) {
1140 plist_del(&q->list, &hb1->chain);
1141 plist_add(&q->list, &hb2->chain);
1142 q->lock_ptr = &hb2->lock;
9121e478
DH
1143 }
1144 get_futex_key_refs(key2);
1145 q->key = *key2;
1146}
1147
52400ba9
DH
1148/**
1149 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1150 * @q: the futex_q
1151 * @key: the key of the requeue target futex
1152 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1153 *
1154 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1155 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1156 * to the requeue target futex so the waiter can detect the wakeup on the right
1157 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1158 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1159 * to protect access to the pi_state to fixup the owner later. Must be called
1160 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1161 */
1162static inline
beda2c7e
DH
1163void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1164 struct futex_hash_bucket *hb)
52400ba9 1165{
52400ba9
DH
1166 get_futex_key_refs(key);
1167 q->key = *key;
1168
2e12978a 1169 __unqueue_futex(q);
52400ba9
DH
1170
1171 WARN_ON(!q->rt_waiter);
1172 q->rt_waiter = NULL;
1173
beda2c7e 1174 q->lock_ptr = &hb->lock;
beda2c7e 1175
f1a11e05 1176 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1177}
1178
1179/**
1180 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1181 * @pifutex: the user address of the to futex
1182 * @hb1: the from futex hash bucket, must be locked by the caller
1183 * @hb2: the to futex hash bucket, must be locked by the caller
1184 * @key1: the from futex key
1185 * @key2: the to futex key
1186 * @ps: address to store the pi_state pointer
1187 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1188 *
1189 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1190 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1191 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1192 * hb1 and hb2 must be held by the caller.
52400ba9
DH
1193 *
1194 * Returns:
1195 * 0 - failed to acquire the lock atomicly
1196 * 1 - acquired the lock
1197 * <0 - error
1198 */
1199static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1200 struct futex_hash_bucket *hb1,
1201 struct futex_hash_bucket *hb2,
1202 union futex_key *key1, union futex_key *key2,
bab5bc9e 1203 struct futex_pi_state **ps, int set_waiters)
52400ba9 1204{
bab5bc9e 1205 struct futex_q *top_waiter = NULL;
52400ba9
DH
1206 u32 curval;
1207 int ret;
1208
1209 if (get_futex_value_locked(&curval, pifutex))
1210 return -EFAULT;
1211
bab5bc9e
DH
1212 /*
1213 * Find the top_waiter and determine if there are additional waiters.
1214 * If the caller intends to requeue more than 1 waiter to pifutex,
1215 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1216 * as we have means to handle the possible fault. If not, don't set
1217 * the bit unecessarily as it will force the subsequent unlock to enter
1218 * the kernel.
1219 */
52400ba9
DH
1220 top_waiter = futex_top_waiter(hb1, key1);
1221
1222 /* There are no waiters, nothing for us to do. */
1223 if (!top_waiter)
1224 return 0;
1225
84bc4af5
DH
1226 /* Ensure we requeue to the expected futex. */
1227 if (!match_futex(top_waiter->requeue_pi_key, key2))
1228 return -EINVAL;
1229
52400ba9 1230 /*
bab5bc9e
DH
1231 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1232 * the contended case or if set_waiters is 1. The pi_state is returned
1233 * in ps in contended cases.
52400ba9 1234 */
bab5bc9e
DH
1235 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1236 set_waiters);
52400ba9 1237 if (ret == 1)
beda2c7e 1238 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1239
1240 return ret;
1241}
1242
1243/**
1244 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1245 * @uaddr1: source futex user address
b41277dc 1246 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1247 * @uaddr2: target futex user address
1248 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1249 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1250 * @cmpval: @uaddr1 expected value (or %NULL)
1251 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1252 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1253 *
1254 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1255 * uaddr2 atomically on behalf of the top waiter.
1256 *
1257 * Returns:
1258 * >=0 - on success, the number of tasks requeued or woken
1259 * <0 - on error
1da177e4 1260 */
b41277dc
DH
1261static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1262 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1263 u32 *cmpval, int requeue_pi)
1da177e4 1264{
38d47c1b 1265 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1266 int drop_count = 0, task_count = 0, ret;
1267 struct futex_pi_state *pi_state = NULL;
e2970f2f 1268 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1269 struct plist_head *head1;
1da177e4 1270 struct futex_q *this, *next;
52400ba9
DH
1271 u32 curval2;
1272
1273 if (requeue_pi) {
1274 /*
1275 * requeue_pi requires a pi_state, try to allocate it now
1276 * without any locks in case it fails.
1277 */
1278 if (refill_pi_state_cache())
1279 return -ENOMEM;
1280 /*
1281 * requeue_pi must wake as many tasks as it can, up to nr_wake
1282 * + nr_requeue, since it acquires the rt_mutex prior to
1283 * returning to userspace, so as to not leave the rt_mutex with
1284 * waiters and no owner. However, second and third wake-ups
1285 * cannot be predicted as they involve race conditions with the
1286 * first wake and a fault while looking up the pi_state. Both
1287 * pthread_cond_signal() and pthread_cond_broadcast() should
1288 * use nr_wake=1.
1289 */
1290 if (nr_wake != 1)
1291 return -EINVAL;
1292 }
1da177e4 1293
42d35d48 1294retry:
52400ba9
DH
1295 if (pi_state != NULL) {
1296 /*
1297 * We will have to lookup the pi_state again, so free this one
1298 * to keep the accounting correct.
1299 */
1300 free_pi_state(pi_state);
1301 pi_state = NULL;
1302 }
1303
9ea71503 1304 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1305 if (unlikely(ret != 0))
1306 goto out;
9ea71503
SB
1307 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1308 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1309 if (unlikely(ret != 0))
42d35d48 1310 goto out_put_key1;
1da177e4 1311
e2970f2f
IM
1312 hb1 = hash_futex(&key1);
1313 hb2 = hash_futex(&key2);
1da177e4 1314
e4dc5b7a 1315retry_private:
8b8f319f 1316 double_lock_hb(hb1, hb2);
1da177e4 1317
e2970f2f
IM
1318 if (likely(cmpval != NULL)) {
1319 u32 curval;
1da177e4 1320
e2970f2f 1321 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1322
1323 if (unlikely(ret)) {
5eb3dc62 1324 double_unlock_hb(hb1, hb2);
1da177e4 1325
e2970f2f 1326 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1327 if (ret)
1328 goto out_put_keys;
1da177e4 1329
b41277dc 1330 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1331 goto retry_private;
1da177e4 1332
ae791a2d
TG
1333 put_futex_key(&key2);
1334 put_futex_key(&key1);
e4dc5b7a 1335 goto retry;
1da177e4 1336 }
e2970f2f 1337 if (curval != *cmpval) {
1da177e4
LT
1338 ret = -EAGAIN;
1339 goto out_unlock;
1340 }
1341 }
1342
52400ba9 1343 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1344 /*
1345 * Attempt to acquire uaddr2 and wake the top waiter. If we
1346 * intend to requeue waiters, force setting the FUTEX_WAITERS
1347 * bit. We force this here where we are able to easily handle
1348 * faults rather in the requeue loop below.
1349 */
52400ba9 1350 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1351 &key2, &pi_state, nr_requeue);
52400ba9
DH
1352
1353 /*
1354 * At this point the top_waiter has either taken uaddr2 or is
1355 * waiting on it. If the former, then the pi_state will not
1356 * exist yet, look it up one more time to ensure we have a
1357 * reference to it.
1358 */
1359 if (ret == 1) {
1360 WARN_ON(pi_state);
89061d3d 1361 drop_count++;
52400ba9
DH
1362 task_count++;
1363 ret = get_futex_value_locked(&curval2, uaddr2);
1364 if (!ret)
1365 ret = lookup_pi_state(curval2, hb2, &key2,
1366 &pi_state);
1367 }
1368
1369 switch (ret) {
1370 case 0:
1371 break;
1372 case -EFAULT:
1373 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1374 put_futex_key(&key2);
1375 put_futex_key(&key1);
d0725992 1376 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1377 if (!ret)
1378 goto retry;
1379 goto out;
1380 case -EAGAIN:
1381 /* The owner was exiting, try again. */
1382 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1383 put_futex_key(&key2);
1384 put_futex_key(&key1);
52400ba9
DH
1385 cond_resched();
1386 goto retry;
1387 default:
1388 goto out_unlock;
1389 }
1390 }
1391
e2970f2f 1392 head1 = &hb1->chain;
ec92d082 1393 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1394 if (task_count - nr_wake >= nr_requeue)
1395 break;
1396
1397 if (!match_futex(&this->key, &key1))
1da177e4 1398 continue;
52400ba9 1399
392741e0
DH
1400 /*
1401 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1402 * be paired with each other and no other futex ops.
aa10990e
DH
1403 *
1404 * We should never be requeueing a futex_q with a pi_state,
1405 * which is awaiting a futex_unlock_pi().
392741e0
DH
1406 */
1407 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1408 (!requeue_pi && this->rt_waiter) ||
1409 this->pi_state) {
392741e0
DH
1410 ret = -EINVAL;
1411 break;
1412 }
52400ba9
DH
1413
1414 /*
1415 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1416 * lock, we already woke the top_waiter. If not, it will be
1417 * woken by futex_unlock_pi().
1418 */
1419 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1420 wake_futex(this);
52400ba9
DH
1421 continue;
1422 }
1da177e4 1423
84bc4af5
DH
1424 /* Ensure we requeue to the expected futex for requeue_pi. */
1425 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1426 ret = -EINVAL;
1427 break;
1428 }
1429
52400ba9
DH
1430 /*
1431 * Requeue nr_requeue waiters and possibly one more in the case
1432 * of requeue_pi if we couldn't acquire the lock atomically.
1433 */
1434 if (requeue_pi) {
1435 /* Prepare the waiter to take the rt_mutex. */
1436 atomic_inc(&pi_state->refcount);
1437 this->pi_state = pi_state;
1438 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1439 this->rt_waiter,
1440 this->task, 1);
1441 if (ret == 1) {
1442 /* We got the lock. */
beda2c7e 1443 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1444 drop_count++;
52400ba9
DH
1445 continue;
1446 } else if (ret) {
1447 /* -EDEADLK */
1448 this->pi_state = NULL;
1449 free_pi_state(pi_state);
1450 goto out_unlock;
1451 }
1da177e4 1452 }
52400ba9
DH
1453 requeue_futex(this, hb1, hb2, &key2);
1454 drop_count++;
1da177e4
LT
1455 }
1456
1457out_unlock:
5eb3dc62 1458 double_unlock_hb(hb1, hb2);
1da177e4 1459
cd84a42f
DH
1460 /*
1461 * drop_futex_key_refs() must be called outside the spinlocks. During
1462 * the requeue we moved futex_q's from the hash bucket at key1 to the
1463 * one at key2 and updated their key pointer. We no longer need to
1464 * hold the references to key1.
1465 */
1da177e4 1466 while (--drop_count >= 0)
9adef58b 1467 drop_futex_key_refs(&key1);
1da177e4 1468
42d35d48 1469out_put_keys:
ae791a2d 1470 put_futex_key(&key2);
42d35d48 1471out_put_key1:
ae791a2d 1472 put_futex_key(&key1);
42d35d48 1473out:
52400ba9
DH
1474 if (pi_state != NULL)
1475 free_pi_state(pi_state);
1476 return ret ? ret : task_count;
1da177e4
LT
1477}
1478
1479/* The key must be already stored in q->key. */
82af7aca 1480static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1481 __acquires(&hb->lock)
1da177e4 1482{
e2970f2f 1483 struct futex_hash_bucket *hb;
1da177e4 1484
e2970f2f
IM
1485 hb = hash_futex(&q->key);
1486 q->lock_ptr = &hb->lock;
1da177e4 1487
e2970f2f
IM
1488 spin_lock(&hb->lock);
1489 return hb;
1da177e4
LT
1490}
1491
d40d65c8
DH
1492static inline void
1493queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1494 __releases(&hb->lock)
d40d65c8
DH
1495{
1496 spin_unlock(&hb->lock);
d40d65c8
DH
1497}
1498
1499/**
1500 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1501 * @q: The futex_q to enqueue
1502 * @hb: The destination hash bucket
1503 *
1504 * The hb->lock must be held by the caller, and is released here. A call to
1505 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1506 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1507 * or nothing if the unqueue is done as part of the wake process and the unqueue
1508 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1509 * an example).
1510 */
82af7aca 1511static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1512 __releases(&hb->lock)
1da177e4 1513{
ec92d082
PP
1514 int prio;
1515
1516 /*
1517 * The priority used to register this element is
1518 * - either the real thread-priority for the real-time threads
1519 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1520 * - or MAX_RT_PRIO for non-RT threads.
1521 * Thus, all RT-threads are woken first in priority order, and
1522 * the others are woken last, in FIFO order.
1523 */
1524 prio = min(current->normal_prio, MAX_RT_PRIO);
1525
1526 plist_node_init(&q->list, prio);
ec92d082 1527 plist_add(&q->list, &hb->chain);
c87e2837 1528 q->task = current;
e2970f2f 1529 spin_unlock(&hb->lock);
1da177e4
LT
1530}
1531
d40d65c8
DH
1532/**
1533 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1534 * @q: The futex_q to unqueue
1535 *
1536 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1537 * be paired with exactly one earlier call to queue_me().
1538 *
1539 * Returns:
1540 * 1 - if the futex_q was still queued (and we removed unqueued it)
1541 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1542 */
1da177e4
LT
1543static int unqueue_me(struct futex_q *q)
1544{
1da177e4 1545 spinlock_t *lock_ptr;
e2970f2f 1546 int ret = 0;
1da177e4
LT
1547
1548 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1549retry:
1da177e4 1550 lock_ptr = q->lock_ptr;
e91467ec 1551 barrier();
c80544dc 1552 if (lock_ptr != NULL) {
1da177e4
LT
1553 spin_lock(lock_ptr);
1554 /*
1555 * q->lock_ptr can change between reading it and
1556 * spin_lock(), causing us to take the wrong lock. This
1557 * corrects the race condition.
1558 *
1559 * Reasoning goes like this: if we have the wrong lock,
1560 * q->lock_ptr must have changed (maybe several times)
1561 * between reading it and the spin_lock(). It can
1562 * change again after the spin_lock() but only if it was
1563 * already changed before the spin_lock(). It cannot,
1564 * however, change back to the original value. Therefore
1565 * we can detect whether we acquired the correct lock.
1566 */
1567 if (unlikely(lock_ptr != q->lock_ptr)) {
1568 spin_unlock(lock_ptr);
1569 goto retry;
1570 }
2e12978a 1571 __unqueue_futex(q);
c87e2837
IM
1572
1573 BUG_ON(q->pi_state);
1574
1da177e4
LT
1575 spin_unlock(lock_ptr);
1576 ret = 1;
1577 }
1578
9adef58b 1579 drop_futex_key_refs(&q->key);
1da177e4
LT
1580 return ret;
1581}
1582
c87e2837
IM
1583/*
1584 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1585 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1586 * and dropped here.
c87e2837 1587 */
d0aa7a70 1588static void unqueue_me_pi(struct futex_q *q)
15e408cd 1589 __releases(q->lock_ptr)
c87e2837 1590{
2e12978a 1591 __unqueue_futex(q);
c87e2837
IM
1592
1593 BUG_ON(!q->pi_state);
1594 free_pi_state(q->pi_state);
1595 q->pi_state = NULL;
1596
d0aa7a70 1597 spin_unlock(q->lock_ptr);
c87e2837
IM
1598}
1599
d0aa7a70 1600/*
cdf71a10 1601 * Fixup the pi_state owner with the new owner.
d0aa7a70 1602 *
778e9a9c
AK
1603 * Must be called with hash bucket lock held and mm->sem held for non
1604 * private futexes.
d0aa7a70 1605 */
778e9a9c 1606static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1607 struct task_struct *newowner)
d0aa7a70 1608{
cdf71a10 1609 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1610 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1611 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1612 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1613 int ret;
d0aa7a70
PP
1614
1615 /* Owner died? */
1b7558e4
TG
1616 if (!pi_state->owner)
1617 newtid |= FUTEX_OWNER_DIED;
1618
1619 /*
1620 * We are here either because we stole the rtmutex from the
8161239a
LJ
1621 * previous highest priority waiter or we are the highest priority
1622 * waiter but failed to get the rtmutex the first time.
1623 * We have to replace the newowner TID in the user space variable.
1624 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1625 *
b2d0994b
DH
1626 * Note: We write the user space value _before_ changing the pi_state
1627 * because we can fault here. Imagine swapped out pages or a fork
1628 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1629 *
1630 * Modifying pi_state _before_ the user space value would
1631 * leave the pi_state in an inconsistent state when we fault
1632 * here, because we need to drop the hash bucket lock to
1633 * handle the fault. This might be observed in the PID check
1634 * in lookup_pi_state.
1635 */
1636retry:
1637 if (get_futex_value_locked(&uval, uaddr))
1638 goto handle_fault;
1639
1640 while (1) {
1641 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1642
37a9d912 1643 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1644 goto handle_fault;
1645 if (curval == uval)
1646 break;
1647 uval = curval;
1648 }
1649
1650 /*
1651 * We fixed up user space. Now we need to fix the pi_state
1652 * itself.
1653 */
d0aa7a70 1654 if (pi_state->owner != NULL) {
1d615482 1655 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1656 WARN_ON(list_empty(&pi_state->list));
1657 list_del_init(&pi_state->list);
1d615482 1658 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1659 }
d0aa7a70 1660
cdf71a10 1661 pi_state->owner = newowner;
d0aa7a70 1662
1d615482 1663 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1664 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1665 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1666 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1667 return 0;
d0aa7a70 1668
d0aa7a70 1669 /*
1b7558e4 1670 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1671 * lock here. That gives the other task (either the highest priority
1672 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1673 * chance to try the fixup of the pi_state. So once we are
1674 * back from handling the fault we need to check the pi_state
1675 * after reacquiring the hash bucket lock and before trying to
1676 * do another fixup. When the fixup has been done already we
1677 * simply return.
d0aa7a70 1678 */
1b7558e4
TG
1679handle_fault:
1680 spin_unlock(q->lock_ptr);
778e9a9c 1681
d0725992 1682 ret = fault_in_user_writeable(uaddr);
778e9a9c 1683
1b7558e4 1684 spin_lock(q->lock_ptr);
778e9a9c 1685
1b7558e4
TG
1686 /*
1687 * Check if someone else fixed it for us:
1688 */
1689 if (pi_state->owner != oldowner)
1690 return 0;
1691
1692 if (ret)
1693 return ret;
1694
1695 goto retry;
d0aa7a70
PP
1696}
1697
72c1bbf3 1698static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1699
dd973998
DH
1700/**
1701 * fixup_owner() - Post lock pi_state and corner case management
1702 * @uaddr: user address of the futex
dd973998
DH
1703 * @q: futex_q (contains pi_state and access to the rt_mutex)
1704 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1705 *
1706 * After attempting to lock an rt_mutex, this function is called to cleanup
1707 * the pi_state owner as well as handle race conditions that may allow us to
1708 * acquire the lock. Must be called with the hb lock held.
1709 *
1710 * Returns:
1711 * 1 - success, lock taken
1712 * 0 - success, lock not taken
1713 * <0 - on error (-EFAULT)
1714 */
ae791a2d 1715static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1716{
1717 struct task_struct *owner;
1718 int ret = 0;
1719
1720 if (locked) {
1721 /*
1722 * Got the lock. We might not be the anticipated owner if we
1723 * did a lock-steal - fix up the PI-state in that case:
1724 */
1725 if (q->pi_state->owner != current)
ae791a2d 1726 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1727 goto out;
1728 }
1729
1730 /*
1731 * Catch the rare case, where the lock was released when we were on the
1732 * way back before we locked the hash bucket.
1733 */
1734 if (q->pi_state->owner == current) {
1735 /*
1736 * Try to get the rt_mutex now. This might fail as some other
1737 * task acquired the rt_mutex after we removed ourself from the
1738 * rt_mutex waiters list.
1739 */
1740 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1741 locked = 1;
1742 goto out;
1743 }
1744
1745 /*
1746 * pi_state is incorrect, some other task did a lock steal and
1747 * we returned due to timeout or signal without taking the
8161239a 1748 * rt_mutex. Too late.
dd973998 1749 */
8161239a 1750 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1751 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1752 if (!owner)
1753 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1754 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1755 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1756 goto out;
1757 }
1758
1759 /*
1760 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1761 * the owner of the rt_mutex.
dd973998
DH
1762 */
1763 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1764 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1765 "pi-state %p\n", ret,
1766 q->pi_state->pi_mutex.owner,
1767 q->pi_state->owner);
1768
1769out:
1770 return ret ? ret : locked;
1771}
1772
ca5f9524
DH
1773/**
1774 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1775 * @hb: the futex hash bucket, must be locked by the caller
1776 * @q: the futex_q to queue up on
1777 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1778 */
1779static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1780 struct hrtimer_sleeper *timeout)
ca5f9524 1781{
9beba3c5
DH
1782 /*
1783 * The task state is guaranteed to be set before another task can
1784 * wake it. set_current_state() is implemented using set_mb() and
1785 * queue_me() calls spin_unlock() upon completion, both serializing
1786 * access to the hash list and forcing another memory barrier.
1787 */
f1a11e05 1788 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1789 queue_me(q, hb);
ca5f9524
DH
1790
1791 /* Arm the timer */
1792 if (timeout) {
1793 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1794 if (!hrtimer_active(&timeout->timer))
1795 timeout->task = NULL;
1796 }
1797
1798 /*
0729e196
DH
1799 * If we have been removed from the hash list, then another task
1800 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1801 */
1802 if (likely(!plist_node_empty(&q->list))) {
1803 /*
1804 * If the timer has already expired, current will already be
1805 * flagged for rescheduling. Only call schedule if there
1806 * is no timeout, or if it has yet to expire.
1807 */
1808 if (!timeout || timeout->task)
1809 schedule();
1810 }
1811 __set_current_state(TASK_RUNNING);
1812}
1813
f801073f
DH
1814/**
1815 * futex_wait_setup() - Prepare to wait on a futex
1816 * @uaddr: the futex userspace address
1817 * @val: the expected value
b41277dc 1818 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1819 * @q: the associated futex_q
1820 * @hb: storage for hash_bucket pointer to be returned to caller
1821 *
1822 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1823 * compare it with the expected value. Handle atomic faults internally.
1824 * Return with the hb lock held and a q.key reference on success, and unlocked
1825 * with no q.key reference on failure.
1826 *
1827 * Returns:
1828 * 0 - uaddr contains val and hb has been locked
ca4a04cf 1829 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1830 */
b41277dc 1831static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1832 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1833{
e2970f2f
IM
1834 u32 uval;
1835 int ret;
1da177e4 1836
1da177e4 1837 /*
b2d0994b 1838 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1839 * Order is important:
1840 *
1841 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1842 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1843 *
1844 * The basic logical guarantee of a futex is that it blocks ONLY
1845 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1846 * any cond. If we locked the hash-bucket after testing *uaddr, that
1847 * would open a race condition where we could block indefinitely with
1da177e4
LT
1848 * cond(var) false, which would violate the guarantee.
1849 *
8fe8f545
ML
1850 * On the other hand, we insert q and release the hash-bucket only
1851 * after testing *uaddr. This guarantees that futex_wait() will NOT
1852 * absorb a wakeup if *uaddr does not match the desired values
1853 * while the syscall executes.
1da177e4 1854 */
f801073f 1855retry:
9ea71503 1856 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 1857 if (unlikely(ret != 0))
a5a2a0c7 1858 return ret;
f801073f
DH
1859
1860retry_private:
1861 *hb = queue_lock(q);
1862
e2970f2f 1863 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1864
f801073f
DH
1865 if (ret) {
1866 queue_unlock(q, *hb);
1da177e4 1867
e2970f2f 1868 ret = get_user(uval, uaddr);
e4dc5b7a 1869 if (ret)
f801073f 1870 goto out;
1da177e4 1871
b41277dc 1872 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1873 goto retry_private;
1874
ae791a2d 1875 put_futex_key(&q->key);
e4dc5b7a 1876 goto retry;
1da177e4 1877 }
ca5f9524 1878
f801073f
DH
1879 if (uval != val) {
1880 queue_unlock(q, *hb);
1881 ret = -EWOULDBLOCK;
2fff78c7 1882 }
1da177e4 1883
f801073f
DH
1884out:
1885 if (ret)
ae791a2d 1886 put_futex_key(&q->key);
f801073f
DH
1887 return ret;
1888}
1889
b41277dc
DH
1890static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1891 ktime_t *abs_time, u32 bitset)
f801073f
DH
1892{
1893 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1894 struct restart_block *restart;
1895 struct futex_hash_bucket *hb;
5bdb05f9 1896 struct futex_q q = futex_q_init;
f801073f
DH
1897 int ret;
1898
1899 if (!bitset)
1900 return -EINVAL;
f801073f
DH
1901 q.bitset = bitset;
1902
1903 if (abs_time) {
1904 to = &timeout;
1905
b41277dc
DH
1906 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1907 CLOCK_REALTIME : CLOCK_MONOTONIC,
1908 HRTIMER_MODE_ABS);
f801073f
DH
1909 hrtimer_init_sleeper(to, current);
1910 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1911 current->timer_slack_ns);
1912 }
1913
d58e6576 1914retry:
7ada876a
DH
1915 /*
1916 * Prepare to wait on uaddr. On success, holds hb lock and increments
1917 * q.key refs.
1918 */
b41277dc 1919 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
1920 if (ret)
1921 goto out;
1922
ca5f9524 1923 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1924 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1925
1926 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1927 ret = 0;
7ada876a 1928 /* unqueue_me() drops q.key ref */
1da177e4 1929 if (!unqueue_me(&q))
7ada876a 1930 goto out;
2fff78c7 1931 ret = -ETIMEDOUT;
ca5f9524 1932 if (to && !to->task)
7ada876a 1933 goto out;
72c1bbf3 1934
e2970f2f 1935 /*
d58e6576
TG
1936 * We expect signal_pending(current), but we might be the
1937 * victim of a spurious wakeup as well.
e2970f2f 1938 */
7ada876a 1939 if (!signal_pending(current))
d58e6576 1940 goto retry;
d58e6576 1941
2fff78c7 1942 ret = -ERESTARTSYS;
c19384b5 1943 if (!abs_time)
7ada876a 1944 goto out;
1da177e4 1945
2fff78c7
PZ
1946 restart = &current_thread_info()->restart_block;
1947 restart->fn = futex_wait_restart;
a3c74c52 1948 restart->futex.uaddr = uaddr;
2fff78c7
PZ
1949 restart->futex.val = val;
1950 restart->futex.time = abs_time->tv64;
1951 restart->futex.bitset = bitset;
0cd9c649 1952 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 1953
2fff78c7
PZ
1954 ret = -ERESTART_RESTARTBLOCK;
1955
42d35d48 1956out:
ca5f9524
DH
1957 if (to) {
1958 hrtimer_cancel(&to->timer);
1959 destroy_hrtimer_on_stack(&to->timer);
1960 }
c87e2837
IM
1961 return ret;
1962}
1963
72c1bbf3
NP
1964
1965static long futex_wait_restart(struct restart_block *restart)
1966{
a3c74c52 1967 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 1968 ktime_t t, *tp = NULL;
72c1bbf3 1969
a72188d8
DH
1970 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1971 t.tv64 = restart->futex.time;
1972 tp = &t;
1973 }
72c1bbf3 1974 restart->fn = do_no_restart_syscall;
b41277dc
DH
1975
1976 return (long)futex_wait(uaddr, restart->futex.flags,
1977 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
1978}
1979
1980
c87e2837
IM
1981/*
1982 * Userspace tried a 0 -> TID atomic transition of the futex value
1983 * and failed. The kernel side here does the whole locking operation:
1984 * if there are waiters then it will block, it does PI, etc. (Due to
1985 * races the kernel might see a 0 value of the futex too.)
1986 */
b41277dc
DH
1987static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1988 ktime_t *time, int trylock)
c87e2837 1989{
c5780e97 1990 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1991 struct futex_hash_bucket *hb;
5bdb05f9 1992 struct futex_q q = futex_q_init;
dd973998 1993 int res, ret;
c87e2837
IM
1994
1995 if (refill_pi_state_cache())
1996 return -ENOMEM;
1997
c19384b5 1998 if (time) {
c5780e97 1999 to = &timeout;
237fc6e7
TG
2000 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2001 HRTIMER_MODE_ABS);
c5780e97 2002 hrtimer_init_sleeper(to, current);
cc584b21 2003 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2004 }
2005
42d35d48 2006retry:
9ea71503 2007 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2008 if (unlikely(ret != 0))
42d35d48 2009 goto out;
c87e2837 2010
e4dc5b7a 2011retry_private:
82af7aca 2012 hb = queue_lock(&q);
c87e2837 2013
bab5bc9e 2014 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2015 if (unlikely(ret)) {
778e9a9c 2016 switch (ret) {
1a52084d
DH
2017 case 1:
2018 /* We got the lock. */
2019 ret = 0;
2020 goto out_unlock_put_key;
2021 case -EFAULT:
2022 goto uaddr_faulted;
778e9a9c
AK
2023 case -EAGAIN:
2024 /*
2025 * Task is exiting and we just wait for the
2026 * exit to complete.
2027 */
2028 queue_unlock(&q, hb);
ae791a2d 2029 put_futex_key(&q.key);
778e9a9c
AK
2030 cond_resched();
2031 goto retry;
778e9a9c 2032 default:
42d35d48 2033 goto out_unlock_put_key;
c87e2837 2034 }
c87e2837
IM
2035 }
2036
2037 /*
2038 * Only actually queue now that the atomic ops are done:
2039 */
82af7aca 2040 queue_me(&q, hb);
c87e2837 2041
c87e2837
IM
2042 WARN_ON(!q.pi_state);
2043 /*
2044 * Block on the PI mutex:
2045 */
2046 if (!trylock)
2047 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2048 else {
2049 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2050 /* Fixup the trylock return value: */
2051 ret = ret ? 0 : -EWOULDBLOCK;
2052 }
2053
a99e4e41 2054 spin_lock(q.lock_ptr);
dd973998
DH
2055 /*
2056 * Fixup the pi_state owner and possibly acquire the lock if we
2057 * haven't already.
2058 */
ae791a2d 2059 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2060 /*
2061 * If fixup_owner() returned an error, proprogate that. If it acquired
2062 * the lock, clear our -ETIMEDOUT or -EINTR.
2063 */
2064 if (res)
2065 ret = (res < 0) ? res : 0;
c87e2837 2066
e8f6386c 2067 /*
dd973998
DH
2068 * If fixup_owner() faulted and was unable to handle the fault, unlock
2069 * it and return the fault to userspace.
e8f6386c
DH
2070 */
2071 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2072 rt_mutex_unlock(&q.pi_state->pi_mutex);
2073
778e9a9c
AK
2074 /* Unqueue and drop the lock */
2075 unqueue_me_pi(&q);
c87e2837 2076
5ecb01cf 2077 goto out_put_key;
c87e2837 2078
42d35d48 2079out_unlock_put_key:
c87e2837
IM
2080 queue_unlock(&q, hb);
2081
42d35d48 2082out_put_key:
ae791a2d 2083 put_futex_key(&q.key);
42d35d48 2084out:
237fc6e7
TG
2085 if (to)
2086 destroy_hrtimer_on_stack(&to->timer);
dd973998 2087 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2088
42d35d48 2089uaddr_faulted:
778e9a9c
AK
2090 queue_unlock(&q, hb);
2091
d0725992 2092 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2093 if (ret)
2094 goto out_put_key;
c87e2837 2095
b41277dc 2096 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2097 goto retry_private;
2098
ae791a2d 2099 put_futex_key(&q.key);
e4dc5b7a 2100 goto retry;
c87e2837
IM
2101}
2102
c87e2837
IM
2103/*
2104 * Userspace attempted a TID -> 0 atomic transition, and failed.
2105 * This is the in-kernel slowpath: we look up the PI state (if any),
2106 * and do the rt-mutex unlock.
2107 */
b41277dc 2108static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2109{
2110 struct futex_hash_bucket *hb;
2111 struct futex_q *this, *next;
ec92d082 2112 struct plist_head *head;
38d47c1b 2113 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2114 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2115 int ret;
c87e2837
IM
2116
2117retry:
2118 if (get_user(uval, uaddr))
2119 return -EFAULT;
2120 /*
2121 * We release only a lock we actually own:
2122 */
c0c9ed15 2123 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2124 return -EPERM;
c87e2837 2125
9ea71503 2126 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2127 if (unlikely(ret != 0))
2128 goto out;
2129
2130 hb = hash_futex(&key);
2131 spin_lock(&hb->lock);
2132
c87e2837
IM
2133 /*
2134 * To avoid races, try to do the TID -> 0 atomic transition
2135 * again. If it succeeds then we can return without waking
2136 * anyone else up:
2137 */
37a9d912
ML
2138 if (!(uval & FUTEX_OWNER_DIED) &&
2139 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2140 goto pi_faulted;
2141 /*
2142 * Rare case: we managed to release the lock atomically,
2143 * no need to wake anyone else up:
2144 */
c0c9ed15 2145 if (unlikely(uval == vpid))
c87e2837
IM
2146 goto out_unlock;
2147
2148 /*
2149 * Ok, other tasks may need to be woken up - check waiters
2150 * and do the wakeup if necessary:
2151 */
2152 head = &hb->chain;
2153
ec92d082 2154 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2155 if (!match_futex (&this->key, &key))
2156 continue;
2157 ret = wake_futex_pi(uaddr, uval, this);
2158 /*
2159 * The atomic access to the futex value
2160 * generated a pagefault, so retry the
2161 * user-access and the wakeup:
2162 */
2163 if (ret == -EFAULT)
2164 goto pi_faulted;
2165 goto out_unlock;
2166 }
2167 /*
2168 * No waiters - kernel unlocks the futex:
2169 */
e3f2ddea
IM
2170 if (!(uval & FUTEX_OWNER_DIED)) {
2171 ret = unlock_futex_pi(uaddr, uval);
2172 if (ret == -EFAULT)
2173 goto pi_faulted;
2174 }
c87e2837
IM
2175
2176out_unlock:
2177 spin_unlock(&hb->lock);
ae791a2d 2178 put_futex_key(&key);
c87e2837 2179
42d35d48 2180out:
c87e2837
IM
2181 return ret;
2182
2183pi_faulted:
778e9a9c 2184 spin_unlock(&hb->lock);
ae791a2d 2185 put_futex_key(&key);
c87e2837 2186
d0725992 2187 ret = fault_in_user_writeable(uaddr);
b5686363 2188 if (!ret)
c87e2837
IM
2189 goto retry;
2190
1da177e4
LT
2191 return ret;
2192}
2193
52400ba9
DH
2194/**
2195 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2196 * @hb: the hash_bucket futex_q was original enqueued on
2197 * @q: the futex_q woken while waiting to be requeued
2198 * @key2: the futex_key of the requeue target futex
2199 * @timeout: the timeout associated with the wait (NULL if none)
2200 *
2201 * Detect if the task was woken on the initial futex as opposed to the requeue
2202 * target futex. If so, determine if it was a timeout or a signal that caused
2203 * the wakeup and return the appropriate error code to the caller. Must be
2204 * called with the hb lock held.
2205 *
2206 * Returns
2207 * 0 - no early wakeup detected
1c840c14 2208 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2209 */
2210static inline
2211int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2212 struct futex_q *q, union futex_key *key2,
2213 struct hrtimer_sleeper *timeout)
2214{
2215 int ret = 0;
2216
2217 /*
2218 * With the hb lock held, we avoid races while we process the wakeup.
2219 * We only need to hold hb (and not hb2) to ensure atomicity as the
2220 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2221 * It can't be requeued from uaddr2 to something else since we don't
2222 * support a PI aware source futex for requeue.
2223 */
2224 if (!match_futex(&q->key, key2)) {
2225 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2226 /*
2227 * We were woken prior to requeue by a timeout or a signal.
2228 * Unqueue the futex_q and determine which it was.
2229 */
2e12978a 2230 plist_del(&q->list, &hb->chain);
52400ba9 2231
d58e6576 2232 /* Handle spurious wakeups gracefully */
11df6ddd 2233 ret = -EWOULDBLOCK;
52400ba9
DH
2234 if (timeout && !timeout->task)
2235 ret = -ETIMEDOUT;
d58e6576 2236 else if (signal_pending(current))
1c840c14 2237 ret = -ERESTARTNOINTR;
52400ba9
DH
2238 }
2239 return ret;
2240}
2241
2242/**
2243 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2244 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2245 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2246 * the same type, no requeueing from private to shared, etc.
2247 * @val: the expected value of uaddr
2248 * @abs_time: absolute timeout
56ec1607 2249 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2250 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2251 * @uaddr2: the pi futex we will take prior to returning to user-space
2252 *
2253 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2254 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2255 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2256 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2257 * without one, the pi logic would not know which task to boost/deboost, if
2258 * there was a need to.
52400ba9
DH
2259 *
2260 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2261 * via the following:
2262 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2263 * 2) wakeup on uaddr2 after a requeue
2264 * 3) signal
2265 * 4) timeout
52400ba9 2266 *
cc6db4e6 2267 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2268 *
2269 * If 2, we may then block on trying to take the rt_mutex and return via:
2270 * 5) successful lock
2271 * 6) signal
2272 * 7) timeout
2273 * 8) other lock acquisition failure
2274 *
cc6db4e6 2275 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2276 *
2277 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2278 *
2279 * Returns:
2280 * 0 - On success
2281 * <0 - On error
2282 */
b41277dc 2283static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2284 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2285 u32 __user *uaddr2)
52400ba9
DH
2286{
2287 struct hrtimer_sleeper timeout, *to = NULL;
2288 struct rt_mutex_waiter rt_waiter;
2289 struct rt_mutex *pi_mutex = NULL;
52400ba9 2290 struct futex_hash_bucket *hb;
5bdb05f9
DH
2291 union futex_key key2 = FUTEX_KEY_INIT;
2292 struct futex_q q = futex_q_init;
52400ba9 2293 int res, ret;
52400ba9 2294
6f7b0a2a
DH
2295 if (uaddr == uaddr2)
2296 return -EINVAL;
2297
52400ba9
DH
2298 if (!bitset)
2299 return -EINVAL;
2300
2301 if (abs_time) {
2302 to = &timeout;
b41277dc
DH
2303 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2304 CLOCK_REALTIME : CLOCK_MONOTONIC,
2305 HRTIMER_MODE_ABS);
52400ba9
DH
2306 hrtimer_init_sleeper(to, current);
2307 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2308 current->timer_slack_ns);
2309 }
2310
2311 /*
2312 * The waiter is allocated on our stack, manipulated by the requeue
2313 * code while we sleep on uaddr.
2314 */
2315 debug_rt_mutex_init_waiter(&rt_waiter);
2316 rt_waiter.task = NULL;
2317
9ea71503 2318 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2319 if (unlikely(ret != 0))
2320 goto out;
2321
84bc4af5
DH
2322 q.bitset = bitset;
2323 q.rt_waiter = &rt_waiter;
2324 q.requeue_pi_key = &key2;
2325
7ada876a
DH
2326 /*
2327 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2328 * count.
2329 */
b41277dc 2330 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2331 if (ret)
2332 goto out_key2;
52400ba9
DH
2333
2334 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2335 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2336
2337 spin_lock(&hb->lock);
2338 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2339 spin_unlock(&hb->lock);
2340 if (ret)
2341 goto out_put_keys;
2342
2343 /*
2344 * In order for us to be here, we know our q.key == key2, and since
2345 * we took the hb->lock above, we also know that futex_requeue() has
2346 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2347 * race with the atomic proxy lock acquisition by the requeue code. The
2348 * futex_requeue dropped our key1 reference and incremented our key2
2349 * reference count.
52400ba9
DH
2350 */
2351
2352 /* Check if the requeue code acquired the second futex for us. */
2353 if (!q.rt_waiter) {
2354 /*
2355 * Got the lock. We might not be the anticipated owner if we
2356 * did a lock-steal - fix up the PI-state in that case.
2357 */
2358 if (q.pi_state && (q.pi_state->owner != current)) {
2359 spin_lock(q.lock_ptr);
ae791a2d 2360 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2361 spin_unlock(q.lock_ptr);
2362 }
2363 } else {
2364 /*
2365 * We have been woken up by futex_unlock_pi(), a timeout, or a
2366 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2367 * the pi_state.
2368 */
f27071cb 2369 WARN_ON(!q.pi_state);
52400ba9
DH
2370 pi_mutex = &q.pi_state->pi_mutex;
2371 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2372 debug_rt_mutex_free_waiter(&rt_waiter);
2373
2374 spin_lock(q.lock_ptr);
2375 /*
2376 * Fixup the pi_state owner and possibly acquire the lock if we
2377 * haven't already.
2378 */
ae791a2d 2379 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2380 /*
2381 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2382 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2383 */
2384 if (res)
2385 ret = (res < 0) ? res : 0;
2386
2387 /* Unqueue and drop the lock. */
2388 unqueue_me_pi(&q);
2389 }
2390
2391 /*
2392 * If fixup_pi_state_owner() faulted and was unable to handle the
2393 * fault, unlock the rt_mutex and return the fault to userspace.
2394 */
2395 if (ret == -EFAULT) {
b6070a8d 2396 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2397 rt_mutex_unlock(pi_mutex);
2398 } else if (ret == -EINTR) {
52400ba9 2399 /*
cc6db4e6
DH
2400 * We've already been requeued, but cannot restart by calling
2401 * futex_lock_pi() directly. We could restart this syscall, but
2402 * it would detect that the user space "val" changed and return
2403 * -EWOULDBLOCK. Save the overhead of the restart and return
2404 * -EWOULDBLOCK directly.
52400ba9 2405 */
2070887f 2406 ret = -EWOULDBLOCK;
52400ba9
DH
2407 }
2408
2409out_put_keys:
ae791a2d 2410 put_futex_key(&q.key);
c8b15a70 2411out_key2:
ae791a2d 2412 put_futex_key(&key2);
52400ba9
DH
2413
2414out:
2415 if (to) {
2416 hrtimer_cancel(&to->timer);
2417 destroy_hrtimer_on_stack(&to->timer);
2418 }
2419 return ret;
2420}
2421
0771dfef
IM
2422/*
2423 * Support for robust futexes: the kernel cleans up held futexes at
2424 * thread exit time.
2425 *
2426 * Implementation: user-space maintains a per-thread list of locks it
2427 * is holding. Upon do_exit(), the kernel carefully walks this list,
2428 * and marks all locks that are owned by this thread with the
c87e2837 2429 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2430 * always manipulated with the lock held, so the list is private and
2431 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2432 * field, to allow the kernel to clean up if the thread dies after
2433 * acquiring the lock, but just before it could have added itself to
2434 * the list. There can only be one such pending lock.
2435 */
2436
2437/**
d96ee56c
DH
2438 * sys_set_robust_list() - Set the robust-futex list head of a task
2439 * @head: pointer to the list-head
2440 * @len: length of the list-head, as userspace expects
0771dfef 2441 */
836f92ad
HC
2442SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2443 size_t, len)
0771dfef 2444{
a0c1e907
TG
2445 if (!futex_cmpxchg_enabled)
2446 return -ENOSYS;
0771dfef
IM
2447 /*
2448 * The kernel knows only one size for now:
2449 */
2450 if (unlikely(len != sizeof(*head)))
2451 return -EINVAL;
2452
2453 current->robust_list = head;
2454
2455 return 0;
2456}
2457
2458/**
d96ee56c
DH
2459 * sys_get_robust_list() - Get the robust-futex list head of a task
2460 * @pid: pid of the process [zero for current task]
2461 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2462 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2463 */
836f92ad
HC
2464SYSCALL_DEFINE3(get_robust_list, int, pid,
2465 struct robust_list_head __user * __user *, head_ptr,
2466 size_t __user *, len_ptr)
0771dfef 2467{
ba46df98 2468 struct robust_list_head __user *head;
0771dfef 2469 unsigned long ret;
bdbb776f 2470 struct task_struct *p;
0771dfef 2471
a0c1e907
TG
2472 if (!futex_cmpxchg_enabled)
2473 return -ENOSYS;
2474
bdbb776f
KC
2475 rcu_read_lock();
2476
2477 ret = -ESRCH;
0771dfef 2478 if (!pid)
bdbb776f 2479 p = current;
0771dfef 2480 else {
228ebcbe 2481 p = find_task_by_vpid(pid);
0771dfef
IM
2482 if (!p)
2483 goto err_unlock;
0771dfef
IM
2484 }
2485
bdbb776f
KC
2486 ret = -EPERM;
2487 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2488 goto err_unlock;
2489
2490 head = p->robust_list;
2491 rcu_read_unlock();
2492
0771dfef
IM
2493 if (put_user(sizeof(*head), len_ptr))
2494 return -EFAULT;
2495 return put_user(head, head_ptr);
2496
2497err_unlock:
aaa2a97e 2498 rcu_read_unlock();
0771dfef
IM
2499
2500 return ret;
2501}
2502
2503/*
2504 * Process a futex-list entry, check whether it's owned by the
2505 * dying task, and do notification if so:
2506 */
e3f2ddea 2507int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2508{
7cfdaf38 2509 u32 uval, uninitialized_var(nval), mval;
0771dfef 2510
8f17d3a5
IM
2511retry:
2512 if (get_user(uval, uaddr))
0771dfef
IM
2513 return -1;
2514
b488893a 2515 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2516 /*
2517 * Ok, this dying thread is truly holding a futex
2518 * of interest. Set the OWNER_DIED bit atomically
2519 * via cmpxchg, and if the value had FUTEX_WAITERS
2520 * set, wake up a waiter (if any). (We have to do a
2521 * futex_wake() even if OWNER_DIED is already set -
2522 * to handle the rare but possible case of recursive
2523 * thread-death.) The rest of the cleanup is done in
2524 * userspace.
2525 */
e3f2ddea 2526 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2527 /*
2528 * We are not holding a lock here, but we want to have
2529 * the pagefault_disable/enable() protection because
2530 * we want to handle the fault gracefully. If the
2531 * access fails we try to fault in the futex with R/W
2532 * verification via get_user_pages. get_user() above
2533 * does not guarantee R/W access. If that fails we
2534 * give up and leave the futex locked.
2535 */
2536 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2537 if (fault_in_user_writeable(uaddr))
2538 return -1;
2539 goto retry;
2540 }
c87e2837 2541 if (nval != uval)
8f17d3a5 2542 goto retry;
0771dfef 2543
e3f2ddea
IM
2544 /*
2545 * Wake robust non-PI futexes here. The wakeup of
2546 * PI futexes happens in exit_pi_state():
2547 */
36cf3b5c 2548 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2549 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2550 }
2551 return 0;
2552}
2553
e3f2ddea
IM
2554/*
2555 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2556 */
2557static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2558 struct robust_list __user * __user *head,
1dcc41bb 2559 unsigned int *pi)
e3f2ddea
IM
2560{
2561 unsigned long uentry;
2562
ba46df98 2563 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2564 return -EFAULT;
2565
ba46df98 2566 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2567 *pi = uentry & 1;
2568
2569 return 0;
2570}
2571
0771dfef
IM
2572/*
2573 * Walk curr->robust_list (very carefully, it's a userspace list!)
2574 * and mark any locks found there dead, and notify any waiters.
2575 *
2576 * We silently return on any sign of list-walking problem.
2577 */
2578void exit_robust_list(struct task_struct *curr)
2579{
2580 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2581 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2582 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2583 unsigned int uninitialized_var(next_pi);
0771dfef 2584 unsigned long futex_offset;
9f96cb1e 2585 int rc;
0771dfef 2586
a0c1e907
TG
2587 if (!futex_cmpxchg_enabled)
2588 return;
2589
0771dfef
IM
2590 /*
2591 * Fetch the list head (which was registered earlier, via
2592 * sys_set_robust_list()):
2593 */
e3f2ddea 2594 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2595 return;
2596 /*
2597 * Fetch the relative futex offset:
2598 */
2599 if (get_user(futex_offset, &head->futex_offset))
2600 return;
2601 /*
2602 * Fetch any possibly pending lock-add first, and handle it
2603 * if it exists:
2604 */
e3f2ddea 2605 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2606 return;
e3f2ddea 2607
9f96cb1e 2608 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2609 while (entry != &head->list) {
9f96cb1e
MS
2610 /*
2611 * Fetch the next entry in the list before calling
2612 * handle_futex_death:
2613 */
2614 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2615 /*
2616 * A pending lock might already be on the list, so
c87e2837 2617 * don't process it twice:
0771dfef
IM
2618 */
2619 if (entry != pending)
ba46df98 2620 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2621 curr, pi))
0771dfef 2622 return;
9f96cb1e 2623 if (rc)
0771dfef 2624 return;
9f96cb1e
MS
2625 entry = next_entry;
2626 pi = next_pi;
0771dfef
IM
2627 /*
2628 * Avoid excessively long or circular lists:
2629 */
2630 if (!--limit)
2631 break;
2632
2633 cond_resched();
2634 }
9f96cb1e
MS
2635
2636 if (pending)
2637 handle_futex_death((void __user *)pending + futex_offset,
2638 curr, pip);
0771dfef
IM
2639}
2640
c19384b5 2641long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2642 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2643{
81b40539 2644 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2645 unsigned int flags = 0;
34f01cc1
ED
2646
2647 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2648 flags |= FLAGS_SHARED;
1da177e4 2649
b41277dc
DH
2650 if (op & FUTEX_CLOCK_REALTIME) {
2651 flags |= FLAGS_CLOCKRT;
2652 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2653 return -ENOSYS;
2654 }
1da177e4 2655
59263b51
TG
2656 switch (cmd) {
2657 case FUTEX_LOCK_PI:
2658 case FUTEX_UNLOCK_PI:
2659 case FUTEX_TRYLOCK_PI:
2660 case FUTEX_WAIT_REQUEUE_PI:
2661 case FUTEX_CMP_REQUEUE_PI:
2662 if (!futex_cmpxchg_enabled)
2663 return -ENOSYS;
2664 }
2665
34f01cc1 2666 switch (cmd) {
1da177e4 2667 case FUTEX_WAIT:
cd689985
TG
2668 val3 = FUTEX_BITSET_MATCH_ANY;
2669 case FUTEX_WAIT_BITSET:
81b40539 2670 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2671 case FUTEX_WAKE:
cd689985
TG
2672 val3 = FUTEX_BITSET_MATCH_ANY;
2673 case FUTEX_WAKE_BITSET:
81b40539 2674 return futex_wake(uaddr, flags, val, val3);
1da177e4 2675 case FUTEX_REQUEUE:
81b40539 2676 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2677 case FUTEX_CMP_REQUEUE:
81b40539 2678 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2679 case FUTEX_WAKE_OP:
81b40539 2680 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2681 case FUTEX_LOCK_PI:
81b40539 2682 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2683 case FUTEX_UNLOCK_PI:
81b40539 2684 return futex_unlock_pi(uaddr, flags);
c87e2837 2685 case FUTEX_TRYLOCK_PI:
81b40539 2686 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2687 case FUTEX_WAIT_REQUEUE_PI:
2688 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2689 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2690 uaddr2);
52400ba9 2691 case FUTEX_CMP_REQUEUE_PI:
81b40539 2692 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2693 }
81b40539 2694 return -ENOSYS;
1da177e4
LT
2695}
2696
2697
17da2bd9
HC
2698SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2699 struct timespec __user *, utime, u32 __user *, uaddr2,
2700 u32, val3)
1da177e4 2701{
c19384b5
PP
2702 struct timespec ts;
2703 ktime_t t, *tp = NULL;
e2970f2f 2704 u32 val2 = 0;
34f01cc1 2705 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2706
cd689985 2707 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2708 cmd == FUTEX_WAIT_BITSET ||
2709 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2710 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2711 return -EFAULT;
c19384b5 2712 if (!timespec_valid(&ts))
9741ef96 2713 return -EINVAL;
c19384b5
PP
2714
2715 t = timespec_to_ktime(ts);
34f01cc1 2716 if (cmd == FUTEX_WAIT)
5a7780e7 2717 t = ktime_add_safe(ktime_get(), t);
c19384b5 2718 tp = &t;
1da177e4
LT
2719 }
2720 /*
52400ba9 2721 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2722 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2723 */
f54f0986 2724 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2725 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2726 val2 = (u32) (unsigned long) utime;
1da177e4 2727
c19384b5 2728 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2729}
2730
f6d107fb 2731static int __init futex_init(void)
1da177e4 2732{
a0c1e907 2733 u32 curval;
3e4ab747 2734 int i;
95362fa9 2735
a0c1e907
TG
2736 /*
2737 * This will fail and we want it. Some arch implementations do
2738 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2739 * functionality. We want to know that before we call in any
2740 * of the complex code paths. Also we want to prevent
2741 * registration of robust lists in that case. NULL is
2742 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2743 * implementation, the non-functional ones will return
a0c1e907
TG
2744 * -ENOSYS.
2745 */
37a9d912 2746 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907
TG
2747 futex_cmpxchg_enabled = 1;
2748
3e4ab747 2749 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
732375c6 2750 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2751 spin_lock_init(&futex_queues[i].lock);
2752 }
2753
1da177e4
LT
2754 return 0;
2755}
f6d107fb 2756__initcall(futex_init);
This page took 0.787245 seconds and 5 git commands to generate.