futex: split out fixup owner logic from futex_lock_pi()
[deliverable/linux.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
a0c1e907
TG
63int __read_mostly futex_cmpxchg_enabled;
64
1da177e4
LT
65#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
c87e2837
IM
67/*
68 * Priority Inheritance state:
69 */
70struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86};
87
1da177e4
LT
88/*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 94 * The order of wakup is always to make the first condition true, then
73500ac5 95 * wake up q->waiter, then make the second condition true.
1da177e4
LT
96 */
97struct futex_q {
ec92d082 98 struct plist_node list;
73500ac5
DH
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
1da177e4 101
e2970f2f 102 /* Which hash list lock to use: */
1da177e4
LT
103 spinlock_t *lock_ptr;
104
e2970f2f 105 /* Key which the futex is hashed on: */
1da177e4
LT
106 union futex_key key;
107
c87e2837
IM
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
cd689985
TG
111
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
1da177e4
LT
114};
115
116/*
b2d0994b
DH
117 * Hash buckets are shared by all the futex_keys that hash to the same
118 * location. Each key may have multiple futex_q structures, one for each task
119 * waiting on a futex.
1da177e4
LT
120 */
121struct futex_hash_bucket {
ec92d082
PP
122 spinlock_t lock;
123 struct plist_head chain;
1da177e4
LT
124};
125
126static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
127
1da177e4
LT
128/*
129 * We hash on the keys returned from get_futex_key (see below).
130 */
131static struct futex_hash_bucket *hash_futex(union futex_key *key)
132{
133 u32 hash = jhash2((u32*)&key->both.word,
134 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
135 key->both.offset);
136 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
137}
138
139/*
140 * Return 1 if two futex_keys are equal, 0 otherwise.
141 */
142static inline int match_futex(union futex_key *key1, union futex_key *key2)
143{
144 return (key1->both.word == key2->both.word
145 && key1->both.ptr == key2->both.ptr
146 && key1->both.offset == key2->both.offset);
147}
148
38d47c1b
PZ
149/*
150 * Take a reference to the resource addressed by a key.
151 * Can be called while holding spinlocks.
152 *
153 */
154static void get_futex_key_refs(union futex_key *key)
155{
156 if (!key->both.ptr)
157 return;
158
159 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
160 case FUT_OFF_INODE:
161 atomic_inc(&key->shared.inode->i_count);
162 break;
163 case FUT_OFF_MMSHARED:
164 atomic_inc(&key->private.mm->mm_count);
165 break;
166 }
167}
168
169/*
170 * Drop a reference to the resource addressed by a key.
171 * The hash bucket spinlock must not be held.
172 */
173static void drop_futex_key_refs(union futex_key *key)
174{
90621c40
DH
175 if (!key->both.ptr) {
176 /* If we're here then we tried to put a key we failed to get */
177 WARN_ON_ONCE(1);
38d47c1b 178 return;
90621c40 179 }
38d47c1b
PZ
180
181 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
182 case FUT_OFF_INODE:
183 iput(key->shared.inode);
184 break;
185 case FUT_OFF_MMSHARED:
186 mmdrop(key->private.mm);
187 break;
188 }
189}
190
34f01cc1
ED
191/**
192 * get_futex_key - Get parameters which are the keys for a futex.
193 * @uaddr: virtual address of the futex
b2d0994b 194 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
34f01cc1
ED
195 * @key: address where result is stored.
196 *
197 * Returns a negative error code or 0
198 * The key words are stored in *key on success.
1da177e4 199 *
f3a43f3f 200 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
201 * offset_within_page). For private mappings, it's (uaddr, current->mm).
202 * We can usually work out the index without swapping in the page.
203 *
b2d0994b 204 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 205 */
c2f9f201 206static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 207{
e2970f2f 208 unsigned long address = (unsigned long)uaddr;
1da177e4 209 struct mm_struct *mm = current->mm;
1da177e4
LT
210 struct page *page;
211 int err;
212
213 /*
214 * The futex address must be "naturally" aligned.
215 */
e2970f2f 216 key->both.offset = address % PAGE_SIZE;
34f01cc1 217 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 218 return -EINVAL;
e2970f2f 219 address -= key->both.offset;
1da177e4 220
34f01cc1
ED
221 /*
222 * PROCESS_PRIVATE futexes are fast.
223 * As the mm cannot disappear under us and the 'key' only needs
224 * virtual address, we dont even have to find the underlying vma.
225 * Note : We do have to check 'uaddr' is a valid user address,
226 * but access_ok() should be faster than find_vma()
227 */
228 if (!fshared) {
229 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
230 return -EFAULT;
231 key->private.mm = mm;
232 key->private.address = address;
42569c39 233 get_futex_key_refs(key);
34f01cc1
ED
234 return 0;
235 }
1da177e4 236
38d47c1b 237again:
734b05b1 238 err = get_user_pages_fast(address, 1, 0, &page);
38d47c1b
PZ
239 if (err < 0)
240 return err;
241
242 lock_page(page);
243 if (!page->mapping) {
244 unlock_page(page);
245 put_page(page);
246 goto again;
247 }
1da177e4
LT
248
249 /*
250 * Private mappings are handled in a simple way.
251 *
252 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
253 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 254 * the object not the particular process.
1da177e4 255 */
38d47c1b
PZ
256 if (PageAnon(page)) {
257 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 258 key->private.mm = mm;
e2970f2f 259 key->private.address = address;
38d47c1b
PZ
260 } else {
261 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
262 key->shared.inode = page->mapping->host;
263 key->shared.pgoff = page->index;
1da177e4
LT
264 }
265
38d47c1b 266 get_futex_key_refs(key);
1da177e4 267
38d47c1b
PZ
268 unlock_page(page);
269 put_page(page);
270 return 0;
1da177e4
LT
271}
272
38d47c1b 273static inline
c2f9f201 274void put_futex_key(int fshared, union futex_key *key)
1da177e4 275{
38d47c1b 276 drop_futex_key_refs(key);
1da177e4
LT
277}
278
4b1c486b
DH
279/**
280 * futex_top_waiter() - Return the highest priority waiter on a futex
281 * @hb: the hash bucket the futex_q's reside in
282 * @key: the futex key (to distinguish it from other futex futex_q's)
283 *
284 * Must be called with the hb lock held.
285 */
286static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
287 union futex_key *key)
288{
289 struct futex_q *this;
290
291 plist_for_each_entry(this, &hb->chain, list) {
292 if (match_futex(&this->key, key))
293 return this;
294 }
295 return NULL;
296}
297
36cf3b5c
TG
298static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
299{
300 u32 curval;
301
302 pagefault_disable();
303 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
304 pagefault_enable();
305
306 return curval;
307}
308
309static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
310{
311 int ret;
312
a866374a 313 pagefault_disable();
e2970f2f 314 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 315 pagefault_enable();
1da177e4
LT
316
317 return ret ? -EFAULT : 0;
318}
319
c87e2837
IM
320
321/*
322 * PI code:
323 */
324static int refill_pi_state_cache(void)
325{
326 struct futex_pi_state *pi_state;
327
328 if (likely(current->pi_state_cache))
329 return 0;
330
4668edc3 331 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
332
333 if (!pi_state)
334 return -ENOMEM;
335
c87e2837
IM
336 INIT_LIST_HEAD(&pi_state->list);
337 /* pi_mutex gets initialized later */
338 pi_state->owner = NULL;
339 atomic_set(&pi_state->refcount, 1);
38d47c1b 340 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
341
342 current->pi_state_cache = pi_state;
343
344 return 0;
345}
346
347static struct futex_pi_state * alloc_pi_state(void)
348{
349 struct futex_pi_state *pi_state = current->pi_state_cache;
350
351 WARN_ON(!pi_state);
352 current->pi_state_cache = NULL;
353
354 return pi_state;
355}
356
357static void free_pi_state(struct futex_pi_state *pi_state)
358{
359 if (!atomic_dec_and_test(&pi_state->refcount))
360 return;
361
362 /*
363 * If pi_state->owner is NULL, the owner is most probably dying
364 * and has cleaned up the pi_state already
365 */
366 if (pi_state->owner) {
367 spin_lock_irq(&pi_state->owner->pi_lock);
368 list_del_init(&pi_state->list);
369 spin_unlock_irq(&pi_state->owner->pi_lock);
370
371 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
372 }
373
374 if (current->pi_state_cache)
375 kfree(pi_state);
376 else {
377 /*
378 * pi_state->list is already empty.
379 * clear pi_state->owner.
380 * refcount is at 0 - put it back to 1.
381 */
382 pi_state->owner = NULL;
383 atomic_set(&pi_state->refcount, 1);
384 current->pi_state_cache = pi_state;
385 }
386}
387
388/*
389 * Look up the task based on what TID userspace gave us.
390 * We dont trust it.
391 */
392static struct task_struct * futex_find_get_task(pid_t pid)
393{
394 struct task_struct *p;
c69e8d9c 395 const struct cred *cred = current_cred(), *pcred;
c87e2837 396
d359b549 397 rcu_read_lock();
228ebcbe 398 p = find_task_by_vpid(pid);
c69e8d9c 399 if (!p) {
a06381fe 400 p = ERR_PTR(-ESRCH);
c69e8d9c
DH
401 } else {
402 pcred = __task_cred(p);
403 if (cred->euid != pcred->euid &&
404 cred->euid != pcred->uid)
405 p = ERR_PTR(-ESRCH);
406 else
407 get_task_struct(p);
408 }
a06381fe 409
d359b549 410 rcu_read_unlock();
c87e2837
IM
411
412 return p;
413}
414
415/*
416 * This task is holding PI mutexes at exit time => bad.
417 * Kernel cleans up PI-state, but userspace is likely hosed.
418 * (Robust-futex cleanup is separate and might save the day for userspace.)
419 */
420void exit_pi_state_list(struct task_struct *curr)
421{
c87e2837
IM
422 struct list_head *next, *head = &curr->pi_state_list;
423 struct futex_pi_state *pi_state;
627371d7 424 struct futex_hash_bucket *hb;
38d47c1b 425 union futex_key key = FUTEX_KEY_INIT;
c87e2837 426
a0c1e907
TG
427 if (!futex_cmpxchg_enabled)
428 return;
c87e2837
IM
429 /*
430 * We are a ZOMBIE and nobody can enqueue itself on
431 * pi_state_list anymore, but we have to be careful
627371d7 432 * versus waiters unqueueing themselves:
c87e2837
IM
433 */
434 spin_lock_irq(&curr->pi_lock);
435 while (!list_empty(head)) {
436
437 next = head->next;
438 pi_state = list_entry(next, struct futex_pi_state, list);
439 key = pi_state->key;
627371d7 440 hb = hash_futex(&key);
c87e2837
IM
441 spin_unlock_irq(&curr->pi_lock);
442
c87e2837
IM
443 spin_lock(&hb->lock);
444
445 spin_lock_irq(&curr->pi_lock);
627371d7
IM
446 /*
447 * We dropped the pi-lock, so re-check whether this
448 * task still owns the PI-state:
449 */
c87e2837
IM
450 if (head->next != next) {
451 spin_unlock(&hb->lock);
452 continue;
453 }
454
c87e2837 455 WARN_ON(pi_state->owner != curr);
627371d7
IM
456 WARN_ON(list_empty(&pi_state->list));
457 list_del_init(&pi_state->list);
c87e2837
IM
458 pi_state->owner = NULL;
459 spin_unlock_irq(&curr->pi_lock);
460
461 rt_mutex_unlock(&pi_state->pi_mutex);
462
463 spin_unlock(&hb->lock);
464
465 spin_lock_irq(&curr->pi_lock);
466 }
467 spin_unlock_irq(&curr->pi_lock);
468}
469
470static int
d0aa7a70
PP
471lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
472 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
473{
474 struct futex_pi_state *pi_state = NULL;
475 struct futex_q *this, *next;
ec92d082 476 struct plist_head *head;
c87e2837 477 struct task_struct *p;
778e9a9c 478 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
479
480 head = &hb->chain;
481
ec92d082 482 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 483 if (match_futex(&this->key, key)) {
c87e2837
IM
484 /*
485 * Another waiter already exists - bump up
486 * the refcount and return its pi_state:
487 */
488 pi_state = this->pi_state;
06a9ec29
TG
489 /*
490 * Userspace might have messed up non PI and PI futexes
491 */
492 if (unlikely(!pi_state))
493 return -EINVAL;
494
627371d7 495 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
496 WARN_ON(pid && pi_state->owner &&
497 pi_state->owner->pid != pid);
627371d7 498
c87e2837 499 atomic_inc(&pi_state->refcount);
d0aa7a70 500 *ps = pi_state;
c87e2837
IM
501
502 return 0;
503 }
504 }
505
506 /*
e3f2ddea 507 * We are the first waiter - try to look up the real owner and attach
778e9a9c 508 * the new pi_state to it, but bail out when TID = 0
c87e2837 509 */
778e9a9c 510 if (!pid)
e3f2ddea 511 return -ESRCH;
c87e2837 512 p = futex_find_get_task(pid);
778e9a9c
AK
513 if (IS_ERR(p))
514 return PTR_ERR(p);
515
516 /*
517 * We need to look at the task state flags to figure out,
518 * whether the task is exiting. To protect against the do_exit
519 * change of the task flags, we do this protected by
520 * p->pi_lock:
521 */
522 spin_lock_irq(&p->pi_lock);
523 if (unlikely(p->flags & PF_EXITING)) {
524 /*
525 * The task is on the way out. When PF_EXITPIDONE is
526 * set, we know that the task has finished the
527 * cleanup:
528 */
529 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
530
531 spin_unlock_irq(&p->pi_lock);
532 put_task_struct(p);
533 return ret;
534 }
c87e2837
IM
535
536 pi_state = alloc_pi_state();
537
538 /*
539 * Initialize the pi_mutex in locked state and make 'p'
540 * the owner of it:
541 */
542 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
543
544 /* Store the key for possible exit cleanups: */
d0aa7a70 545 pi_state->key = *key;
c87e2837 546
627371d7 547 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
548 list_add(&pi_state->list, &p->pi_state_list);
549 pi_state->owner = p;
550 spin_unlock_irq(&p->pi_lock);
551
552 put_task_struct(p);
553
d0aa7a70 554 *ps = pi_state;
c87e2837
IM
555
556 return 0;
557}
558
1a52084d
DH
559/**
560 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
561 * @uaddr: the pi futex user address
562 * @hb: the pi futex hash bucket
563 * @key: the futex key associated with uaddr and hb
564 * @ps: the pi_state pointer where we store the result of the lookup
565 * @task: the task to perform the atomic lock work for. This will be
566 * "current" except in the case of requeue pi.
567 *
568 * Returns:
569 * 0 - ready to wait
570 * 1 - acquired the lock
571 * <0 - error
572 *
573 * The hb->lock and futex_key refs shall be held by the caller.
574 */
575static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
576 union futex_key *key,
577 struct futex_pi_state **ps,
578 struct task_struct *task)
579{
580 int lock_taken, ret, ownerdied = 0;
581 u32 uval, newval, curval;
582
583retry:
584 ret = lock_taken = 0;
585
586 /*
587 * To avoid races, we attempt to take the lock here again
588 * (by doing a 0 -> TID atomic cmpxchg), while holding all
589 * the locks. It will most likely not succeed.
590 */
591 newval = task_pid_vnr(task);
592
593 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
594
595 if (unlikely(curval == -EFAULT))
596 return -EFAULT;
597
598 /*
599 * Detect deadlocks.
600 */
601 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
602 return -EDEADLK;
603
604 /*
605 * Surprise - we got the lock. Just return to userspace:
606 */
607 if (unlikely(!curval))
608 return 1;
609
610 uval = curval;
611
612 /*
613 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
614 * to wake at the next unlock.
615 */
616 newval = curval | FUTEX_WAITERS;
617
618 /*
619 * There are two cases, where a futex might have no owner (the
620 * owner TID is 0): OWNER_DIED. We take over the futex in this
621 * case. We also do an unconditional take over, when the owner
622 * of the futex died.
623 *
624 * This is safe as we are protected by the hash bucket lock !
625 */
626 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
627 /* Keep the OWNER_DIED bit */
628 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
629 ownerdied = 0;
630 lock_taken = 1;
631 }
632
633 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
634
635 if (unlikely(curval == -EFAULT))
636 return -EFAULT;
637 if (unlikely(curval != uval))
638 goto retry;
639
640 /*
641 * We took the lock due to owner died take over.
642 */
643 if (unlikely(lock_taken))
644 return 1;
645
646 /*
647 * We dont have the lock. Look up the PI state (or create it if
648 * we are the first waiter):
649 */
650 ret = lookup_pi_state(uval, hb, key, ps);
651
652 if (unlikely(ret)) {
653 switch (ret) {
654 case -ESRCH:
655 /*
656 * No owner found for this futex. Check if the
657 * OWNER_DIED bit is set to figure out whether
658 * this is a robust futex or not.
659 */
660 if (get_futex_value_locked(&curval, uaddr))
661 return -EFAULT;
662
663 /*
664 * We simply start over in case of a robust
665 * futex. The code above will take the futex
666 * and return happy.
667 */
668 if (curval & FUTEX_OWNER_DIED) {
669 ownerdied = 1;
670 goto retry;
671 }
672 default:
673 break;
674 }
675 }
676
677 return ret;
678}
679
1da177e4
LT
680/*
681 * The hash bucket lock must be held when this is called.
682 * Afterwards, the futex_q must not be accessed.
683 */
684static void wake_futex(struct futex_q *q)
685{
ec92d082 686 plist_del(&q->list, &q->list.plist);
1da177e4
LT
687 /*
688 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 689 * plist_del() and also before assigning to q->lock_ptr.
1da177e4 690 */
73500ac5 691 wake_up(&q->waiter);
1da177e4
LT
692 /*
693 * The waiting task can free the futex_q as soon as this is written,
694 * without taking any locks. This must come last.
8e31108b 695 *
b2d0994b
DH
696 * A memory barrier is required here to prevent the following store to
697 * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
698 * end of wake_up() does not prevent this store from moving.
1da177e4 699 */
ccdea2f8 700 smp_wmb();
1da177e4
LT
701 q->lock_ptr = NULL;
702}
703
c87e2837
IM
704static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
705{
706 struct task_struct *new_owner;
707 struct futex_pi_state *pi_state = this->pi_state;
708 u32 curval, newval;
709
710 if (!pi_state)
711 return -EINVAL;
712
21778867 713 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
714 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
715
716 /*
717 * This happens when we have stolen the lock and the original
718 * pending owner did not enqueue itself back on the rt_mutex.
719 * Thats not a tragedy. We know that way, that a lock waiter
720 * is on the fly. We make the futex_q waiter the pending owner.
721 */
722 if (!new_owner)
723 new_owner = this->task;
724
725 /*
726 * We pass it to the next owner. (The WAITERS bit is always
727 * kept enabled while there is PI state around. We must also
728 * preserve the owner died bit.)
729 */
e3f2ddea 730 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
731 int ret = 0;
732
b488893a 733 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 734
36cf3b5c 735 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 736
e3f2ddea 737 if (curval == -EFAULT)
778e9a9c 738 ret = -EFAULT;
cde898fa 739 else if (curval != uval)
778e9a9c
AK
740 ret = -EINVAL;
741 if (ret) {
742 spin_unlock(&pi_state->pi_mutex.wait_lock);
743 return ret;
744 }
e3f2ddea 745 }
c87e2837 746
627371d7
IM
747 spin_lock_irq(&pi_state->owner->pi_lock);
748 WARN_ON(list_empty(&pi_state->list));
749 list_del_init(&pi_state->list);
750 spin_unlock_irq(&pi_state->owner->pi_lock);
751
752 spin_lock_irq(&new_owner->pi_lock);
753 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
754 list_add(&pi_state->list, &new_owner->pi_state_list);
755 pi_state->owner = new_owner;
627371d7
IM
756 spin_unlock_irq(&new_owner->pi_lock);
757
21778867 758 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
759 rt_mutex_unlock(&pi_state->pi_mutex);
760
761 return 0;
762}
763
764static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
765{
766 u32 oldval;
767
768 /*
769 * There is no waiter, so we unlock the futex. The owner died
770 * bit has not to be preserved here. We are the owner:
771 */
36cf3b5c 772 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
773
774 if (oldval == -EFAULT)
775 return oldval;
776 if (oldval != uval)
777 return -EAGAIN;
778
779 return 0;
780}
781
8b8f319f
IM
782/*
783 * Express the locking dependencies for lockdep:
784 */
785static inline void
786double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
787{
788 if (hb1 <= hb2) {
789 spin_lock(&hb1->lock);
790 if (hb1 < hb2)
791 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
792 } else { /* hb1 > hb2 */
793 spin_lock(&hb2->lock);
794 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
795 }
796}
797
5eb3dc62
DH
798static inline void
799double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
800{
f061d351 801 spin_unlock(&hb1->lock);
88f502fe
IM
802 if (hb1 != hb2)
803 spin_unlock(&hb2->lock);
5eb3dc62
DH
804}
805
1da177e4 806/*
b2d0994b 807 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 808 */
c2f9f201 809static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 810{
e2970f2f 811 struct futex_hash_bucket *hb;
1da177e4 812 struct futex_q *this, *next;
ec92d082 813 struct plist_head *head;
38d47c1b 814 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
815 int ret;
816
cd689985
TG
817 if (!bitset)
818 return -EINVAL;
819
34f01cc1 820 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
821 if (unlikely(ret != 0))
822 goto out;
823
e2970f2f
IM
824 hb = hash_futex(&key);
825 spin_lock(&hb->lock);
826 head = &hb->chain;
1da177e4 827
ec92d082 828 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 829 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
830 if (this->pi_state) {
831 ret = -EINVAL;
832 break;
833 }
cd689985
TG
834
835 /* Check if one of the bits is set in both bitsets */
836 if (!(this->bitset & bitset))
837 continue;
838
1da177e4
LT
839 wake_futex(this);
840 if (++ret >= nr_wake)
841 break;
842 }
843 }
844
e2970f2f 845 spin_unlock(&hb->lock);
38d47c1b 846 put_futex_key(fshared, &key);
42d35d48 847out:
1da177e4
LT
848 return ret;
849}
850
4732efbe
JJ
851/*
852 * Wake up all waiters hashed on the physical page that is mapped
853 * to this virtual address:
854 */
e2970f2f 855static int
c2f9f201 856futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 857 int nr_wake, int nr_wake2, int op)
4732efbe 858{
38d47c1b 859 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 860 struct futex_hash_bucket *hb1, *hb2;
ec92d082 861 struct plist_head *head;
4732efbe 862 struct futex_q *this, *next;
e4dc5b7a 863 int ret, op_ret;
4732efbe 864
e4dc5b7a 865retry:
34f01cc1 866 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
867 if (unlikely(ret != 0))
868 goto out;
34f01cc1 869 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe 870 if (unlikely(ret != 0))
42d35d48 871 goto out_put_key1;
4732efbe 872
e2970f2f
IM
873 hb1 = hash_futex(&key1);
874 hb2 = hash_futex(&key2);
4732efbe 875
8b8f319f 876 double_lock_hb(hb1, hb2);
e4dc5b7a 877retry_private:
e2970f2f 878 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 879 if (unlikely(op_ret < 0)) {
e2970f2f 880 u32 dummy;
4732efbe 881
5eb3dc62 882 double_unlock_hb(hb1, hb2);
4732efbe 883
7ee1dd3f 884#ifndef CONFIG_MMU
e2970f2f
IM
885 /*
886 * we don't get EFAULT from MMU faults if we don't have an MMU,
887 * but we might get them from range checking
888 */
7ee1dd3f 889 ret = op_ret;
42d35d48 890 goto out_put_keys;
7ee1dd3f
DH
891#endif
892
796f8d9b
DG
893 if (unlikely(op_ret != -EFAULT)) {
894 ret = op_ret;
42d35d48 895 goto out_put_keys;
796f8d9b
DG
896 }
897
e2970f2f 898 ret = get_user(dummy, uaddr2);
4732efbe 899 if (ret)
de87fcc1 900 goto out_put_keys;
4732efbe 901
e4dc5b7a
DH
902 if (!fshared)
903 goto retry_private;
904
de87fcc1
DH
905 put_futex_key(fshared, &key2);
906 put_futex_key(fshared, &key1);
e4dc5b7a 907 goto retry;
4732efbe
JJ
908 }
909
e2970f2f 910 head = &hb1->chain;
4732efbe 911
ec92d082 912 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
913 if (match_futex (&this->key, &key1)) {
914 wake_futex(this);
915 if (++ret >= nr_wake)
916 break;
917 }
918 }
919
920 if (op_ret > 0) {
e2970f2f 921 head = &hb2->chain;
4732efbe
JJ
922
923 op_ret = 0;
ec92d082 924 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
925 if (match_futex (&this->key, &key2)) {
926 wake_futex(this);
927 if (++op_ret >= nr_wake2)
928 break;
929 }
930 }
931 ret += op_ret;
932 }
933
5eb3dc62 934 double_unlock_hb(hb1, hb2);
42d35d48 935out_put_keys:
38d47c1b 936 put_futex_key(fshared, &key2);
42d35d48 937out_put_key1:
38d47c1b 938 put_futex_key(fshared, &key1);
42d35d48 939out:
4732efbe
JJ
940 return ret;
941}
942
1da177e4
LT
943/*
944 * Requeue all waiters hashed on one physical page to another
945 * physical page.
946 */
c2f9f201 947static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 948 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4 949{
38d47c1b 950 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 951 struct futex_hash_bucket *hb1, *hb2;
ec92d082 952 struct plist_head *head1;
1da177e4
LT
953 struct futex_q *this, *next;
954 int ret, drop_count = 0;
955
42d35d48 956retry:
34f01cc1 957 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
958 if (unlikely(ret != 0))
959 goto out;
34f01cc1 960 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4 961 if (unlikely(ret != 0))
42d35d48 962 goto out_put_key1;
1da177e4 963
e2970f2f
IM
964 hb1 = hash_futex(&key1);
965 hb2 = hash_futex(&key2);
1da177e4 966
e4dc5b7a 967retry_private:
8b8f319f 968 double_lock_hb(hb1, hb2);
1da177e4 969
e2970f2f
IM
970 if (likely(cmpval != NULL)) {
971 u32 curval;
1da177e4 972
e2970f2f 973 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
974
975 if (unlikely(ret)) {
5eb3dc62 976 double_unlock_hb(hb1, hb2);
1da177e4 977
e2970f2f 978 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
979 if (ret)
980 goto out_put_keys;
1da177e4 981
e4dc5b7a
DH
982 if (!fshared)
983 goto retry_private;
1da177e4 984
e4dc5b7a
DH
985 put_futex_key(fshared, &key2);
986 put_futex_key(fshared, &key1);
987 goto retry;
1da177e4 988 }
e2970f2f 989 if (curval != *cmpval) {
1da177e4
LT
990 ret = -EAGAIN;
991 goto out_unlock;
992 }
993 }
994
e2970f2f 995 head1 = &hb1->chain;
ec92d082 996 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
997 if (!match_futex (&this->key, &key1))
998 continue;
999 if (++ret <= nr_wake) {
1000 wake_futex(this);
1001 } else {
59e0e0ac
SD
1002 /*
1003 * If key1 and key2 hash to the same bucket, no need to
1004 * requeue.
1005 */
1006 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
1007 plist_del(&this->list, &hb1->chain);
1008 plist_add(&this->list, &hb2->chain);
59e0e0ac 1009 this->lock_ptr = &hb2->lock;
ec92d082
PP
1010#ifdef CONFIG_DEBUG_PI_LIST
1011 this->list.plist.lock = &hb2->lock;
1012#endif
778e9a9c 1013 }
1da177e4 1014 this->key = key2;
9adef58b 1015 get_futex_key_refs(&key2);
1da177e4
LT
1016 drop_count++;
1017
1018 if (ret - nr_wake >= nr_requeue)
1019 break;
1da177e4
LT
1020 }
1021 }
1022
1023out_unlock:
5eb3dc62 1024 double_unlock_hb(hb1, hb2);
1da177e4 1025
9adef58b 1026 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 1027 while (--drop_count >= 0)
9adef58b 1028 drop_futex_key_refs(&key1);
1da177e4 1029
42d35d48 1030out_put_keys:
38d47c1b 1031 put_futex_key(fshared, &key2);
42d35d48 1032out_put_key1:
38d47c1b 1033 put_futex_key(fshared, &key1);
42d35d48 1034out:
1da177e4
LT
1035 return ret;
1036}
1037
1038/* The key must be already stored in q->key. */
82af7aca 1039static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 1040{
e2970f2f 1041 struct futex_hash_bucket *hb;
1da177e4 1042
73500ac5 1043 init_waitqueue_head(&q->waiter);
1da177e4 1044
9adef58b 1045 get_futex_key_refs(&q->key);
e2970f2f
IM
1046 hb = hash_futex(&q->key);
1047 q->lock_ptr = &hb->lock;
1da177e4 1048
e2970f2f
IM
1049 spin_lock(&hb->lock);
1050 return hb;
1da177e4
LT
1051}
1052
82af7aca 1053static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1054{
ec92d082
PP
1055 int prio;
1056
1057 /*
1058 * The priority used to register this element is
1059 * - either the real thread-priority for the real-time threads
1060 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1061 * - or MAX_RT_PRIO for non-RT threads.
1062 * Thus, all RT-threads are woken first in priority order, and
1063 * the others are woken last, in FIFO order.
1064 */
1065 prio = min(current->normal_prio, MAX_RT_PRIO);
1066
1067 plist_node_init(&q->list, prio);
1068#ifdef CONFIG_DEBUG_PI_LIST
1069 q->list.plist.lock = &hb->lock;
1070#endif
1071 plist_add(&q->list, &hb->chain);
c87e2837 1072 q->task = current;
e2970f2f 1073 spin_unlock(&hb->lock);
1da177e4
LT
1074}
1075
1076static inline void
e2970f2f 1077queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1078{
e2970f2f 1079 spin_unlock(&hb->lock);
9adef58b 1080 drop_futex_key_refs(&q->key);
1da177e4
LT
1081}
1082
1083/*
1084 * queue_me and unqueue_me must be called as a pair, each
1085 * exactly once. They are called with the hashed spinlock held.
1086 */
1087
1da177e4
LT
1088/* Return 1 if we were still queued (ie. 0 means we were woken) */
1089static int unqueue_me(struct futex_q *q)
1090{
1da177e4 1091 spinlock_t *lock_ptr;
e2970f2f 1092 int ret = 0;
1da177e4
LT
1093
1094 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1095retry:
1da177e4 1096 lock_ptr = q->lock_ptr;
e91467ec 1097 barrier();
c80544dc 1098 if (lock_ptr != NULL) {
1da177e4
LT
1099 spin_lock(lock_ptr);
1100 /*
1101 * q->lock_ptr can change between reading it and
1102 * spin_lock(), causing us to take the wrong lock. This
1103 * corrects the race condition.
1104 *
1105 * Reasoning goes like this: if we have the wrong lock,
1106 * q->lock_ptr must have changed (maybe several times)
1107 * between reading it and the spin_lock(). It can
1108 * change again after the spin_lock() but only if it was
1109 * already changed before the spin_lock(). It cannot,
1110 * however, change back to the original value. Therefore
1111 * we can detect whether we acquired the correct lock.
1112 */
1113 if (unlikely(lock_ptr != q->lock_ptr)) {
1114 spin_unlock(lock_ptr);
1115 goto retry;
1116 }
ec92d082
PP
1117 WARN_ON(plist_node_empty(&q->list));
1118 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1119
1120 BUG_ON(q->pi_state);
1121
1da177e4
LT
1122 spin_unlock(lock_ptr);
1123 ret = 1;
1124 }
1125
9adef58b 1126 drop_futex_key_refs(&q->key);
1da177e4
LT
1127 return ret;
1128}
1129
c87e2837
IM
1130/*
1131 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1132 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1133 * and dropped here.
c87e2837 1134 */
d0aa7a70 1135static void unqueue_me_pi(struct futex_q *q)
c87e2837 1136{
ec92d082
PP
1137 WARN_ON(plist_node_empty(&q->list));
1138 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1139
1140 BUG_ON(!q->pi_state);
1141 free_pi_state(q->pi_state);
1142 q->pi_state = NULL;
1143
d0aa7a70 1144 spin_unlock(q->lock_ptr);
c87e2837 1145
9adef58b 1146 drop_futex_key_refs(&q->key);
c87e2837
IM
1147}
1148
d0aa7a70 1149/*
cdf71a10 1150 * Fixup the pi_state owner with the new owner.
d0aa7a70 1151 *
778e9a9c
AK
1152 * Must be called with hash bucket lock held and mm->sem held for non
1153 * private futexes.
d0aa7a70 1154 */
778e9a9c 1155static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1156 struct task_struct *newowner, int fshared)
d0aa7a70 1157{
cdf71a10 1158 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1159 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1160 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1161 u32 uval, curval, newval;
e4dc5b7a 1162 int ret;
d0aa7a70
PP
1163
1164 /* Owner died? */
1b7558e4
TG
1165 if (!pi_state->owner)
1166 newtid |= FUTEX_OWNER_DIED;
1167
1168 /*
1169 * We are here either because we stole the rtmutex from the
1170 * pending owner or we are the pending owner which failed to
1171 * get the rtmutex. We have to replace the pending owner TID
1172 * in the user space variable. This must be atomic as we have
1173 * to preserve the owner died bit here.
1174 *
b2d0994b
DH
1175 * Note: We write the user space value _before_ changing the pi_state
1176 * because we can fault here. Imagine swapped out pages or a fork
1177 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1178 *
1179 * Modifying pi_state _before_ the user space value would
1180 * leave the pi_state in an inconsistent state when we fault
1181 * here, because we need to drop the hash bucket lock to
1182 * handle the fault. This might be observed in the PID check
1183 * in lookup_pi_state.
1184 */
1185retry:
1186 if (get_futex_value_locked(&uval, uaddr))
1187 goto handle_fault;
1188
1189 while (1) {
1190 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1191
1192 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1193
1194 if (curval == -EFAULT)
1195 goto handle_fault;
1196 if (curval == uval)
1197 break;
1198 uval = curval;
1199 }
1200
1201 /*
1202 * We fixed up user space. Now we need to fix the pi_state
1203 * itself.
1204 */
d0aa7a70
PP
1205 if (pi_state->owner != NULL) {
1206 spin_lock_irq(&pi_state->owner->pi_lock);
1207 WARN_ON(list_empty(&pi_state->list));
1208 list_del_init(&pi_state->list);
1209 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1210 }
d0aa7a70 1211
cdf71a10 1212 pi_state->owner = newowner;
d0aa7a70 1213
cdf71a10 1214 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1215 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1216 list_add(&pi_state->list, &newowner->pi_state_list);
1217 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1218 return 0;
d0aa7a70 1219
d0aa7a70 1220 /*
1b7558e4
TG
1221 * To handle the page fault we need to drop the hash bucket
1222 * lock here. That gives the other task (either the pending
1223 * owner itself or the task which stole the rtmutex) the
1224 * chance to try the fixup of the pi_state. So once we are
1225 * back from handling the fault we need to check the pi_state
1226 * after reacquiring the hash bucket lock and before trying to
1227 * do another fixup. When the fixup has been done already we
1228 * simply return.
d0aa7a70 1229 */
1b7558e4
TG
1230handle_fault:
1231 spin_unlock(q->lock_ptr);
778e9a9c 1232
e4dc5b7a 1233 ret = get_user(uval, uaddr);
778e9a9c 1234
1b7558e4 1235 spin_lock(q->lock_ptr);
778e9a9c 1236
1b7558e4
TG
1237 /*
1238 * Check if someone else fixed it for us:
1239 */
1240 if (pi_state->owner != oldowner)
1241 return 0;
1242
1243 if (ret)
1244 return ret;
1245
1246 goto retry;
d0aa7a70
PP
1247}
1248
34f01cc1
ED
1249/*
1250 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1251 * we encode in the 'flags' shared capability
34f01cc1 1252 */
1acdac10
TG
1253#define FLAGS_SHARED 0x01
1254#define FLAGS_CLOCKRT 0x02
34f01cc1 1255
72c1bbf3 1256static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1257
dd973998
DH
1258/**
1259 * fixup_owner() - Post lock pi_state and corner case management
1260 * @uaddr: user address of the futex
1261 * @fshared: whether the futex is shared (1) or not (0)
1262 * @q: futex_q (contains pi_state and access to the rt_mutex)
1263 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1264 *
1265 * After attempting to lock an rt_mutex, this function is called to cleanup
1266 * the pi_state owner as well as handle race conditions that may allow us to
1267 * acquire the lock. Must be called with the hb lock held.
1268 *
1269 * Returns:
1270 * 1 - success, lock taken
1271 * 0 - success, lock not taken
1272 * <0 - on error (-EFAULT)
1273 */
1274static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1275 int locked)
1276{
1277 struct task_struct *owner;
1278 int ret = 0;
1279
1280 if (locked) {
1281 /*
1282 * Got the lock. We might not be the anticipated owner if we
1283 * did a lock-steal - fix up the PI-state in that case:
1284 */
1285 if (q->pi_state->owner != current)
1286 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1287 goto out;
1288 }
1289
1290 /*
1291 * Catch the rare case, where the lock was released when we were on the
1292 * way back before we locked the hash bucket.
1293 */
1294 if (q->pi_state->owner == current) {
1295 /*
1296 * Try to get the rt_mutex now. This might fail as some other
1297 * task acquired the rt_mutex after we removed ourself from the
1298 * rt_mutex waiters list.
1299 */
1300 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1301 locked = 1;
1302 goto out;
1303 }
1304
1305 /*
1306 * pi_state is incorrect, some other task did a lock steal and
1307 * we returned due to timeout or signal without taking the
1308 * rt_mutex. Too late. We can access the rt_mutex_owner without
1309 * locking, as the other task is now blocked on the hash bucket
1310 * lock. Fix the state up.
1311 */
1312 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1313 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1314 goto out;
1315 }
1316
1317 /*
1318 * Paranoia check. If we did not take the lock, then we should not be
1319 * the owner, nor the pending owner, of the rt_mutex.
1320 */
1321 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1322 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1323 "pi-state %p\n", ret,
1324 q->pi_state->pi_mutex.owner,
1325 q->pi_state->owner);
1326
1327out:
1328 return ret ? ret : locked;
1329}
1330
ca5f9524
DH
1331/**
1332 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1333 * @hb: the futex hash bucket, must be locked by the caller
1334 * @q: the futex_q to queue up on
1335 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1336 * @wait: the wait_queue to add to the futex_q after queueing in the hb
1337 */
1338static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1339 struct hrtimer_sleeper *timeout,
1340 wait_queue_t *wait)
1341{
1342 queue_me(q, hb);
1343
1344 /*
1345 * There might have been scheduling since the queue_me(), as we
1346 * cannot hold a spinlock across the get_user() in case it
1347 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1348 * queueing ourselves into the futex hash. This code thus has to
1349 * rely on the futex_wake() code removing us from hash when it
1350 * wakes us up.
1351 */
1352
1353 /* add_wait_queue is the barrier after __set_current_state. */
1354 __set_current_state(TASK_INTERRUPTIBLE);
1355
1356 /*
1357 * Add current as the futex_q waiter. We don't remove ourselves from
1358 * the wait_queue because we are the only user of it.
1359 */
1360 add_wait_queue(&q->waiter, wait);
1361
1362 /* Arm the timer */
1363 if (timeout) {
1364 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1365 if (!hrtimer_active(&timeout->timer))
1366 timeout->task = NULL;
1367 }
1368
1369 /*
1370 * !plist_node_empty() is safe here without any lock.
1371 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1372 */
1373 if (likely(!plist_node_empty(&q->list))) {
1374 /*
1375 * If the timer has already expired, current will already be
1376 * flagged for rescheduling. Only call schedule if there
1377 * is no timeout, or if it has yet to expire.
1378 */
1379 if (!timeout || timeout->task)
1380 schedule();
1381 }
1382 __set_current_state(TASK_RUNNING);
1383}
1384
c2f9f201 1385static int futex_wait(u32 __user *uaddr, int fshared,
1acdac10 1386 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1da177e4 1387{
ca5f9524
DH
1388 struct hrtimer_sleeper timeout, *to = NULL;
1389 DECLARE_WAITQUEUE(wait, current);
2fff78c7 1390 struct restart_block *restart;
e2970f2f 1391 struct futex_hash_bucket *hb;
1da177e4 1392 struct futex_q q;
e2970f2f
IM
1393 u32 uval;
1394 int ret;
1da177e4 1395
cd689985
TG
1396 if (!bitset)
1397 return -EINVAL;
1398
c87e2837 1399 q.pi_state = NULL;
cd689985 1400 q.bitset = bitset;
ca5f9524
DH
1401
1402 if (abs_time) {
1403 to = &timeout;
1404
1405 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1406 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1407 hrtimer_init_sleeper(to, current);
1408 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1409 current->timer_slack_ns);
1410 }
1411
42d35d48 1412retry:
38d47c1b 1413 q.key = FUTEX_KEY_INIT;
34f01cc1 1414 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4 1415 if (unlikely(ret != 0))
42d35d48 1416 goto out;
1da177e4 1417
e4dc5b7a 1418retry_private:
82af7aca 1419 hb = queue_lock(&q);
1da177e4
LT
1420
1421 /*
b2d0994b 1422 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1423 * Order is important:
1424 *
1425 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1426 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1427 *
1428 * The basic logical guarantee of a futex is that it blocks ONLY
1429 * if cond(var) is known to be true at the time of blocking, for
1430 * any cond. If we queued after testing *uaddr, that would open
1431 * a race condition where we could block indefinitely with
1432 * cond(var) false, which would violate the guarantee.
1433 *
1434 * A consequence is that futex_wait() can return zero and absorb
1435 * a wakeup when *uaddr != val on entry to the syscall. This is
1436 * rare, but normal.
1437 *
b2d0994b 1438 * For shared futexes, we hold the mmap semaphore, so the mapping
34f01cc1 1439 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1440 */
e2970f2f 1441 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1442
1443 if (unlikely(ret)) {
e2970f2f 1444 queue_unlock(&q, hb);
1da177e4 1445
e2970f2f 1446 ret = get_user(uval, uaddr);
e4dc5b7a
DH
1447 if (ret)
1448 goto out_put_key;
1da177e4 1449
e4dc5b7a
DH
1450 if (!fshared)
1451 goto retry_private;
1452
1453 put_futex_key(fshared, &q.key);
1454 goto retry;
1da177e4 1455 }
c87e2837 1456 ret = -EWOULDBLOCK;
ca5f9524
DH
1457
1458 /* Only actually queue if *uaddr contained val. */
2fff78c7
PZ
1459 if (unlikely(uval != val)) {
1460 queue_unlock(&q, hb);
1461 goto out_put_key;
1462 }
1da177e4 1463
ca5f9524
DH
1464 /* queue_me and wait for wakeup, timeout, or a signal. */
1465 futex_wait_queue_me(hb, &q, to, &wait);
1da177e4
LT
1466
1467 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1468 ret = 0;
1da177e4 1469 if (!unqueue_me(&q))
2fff78c7
PZ
1470 goto out_put_key;
1471 ret = -ETIMEDOUT;
ca5f9524 1472 if (to && !to->task)
2fff78c7 1473 goto out_put_key;
72c1bbf3 1474
e2970f2f
IM
1475 /*
1476 * We expect signal_pending(current), but another thread may
1477 * have handled it for us already.
1478 */
2fff78c7 1479 ret = -ERESTARTSYS;
c19384b5 1480 if (!abs_time)
2fff78c7 1481 goto out_put_key;
1da177e4 1482
2fff78c7
PZ
1483 restart = &current_thread_info()->restart_block;
1484 restart->fn = futex_wait_restart;
1485 restart->futex.uaddr = (u32 *)uaddr;
1486 restart->futex.val = val;
1487 restart->futex.time = abs_time->tv64;
1488 restart->futex.bitset = bitset;
1489 restart->futex.flags = 0;
1490
1491 if (fshared)
1492 restart->futex.flags |= FLAGS_SHARED;
1493 if (clockrt)
1494 restart->futex.flags |= FLAGS_CLOCKRT;
42d35d48 1495
2fff78c7
PZ
1496 ret = -ERESTART_RESTARTBLOCK;
1497
1498out_put_key:
1499 put_futex_key(fshared, &q.key);
42d35d48 1500out:
ca5f9524
DH
1501 if (to) {
1502 hrtimer_cancel(&to->timer);
1503 destroy_hrtimer_on_stack(&to->timer);
1504 }
c87e2837
IM
1505 return ret;
1506}
1507
72c1bbf3
NP
1508
1509static long futex_wait_restart(struct restart_block *restart)
1510{
ce6bd420 1511 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1512 int fshared = 0;
ce6bd420 1513 ktime_t t;
72c1bbf3 1514
ce6bd420 1515 t.tv64 = restart->futex.time;
72c1bbf3 1516 restart->fn = do_no_restart_syscall;
ce6bd420 1517 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1518 fshared = 1;
cd689985 1519 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1acdac10
TG
1520 restart->futex.bitset,
1521 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1522}
1523
1524
c87e2837
IM
1525/*
1526 * Userspace tried a 0 -> TID atomic transition of the futex value
1527 * and failed. The kernel side here does the whole locking operation:
1528 * if there are waiters then it will block, it does PI, etc. (Due to
1529 * races the kernel might see a 0 value of the futex too.)
1530 */
c2f9f201 1531static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1532 int detect, ktime_t *time, int trylock)
c87e2837 1533{
c5780e97 1534 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1535 struct futex_hash_bucket *hb;
1a52084d 1536 u32 uval;
c87e2837 1537 struct futex_q q;
dd973998 1538 int res, ret;
c87e2837
IM
1539
1540 if (refill_pi_state_cache())
1541 return -ENOMEM;
1542
c19384b5 1543 if (time) {
c5780e97 1544 to = &timeout;
237fc6e7
TG
1545 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1546 HRTIMER_MODE_ABS);
c5780e97 1547 hrtimer_init_sleeper(to, current);
cc584b21 1548 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1549 }
1550
c87e2837 1551 q.pi_state = NULL;
42d35d48 1552retry:
38d47c1b 1553 q.key = FUTEX_KEY_INIT;
34f01cc1 1554 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837 1555 if (unlikely(ret != 0))
42d35d48 1556 goto out;
c87e2837 1557
e4dc5b7a 1558retry_private:
82af7aca 1559 hb = queue_lock(&q);
c87e2837 1560
1a52084d 1561 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current);
c87e2837 1562 if (unlikely(ret)) {
778e9a9c 1563 switch (ret) {
1a52084d
DH
1564 case 1:
1565 /* We got the lock. */
1566 ret = 0;
1567 goto out_unlock_put_key;
1568 case -EFAULT:
1569 goto uaddr_faulted;
778e9a9c
AK
1570 case -EAGAIN:
1571 /*
1572 * Task is exiting and we just wait for the
1573 * exit to complete.
1574 */
1575 queue_unlock(&q, hb);
de87fcc1 1576 put_futex_key(fshared, &q.key);
778e9a9c
AK
1577 cond_resched();
1578 goto retry;
778e9a9c 1579 default:
42d35d48 1580 goto out_unlock_put_key;
c87e2837 1581 }
c87e2837
IM
1582 }
1583
1584 /*
1585 * Only actually queue now that the atomic ops are done:
1586 */
82af7aca 1587 queue_me(&q, hb);
c87e2837 1588
c87e2837
IM
1589 WARN_ON(!q.pi_state);
1590 /*
1591 * Block on the PI mutex:
1592 */
1593 if (!trylock)
1594 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1595 else {
1596 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1597 /* Fixup the trylock return value: */
1598 ret = ret ? 0 : -EWOULDBLOCK;
1599 }
1600
a99e4e41 1601 spin_lock(q.lock_ptr);
dd973998
DH
1602 /*
1603 * Fixup the pi_state owner and possibly acquire the lock if we
1604 * haven't already.
1605 */
1606 res = fixup_owner(uaddr, fshared, &q, !ret);
1607 /*
1608 * If fixup_owner() returned an error, proprogate that. If it acquired
1609 * the lock, clear our -ETIMEDOUT or -EINTR.
1610 */
1611 if (res)
1612 ret = (res < 0) ? res : 0;
c87e2837 1613
e8f6386c 1614 /*
dd973998
DH
1615 * If fixup_owner() faulted and was unable to handle the fault, unlock
1616 * it and return the fault to userspace.
e8f6386c
DH
1617 */
1618 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1619 rt_mutex_unlock(&q.pi_state->pi_mutex);
1620
778e9a9c
AK
1621 /* Unqueue and drop the lock */
1622 unqueue_me_pi(&q);
c87e2837 1623
dd973998 1624 goto out;
c87e2837 1625
42d35d48 1626out_unlock_put_key:
c87e2837
IM
1627 queue_unlock(&q, hb);
1628
42d35d48 1629out_put_key:
38d47c1b 1630 put_futex_key(fshared, &q.key);
42d35d48 1631out:
237fc6e7
TG
1632 if (to)
1633 destroy_hrtimer_on_stack(&to->timer);
dd973998 1634 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 1635
42d35d48 1636uaddr_faulted:
c87e2837 1637 /*
b5686363
DH
1638 * We have to r/w *(int __user *)uaddr, and we have to modify it
1639 * atomically. Therefore, if we continue to fault after get_user()
1640 * below, we need to handle the fault ourselves, while still holding
1641 * the mmap_sem. This can occur if the uaddr is under contention as
1642 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1643 */
778e9a9c
AK
1644 queue_unlock(&q, hb);
1645
c87e2837 1646 ret = get_user(uval, uaddr);
e4dc5b7a
DH
1647 if (ret)
1648 goto out_put_key;
c87e2837 1649
e4dc5b7a
DH
1650 if (!fshared)
1651 goto retry_private;
1652
1653 put_futex_key(fshared, &q.key);
1654 goto retry;
c87e2837
IM
1655}
1656
de87fcc1 1657
c87e2837
IM
1658/*
1659 * Userspace attempted a TID -> 0 atomic transition, and failed.
1660 * This is the in-kernel slowpath: we look up the PI state (if any),
1661 * and do the rt-mutex unlock.
1662 */
c2f9f201 1663static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
1664{
1665 struct futex_hash_bucket *hb;
1666 struct futex_q *this, *next;
1667 u32 uval;
ec92d082 1668 struct plist_head *head;
38d47c1b 1669 union futex_key key = FUTEX_KEY_INIT;
e4dc5b7a 1670 int ret;
c87e2837
IM
1671
1672retry:
1673 if (get_user(uval, uaddr))
1674 return -EFAULT;
1675 /*
1676 * We release only a lock we actually own:
1677 */
b488893a 1678 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1679 return -EPERM;
c87e2837 1680
34f01cc1 1681 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1682 if (unlikely(ret != 0))
1683 goto out;
1684
1685 hb = hash_futex(&key);
1686 spin_lock(&hb->lock);
1687
c87e2837
IM
1688 /*
1689 * To avoid races, try to do the TID -> 0 atomic transition
1690 * again. If it succeeds then we can return without waking
1691 * anyone else up:
1692 */
36cf3b5c 1693 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1694 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1695
c87e2837
IM
1696
1697 if (unlikely(uval == -EFAULT))
1698 goto pi_faulted;
1699 /*
1700 * Rare case: we managed to release the lock atomically,
1701 * no need to wake anyone else up:
1702 */
b488893a 1703 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1704 goto out_unlock;
1705
1706 /*
1707 * Ok, other tasks may need to be woken up - check waiters
1708 * and do the wakeup if necessary:
1709 */
1710 head = &hb->chain;
1711
ec92d082 1712 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1713 if (!match_futex (&this->key, &key))
1714 continue;
1715 ret = wake_futex_pi(uaddr, uval, this);
1716 /*
1717 * The atomic access to the futex value
1718 * generated a pagefault, so retry the
1719 * user-access and the wakeup:
1720 */
1721 if (ret == -EFAULT)
1722 goto pi_faulted;
1723 goto out_unlock;
1724 }
1725 /*
1726 * No waiters - kernel unlocks the futex:
1727 */
e3f2ddea
IM
1728 if (!(uval & FUTEX_OWNER_DIED)) {
1729 ret = unlock_futex_pi(uaddr, uval);
1730 if (ret == -EFAULT)
1731 goto pi_faulted;
1732 }
c87e2837
IM
1733
1734out_unlock:
1735 spin_unlock(&hb->lock);
38d47c1b 1736 put_futex_key(fshared, &key);
c87e2837 1737
42d35d48 1738out:
c87e2837
IM
1739 return ret;
1740
1741pi_faulted:
1742 /*
b5686363
DH
1743 * We have to r/w *(int __user *)uaddr, and we have to modify it
1744 * atomically. Therefore, if we continue to fault after get_user()
1745 * below, we need to handle the fault ourselves, while still holding
1746 * the mmap_sem. This can occur if the uaddr is under contention as
1747 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1748 */
778e9a9c 1749 spin_unlock(&hb->lock);
e4dc5b7a 1750 put_futex_key(fshared, &key);
c87e2837 1751
c87e2837 1752 ret = get_user(uval, uaddr);
b5686363 1753 if (!ret)
c87e2837
IM
1754 goto retry;
1755
1da177e4
LT
1756 return ret;
1757}
1758
0771dfef
IM
1759/*
1760 * Support for robust futexes: the kernel cleans up held futexes at
1761 * thread exit time.
1762 *
1763 * Implementation: user-space maintains a per-thread list of locks it
1764 * is holding. Upon do_exit(), the kernel carefully walks this list,
1765 * and marks all locks that are owned by this thread with the
c87e2837 1766 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1767 * always manipulated with the lock held, so the list is private and
1768 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1769 * field, to allow the kernel to clean up if the thread dies after
1770 * acquiring the lock, but just before it could have added itself to
1771 * the list. There can only be one such pending lock.
1772 */
1773
1774/**
1775 * sys_set_robust_list - set the robust-futex list head of a task
1776 * @head: pointer to the list-head
1777 * @len: length of the list-head, as userspace expects
1778 */
836f92ad
HC
1779SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1780 size_t, len)
0771dfef 1781{
a0c1e907
TG
1782 if (!futex_cmpxchg_enabled)
1783 return -ENOSYS;
0771dfef
IM
1784 /*
1785 * The kernel knows only one size for now:
1786 */
1787 if (unlikely(len != sizeof(*head)))
1788 return -EINVAL;
1789
1790 current->robust_list = head;
1791
1792 return 0;
1793}
1794
1795/**
1796 * sys_get_robust_list - get the robust-futex list head of a task
1797 * @pid: pid of the process [zero for current task]
1798 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1799 * @len_ptr: pointer to a length field, the kernel fills in the header size
1800 */
836f92ad
HC
1801SYSCALL_DEFINE3(get_robust_list, int, pid,
1802 struct robust_list_head __user * __user *, head_ptr,
1803 size_t __user *, len_ptr)
0771dfef 1804{
ba46df98 1805 struct robust_list_head __user *head;
0771dfef 1806 unsigned long ret;
c69e8d9c 1807 const struct cred *cred = current_cred(), *pcred;
0771dfef 1808
a0c1e907
TG
1809 if (!futex_cmpxchg_enabled)
1810 return -ENOSYS;
1811
0771dfef
IM
1812 if (!pid)
1813 head = current->robust_list;
1814 else {
1815 struct task_struct *p;
1816
1817 ret = -ESRCH;
aaa2a97e 1818 rcu_read_lock();
228ebcbe 1819 p = find_task_by_vpid(pid);
0771dfef
IM
1820 if (!p)
1821 goto err_unlock;
1822 ret = -EPERM;
c69e8d9c
DH
1823 pcred = __task_cred(p);
1824 if (cred->euid != pcred->euid &&
1825 cred->euid != pcred->uid &&
76aac0e9 1826 !capable(CAP_SYS_PTRACE))
0771dfef
IM
1827 goto err_unlock;
1828 head = p->robust_list;
aaa2a97e 1829 rcu_read_unlock();
0771dfef
IM
1830 }
1831
1832 if (put_user(sizeof(*head), len_ptr))
1833 return -EFAULT;
1834 return put_user(head, head_ptr);
1835
1836err_unlock:
aaa2a97e 1837 rcu_read_unlock();
0771dfef
IM
1838
1839 return ret;
1840}
1841
1842/*
1843 * Process a futex-list entry, check whether it's owned by the
1844 * dying task, and do notification if so:
1845 */
e3f2ddea 1846int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1847{
e3f2ddea 1848 u32 uval, nval, mval;
0771dfef 1849
8f17d3a5
IM
1850retry:
1851 if (get_user(uval, uaddr))
0771dfef
IM
1852 return -1;
1853
b488893a 1854 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1855 /*
1856 * Ok, this dying thread is truly holding a futex
1857 * of interest. Set the OWNER_DIED bit atomically
1858 * via cmpxchg, and if the value had FUTEX_WAITERS
1859 * set, wake up a waiter (if any). (We have to do a
1860 * futex_wake() even if OWNER_DIED is already set -
1861 * to handle the rare but possible case of recursive
1862 * thread-death.) The rest of the cleanup is done in
1863 * userspace.
1864 */
e3f2ddea
IM
1865 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1866 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1867
c87e2837
IM
1868 if (nval == -EFAULT)
1869 return -1;
1870
1871 if (nval != uval)
8f17d3a5 1872 goto retry;
0771dfef 1873
e3f2ddea
IM
1874 /*
1875 * Wake robust non-PI futexes here. The wakeup of
1876 * PI futexes happens in exit_pi_state():
1877 */
36cf3b5c 1878 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 1879 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
1880 }
1881 return 0;
1882}
1883
e3f2ddea
IM
1884/*
1885 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1886 */
1887static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1888 struct robust_list __user * __user *head,
1889 int *pi)
e3f2ddea
IM
1890{
1891 unsigned long uentry;
1892
ba46df98 1893 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1894 return -EFAULT;
1895
ba46df98 1896 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1897 *pi = uentry & 1;
1898
1899 return 0;
1900}
1901
0771dfef
IM
1902/*
1903 * Walk curr->robust_list (very carefully, it's a userspace list!)
1904 * and mark any locks found there dead, and notify any waiters.
1905 *
1906 * We silently return on any sign of list-walking problem.
1907 */
1908void exit_robust_list(struct task_struct *curr)
1909{
1910 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1911 struct robust_list __user *entry, *next_entry, *pending;
1912 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1913 unsigned long futex_offset;
9f96cb1e 1914 int rc;
0771dfef 1915
a0c1e907
TG
1916 if (!futex_cmpxchg_enabled)
1917 return;
1918
0771dfef
IM
1919 /*
1920 * Fetch the list head (which was registered earlier, via
1921 * sys_set_robust_list()):
1922 */
e3f2ddea 1923 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1924 return;
1925 /*
1926 * Fetch the relative futex offset:
1927 */
1928 if (get_user(futex_offset, &head->futex_offset))
1929 return;
1930 /*
1931 * Fetch any possibly pending lock-add first, and handle it
1932 * if it exists:
1933 */
e3f2ddea 1934 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1935 return;
e3f2ddea 1936
9f96cb1e 1937 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1938 while (entry != &head->list) {
9f96cb1e
MS
1939 /*
1940 * Fetch the next entry in the list before calling
1941 * handle_futex_death:
1942 */
1943 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1944 /*
1945 * A pending lock might already be on the list, so
c87e2837 1946 * don't process it twice:
0771dfef
IM
1947 */
1948 if (entry != pending)
ba46df98 1949 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1950 curr, pi))
0771dfef 1951 return;
9f96cb1e 1952 if (rc)
0771dfef 1953 return;
9f96cb1e
MS
1954 entry = next_entry;
1955 pi = next_pi;
0771dfef
IM
1956 /*
1957 * Avoid excessively long or circular lists:
1958 */
1959 if (!--limit)
1960 break;
1961
1962 cond_resched();
1963 }
9f96cb1e
MS
1964
1965 if (pending)
1966 handle_futex_death((void __user *)pending + futex_offset,
1967 curr, pip);
0771dfef
IM
1968}
1969
c19384b5 1970long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 1971 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 1972{
1acdac10 1973 int clockrt, ret = -ENOSYS;
34f01cc1 1974 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 1975 int fshared = 0;
34f01cc1
ED
1976
1977 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 1978 fshared = 1;
1da177e4 1979
1acdac10
TG
1980 clockrt = op & FUTEX_CLOCK_REALTIME;
1981 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1982 return -ENOSYS;
1da177e4 1983
34f01cc1 1984 switch (cmd) {
1da177e4 1985 case FUTEX_WAIT:
cd689985
TG
1986 val3 = FUTEX_BITSET_MATCH_ANY;
1987 case FUTEX_WAIT_BITSET:
1acdac10 1988 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
1989 break;
1990 case FUTEX_WAKE:
cd689985
TG
1991 val3 = FUTEX_BITSET_MATCH_ANY;
1992 case FUTEX_WAKE_BITSET:
1993 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 1994 break;
1da177e4 1995 case FUTEX_REQUEUE:
34f01cc1 1996 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
1997 break;
1998 case FUTEX_CMP_REQUEUE:
34f01cc1 1999 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 2000 break;
4732efbe 2001 case FUTEX_WAKE_OP:
34f01cc1 2002 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 2003 break;
c87e2837 2004 case FUTEX_LOCK_PI:
a0c1e907
TG
2005 if (futex_cmpxchg_enabled)
2006 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
2007 break;
2008 case FUTEX_UNLOCK_PI:
a0c1e907
TG
2009 if (futex_cmpxchg_enabled)
2010 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
2011 break;
2012 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
2013 if (futex_cmpxchg_enabled)
2014 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 2015 break;
1da177e4
LT
2016 default:
2017 ret = -ENOSYS;
2018 }
2019 return ret;
2020}
2021
2022
17da2bd9
HC
2023SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2024 struct timespec __user *, utime, u32 __user *, uaddr2,
2025 u32, val3)
1da177e4 2026{
c19384b5
PP
2027 struct timespec ts;
2028 ktime_t t, *tp = NULL;
e2970f2f 2029 u32 val2 = 0;
34f01cc1 2030 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2031
cd689985
TG
2032 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2033 cmd == FUTEX_WAIT_BITSET)) {
c19384b5 2034 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2035 return -EFAULT;
c19384b5 2036 if (!timespec_valid(&ts))
9741ef96 2037 return -EINVAL;
c19384b5
PP
2038
2039 t = timespec_to_ktime(ts);
34f01cc1 2040 if (cmd == FUTEX_WAIT)
5a7780e7 2041 t = ktime_add_safe(ktime_get(), t);
c19384b5 2042 tp = &t;
1da177e4
LT
2043 }
2044 /*
34f01cc1 2045 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 2046 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2047 */
f54f0986
AS
2048 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2049 cmd == FUTEX_WAKE_OP)
e2970f2f 2050 val2 = (u32) (unsigned long) utime;
1da177e4 2051
c19384b5 2052 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2053}
2054
f6d107fb 2055static int __init futex_init(void)
1da177e4 2056{
a0c1e907 2057 u32 curval;
3e4ab747 2058 int i;
95362fa9 2059
a0c1e907
TG
2060 /*
2061 * This will fail and we want it. Some arch implementations do
2062 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2063 * functionality. We want to know that before we call in any
2064 * of the complex code paths. Also we want to prevent
2065 * registration of robust lists in that case. NULL is
2066 * guaranteed to fault and we get -EFAULT on functional
2067 * implementation, the non functional ones will return
2068 * -ENOSYS.
2069 */
2070 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2071 if (curval == -EFAULT)
2072 futex_cmpxchg_enabled = 1;
2073
3e4ab747
TG
2074 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2075 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2076 spin_lock_init(&futex_queues[i].lock);
2077 }
2078
1da177e4
LT
2079 return 0;
2080}
f6d107fb 2081__initcall(futex_init);
This page took 0.697302 seconds and 5 git commands to generate.