clockevents: fix typo in tick-broadcast.c
[deliverable/linux.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
54cdfdb4 35#include <linux/irq.h>
c0a31329
TG
36#include <linux/module.h>
37#include <linux/percpu.h>
38#include <linux/hrtimer.h>
39#include <linux/notifier.h>
40#include <linux/syscalls.h>
54cdfdb4 41#include <linux/kallsyms.h>
c0a31329 42#include <linux/interrupt.h>
79bf2bb3 43#include <linux/tick.h>
54cdfdb4
TG
44#include <linux/seq_file.h>
45#include <linux/err.h>
c0a31329
TG
46
47#include <asm/uaccess.h>
48
49/**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
d316c57f 54ktime_t ktime_get(void)
c0a31329
TG
55{
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61}
641b9e0e 62EXPORT_SYMBOL_GPL(ktime_get);
c0a31329
TG
63
64/**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
66 *
67 * returns the time in ktime_t format
68 */
d316c57f 69ktime_t ktime_get_real(void)
c0a31329
TG
70{
71 struct timespec now;
72
73 getnstimeofday(&now);
74
75 return timespec_to_ktime(now);
76}
77
78EXPORT_SYMBOL_GPL(ktime_get_real);
79
80/*
81 * The timer bases:
7978672c
GA
82 *
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
c0a31329 88 */
54cdfdb4 89DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 90{
3c8aa39d
TG
91
92 .clock_base =
c0a31329 93 {
3c8aa39d
TG
94 {
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
54cdfdb4 97 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
98 },
99 {
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
54cdfdb4 102 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
103 },
104 }
c0a31329
TG
105};
106
107/**
108 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
109 * @ts: pointer to timespec variable
110 *
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 113 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
114 */
115void ktime_get_ts(struct timespec *ts)
116{
117 struct timespec tomono;
118 unsigned long seq;
119
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
124
125 } while (read_seqretry(&xtime_lock, seq));
126
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
129}
69778e32 130EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 131
92127c7a
TG
132/*
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
135 */
3c8aa39d 136static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
137{
138 ktime_t xtim, tomono;
ad28d94a 139 struct timespec xts, tom;
92127c7a
TG
140 unsigned long seq;
141
142 do {
143 seq = read_seqbegin(&xtime_lock);
2c6b47de 144 xts = current_kernel_time();
ad28d94a 145 tom = wall_to_monotonic;
92127c7a
TG
146 } while (read_seqretry(&xtime_lock, seq));
147
f4304ab2 148 xtim = timespec_to_ktime(xts);
ad28d94a 149 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 ktime_add(xtim, tomono);
92127c7a
TG
153}
154
303e967f
TG
155/*
156 * Helper function to check, whether the timer is running the callback
157 * function
158 */
159static inline int hrtimer_callback_running(struct hrtimer *timer)
160{
161 return timer->state & HRTIMER_STATE_CALLBACK;
162}
163
c0a31329
TG
164/*
165 * Functions and macros which are different for UP/SMP systems are kept in a
166 * single place
167 */
168#ifdef CONFIG_SMP
169
c0a31329
TG
170/*
171 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
172 * means that all timers which are tied to this base via timer->base are
173 * locked, and the base itself is locked too.
174 *
175 * So __run_timers/migrate_timers can safely modify all timers which could
176 * be found on the lists/queues.
177 *
178 * When the timer's base is locked, and the timer removed from list, it is
179 * possible to set timer->base = NULL and drop the lock: the timer remains
180 * locked.
181 */
3c8aa39d
TG
182static
183struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
184 unsigned long *flags)
c0a31329 185{
3c8aa39d 186 struct hrtimer_clock_base *base;
c0a31329
TG
187
188 for (;;) {
189 base = timer->base;
190 if (likely(base != NULL)) {
3c8aa39d 191 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
192 if (likely(base == timer->base))
193 return base;
194 /* The timer has migrated to another CPU: */
3c8aa39d 195 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
196 }
197 cpu_relax();
198 }
199}
200
201/*
202 * Switch the timer base to the current CPU when possible.
203 */
3c8aa39d
TG
204static inline struct hrtimer_clock_base *
205switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 206{
3c8aa39d
TG
207 struct hrtimer_clock_base *new_base;
208 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 209
3c8aa39d
TG
210 new_cpu_base = &__get_cpu_var(hrtimer_bases);
211 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
212
213 if (base != new_base) {
214 /*
215 * We are trying to schedule the timer on the local CPU.
216 * However we can't change timer's base while it is running,
217 * so we keep it on the same CPU. No hassle vs. reprogramming
218 * the event source in the high resolution case. The softirq
219 * code will take care of this when the timer function has
220 * completed. There is no conflict as we hold the lock until
221 * the timer is enqueued.
222 */
54cdfdb4 223 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
224 return base;
225
226 /* See the comment in lock_timer_base() */
227 timer->base = NULL;
3c8aa39d
TG
228 spin_unlock(&base->cpu_base->lock);
229 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
230 timer->base = new_base;
231 }
232 return new_base;
233}
234
235#else /* CONFIG_SMP */
236
3c8aa39d 237static inline struct hrtimer_clock_base *
c0a31329
TG
238lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
239{
3c8aa39d 240 struct hrtimer_clock_base *base = timer->base;
c0a31329 241
3c8aa39d 242 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
243
244 return base;
245}
246
54cdfdb4 247# define switch_hrtimer_base(t, b) (b)
c0a31329
TG
248
249#endif /* !CONFIG_SMP */
250
251/*
252 * Functions for the union type storage format of ktime_t which are
253 * too large for inlining:
254 */
255#if BITS_PER_LONG < 64
256# ifndef CONFIG_KTIME_SCALAR
257/**
258 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
259 * @kt: addend
260 * @nsec: the scalar nsec value to add
261 *
262 * Returns the sum of kt and nsec in ktime_t format
263 */
264ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
265{
266 ktime_t tmp;
267
268 if (likely(nsec < NSEC_PER_SEC)) {
269 tmp.tv64 = nsec;
270 } else {
271 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
272
273 tmp = ktime_set((long)nsec, rem);
274 }
275
276 return ktime_add(kt, tmp);
277}
b8b8fd2d
DH
278
279EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
280
281/**
282 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
283 * @kt: minuend
284 * @nsec: the scalar nsec value to subtract
285 *
286 * Returns the subtraction of @nsec from @kt in ktime_t format
287 */
288ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
289{
290 ktime_t tmp;
291
292 if (likely(nsec < NSEC_PER_SEC)) {
293 tmp.tv64 = nsec;
294 } else {
295 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
296
297 tmp = ktime_set((long)nsec, rem);
298 }
299
300 return ktime_sub(kt, tmp);
301}
302
303EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
304# endif /* !CONFIG_KTIME_SCALAR */
305
306/*
307 * Divide a ktime value by a nanosecond value
308 */
4d672e7a 309u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329
TG
310{
311 u64 dclc, inc, dns;
312 int sft = 0;
313
314 dclc = dns = ktime_to_ns(kt);
315 inc = div;
316 /* Make sure the divisor is less than 2^32: */
317 while (div >> 32) {
318 sft++;
319 div >>= 1;
320 }
321 dclc >>= sft;
322 do_div(dclc, (unsigned long) div);
323
4d672e7a 324 return dclc;
c0a31329 325}
c0a31329
TG
326#endif /* BITS_PER_LONG >= 64 */
327
5a7780e7
TG
328/*
329 * Add two ktime values and do a safety check for overflow:
330 */
331ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
332{
333 ktime_t res = ktime_add(lhs, rhs);
334
335 /*
336 * We use KTIME_SEC_MAX here, the maximum timeout which we can
337 * return to user space in a timespec:
338 */
339 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
340 res = ktime_set(KTIME_SEC_MAX, 0);
341
342 return res;
343}
344
d3d74453
PZ
345/*
346 * Check, whether the timer is on the callback pending list
347 */
348static inline int hrtimer_cb_pending(const struct hrtimer *timer)
349{
350 return timer->state & HRTIMER_STATE_PENDING;
351}
352
353/*
354 * Remove a timer from the callback pending list
355 */
356static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
357{
358 list_del_init(&timer->cb_entry);
359}
360
54cdfdb4
TG
361/* High resolution timer related functions */
362#ifdef CONFIG_HIGH_RES_TIMERS
363
364/*
365 * High resolution timer enabled ?
366 */
367static int hrtimer_hres_enabled __read_mostly = 1;
368
369/*
370 * Enable / Disable high resolution mode
371 */
372static int __init setup_hrtimer_hres(char *str)
373{
374 if (!strcmp(str, "off"))
375 hrtimer_hres_enabled = 0;
376 else if (!strcmp(str, "on"))
377 hrtimer_hres_enabled = 1;
378 else
379 return 0;
380 return 1;
381}
382
383__setup("highres=", setup_hrtimer_hres);
384
385/*
386 * hrtimer_high_res_enabled - query, if the highres mode is enabled
387 */
388static inline int hrtimer_is_hres_enabled(void)
389{
390 return hrtimer_hres_enabled;
391}
392
393/*
394 * Is the high resolution mode active ?
395 */
396static inline int hrtimer_hres_active(void)
397{
398 return __get_cpu_var(hrtimer_bases).hres_active;
399}
400
401/*
402 * Reprogram the event source with checking both queues for the
403 * next event
404 * Called with interrupts disabled and base->lock held
405 */
406static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
407{
408 int i;
409 struct hrtimer_clock_base *base = cpu_base->clock_base;
410 ktime_t expires;
411
412 cpu_base->expires_next.tv64 = KTIME_MAX;
413
414 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
415 struct hrtimer *timer;
416
417 if (!base->first)
418 continue;
419 timer = rb_entry(base->first, struct hrtimer, node);
420 expires = ktime_sub(timer->expires, base->offset);
421 if (expires.tv64 < cpu_base->expires_next.tv64)
422 cpu_base->expires_next = expires;
423 }
424
425 if (cpu_base->expires_next.tv64 != KTIME_MAX)
426 tick_program_event(cpu_base->expires_next, 1);
427}
428
429/*
430 * Shared reprogramming for clock_realtime and clock_monotonic
431 *
432 * When a timer is enqueued and expires earlier than the already enqueued
433 * timers, we have to check, whether it expires earlier than the timer for
434 * which the clock event device was armed.
435 *
436 * Called with interrupts disabled and base->cpu_base.lock held
437 */
438static int hrtimer_reprogram(struct hrtimer *timer,
439 struct hrtimer_clock_base *base)
440{
441 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
442 ktime_t expires = ktime_sub(timer->expires, base->offset);
443 int res;
444
63070a79
TG
445 WARN_ON_ONCE(timer->expires.tv64 < 0);
446
54cdfdb4
TG
447 /*
448 * When the callback is running, we do not reprogram the clock event
449 * device. The timer callback is either running on a different CPU or
3a4fa0a2 450 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
451 * reprogramming is handled either by the softirq, which called the
452 * callback or at the end of the hrtimer_interrupt.
453 */
454 if (hrtimer_callback_running(timer))
455 return 0;
456
63070a79
TG
457 /*
458 * CLOCK_REALTIME timer might be requested with an absolute
459 * expiry time which is less than base->offset. Nothing wrong
460 * about that, just avoid to call into the tick code, which
461 * has now objections against negative expiry values.
462 */
463 if (expires.tv64 < 0)
464 return -ETIME;
465
54cdfdb4
TG
466 if (expires.tv64 >= expires_next->tv64)
467 return 0;
468
469 /*
470 * Clockevents returns -ETIME, when the event was in the past.
471 */
472 res = tick_program_event(expires, 0);
473 if (!IS_ERR_VALUE(res))
474 *expires_next = expires;
475 return res;
476}
477
478
479/*
480 * Retrigger next event is called after clock was set
481 *
482 * Called with interrupts disabled via on_each_cpu()
483 */
484static void retrigger_next_event(void *arg)
485{
486 struct hrtimer_cpu_base *base;
487 struct timespec realtime_offset;
488 unsigned long seq;
489
490 if (!hrtimer_hres_active())
491 return;
492
493 do {
494 seq = read_seqbegin(&xtime_lock);
495 set_normalized_timespec(&realtime_offset,
496 -wall_to_monotonic.tv_sec,
497 -wall_to_monotonic.tv_nsec);
498 } while (read_seqretry(&xtime_lock, seq));
499
500 base = &__get_cpu_var(hrtimer_bases);
501
502 /* Adjust CLOCK_REALTIME offset */
503 spin_lock(&base->lock);
504 base->clock_base[CLOCK_REALTIME].offset =
505 timespec_to_ktime(realtime_offset);
506
507 hrtimer_force_reprogram(base);
508 spin_unlock(&base->lock);
509}
510
511/*
512 * Clock realtime was set
513 *
514 * Change the offset of the realtime clock vs. the monotonic
515 * clock.
516 *
517 * We might have to reprogram the high resolution timer interrupt. On
518 * SMP we call the architecture specific code to retrigger _all_ high
519 * resolution timer interrupts. On UP we just disable interrupts and
520 * call the high resolution interrupt code.
521 */
522void clock_was_set(void)
523{
524 /* Retrigger the CPU local events everywhere */
525 on_each_cpu(retrigger_next_event, NULL, 0, 1);
526}
527
995f054f
IM
528/*
529 * During resume we might have to reprogram the high resolution timer
530 * interrupt (on the local CPU):
531 */
532void hres_timers_resume(void)
533{
534 WARN_ON_ONCE(num_online_cpus() > 1);
535
536 /* Retrigger the CPU local events: */
537 retrigger_next_event(NULL);
538}
539
54cdfdb4
TG
540/*
541 * Initialize the high resolution related parts of cpu_base
542 */
543static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
544{
545 base->expires_next.tv64 = KTIME_MAX;
546 base->hres_active = 0;
54cdfdb4
TG
547}
548
549/*
550 * Initialize the high resolution related parts of a hrtimer
551 */
552static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
553{
54cdfdb4
TG
554}
555
556/*
557 * When High resolution timers are active, try to reprogram. Note, that in case
558 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
559 * check happens. The timer gets enqueued into the rbtree. The reprogramming
560 * and expiry check is done in the hrtimer_interrupt or in the softirq.
561 */
562static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
563 struct hrtimer_clock_base *base)
564{
565 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
566
567 /* Timer is expired, act upon the callback mode */
568 switch(timer->cb_mode) {
569 case HRTIMER_CB_IRQSAFE_NO_RESTART:
570 /*
571 * We can call the callback from here. No restart
572 * happens, so no danger of recursion
573 */
574 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
575 return 1;
576 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
577 /*
578 * This is solely for the sched tick emulation with
579 * dynamic tick support to ensure that we do not
580 * restart the tick right on the edge and end up with
581 * the tick timer in the softirq ! The calling site
582 * takes care of this.
583 */
584 return 1;
585 case HRTIMER_CB_IRQSAFE:
586 case HRTIMER_CB_SOFTIRQ:
587 /*
588 * Move everything else into the softirq pending list !
589 */
590 list_add_tail(&timer->cb_entry,
591 &base->cpu_base->cb_pending);
592 timer->state = HRTIMER_STATE_PENDING;
593 raise_softirq(HRTIMER_SOFTIRQ);
594 return 1;
595 default:
596 BUG();
597 }
598 }
599 return 0;
600}
601
602/*
603 * Switch to high resolution mode
604 */
f8953856 605static int hrtimer_switch_to_hres(void)
54cdfdb4 606{
820de5c3
IM
607 int cpu = smp_processor_id();
608 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
609 unsigned long flags;
610
611 if (base->hres_active)
f8953856 612 return 1;
54cdfdb4
TG
613
614 local_irq_save(flags);
615
616 if (tick_init_highres()) {
617 local_irq_restore(flags);
820de5c3
IM
618 printk(KERN_WARNING "Could not switch to high resolution "
619 "mode on CPU %d\n", cpu);
f8953856 620 return 0;
54cdfdb4
TG
621 }
622 base->hres_active = 1;
623 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
624 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
625
626 tick_setup_sched_timer();
627
628 /* "Retrigger" the interrupt to get things going */
629 retrigger_next_event(NULL);
630 local_irq_restore(flags);
edfed66e 631 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
54cdfdb4 632 smp_processor_id());
f8953856 633 return 1;
54cdfdb4
TG
634}
635
636#else
637
638static inline int hrtimer_hres_active(void) { return 0; }
639static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 640static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
641static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
642static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
643 struct hrtimer_clock_base *base)
644{
645 return 0;
646}
54cdfdb4
TG
647static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
648static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
d3d74453
PZ
649static inline int hrtimer_reprogram(struct hrtimer *timer,
650 struct hrtimer_clock_base *base)
651{
652 return 0;
653}
54cdfdb4
TG
654
655#endif /* CONFIG_HIGH_RES_TIMERS */
656
82f67cd9
IM
657#ifdef CONFIG_TIMER_STATS
658void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
659{
660 if (timer->start_site)
661 return;
662
663 timer->start_site = addr;
664 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
665 timer->start_pid = current->pid;
666}
667#endif
668
c0a31329 669/*
6506f2aa 670 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
671 */
672static inline
673void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
674{
3c8aa39d 675 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
676}
677
678/**
679 * hrtimer_forward - forward the timer expiry
c0a31329 680 * @timer: hrtimer to forward
44f21475 681 * @now: forward past this time
c0a31329
TG
682 * @interval: the interval to forward
683 *
684 * Forward the timer expiry so it will expire in the future.
8dca6f33 685 * Returns the number of overruns.
c0a31329 686 */
4d672e7a 687u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 688{
4d672e7a 689 u64 orun = 1;
44f21475 690 ktime_t delta;
c0a31329
TG
691
692 delta = ktime_sub(now, timer->expires);
693
694 if (delta.tv64 < 0)
695 return 0;
696
c9db4fa1
TG
697 if (interval.tv64 < timer->base->resolution.tv64)
698 interval.tv64 = timer->base->resolution.tv64;
699
c0a31329 700 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 701 s64 incr = ktime_to_ns(interval);
c0a31329
TG
702
703 orun = ktime_divns(delta, incr);
704 timer->expires = ktime_add_ns(timer->expires, incr * orun);
705 if (timer->expires.tv64 > now.tv64)
706 return orun;
707 /*
708 * This (and the ktime_add() below) is the
709 * correction for exact:
710 */
711 orun++;
712 }
5a7780e7 713 timer->expires = ktime_add_safe(timer->expires, interval);
c0a31329
TG
714
715 return orun;
716}
6bdb6b62 717EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
718
719/*
720 * enqueue_hrtimer - internal function to (re)start a timer
721 *
722 * The timer is inserted in expiry order. Insertion into the
723 * red black tree is O(log(n)). Must hold the base lock.
724 */
3c8aa39d 725static void enqueue_hrtimer(struct hrtimer *timer,
54cdfdb4 726 struct hrtimer_clock_base *base, int reprogram)
c0a31329
TG
727{
728 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
729 struct rb_node *parent = NULL;
730 struct hrtimer *entry;
99bc2fcb 731 int leftmost = 1;
c0a31329
TG
732
733 /*
734 * Find the right place in the rbtree:
735 */
736 while (*link) {
737 parent = *link;
738 entry = rb_entry(parent, struct hrtimer, node);
739 /*
740 * We dont care about collisions. Nodes with
741 * the same expiry time stay together.
742 */
99bc2fcb 743 if (timer->expires.tv64 < entry->expires.tv64) {
c0a31329 744 link = &(*link)->rb_left;
99bc2fcb 745 } else {
c0a31329 746 link = &(*link)->rb_right;
99bc2fcb
IM
747 leftmost = 0;
748 }
c0a31329
TG
749 }
750
751 /*
288867ec
TG
752 * Insert the timer to the rbtree and check whether it
753 * replaces the first pending timer
c0a31329 754 */
99bc2fcb 755 if (leftmost) {
54cdfdb4
TG
756 /*
757 * Reprogram the clock event device. When the timer is already
758 * expired hrtimer_enqueue_reprogram has either called the
759 * callback or added it to the pending list and raised the
760 * softirq.
761 *
762 * This is a NOP for !HIGHRES
763 */
764 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
765 return;
766
767 base->first = &timer->node;
768 }
769
c0a31329
TG
770 rb_link_node(&timer->node, parent, link);
771 rb_insert_color(&timer->node, &base->active);
303e967f
TG
772 /*
773 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
774 * state of a possibly running callback.
775 */
776 timer->state |= HRTIMER_STATE_ENQUEUED;
288867ec 777}
c0a31329
TG
778
779/*
780 * __remove_hrtimer - internal function to remove a timer
781 *
782 * Caller must hold the base lock.
54cdfdb4
TG
783 *
784 * High resolution timer mode reprograms the clock event device when the
785 * timer is the one which expires next. The caller can disable this by setting
786 * reprogram to zero. This is useful, when the context does a reprogramming
787 * anyway (e.g. timer interrupt)
c0a31329 788 */
3c8aa39d 789static void __remove_hrtimer(struct hrtimer *timer,
303e967f 790 struct hrtimer_clock_base *base,
54cdfdb4 791 unsigned long newstate, int reprogram)
c0a31329 792{
54cdfdb4
TG
793 /* High res. callback list. NOP for !HIGHRES */
794 if (hrtimer_cb_pending(timer))
795 hrtimer_remove_cb_pending(timer);
796 else {
797 /*
798 * Remove the timer from the rbtree and replace the
799 * first entry pointer if necessary.
800 */
801 if (base->first == &timer->node) {
802 base->first = rb_next(&timer->node);
803 /* Reprogram the clock event device. if enabled */
804 if (reprogram && hrtimer_hres_active())
805 hrtimer_force_reprogram(base->cpu_base);
806 }
807 rb_erase(&timer->node, &base->active);
808 }
303e967f 809 timer->state = newstate;
c0a31329
TG
810}
811
812/*
813 * remove hrtimer, called with base lock held
814 */
815static inline int
3c8aa39d 816remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 817{
303e967f 818 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
819 int reprogram;
820
821 /*
822 * Remove the timer and force reprogramming when high
823 * resolution mode is active and the timer is on the current
824 * CPU. If we remove a timer on another CPU, reprogramming is
825 * skipped. The interrupt event on this CPU is fired and
826 * reprogramming happens in the interrupt handler. This is a
827 * rare case and less expensive than a smp call.
828 */
82f67cd9 829 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
830 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
831 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
832 reprogram);
c0a31329
TG
833 return 1;
834 }
835 return 0;
836}
837
838/**
839 * hrtimer_start - (re)start an relative timer on the current CPU
c0a31329
TG
840 * @timer: the timer to be added
841 * @tim: expiry time
842 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
843 *
844 * Returns:
845 * 0 on success
846 * 1 when the timer was active
847 */
848int
849hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
850{
3c8aa39d 851 struct hrtimer_clock_base *base, *new_base;
c0a31329
TG
852 unsigned long flags;
853 int ret;
854
855 base = lock_hrtimer_base(timer, &flags);
856
857 /* Remove an active timer from the queue: */
858 ret = remove_hrtimer(timer, base);
859
860 /* Switch the timer base, if necessary: */
861 new_base = switch_hrtimer_base(timer, base);
862
c9cb2e3d 863 if (mode == HRTIMER_MODE_REL) {
5a7780e7 864 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
865 /*
866 * CONFIG_TIME_LOW_RES is a temporary way for architectures
867 * to signal that they simply return xtime in
868 * do_gettimeoffset(). In this case we want to round up by
869 * resolution when starting a relative timer, to avoid short
870 * timeouts. This will go away with the GTOD framework.
871 */
872#ifdef CONFIG_TIME_LOW_RES
5a7780e7 873 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
874#endif
875 }
c0a31329
TG
876 timer->expires = tim;
877
82f67cd9
IM
878 timer_stats_hrtimer_set_start_info(timer);
879
935c631d
IM
880 /*
881 * Only allow reprogramming if the new base is on this CPU.
882 * (it might still be on another CPU if the timer was pending)
883 */
884 enqueue_hrtimer(timer, new_base,
885 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
c0a31329
TG
886
887 unlock_hrtimer_base(timer, &flags);
888
889 return ret;
890}
8d16b764 891EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329
TG
892
893/**
894 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
895 * @timer: hrtimer to stop
896 *
897 * Returns:
898 * 0 when the timer was not active
899 * 1 when the timer was active
900 * -1 when the timer is currently excuting the callback function and
fa9799e3 901 * cannot be stopped
c0a31329
TG
902 */
903int hrtimer_try_to_cancel(struct hrtimer *timer)
904{
3c8aa39d 905 struct hrtimer_clock_base *base;
c0a31329
TG
906 unsigned long flags;
907 int ret = -1;
908
909 base = lock_hrtimer_base(timer, &flags);
910
303e967f 911 if (!hrtimer_callback_running(timer))
c0a31329
TG
912 ret = remove_hrtimer(timer, base);
913
914 unlock_hrtimer_base(timer, &flags);
915
916 return ret;
917
918}
8d16b764 919EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
920
921/**
922 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
923 * @timer: the timer to be cancelled
924 *
925 * Returns:
926 * 0 when the timer was not active
927 * 1 when the timer was active
928 */
929int hrtimer_cancel(struct hrtimer *timer)
930{
931 for (;;) {
932 int ret = hrtimer_try_to_cancel(timer);
933
934 if (ret >= 0)
935 return ret;
5ef37b19 936 cpu_relax();
c0a31329
TG
937 }
938}
8d16b764 939EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
940
941/**
942 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
943 * @timer: the timer to read
944 */
945ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
946{
3c8aa39d 947 struct hrtimer_clock_base *base;
c0a31329
TG
948 unsigned long flags;
949 ktime_t rem;
950
951 base = lock_hrtimer_base(timer, &flags);
3c8aa39d 952 rem = ktime_sub(timer->expires, base->get_time());
c0a31329
TG
953 unlock_hrtimer_base(timer, &flags);
954
955 return rem;
956}
8d16b764 957EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 958
fd064b9b 959#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
69239749
TL
960/**
961 * hrtimer_get_next_event - get the time until next expiry event
962 *
963 * Returns the delta to the next expiry event or KTIME_MAX if no timer
964 * is pending.
965 */
966ktime_t hrtimer_get_next_event(void)
967{
3c8aa39d
TG
968 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
969 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
970 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
971 unsigned long flags;
972 int i;
973
3c8aa39d
TG
974 spin_lock_irqsave(&cpu_base->lock, flags);
975
54cdfdb4
TG
976 if (!hrtimer_hres_active()) {
977 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
978 struct hrtimer *timer;
69239749 979
54cdfdb4
TG
980 if (!base->first)
981 continue;
3c8aa39d 982
54cdfdb4
TG
983 timer = rb_entry(base->first, struct hrtimer, node);
984 delta.tv64 = timer->expires.tv64;
985 delta = ktime_sub(delta, base->get_time());
986 if (delta.tv64 < mindelta.tv64)
987 mindelta.tv64 = delta.tv64;
988 }
69239749 989 }
3c8aa39d
TG
990
991 spin_unlock_irqrestore(&cpu_base->lock, flags);
992
69239749
TL
993 if (mindelta.tv64 < 0)
994 mindelta.tv64 = 0;
995 return mindelta;
996}
997#endif
998
c0a31329 999/**
7978672c 1000 * hrtimer_init - initialize a timer to the given clock
7978672c 1001 * @timer: the timer to be initialized
c0a31329 1002 * @clock_id: the clock to be used
7978672c 1003 * @mode: timer mode abs/rel
c0a31329 1004 */
7978672c
GA
1005void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1006 enum hrtimer_mode mode)
c0a31329 1007{
3c8aa39d 1008 struct hrtimer_cpu_base *cpu_base;
c0a31329 1009
7978672c
GA
1010 memset(timer, 0, sizeof(struct hrtimer));
1011
3c8aa39d 1012 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1013
c9cb2e3d 1014 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1015 clock_id = CLOCK_MONOTONIC;
1016
3c8aa39d 1017 timer->base = &cpu_base->clock_base[clock_id];
d3d74453 1018 INIT_LIST_HEAD(&timer->cb_entry);
54cdfdb4 1019 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1020
1021#ifdef CONFIG_TIMER_STATS
1022 timer->start_site = NULL;
1023 timer->start_pid = -1;
1024 memset(timer->start_comm, 0, TASK_COMM_LEN);
1025#endif
c0a31329 1026}
8d16b764 1027EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1028
1029/**
1030 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1031 * @which_clock: which clock to query
1032 * @tp: pointer to timespec variable to store the resolution
1033 *
72fd4a35
RD
1034 * Store the resolution of the clock selected by @which_clock in the
1035 * variable pointed to by @tp.
c0a31329
TG
1036 */
1037int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1038{
3c8aa39d 1039 struct hrtimer_cpu_base *cpu_base;
c0a31329 1040
3c8aa39d
TG
1041 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1042 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1043
1044 return 0;
1045}
8d16b764 1046EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1047
d3d74453
PZ
1048static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
1049{
1050 spin_lock_irq(&cpu_base->lock);
1051
1052 while (!list_empty(&cpu_base->cb_pending)) {
1053 enum hrtimer_restart (*fn)(struct hrtimer *);
1054 struct hrtimer *timer;
1055 int restart;
1056
1057 timer = list_entry(cpu_base->cb_pending.next,
1058 struct hrtimer, cb_entry);
1059
1060 timer_stats_account_hrtimer(timer);
1061
1062 fn = timer->function;
1063 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1064 spin_unlock_irq(&cpu_base->lock);
1065
1066 restart = fn(timer);
1067
1068 spin_lock_irq(&cpu_base->lock);
1069
1070 timer->state &= ~HRTIMER_STATE_CALLBACK;
1071 if (restart == HRTIMER_RESTART) {
1072 BUG_ON(hrtimer_active(timer));
1073 /*
1074 * Enqueue the timer, allow reprogramming of the event
1075 * device
1076 */
1077 enqueue_hrtimer(timer, timer->base, 1);
1078 } else if (hrtimer_active(timer)) {
1079 /*
1080 * If the timer was rearmed on another CPU, reprogram
1081 * the event device.
1082 */
1083 if (timer->base->first == &timer->node)
1084 hrtimer_reprogram(timer, timer->base);
1085 }
1086 }
1087 spin_unlock_irq(&cpu_base->lock);
1088}
1089
1090static void __run_hrtimer(struct hrtimer *timer)
1091{
1092 struct hrtimer_clock_base *base = timer->base;
1093 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1094 enum hrtimer_restart (*fn)(struct hrtimer *);
1095 int restart;
1096
1097 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1098 timer_stats_account_hrtimer(timer);
1099
1100 fn = timer->function;
1101 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) {
1102 /*
1103 * Used for scheduler timers, avoid lock inversion with
1104 * rq->lock and tasklist_lock.
1105 *
1106 * These timers are required to deal with enqueue expiry
1107 * themselves and are not allowed to migrate.
1108 */
1109 spin_unlock(&cpu_base->lock);
1110 restart = fn(timer);
1111 spin_lock(&cpu_base->lock);
1112 } else
1113 restart = fn(timer);
1114
1115 /*
1116 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1117 * reprogramming of the event hardware. This happens at the end of this
1118 * function anyway.
1119 */
1120 if (restart != HRTIMER_NORESTART) {
1121 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1122 enqueue_hrtimer(timer, base, 0);
1123 }
1124 timer->state &= ~HRTIMER_STATE_CALLBACK;
1125}
1126
54cdfdb4
TG
1127#ifdef CONFIG_HIGH_RES_TIMERS
1128
1129/*
1130 * High resolution timer interrupt
1131 * Called with interrupts disabled
1132 */
1133void hrtimer_interrupt(struct clock_event_device *dev)
1134{
1135 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1136 struct hrtimer_clock_base *base;
1137 ktime_t expires_next, now;
1138 int i, raise = 0;
1139
1140 BUG_ON(!cpu_base->hres_active);
1141 cpu_base->nr_events++;
1142 dev->next_event.tv64 = KTIME_MAX;
1143
1144 retry:
1145 now = ktime_get();
1146
1147 expires_next.tv64 = KTIME_MAX;
1148
1149 base = cpu_base->clock_base;
1150
1151 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1152 ktime_t basenow;
1153 struct rb_node *node;
1154
1155 spin_lock(&cpu_base->lock);
1156
1157 basenow = ktime_add(now, base->offset);
1158
1159 while ((node = base->first)) {
1160 struct hrtimer *timer;
1161
1162 timer = rb_entry(node, struct hrtimer, node);
1163
1164 if (basenow.tv64 < timer->expires.tv64) {
1165 ktime_t expires;
1166
1167 expires = ktime_sub(timer->expires,
1168 base->offset);
1169 if (expires.tv64 < expires_next.tv64)
1170 expires_next = expires;
1171 break;
1172 }
1173
1174 /* Move softirq callbacks to the pending list */
1175 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1176 __remove_hrtimer(timer, base,
1177 HRTIMER_STATE_PENDING, 0);
1178 list_add_tail(&timer->cb_entry,
1179 &base->cpu_base->cb_pending);
1180 raise = 1;
1181 continue;
1182 }
1183
d3d74453 1184 __run_hrtimer(timer);
54cdfdb4
TG
1185 }
1186 spin_unlock(&cpu_base->lock);
1187 base++;
1188 }
1189
1190 cpu_base->expires_next = expires_next;
1191
1192 /* Reprogramming necessary ? */
1193 if (expires_next.tv64 != KTIME_MAX) {
1194 if (tick_program_event(expires_next, 0))
1195 goto retry;
1196 }
1197
1198 /* Raise softirq ? */
1199 if (raise)
1200 raise_softirq(HRTIMER_SOFTIRQ);
1201}
1202
1203static void run_hrtimer_softirq(struct softirq_action *h)
1204{
d3d74453
PZ
1205 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
1206}
54cdfdb4 1207
d3d74453 1208#endif /* CONFIG_HIGH_RES_TIMERS */
82f67cd9 1209
d3d74453
PZ
1210/*
1211 * Called from timer softirq every jiffy, expire hrtimers:
1212 *
1213 * For HRT its the fall back code to run the softirq in the timer
1214 * softirq context in case the hrtimer initialization failed or has
1215 * not been done yet.
1216 */
1217void hrtimer_run_pending(void)
1218{
1219 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
54cdfdb4 1220
d3d74453
PZ
1221 if (hrtimer_hres_active())
1222 return;
54cdfdb4 1223
d3d74453
PZ
1224 /*
1225 * This _is_ ugly: We have to check in the softirq context,
1226 * whether we can switch to highres and / or nohz mode. The
1227 * clocksource switch happens in the timer interrupt with
1228 * xtime_lock held. Notification from there only sets the
1229 * check bit in the tick_oneshot code, otherwise we might
1230 * deadlock vs. xtime_lock.
1231 */
1232 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1233 hrtimer_switch_to_hres();
54cdfdb4 1234
d3d74453 1235 run_hrtimer_pending(cpu_base);
54cdfdb4
TG
1236}
1237
c0a31329 1238/*
d3d74453 1239 * Called from hardirq context every jiffy
c0a31329 1240 */
3c8aa39d
TG
1241static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1242 int index)
c0a31329 1243{
288867ec 1244 struct rb_node *node;
3c8aa39d 1245 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
c0a31329 1246
3055adda
DS
1247 if (!base->first)
1248 return;
1249
92127c7a
TG
1250 if (base->get_softirq_time)
1251 base->softirq_time = base->get_softirq_time();
1252
d3d74453 1253 spin_lock(&cpu_base->lock);
c0a31329 1254
288867ec 1255 while ((node = base->first)) {
c0a31329 1256 struct hrtimer *timer;
c0a31329 1257
288867ec 1258 timer = rb_entry(node, struct hrtimer, node);
92127c7a 1259 if (base->softirq_time.tv64 <= timer->expires.tv64)
c0a31329
TG
1260 break;
1261
d3d74453
PZ
1262 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1263 __remove_hrtimer(timer, base, HRTIMER_STATE_PENDING, 0);
1264 list_add_tail(&timer->cb_entry,
1265 &base->cpu_base->cb_pending);
1266 continue;
b75f7a51 1267 }
d3d74453
PZ
1268
1269 __run_hrtimer(timer);
c0a31329 1270 }
d3d74453 1271 spin_unlock(&cpu_base->lock);
c0a31329
TG
1272}
1273
c0a31329
TG
1274void hrtimer_run_queues(void)
1275{
3c8aa39d 1276 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
c0a31329
TG
1277 int i;
1278
54cdfdb4
TG
1279 if (hrtimer_hres_active())
1280 return;
1281
3c8aa39d 1282 hrtimer_get_softirq_time(cpu_base);
92127c7a 1283
3c8aa39d
TG
1284 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1285 run_hrtimer_queue(cpu_base, i);
c0a31329
TG
1286}
1287
10c94ec1
TG
1288/*
1289 * Sleep related functions:
1290 */
c9cb2e3d 1291static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1292{
1293 struct hrtimer_sleeper *t =
1294 container_of(timer, struct hrtimer_sleeper, timer);
1295 struct task_struct *task = t->task;
1296
1297 t->task = NULL;
1298 if (task)
1299 wake_up_process(task);
1300
1301 return HRTIMER_NORESTART;
1302}
1303
36c8b586 1304void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1305{
1306 sl->timer.function = hrtimer_wakeup;
1307 sl->task = task;
54cdfdb4 1308#ifdef CONFIG_HIGH_RES_TIMERS
37bb6cb4 1309 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
54cdfdb4 1310#endif
00362e33
TG
1311}
1312
669d7868 1313static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1314{
669d7868 1315 hrtimer_init_sleeper(t, current);
10c94ec1 1316
432569bb
RZ
1317 do {
1318 set_current_state(TASK_INTERRUPTIBLE);
1319 hrtimer_start(&t->timer, t->timer.expires, mode);
37bb6cb4
PZ
1320 if (!hrtimer_active(&t->timer))
1321 t->task = NULL;
432569bb 1322
54cdfdb4
TG
1323 if (likely(t->task))
1324 schedule();
432569bb 1325
669d7868 1326 hrtimer_cancel(&t->timer);
c9cb2e3d 1327 mode = HRTIMER_MODE_ABS;
669d7868
TG
1328
1329 } while (t->task && !signal_pending(current));
432569bb 1330
3588a085
PZ
1331 __set_current_state(TASK_RUNNING);
1332
669d7868 1333 return t->task == NULL;
10c94ec1
TG
1334}
1335
080344b9
ON
1336static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1337{
1338 struct timespec rmt;
1339 ktime_t rem;
1340
1341 rem = ktime_sub(timer->expires, timer->base->get_time());
1342 if (rem.tv64 <= 0)
1343 return 0;
1344 rmt = ktime_to_timespec(rem);
1345
1346 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1347 return -EFAULT;
1348
1349 return 1;
1350}
1351
1711ef38 1352long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1353{
669d7868 1354 struct hrtimer_sleeper t;
080344b9 1355 struct timespec __user *rmtp;
10c94ec1 1356
029a07e0
TG
1357 hrtimer_init(&t.timer, restart->nanosleep.index, HRTIMER_MODE_ABS);
1358 t.timer.expires.tv64 = restart->nanosleep.expires;
10c94ec1 1359
c9cb2e3d 1360 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
10c94ec1
TG
1361 return 0;
1362
029a07e0 1363 rmtp = restart->nanosleep.rmtp;
432569bb 1364 if (rmtp) {
080344b9
ON
1365 int ret = update_rmtp(&t.timer, rmtp);
1366 if (ret <= 0)
1367 return ret;
432569bb 1368 }
10c94ec1 1369
10c94ec1
TG
1370 /* The other values in restart are already filled in */
1371 return -ERESTART_RESTARTBLOCK;
1372}
1373
080344b9 1374long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1375 const enum hrtimer_mode mode, const clockid_t clockid)
1376{
1377 struct restart_block *restart;
669d7868 1378 struct hrtimer_sleeper t;
10c94ec1 1379
432569bb
RZ
1380 hrtimer_init(&t.timer, clockid, mode);
1381 t.timer.expires = timespec_to_ktime(*rqtp);
1382 if (do_nanosleep(&t, mode))
10c94ec1
TG
1383 return 0;
1384
7978672c 1385 /* Absolute timers do not update the rmtp value and restart: */
c9cb2e3d 1386 if (mode == HRTIMER_MODE_ABS)
10c94ec1
TG
1387 return -ERESTARTNOHAND;
1388
432569bb 1389 if (rmtp) {
080344b9
ON
1390 int ret = update_rmtp(&t.timer, rmtp);
1391 if (ret <= 0)
1392 return ret;
432569bb 1393 }
10c94ec1
TG
1394
1395 restart = &current_thread_info()->restart_block;
1711ef38 1396 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1397 restart->nanosleep.index = t.timer.base->index;
1398 restart->nanosleep.rmtp = rmtp;
1399 restart->nanosleep.expires = t.timer.expires.tv64;
10c94ec1
TG
1400
1401 return -ERESTART_RESTARTBLOCK;
1402}
1403
6ba1b912
TG
1404asmlinkage long
1405sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1406{
080344b9 1407 struct timespec tu;
6ba1b912
TG
1408
1409 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1410 return -EFAULT;
1411
1412 if (!timespec_valid(&tu))
1413 return -EINVAL;
1414
080344b9 1415 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1416}
1417
c0a31329
TG
1418/*
1419 * Functions related to boot-time initialization:
1420 */
0ec160dd 1421static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1422{
3c8aa39d 1423 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1424 int i;
1425
3c8aa39d 1426 spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1427
1428 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1429 cpu_base->clock_base[i].cpu_base = cpu_base;
1430
d3d74453 1431 INIT_LIST_HEAD(&cpu_base->cb_pending);
54cdfdb4 1432 hrtimer_init_hres(cpu_base);
c0a31329
TG
1433}
1434
1435#ifdef CONFIG_HOTPLUG_CPU
1436
3c8aa39d
TG
1437static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1438 struct hrtimer_clock_base *new_base)
c0a31329
TG
1439{
1440 struct hrtimer *timer;
1441 struct rb_node *node;
1442
1443 while ((node = rb_first(&old_base->active))) {
1444 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4
TG
1445 BUG_ON(hrtimer_callback_running(timer));
1446 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
c0a31329 1447 timer->base = new_base;
54cdfdb4
TG
1448 /*
1449 * Enqueue the timer. Allow reprogramming of the event device
1450 */
1451 enqueue_hrtimer(timer, new_base, 1);
c0a31329
TG
1452 }
1453}
1454
1455static void migrate_hrtimers(int cpu)
1456{
3c8aa39d 1457 struct hrtimer_cpu_base *old_base, *new_base;
c0a31329
TG
1458 int i;
1459
1460 BUG_ON(cpu_online(cpu));
3c8aa39d
TG
1461 old_base = &per_cpu(hrtimer_bases, cpu);
1462 new_base = &get_cpu_var(hrtimer_bases);
c0a31329 1463
54cdfdb4
TG
1464 tick_cancel_sched_timer(cpu);
1465
c0a31329 1466 local_irq_disable();
8e60e05f
ON
1467 spin_lock(&new_base->lock);
1468 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1469
3c8aa39d 1470 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d
TG
1471 migrate_hrtimer_list(&old_base->clock_base[i],
1472 &new_base->clock_base[i]);
c0a31329
TG
1473 }
1474
8e60e05f
ON
1475 spin_unlock(&old_base->lock);
1476 spin_unlock(&new_base->lock);
c0a31329
TG
1477 local_irq_enable();
1478 put_cpu_var(hrtimer_bases);
1479}
1480#endif /* CONFIG_HOTPLUG_CPU */
1481
8c78f307 1482static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1483 unsigned long action, void *hcpu)
1484{
7713a7d1 1485 unsigned int cpu = (long)hcpu;
c0a31329
TG
1486
1487 switch (action) {
1488
1489 case CPU_UP_PREPARE:
8bb78442 1490 case CPU_UP_PREPARE_FROZEN:
c0a31329
TG
1491 init_hrtimers_cpu(cpu);
1492 break;
1493
1494#ifdef CONFIG_HOTPLUG_CPU
1495 case CPU_DEAD:
8bb78442 1496 case CPU_DEAD_FROZEN:
d316c57f 1497 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
c0a31329
TG
1498 migrate_hrtimers(cpu);
1499 break;
1500#endif
1501
1502 default:
1503 break;
1504 }
1505
1506 return NOTIFY_OK;
1507}
1508
8c78f307 1509static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1510 .notifier_call = hrtimer_cpu_notify,
1511};
1512
1513void __init hrtimers_init(void)
1514{
1515 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1516 (void *)(long)smp_processor_id());
1517 register_cpu_notifier(&hrtimers_nb);
54cdfdb4
TG
1518#ifdef CONFIG_HIGH_RES_TIMERS
1519 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1520#endif
c0a31329
TG
1521}
1522
This page took 0.342518 seconds and 5 git commands to generate.