[PATCH] i386, apic: clean up the APIC code
[deliverable/linux.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d
TG
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2006, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
40#include <linux/interrupt.h>
41
42#include <asm/uaccess.h>
43
44/**
45 * ktime_get - get the monotonic time in ktime_t format
46 *
47 * returns the time in ktime_t format
48 */
49static ktime_t ktime_get(void)
50{
51 struct timespec now;
52
53 ktime_get_ts(&now);
54
55 return timespec_to_ktime(now);
56}
57
58/**
59 * ktime_get_real - get the real (wall-) time in ktime_t format
60 *
61 * returns the time in ktime_t format
62 */
63static ktime_t ktime_get_real(void)
64{
65 struct timespec now;
66
67 getnstimeofday(&now);
68
69 return timespec_to_ktime(now);
70}
71
72EXPORT_SYMBOL_GPL(ktime_get_real);
73
74/*
75 * The timer bases:
7978672c
GA
76 *
77 * Note: If we want to add new timer bases, we have to skip the two
78 * clock ids captured by the cpu-timers. We do this by holding empty
79 * entries rather than doing math adjustment of the clock ids.
80 * This ensures that we capture erroneous accesses to these clock ids
81 * rather than moving them into the range of valid clock id's.
c0a31329 82 */
3c8aa39d 83static DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 84{
3c8aa39d
TG
85
86 .clock_base =
c0a31329 87 {
3c8aa39d
TG
88 {
89 .index = CLOCK_REALTIME,
90 .get_time = &ktime_get_real,
91 .resolution = KTIME_REALTIME_RES,
92 },
93 {
94 .index = CLOCK_MONOTONIC,
95 .get_time = &ktime_get,
96 .resolution = KTIME_MONOTONIC_RES,
97 },
98 }
c0a31329
TG
99};
100
101/**
102 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
103 * @ts: pointer to timespec variable
104 *
105 * The function calculates the monotonic clock from the realtime
106 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 107 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
108 */
109void ktime_get_ts(struct timespec *ts)
110{
111 struct timespec tomono;
112 unsigned long seq;
113
114 do {
115 seq = read_seqbegin(&xtime_lock);
116 getnstimeofday(ts);
117 tomono = wall_to_monotonic;
118
119 } while (read_seqretry(&xtime_lock, seq));
120
121 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
122 ts->tv_nsec + tomono.tv_nsec);
123}
69778e32 124EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 125
92127c7a
TG
126/*
127 * Get the coarse grained time at the softirq based on xtime and
128 * wall_to_monotonic.
129 */
3c8aa39d 130static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
131{
132 ktime_t xtim, tomono;
f4304ab2 133 struct timespec xts;
92127c7a
TG
134 unsigned long seq;
135
136 do {
137 seq = read_seqbegin(&xtime_lock);
f4304ab2 138#ifdef CONFIG_NO_HZ
139 getnstimeofday(&xts);
140#else
141 xts = xtime;
142#endif
92127c7a
TG
143 } while (read_seqretry(&xtime_lock, seq));
144
f4304ab2 145 xtim = timespec_to_ktime(xts);
146 tomono = timespec_to_ktime(wall_to_monotonic);
3c8aa39d
TG
147 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
148 base->clock_base[CLOCK_MONOTONIC].softirq_time =
149 ktime_add(xtim, tomono);
92127c7a
TG
150}
151
303e967f
TG
152/*
153 * Helper function to check, whether the timer is on one of the queues
154 */
155static inline int hrtimer_is_queued(struct hrtimer *timer)
156{
157 return timer->state & HRTIMER_STATE_ENQUEUED;
158}
159
160/*
161 * Helper function to check, whether the timer is running the callback
162 * function
163 */
164static inline int hrtimer_callback_running(struct hrtimer *timer)
165{
166 return timer->state & HRTIMER_STATE_CALLBACK;
167}
168
c0a31329
TG
169/*
170 * Functions and macros which are different for UP/SMP systems are kept in a
171 * single place
172 */
173#ifdef CONFIG_SMP
174
c0a31329
TG
175/*
176 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
177 * means that all timers which are tied to this base via timer->base are
178 * locked, and the base itself is locked too.
179 *
180 * So __run_timers/migrate_timers can safely modify all timers which could
181 * be found on the lists/queues.
182 *
183 * When the timer's base is locked, and the timer removed from list, it is
184 * possible to set timer->base = NULL and drop the lock: the timer remains
185 * locked.
186 */
3c8aa39d
TG
187static
188struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
189 unsigned long *flags)
c0a31329 190{
3c8aa39d 191 struct hrtimer_clock_base *base;
c0a31329
TG
192
193 for (;;) {
194 base = timer->base;
195 if (likely(base != NULL)) {
3c8aa39d 196 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
197 if (likely(base == timer->base))
198 return base;
199 /* The timer has migrated to another CPU: */
3c8aa39d 200 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
201 }
202 cpu_relax();
203 }
204}
205
206/*
207 * Switch the timer base to the current CPU when possible.
208 */
3c8aa39d
TG
209static inline struct hrtimer_clock_base *
210switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 211{
3c8aa39d
TG
212 struct hrtimer_clock_base *new_base;
213 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 214
3c8aa39d
TG
215 new_cpu_base = &__get_cpu_var(hrtimer_bases);
216 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
217
218 if (base != new_base) {
219 /*
220 * We are trying to schedule the timer on the local CPU.
221 * However we can't change timer's base while it is running,
222 * so we keep it on the same CPU. No hassle vs. reprogramming
223 * the event source in the high resolution case. The softirq
224 * code will take care of this when the timer function has
225 * completed. There is no conflict as we hold the lock until
226 * the timer is enqueued.
227 */
5cfb6de7 228 if (unlikely(timer->state & HRTIMER_STATE_CALLBACK))
c0a31329
TG
229 return base;
230
231 /* See the comment in lock_timer_base() */
232 timer->base = NULL;
3c8aa39d
TG
233 spin_unlock(&base->cpu_base->lock);
234 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
235 timer->base = new_base;
236 }
237 return new_base;
238}
239
240#else /* CONFIG_SMP */
241
3c8aa39d 242static inline struct hrtimer_clock_base *
c0a31329
TG
243lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
244{
3c8aa39d 245 struct hrtimer_clock_base *base = timer->base;
c0a31329 246
3c8aa39d 247 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
248
249 return base;
250}
251
252#define switch_hrtimer_base(t, b) (b)
253
254#endif /* !CONFIG_SMP */
255
256/*
257 * Functions for the union type storage format of ktime_t which are
258 * too large for inlining:
259 */
260#if BITS_PER_LONG < 64
261# ifndef CONFIG_KTIME_SCALAR
262/**
263 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
264 * @kt: addend
265 * @nsec: the scalar nsec value to add
266 *
267 * Returns the sum of kt and nsec in ktime_t format
268 */
269ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
270{
271 ktime_t tmp;
272
273 if (likely(nsec < NSEC_PER_SEC)) {
274 tmp.tv64 = nsec;
275 } else {
276 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
277
278 tmp = ktime_set((long)nsec, rem);
279 }
280
281 return ktime_add(kt, tmp);
282}
283
284#else /* CONFIG_KTIME_SCALAR */
285
286# endif /* !CONFIG_KTIME_SCALAR */
287
288/*
289 * Divide a ktime value by a nanosecond value
290 */
df869b63 291static unsigned long ktime_divns(const ktime_t kt, s64 div)
c0a31329
TG
292{
293 u64 dclc, inc, dns;
294 int sft = 0;
295
296 dclc = dns = ktime_to_ns(kt);
297 inc = div;
298 /* Make sure the divisor is less than 2^32: */
299 while (div >> 32) {
300 sft++;
301 div >>= 1;
302 }
303 dclc >>= sft;
304 do_div(dclc, (unsigned long) div);
305
306 return (unsigned long) dclc;
307}
308
309#else /* BITS_PER_LONG < 64 */
310# define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
311#endif /* BITS_PER_LONG >= 64 */
312
411187fb
JS
313/*
314 * Timekeeping resumed notification
315 */
316void hrtimer_notify_resume(void)
317{
318 clock_was_set();
319}
320
c0a31329
TG
321/*
322 * Counterpart to lock_timer_base above:
323 */
324static inline
325void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
326{
3c8aa39d 327 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
328}
329
330/**
331 * hrtimer_forward - forward the timer expiry
c0a31329 332 * @timer: hrtimer to forward
44f21475 333 * @now: forward past this time
c0a31329
TG
334 * @interval: the interval to forward
335 *
336 * Forward the timer expiry so it will expire in the future.
8dca6f33 337 * Returns the number of overruns.
c0a31329
TG
338 */
339unsigned long
44f21475 340hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329
TG
341{
342 unsigned long orun = 1;
44f21475 343 ktime_t delta;
c0a31329
TG
344
345 delta = ktime_sub(now, timer->expires);
346
347 if (delta.tv64 < 0)
348 return 0;
349
c9db4fa1
TG
350 if (interval.tv64 < timer->base->resolution.tv64)
351 interval.tv64 = timer->base->resolution.tv64;
352
c0a31329 353 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 354 s64 incr = ktime_to_ns(interval);
c0a31329
TG
355
356 orun = ktime_divns(delta, incr);
357 timer->expires = ktime_add_ns(timer->expires, incr * orun);
358 if (timer->expires.tv64 > now.tv64)
359 return orun;
360 /*
361 * This (and the ktime_add() below) is the
362 * correction for exact:
363 */
364 orun++;
365 }
366 timer->expires = ktime_add(timer->expires, interval);
367
368 return orun;
369}
370
371/*
372 * enqueue_hrtimer - internal function to (re)start a timer
373 *
374 * The timer is inserted in expiry order. Insertion into the
375 * red black tree is O(log(n)). Must hold the base lock.
376 */
3c8aa39d
TG
377static void enqueue_hrtimer(struct hrtimer *timer,
378 struct hrtimer_clock_base *base)
c0a31329
TG
379{
380 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
381 struct rb_node *parent = NULL;
382 struct hrtimer *entry;
383
384 /*
385 * Find the right place in the rbtree:
386 */
387 while (*link) {
388 parent = *link;
389 entry = rb_entry(parent, struct hrtimer, node);
390 /*
391 * We dont care about collisions. Nodes with
392 * the same expiry time stay together.
393 */
394 if (timer->expires.tv64 < entry->expires.tv64)
395 link = &(*link)->rb_left;
288867ec 396 else
c0a31329 397 link = &(*link)->rb_right;
c0a31329
TG
398 }
399
400 /*
288867ec
TG
401 * Insert the timer to the rbtree and check whether it
402 * replaces the first pending timer
c0a31329
TG
403 */
404 rb_link_node(&timer->node, parent, link);
405 rb_insert_color(&timer->node, &base->active);
303e967f
TG
406 /*
407 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
408 * state of a possibly running callback.
409 */
410 timer->state |= HRTIMER_STATE_ENQUEUED;
c0a31329 411
288867ec
TG
412 if (!base->first || timer->expires.tv64 <
413 rb_entry(base->first, struct hrtimer, node)->expires.tv64)
414 base->first = &timer->node;
415}
c0a31329
TG
416
417/*
418 * __remove_hrtimer - internal function to remove a timer
419 *
420 * Caller must hold the base lock.
421 */
3c8aa39d 422static void __remove_hrtimer(struct hrtimer *timer,
303e967f
TG
423 struct hrtimer_clock_base *base,
424 unsigned long newstate)
c0a31329
TG
425{
426 /*
288867ec
TG
427 * Remove the timer from the rbtree and replace the
428 * first entry pointer if necessary.
c0a31329 429 */
288867ec
TG
430 if (base->first == &timer->node)
431 base->first = rb_next(&timer->node);
c0a31329 432 rb_erase(&timer->node, &base->active);
303e967f 433 timer->state = newstate;
c0a31329
TG
434}
435
436/*
437 * remove hrtimer, called with base lock held
438 */
439static inline int
3c8aa39d 440remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 441{
303e967f
TG
442 if (hrtimer_is_queued(timer)) {
443 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE);
c0a31329
TG
444 return 1;
445 }
446 return 0;
447}
448
449/**
450 * hrtimer_start - (re)start an relative timer on the current CPU
c0a31329
TG
451 * @timer: the timer to be added
452 * @tim: expiry time
453 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
454 *
455 * Returns:
456 * 0 on success
457 * 1 when the timer was active
458 */
459int
460hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
461{
3c8aa39d 462 struct hrtimer_clock_base *base, *new_base;
c0a31329
TG
463 unsigned long flags;
464 int ret;
465
466 base = lock_hrtimer_base(timer, &flags);
467
468 /* Remove an active timer from the queue: */
469 ret = remove_hrtimer(timer, base);
470
471 /* Switch the timer base, if necessary: */
472 new_base = switch_hrtimer_base(timer, base);
473
c9cb2e3d 474 if (mode == HRTIMER_MODE_REL) {
c0a31329 475 tim = ktime_add(tim, new_base->get_time());
06027bdd
IM
476 /*
477 * CONFIG_TIME_LOW_RES is a temporary way for architectures
478 * to signal that they simply return xtime in
479 * do_gettimeoffset(). In this case we want to round up by
480 * resolution when starting a relative timer, to avoid short
481 * timeouts. This will go away with the GTOD framework.
482 */
483#ifdef CONFIG_TIME_LOW_RES
484 tim = ktime_add(tim, base->resolution);
485#endif
486 }
c0a31329
TG
487 timer->expires = tim;
488
489 enqueue_hrtimer(timer, new_base);
490
491 unlock_hrtimer_base(timer, &flags);
492
493 return ret;
494}
8d16b764 495EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329
TG
496
497/**
498 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
499 * @timer: hrtimer to stop
500 *
501 * Returns:
502 * 0 when the timer was not active
503 * 1 when the timer was active
504 * -1 when the timer is currently excuting the callback function and
fa9799e3 505 * cannot be stopped
c0a31329
TG
506 */
507int hrtimer_try_to_cancel(struct hrtimer *timer)
508{
3c8aa39d 509 struct hrtimer_clock_base *base;
c0a31329
TG
510 unsigned long flags;
511 int ret = -1;
512
513 base = lock_hrtimer_base(timer, &flags);
514
303e967f 515 if (!hrtimer_callback_running(timer))
c0a31329
TG
516 ret = remove_hrtimer(timer, base);
517
518 unlock_hrtimer_base(timer, &flags);
519
520 return ret;
521
522}
8d16b764 523EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
524
525/**
526 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
527 * @timer: the timer to be cancelled
528 *
529 * Returns:
530 * 0 when the timer was not active
531 * 1 when the timer was active
532 */
533int hrtimer_cancel(struct hrtimer *timer)
534{
535 for (;;) {
536 int ret = hrtimer_try_to_cancel(timer);
537
538 if (ret >= 0)
539 return ret;
5ef37b19 540 cpu_relax();
c0a31329
TG
541 }
542}
8d16b764 543EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
544
545/**
546 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
547 * @timer: the timer to read
548 */
549ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
550{
3c8aa39d 551 struct hrtimer_clock_base *base;
c0a31329
TG
552 unsigned long flags;
553 ktime_t rem;
554
555 base = lock_hrtimer_base(timer, &flags);
3c8aa39d 556 rem = ktime_sub(timer->expires, base->get_time());
c0a31329
TG
557 unlock_hrtimer_base(timer, &flags);
558
559 return rem;
560}
8d16b764 561EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 562
fd064b9b 563#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
69239749
TL
564/**
565 * hrtimer_get_next_event - get the time until next expiry event
566 *
567 * Returns the delta to the next expiry event or KTIME_MAX if no timer
568 * is pending.
569 */
570ktime_t hrtimer_get_next_event(void)
571{
3c8aa39d
TG
572 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
573 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
574 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
575 unsigned long flags;
576 int i;
577
3c8aa39d
TG
578 spin_lock_irqsave(&cpu_base->lock, flags);
579
580 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
69239749
TL
581 struct hrtimer *timer;
582
3c8aa39d 583 if (!base->first)
69239749 584 continue;
3c8aa39d 585
69239749
TL
586 timer = rb_entry(base->first, struct hrtimer, node);
587 delta.tv64 = timer->expires.tv64;
69239749
TL
588 delta = ktime_sub(delta, base->get_time());
589 if (delta.tv64 < mindelta.tv64)
590 mindelta.tv64 = delta.tv64;
591 }
3c8aa39d
TG
592
593 spin_unlock_irqrestore(&cpu_base->lock, flags);
594
69239749
TL
595 if (mindelta.tv64 < 0)
596 mindelta.tv64 = 0;
597 return mindelta;
598}
599#endif
600
c0a31329 601/**
7978672c 602 * hrtimer_init - initialize a timer to the given clock
7978672c 603 * @timer: the timer to be initialized
c0a31329 604 * @clock_id: the clock to be used
7978672c 605 * @mode: timer mode abs/rel
c0a31329 606 */
7978672c
GA
607void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
608 enum hrtimer_mode mode)
c0a31329 609{
3c8aa39d 610 struct hrtimer_cpu_base *cpu_base;
c0a31329 611
7978672c
GA
612 memset(timer, 0, sizeof(struct hrtimer));
613
3c8aa39d 614 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 615
c9cb2e3d 616 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
617 clock_id = CLOCK_MONOTONIC;
618
3c8aa39d 619 timer->base = &cpu_base->clock_base[clock_id];
c0a31329 620}
8d16b764 621EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
622
623/**
624 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
625 * @which_clock: which clock to query
626 * @tp: pointer to timespec variable to store the resolution
627 *
72fd4a35
RD
628 * Store the resolution of the clock selected by @which_clock in the
629 * variable pointed to by @tp.
c0a31329
TG
630 */
631int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
632{
3c8aa39d 633 struct hrtimer_cpu_base *cpu_base;
c0a31329 634
3c8aa39d
TG
635 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
636 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
637
638 return 0;
639}
8d16b764 640EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329
TG
641
642/*
643 * Expire the per base hrtimer-queue:
644 */
3c8aa39d
TG
645static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
646 int index)
c0a31329 647{
288867ec 648 struct rb_node *node;
3c8aa39d 649 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
c0a31329 650
3055adda
DS
651 if (!base->first)
652 return;
653
92127c7a
TG
654 if (base->get_softirq_time)
655 base->softirq_time = base->get_softirq_time();
656
3c8aa39d 657 spin_lock_irq(&cpu_base->lock);
c0a31329 658
288867ec 659 while ((node = base->first)) {
c0a31329 660 struct hrtimer *timer;
c9cb2e3d 661 enum hrtimer_restart (*fn)(struct hrtimer *);
c0a31329 662 int restart;
c0a31329 663
288867ec 664 timer = rb_entry(node, struct hrtimer, node);
92127c7a 665 if (base->softirq_time.tv64 <= timer->expires.tv64)
c0a31329
TG
666 break;
667
668 fn = timer->function;
303e967f 669 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK);
3c8aa39d 670 spin_unlock_irq(&cpu_base->lock);
c0a31329 671
05cfb614 672 restart = fn(timer);
c0a31329 673
3c8aa39d 674 spin_lock_irq(&cpu_base->lock);
c0a31329 675
303e967f 676 timer->state &= ~HRTIMER_STATE_CALLBACK;
b75f7a51
RZ
677 if (restart != HRTIMER_NORESTART) {
678 BUG_ON(hrtimer_active(timer));
c0a31329 679 enqueue_hrtimer(timer, base);
b75f7a51 680 }
c0a31329 681 }
3c8aa39d 682 spin_unlock_irq(&cpu_base->lock);
c0a31329
TG
683}
684
685/*
686 * Called from timer softirq every jiffy, expire hrtimers:
687 */
688void hrtimer_run_queues(void)
689{
3c8aa39d 690 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
c0a31329
TG
691 int i;
692
3c8aa39d 693 hrtimer_get_softirq_time(cpu_base);
92127c7a 694
3c8aa39d
TG
695 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
696 run_hrtimer_queue(cpu_base, i);
c0a31329
TG
697}
698
10c94ec1
TG
699/*
700 * Sleep related functions:
701 */
c9cb2e3d 702static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
703{
704 struct hrtimer_sleeper *t =
705 container_of(timer, struct hrtimer_sleeper, timer);
706 struct task_struct *task = t->task;
707
708 t->task = NULL;
709 if (task)
710 wake_up_process(task);
711
712 return HRTIMER_NORESTART;
713}
714
36c8b586 715void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
716{
717 sl->timer.function = hrtimer_wakeup;
718 sl->task = task;
719}
720
669d7868 721static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 722{
669d7868 723 hrtimer_init_sleeper(t, current);
10c94ec1 724
432569bb
RZ
725 do {
726 set_current_state(TASK_INTERRUPTIBLE);
727 hrtimer_start(&t->timer, t->timer.expires, mode);
728
729 schedule();
730
669d7868 731 hrtimer_cancel(&t->timer);
c9cb2e3d 732 mode = HRTIMER_MODE_ABS;
669d7868
TG
733
734 } while (t->task && !signal_pending(current));
432569bb 735
669d7868 736 return t->task == NULL;
10c94ec1
TG
737}
738
1711ef38 739long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 740{
669d7868 741 struct hrtimer_sleeper t;
ea13dbc8
IM
742 struct timespec __user *rmtp;
743 struct timespec tu;
432569bb 744 ktime_t time;
10c94ec1
TG
745
746 restart->fn = do_no_restart_syscall;
747
c9cb2e3d 748 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1711ef38 749 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
10c94ec1 750
c9cb2e3d 751 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
10c94ec1
TG
752 return 0;
753
1711ef38 754 rmtp = (struct timespec __user *) restart->arg1;
432569bb
RZ
755 if (rmtp) {
756 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
757 if (time.tv64 <= 0)
758 return 0;
759 tu = ktime_to_timespec(time);
760 if (copy_to_user(rmtp, &tu, sizeof(tu)))
761 return -EFAULT;
762 }
10c94ec1 763
1711ef38 764 restart->fn = hrtimer_nanosleep_restart;
10c94ec1
TG
765
766 /* The other values in restart are already filled in */
767 return -ERESTART_RESTARTBLOCK;
768}
769
10c94ec1
TG
770long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
771 const enum hrtimer_mode mode, const clockid_t clockid)
772{
773 struct restart_block *restart;
669d7868 774 struct hrtimer_sleeper t;
10c94ec1
TG
775 struct timespec tu;
776 ktime_t rem;
777
432569bb
RZ
778 hrtimer_init(&t.timer, clockid, mode);
779 t.timer.expires = timespec_to_ktime(*rqtp);
780 if (do_nanosleep(&t, mode))
10c94ec1
TG
781 return 0;
782
7978672c 783 /* Absolute timers do not update the rmtp value and restart: */
c9cb2e3d 784 if (mode == HRTIMER_MODE_ABS)
10c94ec1
TG
785 return -ERESTARTNOHAND;
786
432569bb
RZ
787 if (rmtp) {
788 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
789 if (rem.tv64 <= 0)
790 return 0;
791 tu = ktime_to_timespec(rem);
792 if (copy_to_user(rmtp, &tu, sizeof(tu)))
793 return -EFAULT;
794 }
10c94ec1
TG
795
796 restart = &current_thread_info()->restart_block;
1711ef38
TA
797 restart->fn = hrtimer_nanosleep_restart;
798 restart->arg0 = (unsigned long) t.timer.base->index;
799 restart->arg1 = (unsigned long) rmtp;
800 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
801 restart->arg3 = t.timer.expires.tv64 >> 32;
10c94ec1
TG
802
803 return -ERESTART_RESTARTBLOCK;
804}
805
6ba1b912
TG
806asmlinkage long
807sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
808{
809 struct timespec tu;
810
811 if (copy_from_user(&tu, rqtp, sizeof(tu)))
812 return -EFAULT;
813
814 if (!timespec_valid(&tu))
815 return -EINVAL;
816
c9cb2e3d 817 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
818}
819
c0a31329
TG
820/*
821 * Functions related to boot-time initialization:
822 */
823static void __devinit init_hrtimers_cpu(int cpu)
824{
3c8aa39d 825 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
826 int i;
827
3c8aa39d
TG
828 spin_lock_init(&cpu_base->lock);
829 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
830
831 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
832 cpu_base->clock_base[i].cpu_base = cpu_base;
833
c0a31329
TG
834}
835
836#ifdef CONFIG_HOTPLUG_CPU
837
3c8aa39d
TG
838static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
839 struct hrtimer_clock_base *new_base)
c0a31329
TG
840{
841 struct hrtimer *timer;
842 struct rb_node *node;
843
844 while ((node = rb_first(&old_base->active))) {
845 timer = rb_entry(node, struct hrtimer, node);
303e967f
TG
846 BUG_ON(timer->state & HRTIMER_STATE_CALLBACK);
847 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE);
c0a31329
TG
848 timer->base = new_base;
849 enqueue_hrtimer(timer, new_base);
850 }
851}
852
853static void migrate_hrtimers(int cpu)
854{
3c8aa39d 855 struct hrtimer_cpu_base *old_base, *new_base;
c0a31329
TG
856 int i;
857
858 BUG_ON(cpu_online(cpu));
3c8aa39d
TG
859 old_base = &per_cpu(hrtimer_bases, cpu);
860 new_base = &get_cpu_var(hrtimer_bases);
c0a31329
TG
861
862 local_irq_disable();
863
3c8aa39d
TG
864 spin_lock(&new_base->lock);
865 spin_lock(&old_base->lock);
c0a31329 866
3c8aa39d 867 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d
TG
868 migrate_hrtimer_list(&old_base->clock_base[i],
869 &new_base->clock_base[i]);
c0a31329 870 }
3c8aa39d
TG
871 spin_unlock(&old_base->lock);
872 spin_unlock(&new_base->lock);
c0a31329
TG
873
874 local_irq_enable();
875 put_cpu_var(hrtimer_bases);
876}
877#endif /* CONFIG_HOTPLUG_CPU */
878
8c78f307 879static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
880 unsigned long action, void *hcpu)
881{
882 long cpu = (long)hcpu;
883
884 switch (action) {
885
886 case CPU_UP_PREPARE:
887 init_hrtimers_cpu(cpu);
888 break;
889
890#ifdef CONFIG_HOTPLUG_CPU
891 case CPU_DEAD:
892 migrate_hrtimers(cpu);
893 break;
894#endif
895
896 default:
897 break;
898 }
899
900 return NOTIFY_OK;
901}
902
8c78f307 903static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
904 .notifier_call = hrtimer_cpu_notify,
905};
906
907void __init hrtimers_init(void)
908{
909 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
910 (void *)(long)smp_processor_id());
911 register_cpu_notifier(&hrtimers_nb);
912}
913
This page took 0.176111 seconds and 5 git commands to generate.