[PATCH] highres: do not run the TIMER_SOFTIRQ after switching to highres mode
[deliverable/linux.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
54cdfdb4 35#include <linux/irq.h>
c0a31329
TG
36#include <linux/module.h>
37#include <linux/percpu.h>
38#include <linux/hrtimer.h>
39#include <linux/notifier.h>
40#include <linux/syscalls.h>
54cdfdb4 41#include <linux/kallsyms.h>
c0a31329 42#include <linux/interrupt.h>
79bf2bb3 43#include <linux/tick.h>
54cdfdb4
TG
44#include <linux/seq_file.h>
45#include <linux/err.h>
c0a31329
TG
46
47#include <asm/uaccess.h>
48
49/**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
d316c57f 54ktime_t ktime_get(void)
c0a31329
TG
55{
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61}
62
63/**
64 * ktime_get_real - get the real (wall-) time in ktime_t format
65 *
66 * returns the time in ktime_t format
67 */
d316c57f 68ktime_t ktime_get_real(void)
c0a31329
TG
69{
70 struct timespec now;
71
72 getnstimeofday(&now);
73
74 return timespec_to_ktime(now);
75}
76
77EXPORT_SYMBOL_GPL(ktime_get_real);
78
79/*
80 * The timer bases:
7978672c
GA
81 *
82 * Note: If we want to add new timer bases, we have to skip the two
83 * clock ids captured by the cpu-timers. We do this by holding empty
84 * entries rather than doing math adjustment of the clock ids.
85 * This ensures that we capture erroneous accesses to these clock ids
86 * rather than moving them into the range of valid clock id's.
c0a31329 87 */
54cdfdb4 88DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 89{
3c8aa39d
TG
90
91 .clock_base =
c0a31329 92 {
3c8aa39d
TG
93 {
94 .index = CLOCK_REALTIME,
95 .get_time = &ktime_get_real,
54cdfdb4 96 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
97 },
98 {
99 .index = CLOCK_MONOTONIC,
100 .get_time = &ktime_get,
54cdfdb4 101 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
102 },
103 }
c0a31329
TG
104};
105
106/**
107 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
108 * @ts: pointer to timespec variable
109 *
110 * The function calculates the monotonic clock from the realtime
111 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 112 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
113 */
114void ktime_get_ts(struct timespec *ts)
115{
116 struct timespec tomono;
117 unsigned long seq;
118
119 do {
120 seq = read_seqbegin(&xtime_lock);
121 getnstimeofday(ts);
122 tomono = wall_to_monotonic;
123
124 } while (read_seqretry(&xtime_lock, seq));
125
126 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
127 ts->tv_nsec + tomono.tv_nsec);
128}
69778e32 129EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 130
92127c7a
TG
131/*
132 * Get the coarse grained time at the softirq based on xtime and
133 * wall_to_monotonic.
134 */
3c8aa39d 135static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
136{
137 ktime_t xtim, tomono;
f4304ab2 138 struct timespec xts;
92127c7a
TG
139 unsigned long seq;
140
141 do {
142 seq = read_seqbegin(&xtime_lock);
f4304ab2 143#ifdef CONFIG_NO_HZ
144 getnstimeofday(&xts);
145#else
146 xts = xtime;
147#endif
92127c7a
TG
148 } while (read_seqretry(&xtime_lock, seq));
149
f4304ab2 150 xtim = timespec_to_ktime(xts);
151 tomono = timespec_to_ktime(wall_to_monotonic);
3c8aa39d
TG
152 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
153 base->clock_base[CLOCK_MONOTONIC].softirq_time =
154 ktime_add(xtim, tomono);
92127c7a
TG
155}
156
303e967f
TG
157/*
158 * Helper function to check, whether the timer is running the callback
159 * function
160 */
161static inline int hrtimer_callback_running(struct hrtimer *timer)
162{
163 return timer->state & HRTIMER_STATE_CALLBACK;
164}
165
c0a31329
TG
166/*
167 * Functions and macros which are different for UP/SMP systems are kept in a
168 * single place
169 */
170#ifdef CONFIG_SMP
171
c0a31329
TG
172/*
173 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
174 * means that all timers which are tied to this base via timer->base are
175 * locked, and the base itself is locked too.
176 *
177 * So __run_timers/migrate_timers can safely modify all timers which could
178 * be found on the lists/queues.
179 *
180 * When the timer's base is locked, and the timer removed from list, it is
181 * possible to set timer->base = NULL and drop the lock: the timer remains
182 * locked.
183 */
3c8aa39d
TG
184static
185struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
186 unsigned long *flags)
c0a31329 187{
3c8aa39d 188 struct hrtimer_clock_base *base;
c0a31329
TG
189
190 for (;;) {
191 base = timer->base;
192 if (likely(base != NULL)) {
3c8aa39d 193 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
194 if (likely(base == timer->base))
195 return base;
196 /* The timer has migrated to another CPU: */
3c8aa39d 197 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
198 }
199 cpu_relax();
200 }
201}
202
203/*
204 * Switch the timer base to the current CPU when possible.
205 */
3c8aa39d
TG
206static inline struct hrtimer_clock_base *
207switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 208{
3c8aa39d
TG
209 struct hrtimer_clock_base *new_base;
210 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 211
3c8aa39d
TG
212 new_cpu_base = &__get_cpu_var(hrtimer_bases);
213 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
214
215 if (base != new_base) {
216 /*
217 * We are trying to schedule the timer on the local CPU.
218 * However we can't change timer's base while it is running,
219 * so we keep it on the same CPU. No hassle vs. reprogramming
220 * the event source in the high resolution case. The softirq
221 * code will take care of this when the timer function has
222 * completed. There is no conflict as we hold the lock until
223 * the timer is enqueued.
224 */
54cdfdb4 225 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
226 return base;
227
228 /* See the comment in lock_timer_base() */
229 timer->base = NULL;
3c8aa39d
TG
230 spin_unlock(&base->cpu_base->lock);
231 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
232 timer->base = new_base;
233 }
234 return new_base;
235}
236
237#else /* CONFIG_SMP */
238
3c8aa39d 239static inline struct hrtimer_clock_base *
c0a31329
TG
240lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
241{
3c8aa39d 242 struct hrtimer_clock_base *base = timer->base;
c0a31329 243
3c8aa39d 244 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
245
246 return base;
247}
248
54cdfdb4 249# define switch_hrtimer_base(t, b) (b)
c0a31329
TG
250
251#endif /* !CONFIG_SMP */
252
253/*
254 * Functions for the union type storage format of ktime_t which are
255 * too large for inlining:
256 */
257#if BITS_PER_LONG < 64
258# ifndef CONFIG_KTIME_SCALAR
259/**
260 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
261 * @kt: addend
262 * @nsec: the scalar nsec value to add
263 *
264 * Returns the sum of kt and nsec in ktime_t format
265 */
266ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
267{
268 ktime_t tmp;
269
270 if (likely(nsec < NSEC_PER_SEC)) {
271 tmp.tv64 = nsec;
272 } else {
273 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
274
275 tmp = ktime_set((long)nsec, rem);
276 }
277
278 return ktime_add(kt, tmp);
279}
c0a31329
TG
280# endif /* !CONFIG_KTIME_SCALAR */
281
282/*
283 * Divide a ktime value by a nanosecond value
284 */
79bf2bb3 285unsigned long ktime_divns(const ktime_t kt, s64 div)
c0a31329
TG
286{
287 u64 dclc, inc, dns;
288 int sft = 0;
289
290 dclc = dns = ktime_to_ns(kt);
291 inc = div;
292 /* Make sure the divisor is less than 2^32: */
293 while (div >> 32) {
294 sft++;
295 div >>= 1;
296 }
297 dclc >>= sft;
298 do_div(dclc, (unsigned long) div);
299
300 return (unsigned long) dclc;
301}
c0a31329
TG
302#endif /* BITS_PER_LONG >= 64 */
303
54cdfdb4
TG
304/* High resolution timer related functions */
305#ifdef CONFIG_HIGH_RES_TIMERS
306
307/*
308 * High resolution timer enabled ?
309 */
310static int hrtimer_hres_enabled __read_mostly = 1;
311
312/*
313 * Enable / Disable high resolution mode
314 */
315static int __init setup_hrtimer_hres(char *str)
316{
317 if (!strcmp(str, "off"))
318 hrtimer_hres_enabled = 0;
319 else if (!strcmp(str, "on"))
320 hrtimer_hres_enabled = 1;
321 else
322 return 0;
323 return 1;
324}
325
326__setup("highres=", setup_hrtimer_hres);
327
328/*
329 * hrtimer_high_res_enabled - query, if the highres mode is enabled
330 */
331static inline int hrtimer_is_hres_enabled(void)
332{
333 return hrtimer_hres_enabled;
334}
335
336/*
337 * Is the high resolution mode active ?
338 */
339static inline int hrtimer_hres_active(void)
340{
341 return __get_cpu_var(hrtimer_bases).hres_active;
342}
343
344/*
345 * Reprogram the event source with checking both queues for the
346 * next event
347 * Called with interrupts disabled and base->lock held
348 */
349static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
350{
351 int i;
352 struct hrtimer_clock_base *base = cpu_base->clock_base;
353 ktime_t expires;
354
355 cpu_base->expires_next.tv64 = KTIME_MAX;
356
357 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
358 struct hrtimer *timer;
359
360 if (!base->first)
361 continue;
362 timer = rb_entry(base->first, struct hrtimer, node);
363 expires = ktime_sub(timer->expires, base->offset);
364 if (expires.tv64 < cpu_base->expires_next.tv64)
365 cpu_base->expires_next = expires;
366 }
367
368 if (cpu_base->expires_next.tv64 != KTIME_MAX)
369 tick_program_event(cpu_base->expires_next, 1);
370}
371
372/*
373 * Shared reprogramming for clock_realtime and clock_monotonic
374 *
375 * When a timer is enqueued and expires earlier than the already enqueued
376 * timers, we have to check, whether it expires earlier than the timer for
377 * which the clock event device was armed.
378 *
379 * Called with interrupts disabled and base->cpu_base.lock held
380 */
381static int hrtimer_reprogram(struct hrtimer *timer,
382 struct hrtimer_clock_base *base)
383{
384 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
385 ktime_t expires = ktime_sub(timer->expires, base->offset);
386 int res;
387
388 /*
389 * When the callback is running, we do not reprogram the clock event
390 * device. The timer callback is either running on a different CPU or
391 * the callback is executed in the hrtimer_interupt context. The
392 * reprogramming is handled either by the softirq, which called the
393 * callback or at the end of the hrtimer_interrupt.
394 */
395 if (hrtimer_callback_running(timer))
396 return 0;
397
398 if (expires.tv64 >= expires_next->tv64)
399 return 0;
400
401 /*
402 * Clockevents returns -ETIME, when the event was in the past.
403 */
404 res = tick_program_event(expires, 0);
405 if (!IS_ERR_VALUE(res))
406 *expires_next = expires;
407 return res;
408}
409
410
411/*
412 * Retrigger next event is called after clock was set
413 *
414 * Called with interrupts disabled via on_each_cpu()
415 */
416static void retrigger_next_event(void *arg)
417{
418 struct hrtimer_cpu_base *base;
419 struct timespec realtime_offset;
420 unsigned long seq;
421
422 if (!hrtimer_hres_active())
423 return;
424
425 do {
426 seq = read_seqbegin(&xtime_lock);
427 set_normalized_timespec(&realtime_offset,
428 -wall_to_monotonic.tv_sec,
429 -wall_to_monotonic.tv_nsec);
430 } while (read_seqretry(&xtime_lock, seq));
431
432 base = &__get_cpu_var(hrtimer_bases);
433
434 /* Adjust CLOCK_REALTIME offset */
435 spin_lock(&base->lock);
436 base->clock_base[CLOCK_REALTIME].offset =
437 timespec_to_ktime(realtime_offset);
438
439 hrtimer_force_reprogram(base);
440 spin_unlock(&base->lock);
441}
442
443/*
444 * Clock realtime was set
445 *
446 * Change the offset of the realtime clock vs. the monotonic
447 * clock.
448 *
449 * We might have to reprogram the high resolution timer interrupt. On
450 * SMP we call the architecture specific code to retrigger _all_ high
451 * resolution timer interrupts. On UP we just disable interrupts and
452 * call the high resolution interrupt code.
453 */
454void clock_was_set(void)
455{
456 /* Retrigger the CPU local events everywhere */
457 on_each_cpu(retrigger_next_event, NULL, 0, 1);
458}
459
460/*
461 * Check, whether the timer is on the callback pending list
462 */
463static inline int hrtimer_cb_pending(const struct hrtimer *timer)
464{
465 return timer->state & HRTIMER_STATE_PENDING;
466}
467
468/*
469 * Remove a timer from the callback pending list
470 */
471static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
472{
473 list_del_init(&timer->cb_entry);
474}
475
476/*
477 * Initialize the high resolution related parts of cpu_base
478 */
479static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
480{
481 base->expires_next.tv64 = KTIME_MAX;
482 base->hres_active = 0;
483 INIT_LIST_HEAD(&base->cb_pending);
484}
485
486/*
487 * Initialize the high resolution related parts of a hrtimer
488 */
489static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
490{
491 INIT_LIST_HEAD(&timer->cb_entry);
492}
493
494/*
495 * When High resolution timers are active, try to reprogram. Note, that in case
496 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
497 * check happens. The timer gets enqueued into the rbtree. The reprogramming
498 * and expiry check is done in the hrtimer_interrupt or in the softirq.
499 */
500static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
501 struct hrtimer_clock_base *base)
502{
503 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
504
505 /* Timer is expired, act upon the callback mode */
506 switch(timer->cb_mode) {
507 case HRTIMER_CB_IRQSAFE_NO_RESTART:
508 /*
509 * We can call the callback from here. No restart
510 * happens, so no danger of recursion
511 */
512 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
513 return 1;
514 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
515 /*
516 * This is solely for the sched tick emulation with
517 * dynamic tick support to ensure that we do not
518 * restart the tick right on the edge and end up with
519 * the tick timer in the softirq ! The calling site
520 * takes care of this.
521 */
522 return 1;
523 case HRTIMER_CB_IRQSAFE:
524 case HRTIMER_CB_SOFTIRQ:
525 /*
526 * Move everything else into the softirq pending list !
527 */
528 list_add_tail(&timer->cb_entry,
529 &base->cpu_base->cb_pending);
530 timer->state = HRTIMER_STATE_PENDING;
531 raise_softirq(HRTIMER_SOFTIRQ);
532 return 1;
533 default:
534 BUG();
535 }
536 }
537 return 0;
538}
539
540/*
541 * Switch to high resolution mode
542 */
f8953856 543static int hrtimer_switch_to_hres(void)
54cdfdb4
TG
544{
545 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
546 unsigned long flags;
547
548 if (base->hres_active)
f8953856 549 return 1;
54cdfdb4
TG
550
551 local_irq_save(flags);
552
553 if (tick_init_highres()) {
554 local_irq_restore(flags);
f8953856 555 return 0;
54cdfdb4
TG
556 }
557 base->hres_active = 1;
558 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
559 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
560
561 tick_setup_sched_timer();
562
563 /* "Retrigger" the interrupt to get things going */
564 retrigger_next_event(NULL);
565 local_irq_restore(flags);
566 printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
567 smp_processor_id());
f8953856 568 return 1;
54cdfdb4
TG
569}
570
571#else
572
573static inline int hrtimer_hres_active(void) { return 0; }
574static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 575static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
576static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
577static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
578 struct hrtimer_clock_base *base)
579{
580 return 0;
581}
582static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
583static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
584static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
585static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
586
587#endif /* CONFIG_HIGH_RES_TIMERS */
588
82f67cd9
IM
589#ifdef CONFIG_TIMER_STATS
590void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
591{
592 if (timer->start_site)
593 return;
594
595 timer->start_site = addr;
596 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
597 timer->start_pid = current->pid;
598}
599#endif
600
c0a31329
TG
601/*
602 * Counterpart to lock_timer_base above:
603 */
604static inline
605void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
606{
3c8aa39d 607 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
608}
609
610/**
611 * hrtimer_forward - forward the timer expiry
c0a31329 612 * @timer: hrtimer to forward
44f21475 613 * @now: forward past this time
c0a31329
TG
614 * @interval: the interval to forward
615 *
616 * Forward the timer expiry so it will expire in the future.
8dca6f33 617 * Returns the number of overruns.
c0a31329
TG
618 */
619unsigned long
44f21475 620hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329
TG
621{
622 unsigned long orun = 1;
44f21475 623 ktime_t delta;
c0a31329
TG
624
625 delta = ktime_sub(now, timer->expires);
626
627 if (delta.tv64 < 0)
628 return 0;
629
c9db4fa1
TG
630 if (interval.tv64 < timer->base->resolution.tv64)
631 interval.tv64 = timer->base->resolution.tv64;
632
c0a31329 633 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 634 s64 incr = ktime_to_ns(interval);
c0a31329
TG
635
636 orun = ktime_divns(delta, incr);
637 timer->expires = ktime_add_ns(timer->expires, incr * orun);
638 if (timer->expires.tv64 > now.tv64)
639 return orun;
640 /*
641 * This (and the ktime_add() below) is the
642 * correction for exact:
643 */
644 orun++;
645 }
646 timer->expires = ktime_add(timer->expires, interval);
647
648 return orun;
649}
650
651/*
652 * enqueue_hrtimer - internal function to (re)start a timer
653 *
654 * The timer is inserted in expiry order. Insertion into the
655 * red black tree is O(log(n)). Must hold the base lock.
656 */
3c8aa39d 657static void enqueue_hrtimer(struct hrtimer *timer,
54cdfdb4 658 struct hrtimer_clock_base *base, int reprogram)
c0a31329
TG
659{
660 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
661 struct rb_node *parent = NULL;
662 struct hrtimer *entry;
663
664 /*
665 * Find the right place in the rbtree:
666 */
667 while (*link) {
668 parent = *link;
669 entry = rb_entry(parent, struct hrtimer, node);
670 /*
671 * We dont care about collisions. Nodes with
672 * the same expiry time stay together.
673 */
674 if (timer->expires.tv64 < entry->expires.tv64)
675 link = &(*link)->rb_left;
288867ec 676 else
c0a31329 677 link = &(*link)->rb_right;
c0a31329
TG
678 }
679
680 /*
288867ec
TG
681 * Insert the timer to the rbtree and check whether it
682 * replaces the first pending timer
c0a31329 683 */
54cdfdb4
TG
684 if (!base->first || timer->expires.tv64 <
685 rb_entry(base->first, struct hrtimer, node)->expires.tv64) {
686 /*
687 * Reprogram the clock event device. When the timer is already
688 * expired hrtimer_enqueue_reprogram has either called the
689 * callback or added it to the pending list and raised the
690 * softirq.
691 *
692 * This is a NOP for !HIGHRES
693 */
694 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
695 return;
696
697 base->first = &timer->node;
698 }
699
c0a31329
TG
700 rb_link_node(&timer->node, parent, link);
701 rb_insert_color(&timer->node, &base->active);
303e967f
TG
702 /*
703 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
704 * state of a possibly running callback.
705 */
706 timer->state |= HRTIMER_STATE_ENQUEUED;
288867ec 707}
c0a31329
TG
708
709/*
710 * __remove_hrtimer - internal function to remove a timer
711 *
712 * Caller must hold the base lock.
54cdfdb4
TG
713 *
714 * High resolution timer mode reprograms the clock event device when the
715 * timer is the one which expires next. The caller can disable this by setting
716 * reprogram to zero. This is useful, when the context does a reprogramming
717 * anyway (e.g. timer interrupt)
c0a31329 718 */
3c8aa39d 719static void __remove_hrtimer(struct hrtimer *timer,
303e967f 720 struct hrtimer_clock_base *base,
54cdfdb4 721 unsigned long newstate, int reprogram)
c0a31329 722{
54cdfdb4
TG
723 /* High res. callback list. NOP for !HIGHRES */
724 if (hrtimer_cb_pending(timer))
725 hrtimer_remove_cb_pending(timer);
726 else {
727 /*
728 * Remove the timer from the rbtree and replace the
729 * first entry pointer if necessary.
730 */
731 if (base->first == &timer->node) {
732 base->first = rb_next(&timer->node);
733 /* Reprogram the clock event device. if enabled */
734 if (reprogram && hrtimer_hres_active())
735 hrtimer_force_reprogram(base->cpu_base);
736 }
737 rb_erase(&timer->node, &base->active);
738 }
303e967f 739 timer->state = newstate;
c0a31329
TG
740}
741
742/*
743 * remove hrtimer, called with base lock held
744 */
745static inline int
3c8aa39d 746remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 747{
303e967f 748 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
749 int reprogram;
750
751 /*
752 * Remove the timer and force reprogramming when high
753 * resolution mode is active and the timer is on the current
754 * CPU. If we remove a timer on another CPU, reprogramming is
755 * skipped. The interrupt event on this CPU is fired and
756 * reprogramming happens in the interrupt handler. This is a
757 * rare case and less expensive than a smp call.
758 */
82f67cd9 759 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
760 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
761 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
762 reprogram);
c0a31329
TG
763 return 1;
764 }
765 return 0;
766}
767
768/**
769 * hrtimer_start - (re)start an relative timer on the current CPU
c0a31329
TG
770 * @timer: the timer to be added
771 * @tim: expiry time
772 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
773 *
774 * Returns:
775 * 0 on success
776 * 1 when the timer was active
777 */
778int
779hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
780{
3c8aa39d 781 struct hrtimer_clock_base *base, *new_base;
c0a31329
TG
782 unsigned long flags;
783 int ret;
784
785 base = lock_hrtimer_base(timer, &flags);
786
787 /* Remove an active timer from the queue: */
788 ret = remove_hrtimer(timer, base);
789
790 /* Switch the timer base, if necessary: */
791 new_base = switch_hrtimer_base(timer, base);
792
c9cb2e3d 793 if (mode == HRTIMER_MODE_REL) {
c0a31329 794 tim = ktime_add(tim, new_base->get_time());
06027bdd
IM
795 /*
796 * CONFIG_TIME_LOW_RES is a temporary way for architectures
797 * to signal that they simply return xtime in
798 * do_gettimeoffset(). In this case we want to round up by
799 * resolution when starting a relative timer, to avoid short
800 * timeouts. This will go away with the GTOD framework.
801 */
802#ifdef CONFIG_TIME_LOW_RES
803 tim = ktime_add(tim, base->resolution);
804#endif
805 }
c0a31329
TG
806 timer->expires = tim;
807
82f67cd9
IM
808 timer_stats_hrtimer_set_start_info(timer);
809
54cdfdb4 810 enqueue_hrtimer(timer, new_base, base == new_base);
c0a31329
TG
811
812 unlock_hrtimer_base(timer, &flags);
813
814 return ret;
815}
8d16b764 816EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329
TG
817
818/**
819 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
820 * @timer: hrtimer to stop
821 *
822 * Returns:
823 * 0 when the timer was not active
824 * 1 when the timer was active
825 * -1 when the timer is currently excuting the callback function and
fa9799e3 826 * cannot be stopped
c0a31329
TG
827 */
828int hrtimer_try_to_cancel(struct hrtimer *timer)
829{
3c8aa39d 830 struct hrtimer_clock_base *base;
c0a31329
TG
831 unsigned long flags;
832 int ret = -1;
833
834 base = lock_hrtimer_base(timer, &flags);
835
303e967f 836 if (!hrtimer_callback_running(timer))
c0a31329
TG
837 ret = remove_hrtimer(timer, base);
838
839 unlock_hrtimer_base(timer, &flags);
840
841 return ret;
842
843}
8d16b764 844EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
845
846/**
847 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
848 * @timer: the timer to be cancelled
849 *
850 * Returns:
851 * 0 when the timer was not active
852 * 1 when the timer was active
853 */
854int hrtimer_cancel(struct hrtimer *timer)
855{
856 for (;;) {
857 int ret = hrtimer_try_to_cancel(timer);
858
859 if (ret >= 0)
860 return ret;
5ef37b19 861 cpu_relax();
c0a31329
TG
862 }
863}
8d16b764 864EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
865
866/**
867 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
868 * @timer: the timer to read
869 */
870ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
871{
3c8aa39d 872 struct hrtimer_clock_base *base;
c0a31329
TG
873 unsigned long flags;
874 ktime_t rem;
875
876 base = lock_hrtimer_base(timer, &flags);
3c8aa39d 877 rem = ktime_sub(timer->expires, base->get_time());
c0a31329
TG
878 unlock_hrtimer_base(timer, &flags);
879
880 return rem;
881}
8d16b764 882EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 883
fd064b9b 884#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
69239749
TL
885/**
886 * hrtimer_get_next_event - get the time until next expiry event
887 *
888 * Returns the delta to the next expiry event or KTIME_MAX if no timer
889 * is pending.
890 */
891ktime_t hrtimer_get_next_event(void)
892{
3c8aa39d
TG
893 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
894 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
895 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
896 unsigned long flags;
897 int i;
898
3c8aa39d
TG
899 spin_lock_irqsave(&cpu_base->lock, flags);
900
54cdfdb4
TG
901 if (!hrtimer_hres_active()) {
902 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
903 struct hrtimer *timer;
69239749 904
54cdfdb4
TG
905 if (!base->first)
906 continue;
3c8aa39d 907
54cdfdb4
TG
908 timer = rb_entry(base->first, struct hrtimer, node);
909 delta.tv64 = timer->expires.tv64;
910 delta = ktime_sub(delta, base->get_time());
911 if (delta.tv64 < mindelta.tv64)
912 mindelta.tv64 = delta.tv64;
913 }
69239749 914 }
3c8aa39d
TG
915
916 spin_unlock_irqrestore(&cpu_base->lock, flags);
917
69239749
TL
918 if (mindelta.tv64 < 0)
919 mindelta.tv64 = 0;
920 return mindelta;
921}
922#endif
923
c0a31329 924/**
7978672c 925 * hrtimer_init - initialize a timer to the given clock
7978672c 926 * @timer: the timer to be initialized
c0a31329 927 * @clock_id: the clock to be used
7978672c 928 * @mode: timer mode abs/rel
c0a31329 929 */
7978672c
GA
930void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
931 enum hrtimer_mode mode)
c0a31329 932{
3c8aa39d 933 struct hrtimer_cpu_base *cpu_base;
c0a31329 934
7978672c
GA
935 memset(timer, 0, sizeof(struct hrtimer));
936
3c8aa39d 937 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 938
c9cb2e3d 939 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
940 clock_id = CLOCK_MONOTONIC;
941
3c8aa39d 942 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 943 hrtimer_init_timer_hres(timer);
82f67cd9
IM
944
945#ifdef CONFIG_TIMER_STATS
946 timer->start_site = NULL;
947 timer->start_pid = -1;
948 memset(timer->start_comm, 0, TASK_COMM_LEN);
949#endif
c0a31329 950}
8d16b764 951EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
952
953/**
954 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
955 * @which_clock: which clock to query
956 * @tp: pointer to timespec variable to store the resolution
957 *
72fd4a35
RD
958 * Store the resolution of the clock selected by @which_clock in the
959 * variable pointed to by @tp.
c0a31329
TG
960 */
961int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
962{
3c8aa39d 963 struct hrtimer_cpu_base *cpu_base;
c0a31329 964
3c8aa39d
TG
965 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
966 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
967
968 return 0;
969}
8d16b764 970EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 971
54cdfdb4
TG
972#ifdef CONFIG_HIGH_RES_TIMERS
973
974/*
975 * High resolution timer interrupt
976 * Called with interrupts disabled
977 */
978void hrtimer_interrupt(struct clock_event_device *dev)
979{
980 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
981 struct hrtimer_clock_base *base;
982 ktime_t expires_next, now;
983 int i, raise = 0;
984
985 BUG_ON(!cpu_base->hres_active);
986 cpu_base->nr_events++;
987 dev->next_event.tv64 = KTIME_MAX;
988
989 retry:
990 now = ktime_get();
991
992 expires_next.tv64 = KTIME_MAX;
993
994 base = cpu_base->clock_base;
995
996 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
997 ktime_t basenow;
998 struct rb_node *node;
999
1000 spin_lock(&cpu_base->lock);
1001
1002 basenow = ktime_add(now, base->offset);
1003
1004 while ((node = base->first)) {
1005 struct hrtimer *timer;
1006
1007 timer = rb_entry(node, struct hrtimer, node);
1008
1009 if (basenow.tv64 < timer->expires.tv64) {
1010 ktime_t expires;
1011
1012 expires = ktime_sub(timer->expires,
1013 base->offset);
1014 if (expires.tv64 < expires_next.tv64)
1015 expires_next = expires;
1016 break;
1017 }
1018
1019 /* Move softirq callbacks to the pending list */
1020 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1021 __remove_hrtimer(timer, base,
1022 HRTIMER_STATE_PENDING, 0);
1023 list_add_tail(&timer->cb_entry,
1024 &base->cpu_base->cb_pending);
1025 raise = 1;
1026 continue;
1027 }
1028
1029 __remove_hrtimer(timer, base,
1030 HRTIMER_STATE_CALLBACK, 0);
82f67cd9 1031 timer_stats_account_hrtimer(timer);
54cdfdb4
TG
1032
1033 /*
1034 * Note: We clear the CALLBACK bit after
1035 * enqueue_hrtimer to avoid reprogramming of
1036 * the event hardware. This happens at the end
1037 * of this function anyway.
1038 */
1039 if (timer->function(timer) != HRTIMER_NORESTART) {
1040 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1041 enqueue_hrtimer(timer, base, 0);
1042 }
1043 timer->state &= ~HRTIMER_STATE_CALLBACK;
1044 }
1045 spin_unlock(&cpu_base->lock);
1046 base++;
1047 }
1048
1049 cpu_base->expires_next = expires_next;
1050
1051 /* Reprogramming necessary ? */
1052 if (expires_next.tv64 != KTIME_MAX) {
1053 if (tick_program_event(expires_next, 0))
1054 goto retry;
1055 }
1056
1057 /* Raise softirq ? */
1058 if (raise)
1059 raise_softirq(HRTIMER_SOFTIRQ);
1060}
1061
1062static void run_hrtimer_softirq(struct softirq_action *h)
1063{
1064 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1065
1066 spin_lock_irq(&cpu_base->lock);
1067
1068 while (!list_empty(&cpu_base->cb_pending)) {
1069 enum hrtimer_restart (*fn)(struct hrtimer *);
1070 struct hrtimer *timer;
1071 int restart;
1072
1073 timer = list_entry(cpu_base->cb_pending.next,
1074 struct hrtimer, cb_entry);
1075
82f67cd9
IM
1076 timer_stats_account_hrtimer(timer);
1077
54cdfdb4
TG
1078 fn = timer->function;
1079 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1080 spin_unlock_irq(&cpu_base->lock);
1081
1082 restart = fn(timer);
1083
1084 spin_lock_irq(&cpu_base->lock);
1085
1086 timer->state &= ~HRTIMER_STATE_CALLBACK;
1087 if (restart == HRTIMER_RESTART) {
1088 BUG_ON(hrtimer_active(timer));
1089 /*
1090 * Enqueue the timer, allow reprogramming of the event
1091 * device
1092 */
1093 enqueue_hrtimer(timer, timer->base, 1);
1094 } else if (hrtimer_active(timer)) {
1095 /*
1096 * If the timer was rearmed on another CPU, reprogram
1097 * the event device.
1098 */
1099 if (timer->base->first == &timer->node)
1100 hrtimer_reprogram(timer, timer->base);
1101 }
1102 }
1103 spin_unlock_irq(&cpu_base->lock);
1104}
1105
1106#endif /* CONFIG_HIGH_RES_TIMERS */
1107
c0a31329
TG
1108/*
1109 * Expire the per base hrtimer-queue:
1110 */
3c8aa39d
TG
1111static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1112 int index)
c0a31329 1113{
288867ec 1114 struct rb_node *node;
3c8aa39d 1115 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
c0a31329 1116
3055adda
DS
1117 if (!base->first)
1118 return;
1119
92127c7a
TG
1120 if (base->get_softirq_time)
1121 base->softirq_time = base->get_softirq_time();
1122
3c8aa39d 1123 spin_lock_irq(&cpu_base->lock);
c0a31329 1124
288867ec 1125 while ((node = base->first)) {
c0a31329 1126 struct hrtimer *timer;
c9cb2e3d 1127 enum hrtimer_restart (*fn)(struct hrtimer *);
c0a31329 1128 int restart;
c0a31329 1129
288867ec 1130 timer = rb_entry(node, struct hrtimer, node);
92127c7a 1131 if (base->softirq_time.tv64 <= timer->expires.tv64)
c0a31329
TG
1132 break;
1133
f8953856
TG
1134#ifdef CONFIG_HIGH_RES_TIMERS
1135 WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
1136#endif
82f67cd9
IM
1137 timer_stats_account_hrtimer(timer);
1138
c0a31329 1139 fn = timer->function;
54cdfdb4 1140 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
3c8aa39d 1141 spin_unlock_irq(&cpu_base->lock);
c0a31329 1142
05cfb614 1143 restart = fn(timer);
c0a31329 1144
3c8aa39d 1145 spin_lock_irq(&cpu_base->lock);
c0a31329 1146
303e967f 1147 timer->state &= ~HRTIMER_STATE_CALLBACK;
b75f7a51
RZ
1148 if (restart != HRTIMER_NORESTART) {
1149 BUG_ON(hrtimer_active(timer));
54cdfdb4 1150 enqueue_hrtimer(timer, base, 0);
b75f7a51 1151 }
c0a31329 1152 }
3c8aa39d 1153 spin_unlock_irq(&cpu_base->lock);
c0a31329
TG
1154}
1155
1156/*
1157 * Called from timer softirq every jiffy, expire hrtimers:
54cdfdb4
TG
1158 *
1159 * For HRT its the fall back code to run the softirq in the timer
1160 * softirq context in case the hrtimer initialization failed or has
1161 * not been done yet.
c0a31329
TG
1162 */
1163void hrtimer_run_queues(void)
1164{
3c8aa39d 1165 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
c0a31329
TG
1166 int i;
1167
54cdfdb4
TG
1168 if (hrtimer_hres_active())
1169 return;
1170
79bf2bb3
TG
1171 /*
1172 * This _is_ ugly: We have to check in the softirq context,
1173 * whether we can switch to highres and / or nohz mode. The
1174 * clocksource switch happens in the timer interrupt with
1175 * xtime_lock held. Notification from there only sets the
1176 * check bit in the tick_oneshot code, otherwise we might
1177 * deadlock vs. xtime_lock.
1178 */
54cdfdb4 1179 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
f8953856
TG
1180 if (hrtimer_switch_to_hres())
1181 return;
79bf2bb3 1182
3c8aa39d 1183 hrtimer_get_softirq_time(cpu_base);
92127c7a 1184
3c8aa39d
TG
1185 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1186 run_hrtimer_queue(cpu_base, i);
c0a31329
TG
1187}
1188
10c94ec1
TG
1189/*
1190 * Sleep related functions:
1191 */
c9cb2e3d 1192static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1193{
1194 struct hrtimer_sleeper *t =
1195 container_of(timer, struct hrtimer_sleeper, timer);
1196 struct task_struct *task = t->task;
1197
1198 t->task = NULL;
1199 if (task)
1200 wake_up_process(task);
1201
1202 return HRTIMER_NORESTART;
1203}
1204
36c8b586 1205void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1206{
1207 sl->timer.function = hrtimer_wakeup;
1208 sl->task = task;
54cdfdb4
TG
1209#ifdef CONFIG_HIGH_RES_TIMERS
1210 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1211#endif
00362e33
TG
1212}
1213
669d7868 1214static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1215{
669d7868 1216 hrtimer_init_sleeper(t, current);
10c94ec1 1217
432569bb
RZ
1218 do {
1219 set_current_state(TASK_INTERRUPTIBLE);
1220 hrtimer_start(&t->timer, t->timer.expires, mode);
1221
54cdfdb4
TG
1222 if (likely(t->task))
1223 schedule();
432569bb 1224
669d7868 1225 hrtimer_cancel(&t->timer);
c9cb2e3d 1226 mode = HRTIMER_MODE_ABS;
669d7868
TG
1227
1228 } while (t->task && !signal_pending(current));
432569bb 1229
669d7868 1230 return t->task == NULL;
10c94ec1
TG
1231}
1232
1711ef38 1233long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1234{
669d7868 1235 struct hrtimer_sleeper t;
ea13dbc8
IM
1236 struct timespec __user *rmtp;
1237 struct timespec tu;
432569bb 1238 ktime_t time;
10c94ec1
TG
1239
1240 restart->fn = do_no_restart_syscall;
1241
c9cb2e3d 1242 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1711ef38 1243 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
10c94ec1 1244
c9cb2e3d 1245 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
10c94ec1
TG
1246 return 0;
1247
1711ef38 1248 rmtp = (struct timespec __user *) restart->arg1;
432569bb
RZ
1249 if (rmtp) {
1250 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1251 if (time.tv64 <= 0)
1252 return 0;
1253 tu = ktime_to_timespec(time);
1254 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1255 return -EFAULT;
1256 }
10c94ec1 1257
1711ef38 1258 restart->fn = hrtimer_nanosleep_restart;
10c94ec1
TG
1259
1260 /* The other values in restart are already filled in */
1261 return -ERESTART_RESTARTBLOCK;
1262}
1263
10c94ec1
TG
1264long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1265 const enum hrtimer_mode mode, const clockid_t clockid)
1266{
1267 struct restart_block *restart;
669d7868 1268 struct hrtimer_sleeper t;
10c94ec1
TG
1269 struct timespec tu;
1270 ktime_t rem;
1271
432569bb
RZ
1272 hrtimer_init(&t.timer, clockid, mode);
1273 t.timer.expires = timespec_to_ktime(*rqtp);
1274 if (do_nanosleep(&t, mode))
10c94ec1
TG
1275 return 0;
1276
7978672c 1277 /* Absolute timers do not update the rmtp value and restart: */
c9cb2e3d 1278 if (mode == HRTIMER_MODE_ABS)
10c94ec1
TG
1279 return -ERESTARTNOHAND;
1280
432569bb
RZ
1281 if (rmtp) {
1282 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1283 if (rem.tv64 <= 0)
1284 return 0;
1285 tu = ktime_to_timespec(rem);
1286 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1287 return -EFAULT;
1288 }
10c94ec1
TG
1289
1290 restart = &current_thread_info()->restart_block;
1711ef38
TA
1291 restart->fn = hrtimer_nanosleep_restart;
1292 restart->arg0 = (unsigned long) t.timer.base->index;
1293 restart->arg1 = (unsigned long) rmtp;
1294 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1295 restart->arg3 = t.timer.expires.tv64 >> 32;
10c94ec1
TG
1296
1297 return -ERESTART_RESTARTBLOCK;
1298}
1299
6ba1b912
TG
1300asmlinkage long
1301sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1302{
1303 struct timespec tu;
1304
1305 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1306 return -EFAULT;
1307
1308 if (!timespec_valid(&tu))
1309 return -EINVAL;
1310
c9cb2e3d 1311 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1312}
1313
c0a31329
TG
1314/*
1315 * Functions related to boot-time initialization:
1316 */
1317static void __devinit init_hrtimers_cpu(int cpu)
1318{
3c8aa39d 1319 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1320 int i;
1321
3c8aa39d
TG
1322 spin_lock_init(&cpu_base->lock);
1323 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1324
1325 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1326 cpu_base->clock_base[i].cpu_base = cpu_base;
1327
54cdfdb4 1328 hrtimer_init_hres(cpu_base);
c0a31329
TG
1329}
1330
1331#ifdef CONFIG_HOTPLUG_CPU
1332
3c8aa39d
TG
1333static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1334 struct hrtimer_clock_base *new_base)
c0a31329
TG
1335{
1336 struct hrtimer *timer;
1337 struct rb_node *node;
1338
1339 while ((node = rb_first(&old_base->active))) {
1340 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4
TG
1341 BUG_ON(hrtimer_callback_running(timer));
1342 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
c0a31329 1343 timer->base = new_base;
54cdfdb4
TG
1344 /*
1345 * Enqueue the timer. Allow reprogramming of the event device
1346 */
1347 enqueue_hrtimer(timer, new_base, 1);
c0a31329
TG
1348 }
1349}
1350
1351static void migrate_hrtimers(int cpu)
1352{
3c8aa39d 1353 struct hrtimer_cpu_base *old_base, *new_base;
c0a31329
TG
1354 int i;
1355
1356 BUG_ON(cpu_online(cpu));
3c8aa39d
TG
1357 old_base = &per_cpu(hrtimer_bases, cpu);
1358 new_base = &get_cpu_var(hrtimer_bases);
c0a31329 1359
54cdfdb4
TG
1360 tick_cancel_sched_timer(cpu);
1361
c0a31329 1362 local_irq_disable();
e81ce1f7
HC
1363 double_spin_lock(&new_base->lock, &old_base->lock,
1364 smp_processor_id() < cpu);
c0a31329 1365
3c8aa39d 1366 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d
TG
1367 migrate_hrtimer_list(&old_base->clock_base[i],
1368 &new_base->clock_base[i]);
c0a31329
TG
1369 }
1370
e81ce1f7
HC
1371 double_spin_unlock(&new_base->lock, &old_base->lock,
1372 smp_processor_id() < cpu);
c0a31329
TG
1373 local_irq_enable();
1374 put_cpu_var(hrtimer_bases);
1375}
1376#endif /* CONFIG_HOTPLUG_CPU */
1377
8c78f307 1378static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1379 unsigned long action, void *hcpu)
1380{
1381 long cpu = (long)hcpu;
1382
1383 switch (action) {
1384
1385 case CPU_UP_PREPARE:
1386 init_hrtimers_cpu(cpu);
1387 break;
1388
1389#ifdef CONFIG_HOTPLUG_CPU
1390 case CPU_DEAD:
d316c57f 1391 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
c0a31329
TG
1392 migrate_hrtimers(cpu);
1393 break;
1394#endif
1395
1396 default:
1397 break;
1398 }
1399
1400 return NOTIFY_OK;
1401}
1402
8c78f307 1403static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1404 .notifier_call = hrtimer_cpu_notify,
1405};
1406
1407void __init hrtimers_init(void)
1408{
1409 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1410 (void *)(long)smp_processor_id());
1411 register_cpu_notifier(&hrtimers_nb);
54cdfdb4
TG
1412#ifdef CONFIG_HIGH_RES_TIMERS
1413 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1414#endif
c0a31329
TG
1415}
1416
This page took 0.200876 seconds and 5 git commands to generate.