Commit | Line | Data |
---|---|---|
2965faa5 DY |
1 | /* |
2 | * kexec.c - kexec system call core code. | |
3 | * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> | |
4 | * | |
5 | * This source code is licensed under the GNU General Public License, | |
6 | * Version 2. See the file COPYING for more details. | |
7 | */ | |
8 | ||
de90a6bc | 9 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
2965faa5 DY |
10 | |
11 | #include <linux/capability.h> | |
12 | #include <linux/mm.h> | |
13 | #include <linux/file.h> | |
14 | #include <linux/slab.h> | |
15 | #include <linux/fs.h> | |
16 | #include <linux/kexec.h> | |
17 | #include <linux/mutex.h> | |
18 | #include <linux/list.h> | |
19 | #include <linux/highmem.h> | |
20 | #include <linux/syscalls.h> | |
21 | #include <linux/reboot.h> | |
22 | #include <linux/ioport.h> | |
23 | #include <linux/hardirq.h> | |
24 | #include <linux/elf.h> | |
25 | #include <linux/elfcore.h> | |
26 | #include <linux/utsname.h> | |
27 | #include <linux/numa.h> | |
28 | #include <linux/suspend.h> | |
29 | #include <linux/device.h> | |
30 | #include <linux/freezer.h> | |
31 | #include <linux/pm.h> | |
32 | #include <linux/cpu.h> | |
33 | #include <linux/uaccess.h> | |
34 | #include <linux/io.h> | |
35 | #include <linux/console.h> | |
36 | #include <linux/vmalloc.h> | |
37 | #include <linux/swap.h> | |
38 | #include <linux/syscore_ops.h> | |
39 | #include <linux/compiler.h> | |
40 | #include <linux/hugetlb.h> | |
41 | ||
42 | #include <asm/page.h> | |
43 | #include <asm/sections.h> | |
44 | ||
45 | #include <crypto/hash.h> | |
46 | #include <crypto/sha.h> | |
47 | #include "kexec_internal.h" | |
48 | ||
49 | DEFINE_MUTEX(kexec_mutex); | |
50 | ||
51 | /* Per cpu memory for storing cpu states in case of system crash. */ | |
52 | note_buf_t __percpu *crash_notes; | |
53 | ||
54 | /* vmcoreinfo stuff */ | |
55 | static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; | |
56 | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; | |
57 | size_t vmcoreinfo_size; | |
58 | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); | |
59 | ||
60 | /* Flag to indicate we are going to kexec a new kernel */ | |
61 | bool kexec_in_progress = false; | |
62 | ||
63 | ||
64 | /* Location of the reserved area for the crash kernel */ | |
65 | struct resource crashk_res = { | |
66 | .name = "Crash kernel", | |
67 | .start = 0, | |
68 | .end = 0, | |
1a085d07 TK |
69 | .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, |
70 | .desc = IORES_DESC_CRASH_KERNEL | |
2965faa5 DY |
71 | }; |
72 | struct resource crashk_low_res = { | |
73 | .name = "Crash kernel", | |
74 | .start = 0, | |
75 | .end = 0, | |
1a085d07 TK |
76 | .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, |
77 | .desc = IORES_DESC_CRASH_KERNEL | |
2965faa5 DY |
78 | }; |
79 | ||
80 | int kexec_should_crash(struct task_struct *p) | |
81 | { | |
82 | /* | |
83 | * If crash_kexec_post_notifiers is enabled, don't run | |
84 | * crash_kexec() here yet, which must be run after panic | |
85 | * notifiers in panic(). | |
86 | */ | |
87 | if (crash_kexec_post_notifiers) | |
88 | return 0; | |
89 | /* | |
90 | * There are 4 panic() calls in do_exit() path, each of which | |
91 | * corresponds to each of these 4 conditions. | |
92 | */ | |
93 | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) | |
94 | return 1; | |
95 | return 0; | |
96 | } | |
97 | ||
98 | /* | |
99 | * When kexec transitions to the new kernel there is a one-to-one | |
100 | * mapping between physical and virtual addresses. On processors | |
101 | * where you can disable the MMU this is trivial, and easy. For | |
102 | * others it is still a simple predictable page table to setup. | |
103 | * | |
104 | * In that environment kexec copies the new kernel to its final | |
105 | * resting place. This means I can only support memory whose | |
106 | * physical address can fit in an unsigned long. In particular | |
107 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | |
108 | * If the assembly stub has more restrictive requirements | |
109 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | |
110 | * defined more restrictively in <asm/kexec.h>. | |
111 | * | |
112 | * The code for the transition from the current kernel to the | |
113 | * the new kernel is placed in the control_code_buffer, whose size | |
114 | * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single | |
115 | * page of memory is necessary, but some architectures require more. | |
116 | * Because this memory must be identity mapped in the transition from | |
117 | * virtual to physical addresses it must live in the range | |
118 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | |
119 | * modifiable. | |
120 | * | |
121 | * The assembly stub in the control code buffer is passed a linked list | |
122 | * of descriptor pages detailing the source pages of the new kernel, | |
123 | * and the destination addresses of those source pages. As this data | |
124 | * structure is not used in the context of the current OS, it must | |
125 | * be self-contained. | |
126 | * | |
127 | * The code has been made to work with highmem pages and will use a | |
128 | * destination page in its final resting place (if it happens | |
129 | * to allocate it). The end product of this is that most of the | |
130 | * physical address space, and most of RAM can be used. | |
131 | * | |
132 | * Future directions include: | |
133 | * - allocating a page table with the control code buffer identity | |
134 | * mapped, to simplify machine_kexec and make kexec_on_panic more | |
135 | * reliable. | |
136 | */ | |
137 | ||
138 | /* | |
139 | * KIMAGE_NO_DEST is an impossible destination address..., for | |
140 | * allocating pages whose destination address we do not care about. | |
141 | */ | |
142 | #define KIMAGE_NO_DEST (-1UL) | |
143 | ||
144 | static struct page *kimage_alloc_page(struct kimage *image, | |
145 | gfp_t gfp_mask, | |
146 | unsigned long dest); | |
147 | ||
148 | int sanity_check_segment_list(struct kimage *image) | |
149 | { | |
150 | int result, i; | |
151 | unsigned long nr_segments = image->nr_segments; | |
152 | ||
153 | /* | |
154 | * Verify we have good destination addresses. The caller is | |
155 | * responsible for making certain we don't attempt to load | |
156 | * the new image into invalid or reserved areas of RAM. This | |
157 | * just verifies it is an address we can use. | |
158 | * | |
159 | * Since the kernel does everything in page size chunks ensure | |
160 | * the destination addresses are page aligned. Too many | |
161 | * special cases crop of when we don't do this. The most | |
162 | * insidious is getting overlapping destination addresses | |
163 | * simply because addresses are changed to page size | |
164 | * granularity. | |
165 | */ | |
166 | result = -EADDRNOTAVAIL; | |
167 | for (i = 0; i < nr_segments; i++) { | |
168 | unsigned long mstart, mend; | |
169 | ||
170 | mstart = image->segment[i].mem; | |
171 | mend = mstart + image->segment[i].memsz; | |
172 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | |
173 | return result; | |
174 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | |
175 | return result; | |
176 | } | |
177 | ||
178 | /* Verify our destination addresses do not overlap. | |
179 | * If we alloed overlapping destination addresses | |
180 | * through very weird things can happen with no | |
181 | * easy explanation as one segment stops on another. | |
182 | */ | |
183 | result = -EINVAL; | |
184 | for (i = 0; i < nr_segments; i++) { | |
185 | unsigned long mstart, mend; | |
186 | unsigned long j; | |
187 | ||
188 | mstart = image->segment[i].mem; | |
189 | mend = mstart + image->segment[i].memsz; | |
190 | for (j = 0; j < i; j++) { | |
191 | unsigned long pstart, pend; | |
192 | ||
193 | pstart = image->segment[j].mem; | |
194 | pend = pstart + image->segment[j].memsz; | |
195 | /* Do the segments overlap ? */ | |
196 | if ((mend > pstart) && (mstart < pend)) | |
197 | return result; | |
198 | } | |
199 | } | |
200 | ||
201 | /* Ensure our buffer sizes are strictly less than | |
202 | * our memory sizes. This should always be the case, | |
203 | * and it is easier to check up front than to be surprised | |
204 | * later on. | |
205 | */ | |
206 | result = -EINVAL; | |
207 | for (i = 0; i < nr_segments; i++) { | |
208 | if (image->segment[i].bufsz > image->segment[i].memsz) | |
209 | return result; | |
210 | } | |
211 | ||
212 | /* | |
213 | * Verify we have good destination addresses. Normally | |
214 | * the caller is responsible for making certain we don't | |
215 | * attempt to load the new image into invalid or reserved | |
216 | * areas of RAM. But crash kernels are preloaded into a | |
217 | * reserved area of ram. We must ensure the addresses | |
218 | * are in the reserved area otherwise preloading the | |
219 | * kernel could corrupt things. | |
220 | */ | |
221 | ||
222 | if (image->type == KEXEC_TYPE_CRASH) { | |
223 | result = -EADDRNOTAVAIL; | |
224 | for (i = 0; i < nr_segments; i++) { | |
225 | unsigned long mstart, mend; | |
226 | ||
227 | mstart = image->segment[i].mem; | |
228 | mend = mstart + image->segment[i].memsz - 1; | |
229 | /* Ensure we are within the crash kernel limits */ | |
230 | if ((mstart < crashk_res.start) || | |
231 | (mend > crashk_res.end)) | |
232 | return result; | |
233 | } | |
234 | } | |
235 | ||
236 | return 0; | |
237 | } | |
238 | ||
239 | struct kimage *do_kimage_alloc_init(void) | |
240 | { | |
241 | struct kimage *image; | |
242 | ||
243 | /* Allocate a controlling structure */ | |
244 | image = kzalloc(sizeof(*image), GFP_KERNEL); | |
245 | if (!image) | |
246 | return NULL; | |
247 | ||
248 | image->head = 0; | |
249 | image->entry = &image->head; | |
250 | image->last_entry = &image->head; | |
251 | image->control_page = ~0; /* By default this does not apply */ | |
252 | image->type = KEXEC_TYPE_DEFAULT; | |
253 | ||
254 | /* Initialize the list of control pages */ | |
255 | INIT_LIST_HEAD(&image->control_pages); | |
256 | ||
257 | /* Initialize the list of destination pages */ | |
258 | INIT_LIST_HEAD(&image->dest_pages); | |
259 | ||
260 | /* Initialize the list of unusable pages */ | |
261 | INIT_LIST_HEAD(&image->unusable_pages); | |
262 | ||
263 | return image; | |
264 | } | |
265 | ||
266 | int kimage_is_destination_range(struct kimage *image, | |
267 | unsigned long start, | |
268 | unsigned long end) | |
269 | { | |
270 | unsigned long i; | |
271 | ||
272 | for (i = 0; i < image->nr_segments; i++) { | |
273 | unsigned long mstart, mend; | |
274 | ||
275 | mstart = image->segment[i].mem; | |
276 | mend = mstart + image->segment[i].memsz; | |
277 | if ((end > mstart) && (start < mend)) | |
278 | return 1; | |
279 | } | |
280 | ||
281 | return 0; | |
282 | } | |
283 | ||
284 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) | |
285 | { | |
286 | struct page *pages; | |
287 | ||
288 | pages = alloc_pages(gfp_mask, order); | |
289 | if (pages) { | |
290 | unsigned int count, i; | |
291 | ||
292 | pages->mapping = NULL; | |
293 | set_page_private(pages, order); | |
294 | count = 1 << order; | |
295 | for (i = 0; i < count; i++) | |
296 | SetPageReserved(pages + i); | |
297 | } | |
298 | ||
299 | return pages; | |
300 | } | |
301 | ||
302 | static void kimage_free_pages(struct page *page) | |
303 | { | |
304 | unsigned int order, count, i; | |
305 | ||
306 | order = page_private(page); | |
307 | count = 1 << order; | |
308 | for (i = 0; i < count; i++) | |
309 | ClearPageReserved(page + i); | |
310 | __free_pages(page, order); | |
311 | } | |
312 | ||
313 | void kimage_free_page_list(struct list_head *list) | |
314 | { | |
2b24692b | 315 | struct page *page, *next; |
2965faa5 | 316 | |
2b24692b | 317 | list_for_each_entry_safe(page, next, list, lru) { |
2965faa5 DY |
318 | list_del(&page->lru); |
319 | kimage_free_pages(page); | |
320 | } | |
321 | } | |
322 | ||
323 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, | |
324 | unsigned int order) | |
325 | { | |
326 | /* Control pages are special, they are the intermediaries | |
327 | * that are needed while we copy the rest of the pages | |
328 | * to their final resting place. As such they must | |
329 | * not conflict with either the destination addresses | |
330 | * or memory the kernel is already using. | |
331 | * | |
332 | * The only case where we really need more than one of | |
333 | * these are for architectures where we cannot disable | |
334 | * the MMU and must instead generate an identity mapped | |
335 | * page table for all of the memory. | |
336 | * | |
337 | * At worst this runs in O(N) of the image size. | |
338 | */ | |
339 | struct list_head extra_pages; | |
340 | struct page *pages; | |
341 | unsigned int count; | |
342 | ||
343 | count = 1 << order; | |
344 | INIT_LIST_HEAD(&extra_pages); | |
345 | ||
346 | /* Loop while I can allocate a page and the page allocated | |
347 | * is a destination page. | |
348 | */ | |
349 | do { | |
350 | unsigned long pfn, epfn, addr, eaddr; | |
351 | ||
352 | pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); | |
353 | if (!pages) | |
354 | break; | |
355 | pfn = page_to_pfn(pages); | |
356 | epfn = pfn + count; | |
357 | addr = pfn << PAGE_SHIFT; | |
358 | eaddr = epfn << PAGE_SHIFT; | |
359 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | |
360 | kimage_is_destination_range(image, addr, eaddr)) { | |
361 | list_add(&pages->lru, &extra_pages); | |
362 | pages = NULL; | |
363 | } | |
364 | } while (!pages); | |
365 | ||
366 | if (pages) { | |
367 | /* Remember the allocated page... */ | |
368 | list_add(&pages->lru, &image->control_pages); | |
369 | ||
370 | /* Because the page is already in it's destination | |
371 | * location we will never allocate another page at | |
372 | * that address. Therefore kimage_alloc_pages | |
373 | * will not return it (again) and we don't need | |
374 | * to give it an entry in image->segment[]. | |
375 | */ | |
376 | } | |
377 | /* Deal with the destination pages I have inadvertently allocated. | |
378 | * | |
379 | * Ideally I would convert multi-page allocations into single | |
380 | * page allocations, and add everything to image->dest_pages. | |
381 | * | |
382 | * For now it is simpler to just free the pages. | |
383 | */ | |
384 | kimage_free_page_list(&extra_pages); | |
385 | ||
386 | return pages; | |
387 | } | |
388 | ||
389 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, | |
390 | unsigned int order) | |
391 | { | |
392 | /* Control pages are special, they are the intermediaries | |
393 | * that are needed while we copy the rest of the pages | |
394 | * to their final resting place. As such they must | |
395 | * not conflict with either the destination addresses | |
396 | * or memory the kernel is already using. | |
397 | * | |
398 | * Control pages are also the only pags we must allocate | |
399 | * when loading a crash kernel. All of the other pages | |
400 | * are specified by the segments and we just memcpy | |
401 | * into them directly. | |
402 | * | |
403 | * The only case where we really need more than one of | |
404 | * these are for architectures where we cannot disable | |
405 | * the MMU and must instead generate an identity mapped | |
406 | * page table for all of the memory. | |
407 | * | |
408 | * Given the low demand this implements a very simple | |
409 | * allocator that finds the first hole of the appropriate | |
410 | * size in the reserved memory region, and allocates all | |
411 | * of the memory up to and including the hole. | |
412 | */ | |
413 | unsigned long hole_start, hole_end, size; | |
414 | struct page *pages; | |
415 | ||
416 | pages = NULL; | |
417 | size = (1 << order) << PAGE_SHIFT; | |
418 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | |
419 | hole_end = hole_start + size - 1; | |
420 | while (hole_end <= crashk_res.end) { | |
421 | unsigned long i; | |
422 | ||
423 | if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) | |
424 | break; | |
425 | /* See if I overlap any of the segments */ | |
426 | for (i = 0; i < image->nr_segments; i++) { | |
427 | unsigned long mstart, mend; | |
428 | ||
429 | mstart = image->segment[i].mem; | |
430 | mend = mstart + image->segment[i].memsz - 1; | |
431 | if ((hole_end >= mstart) && (hole_start <= mend)) { | |
432 | /* Advance the hole to the end of the segment */ | |
433 | hole_start = (mend + (size - 1)) & ~(size - 1); | |
434 | hole_end = hole_start + size - 1; | |
435 | break; | |
436 | } | |
437 | } | |
438 | /* If I don't overlap any segments I have found my hole! */ | |
439 | if (i == image->nr_segments) { | |
440 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | |
04e9949b | 441 | image->control_page = hole_end; |
2965faa5 DY |
442 | break; |
443 | } | |
444 | } | |
2965faa5 DY |
445 | |
446 | return pages; | |
447 | } | |
448 | ||
449 | ||
450 | struct page *kimage_alloc_control_pages(struct kimage *image, | |
451 | unsigned int order) | |
452 | { | |
453 | struct page *pages = NULL; | |
454 | ||
455 | switch (image->type) { | |
456 | case KEXEC_TYPE_DEFAULT: | |
457 | pages = kimage_alloc_normal_control_pages(image, order); | |
458 | break; | |
459 | case KEXEC_TYPE_CRASH: | |
460 | pages = kimage_alloc_crash_control_pages(image, order); | |
461 | break; | |
462 | } | |
463 | ||
464 | return pages; | |
465 | } | |
466 | ||
467 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | |
468 | { | |
469 | if (*image->entry != 0) | |
470 | image->entry++; | |
471 | ||
472 | if (image->entry == image->last_entry) { | |
473 | kimage_entry_t *ind_page; | |
474 | struct page *page; | |
475 | ||
476 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); | |
477 | if (!page) | |
478 | return -ENOMEM; | |
479 | ||
480 | ind_page = page_address(page); | |
481 | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; | |
482 | image->entry = ind_page; | |
483 | image->last_entry = ind_page + | |
484 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | |
485 | } | |
486 | *image->entry = entry; | |
487 | image->entry++; | |
488 | *image->entry = 0; | |
489 | ||
490 | return 0; | |
491 | } | |
492 | ||
493 | static int kimage_set_destination(struct kimage *image, | |
494 | unsigned long destination) | |
495 | { | |
496 | int result; | |
497 | ||
498 | destination &= PAGE_MASK; | |
499 | result = kimage_add_entry(image, destination | IND_DESTINATION); | |
500 | ||
501 | return result; | |
502 | } | |
503 | ||
504 | ||
505 | static int kimage_add_page(struct kimage *image, unsigned long page) | |
506 | { | |
507 | int result; | |
508 | ||
509 | page &= PAGE_MASK; | |
510 | result = kimage_add_entry(image, page | IND_SOURCE); | |
511 | ||
512 | return result; | |
513 | } | |
514 | ||
515 | ||
516 | static void kimage_free_extra_pages(struct kimage *image) | |
517 | { | |
518 | /* Walk through and free any extra destination pages I may have */ | |
519 | kimage_free_page_list(&image->dest_pages); | |
520 | ||
521 | /* Walk through and free any unusable pages I have cached */ | |
522 | kimage_free_page_list(&image->unusable_pages); | |
523 | ||
524 | } | |
525 | void kimage_terminate(struct kimage *image) | |
526 | { | |
527 | if (*image->entry != 0) | |
528 | image->entry++; | |
529 | ||
530 | *image->entry = IND_DONE; | |
531 | } | |
532 | ||
533 | #define for_each_kimage_entry(image, ptr, entry) \ | |
534 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | |
535 | ptr = (entry & IND_INDIRECTION) ? \ | |
536 | phys_to_virt((entry & PAGE_MASK)) : ptr + 1) | |
537 | ||
538 | static void kimage_free_entry(kimage_entry_t entry) | |
539 | { | |
540 | struct page *page; | |
541 | ||
542 | page = pfn_to_page(entry >> PAGE_SHIFT); | |
543 | kimage_free_pages(page); | |
544 | } | |
545 | ||
546 | void kimage_free(struct kimage *image) | |
547 | { | |
548 | kimage_entry_t *ptr, entry; | |
549 | kimage_entry_t ind = 0; | |
550 | ||
551 | if (!image) | |
552 | return; | |
553 | ||
554 | kimage_free_extra_pages(image); | |
555 | for_each_kimage_entry(image, ptr, entry) { | |
556 | if (entry & IND_INDIRECTION) { | |
557 | /* Free the previous indirection page */ | |
558 | if (ind & IND_INDIRECTION) | |
559 | kimage_free_entry(ind); | |
560 | /* Save this indirection page until we are | |
561 | * done with it. | |
562 | */ | |
563 | ind = entry; | |
564 | } else if (entry & IND_SOURCE) | |
565 | kimage_free_entry(entry); | |
566 | } | |
567 | /* Free the final indirection page */ | |
568 | if (ind & IND_INDIRECTION) | |
569 | kimage_free_entry(ind); | |
570 | ||
571 | /* Handle any machine specific cleanup */ | |
572 | machine_kexec_cleanup(image); | |
573 | ||
574 | /* Free the kexec control pages... */ | |
575 | kimage_free_page_list(&image->control_pages); | |
576 | ||
577 | /* | |
578 | * Free up any temporary buffers allocated. This might hit if | |
579 | * error occurred much later after buffer allocation. | |
580 | */ | |
581 | if (image->file_mode) | |
582 | kimage_file_post_load_cleanup(image); | |
583 | ||
584 | kfree(image); | |
585 | } | |
586 | ||
587 | static kimage_entry_t *kimage_dst_used(struct kimage *image, | |
588 | unsigned long page) | |
589 | { | |
590 | kimage_entry_t *ptr, entry; | |
591 | unsigned long destination = 0; | |
592 | ||
593 | for_each_kimage_entry(image, ptr, entry) { | |
594 | if (entry & IND_DESTINATION) | |
595 | destination = entry & PAGE_MASK; | |
596 | else if (entry & IND_SOURCE) { | |
597 | if (page == destination) | |
598 | return ptr; | |
599 | destination += PAGE_SIZE; | |
600 | } | |
601 | } | |
602 | ||
603 | return NULL; | |
604 | } | |
605 | ||
606 | static struct page *kimage_alloc_page(struct kimage *image, | |
607 | gfp_t gfp_mask, | |
608 | unsigned long destination) | |
609 | { | |
610 | /* | |
611 | * Here we implement safeguards to ensure that a source page | |
612 | * is not copied to its destination page before the data on | |
613 | * the destination page is no longer useful. | |
614 | * | |
615 | * To do this we maintain the invariant that a source page is | |
616 | * either its own destination page, or it is not a | |
617 | * destination page at all. | |
618 | * | |
619 | * That is slightly stronger than required, but the proof | |
620 | * that no problems will not occur is trivial, and the | |
621 | * implementation is simply to verify. | |
622 | * | |
623 | * When allocating all pages normally this algorithm will run | |
624 | * in O(N) time, but in the worst case it will run in O(N^2) | |
625 | * time. If the runtime is a problem the data structures can | |
626 | * be fixed. | |
627 | */ | |
628 | struct page *page; | |
629 | unsigned long addr; | |
630 | ||
631 | /* | |
632 | * Walk through the list of destination pages, and see if I | |
633 | * have a match. | |
634 | */ | |
635 | list_for_each_entry(page, &image->dest_pages, lru) { | |
636 | addr = page_to_pfn(page) << PAGE_SHIFT; | |
637 | if (addr == destination) { | |
638 | list_del(&page->lru); | |
639 | return page; | |
640 | } | |
641 | } | |
642 | page = NULL; | |
643 | while (1) { | |
644 | kimage_entry_t *old; | |
645 | ||
646 | /* Allocate a page, if we run out of memory give up */ | |
647 | page = kimage_alloc_pages(gfp_mask, 0); | |
648 | if (!page) | |
649 | return NULL; | |
650 | /* If the page cannot be used file it away */ | |
651 | if (page_to_pfn(page) > | |
652 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | |
653 | list_add(&page->lru, &image->unusable_pages); | |
654 | continue; | |
655 | } | |
656 | addr = page_to_pfn(page) << PAGE_SHIFT; | |
657 | ||
658 | /* If it is the destination page we want use it */ | |
659 | if (addr == destination) | |
660 | break; | |
661 | ||
662 | /* If the page is not a destination page use it */ | |
663 | if (!kimage_is_destination_range(image, addr, | |
664 | addr + PAGE_SIZE)) | |
665 | break; | |
666 | ||
667 | /* | |
668 | * I know that the page is someones destination page. | |
669 | * See if there is already a source page for this | |
670 | * destination page. And if so swap the source pages. | |
671 | */ | |
672 | old = kimage_dst_used(image, addr); | |
673 | if (old) { | |
674 | /* If so move it */ | |
675 | unsigned long old_addr; | |
676 | struct page *old_page; | |
677 | ||
678 | old_addr = *old & PAGE_MASK; | |
679 | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); | |
680 | copy_highpage(page, old_page); | |
681 | *old = addr | (*old & ~PAGE_MASK); | |
682 | ||
683 | /* The old page I have found cannot be a | |
684 | * destination page, so return it if it's | |
685 | * gfp_flags honor the ones passed in. | |
686 | */ | |
687 | if (!(gfp_mask & __GFP_HIGHMEM) && | |
688 | PageHighMem(old_page)) { | |
689 | kimage_free_pages(old_page); | |
690 | continue; | |
691 | } | |
692 | addr = old_addr; | |
693 | page = old_page; | |
694 | break; | |
695 | } | |
696 | /* Place the page on the destination list, to be used later */ | |
697 | list_add(&page->lru, &image->dest_pages); | |
698 | } | |
699 | ||
700 | return page; | |
701 | } | |
702 | ||
703 | static int kimage_load_normal_segment(struct kimage *image, | |
704 | struct kexec_segment *segment) | |
705 | { | |
706 | unsigned long maddr; | |
707 | size_t ubytes, mbytes; | |
708 | int result; | |
709 | unsigned char __user *buf = NULL; | |
710 | unsigned char *kbuf = NULL; | |
711 | ||
712 | result = 0; | |
713 | if (image->file_mode) | |
714 | kbuf = segment->kbuf; | |
715 | else | |
716 | buf = segment->buf; | |
717 | ubytes = segment->bufsz; | |
718 | mbytes = segment->memsz; | |
719 | maddr = segment->mem; | |
720 | ||
721 | result = kimage_set_destination(image, maddr); | |
722 | if (result < 0) | |
723 | goto out; | |
724 | ||
725 | while (mbytes) { | |
726 | struct page *page; | |
727 | char *ptr; | |
728 | size_t uchunk, mchunk; | |
729 | ||
730 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); | |
731 | if (!page) { | |
732 | result = -ENOMEM; | |
733 | goto out; | |
734 | } | |
735 | result = kimage_add_page(image, page_to_pfn(page) | |
736 | << PAGE_SHIFT); | |
737 | if (result < 0) | |
738 | goto out; | |
739 | ||
740 | ptr = kmap(page); | |
741 | /* Start with a clear page */ | |
742 | clear_page(ptr); | |
743 | ptr += maddr & ~PAGE_MASK; | |
744 | mchunk = min_t(size_t, mbytes, | |
745 | PAGE_SIZE - (maddr & ~PAGE_MASK)); | |
746 | uchunk = min(ubytes, mchunk); | |
747 | ||
748 | /* For file based kexec, source pages are in kernel memory */ | |
749 | if (image->file_mode) | |
750 | memcpy(ptr, kbuf, uchunk); | |
751 | else | |
752 | result = copy_from_user(ptr, buf, uchunk); | |
753 | kunmap(page); | |
754 | if (result) { | |
755 | result = -EFAULT; | |
756 | goto out; | |
757 | } | |
758 | ubytes -= uchunk; | |
759 | maddr += mchunk; | |
760 | if (image->file_mode) | |
761 | kbuf += mchunk; | |
762 | else | |
763 | buf += mchunk; | |
764 | mbytes -= mchunk; | |
765 | } | |
766 | out: | |
767 | return result; | |
768 | } | |
769 | ||
770 | static int kimage_load_crash_segment(struct kimage *image, | |
771 | struct kexec_segment *segment) | |
772 | { | |
773 | /* For crash dumps kernels we simply copy the data from | |
774 | * user space to it's destination. | |
775 | * We do things a page at a time for the sake of kmap. | |
776 | */ | |
777 | unsigned long maddr; | |
778 | size_t ubytes, mbytes; | |
779 | int result; | |
780 | unsigned char __user *buf = NULL; | |
781 | unsigned char *kbuf = NULL; | |
782 | ||
783 | result = 0; | |
784 | if (image->file_mode) | |
785 | kbuf = segment->kbuf; | |
786 | else | |
787 | buf = segment->buf; | |
788 | ubytes = segment->bufsz; | |
789 | mbytes = segment->memsz; | |
790 | maddr = segment->mem; | |
791 | while (mbytes) { | |
792 | struct page *page; | |
793 | char *ptr; | |
794 | size_t uchunk, mchunk; | |
795 | ||
796 | page = pfn_to_page(maddr >> PAGE_SHIFT); | |
797 | if (!page) { | |
798 | result = -ENOMEM; | |
799 | goto out; | |
800 | } | |
801 | ptr = kmap(page); | |
802 | ptr += maddr & ~PAGE_MASK; | |
803 | mchunk = min_t(size_t, mbytes, | |
804 | PAGE_SIZE - (maddr & ~PAGE_MASK)); | |
805 | uchunk = min(ubytes, mchunk); | |
806 | if (mchunk > uchunk) { | |
807 | /* Zero the trailing part of the page */ | |
808 | memset(ptr + uchunk, 0, mchunk - uchunk); | |
809 | } | |
810 | ||
811 | /* For file based kexec, source pages are in kernel memory */ | |
812 | if (image->file_mode) | |
813 | memcpy(ptr, kbuf, uchunk); | |
814 | else | |
815 | result = copy_from_user(ptr, buf, uchunk); | |
816 | kexec_flush_icache_page(page); | |
817 | kunmap(page); | |
818 | if (result) { | |
819 | result = -EFAULT; | |
820 | goto out; | |
821 | } | |
822 | ubytes -= uchunk; | |
823 | maddr += mchunk; | |
824 | if (image->file_mode) | |
825 | kbuf += mchunk; | |
826 | else | |
827 | buf += mchunk; | |
828 | mbytes -= mchunk; | |
829 | } | |
830 | out: | |
831 | return result; | |
832 | } | |
833 | ||
834 | int kimage_load_segment(struct kimage *image, | |
835 | struct kexec_segment *segment) | |
836 | { | |
837 | int result = -ENOMEM; | |
838 | ||
839 | switch (image->type) { | |
840 | case KEXEC_TYPE_DEFAULT: | |
841 | result = kimage_load_normal_segment(image, segment); | |
842 | break; | |
843 | case KEXEC_TYPE_CRASH: | |
844 | result = kimage_load_crash_segment(image, segment); | |
845 | break; | |
846 | } | |
847 | ||
848 | return result; | |
849 | } | |
850 | ||
851 | struct kimage *kexec_image; | |
852 | struct kimage *kexec_crash_image; | |
853 | int kexec_load_disabled; | |
854 | ||
7bbee5ca HK |
855 | /* |
856 | * No panic_cpu check version of crash_kexec(). This function is called | |
857 | * only when panic_cpu holds the current CPU number; this is the only CPU | |
858 | * which processes crash_kexec routines. | |
859 | */ | |
860 | void __crash_kexec(struct pt_regs *regs) | |
2965faa5 DY |
861 | { |
862 | /* Take the kexec_mutex here to prevent sys_kexec_load | |
863 | * running on one cpu from replacing the crash kernel | |
864 | * we are using after a panic on a different cpu. | |
865 | * | |
866 | * If the crash kernel was not located in a fixed area | |
867 | * of memory the xchg(&kexec_crash_image) would be | |
868 | * sufficient. But since I reuse the memory... | |
869 | */ | |
870 | if (mutex_trylock(&kexec_mutex)) { | |
871 | if (kexec_crash_image) { | |
872 | struct pt_regs fixed_regs; | |
873 | ||
874 | crash_setup_regs(&fixed_regs, regs); | |
875 | crash_save_vmcoreinfo(); | |
876 | machine_crash_shutdown(&fixed_regs); | |
877 | machine_kexec(kexec_crash_image); | |
878 | } | |
879 | mutex_unlock(&kexec_mutex); | |
880 | } | |
881 | } | |
882 | ||
7bbee5ca HK |
883 | void crash_kexec(struct pt_regs *regs) |
884 | { | |
885 | int old_cpu, this_cpu; | |
886 | ||
887 | /* | |
888 | * Only one CPU is allowed to execute the crash_kexec() code as with | |
889 | * panic(). Otherwise parallel calls of panic() and crash_kexec() | |
890 | * may stop each other. To exclude them, we use panic_cpu here too. | |
891 | */ | |
892 | this_cpu = raw_smp_processor_id(); | |
893 | old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); | |
894 | if (old_cpu == PANIC_CPU_INVALID) { | |
895 | /* This is the 1st CPU which comes here, so go ahead. */ | |
cf9b1106 | 896 | printk_nmi_flush_on_panic(); |
7bbee5ca HK |
897 | __crash_kexec(regs); |
898 | ||
899 | /* | |
900 | * Reset panic_cpu to allow another panic()/crash_kexec() | |
901 | * call. | |
902 | */ | |
903 | atomic_set(&panic_cpu, PANIC_CPU_INVALID); | |
904 | } | |
905 | } | |
906 | ||
2965faa5 DY |
907 | size_t crash_get_memory_size(void) |
908 | { | |
909 | size_t size = 0; | |
910 | ||
911 | mutex_lock(&kexec_mutex); | |
912 | if (crashk_res.end != crashk_res.start) | |
913 | size = resource_size(&crashk_res); | |
914 | mutex_unlock(&kexec_mutex); | |
915 | return size; | |
916 | } | |
917 | ||
918 | void __weak crash_free_reserved_phys_range(unsigned long begin, | |
919 | unsigned long end) | |
920 | { | |
921 | unsigned long addr; | |
922 | ||
923 | for (addr = begin; addr < end; addr += PAGE_SIZE) | |
924 | free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); | |
925 | } | |
926 | ||
927 | int crash_shrink_memory(unsigned long new_size) | |
928 | { | |
929 | int ret = 0; | |
930 | unsigned long start, end; | |
931 | unsigned long old_size; | |
932 | struct resource *ram_res; | |
933 | ||
934 | mutex_lock(&kexec_mutex); | |
935 | ||
936 | if (kexec_crash_image) { | |
937 | ret = -ENOENT; | |
938 | goto unlock; | |
939 | } | |
940 | start = crashk_res.start; | |
941 | end = crashk_res.end; | |
942 | old_size = (end == 0) ? 0 : end - start + 1; | |
943 | if (new_size >= old_size) { | |
944 | ret = (new_size == old_size) ? 0 : -EINVAL; | |
945 | goto unlock; | |
946 | } | |
947 | ||
948 | ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); | |
949 | if (!ram_res) { | |
950 | ret = -ENOMEM; | |
951 | goto unlock; | |
952 | } | |
953 | ||
954 | start = roundup(start, KEXEC_CRASH_MEM_ALIGN); | |
955 | end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); | |
956 | ||
2965faa5 DY |
957 | crash_free_reserved_phys_range(end, crashk_res.end); |
958 | ||
959 | if ((start == end) && (crashk_res.parent != NULL)) | |
960 | release_resource(&crashk_res); | |
961 | ||
962 | ram_res->start = end; | |
963 | ram_res->end = crashk_res.end; | |
1a085d07 | 964 | ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; |
2965faa5 DY |
965 | ram_res->name = "System RAM"; |
966 | ||
967 | crashk_res.end = end - 1; | |
968 | ||
969 | insert_resource(&iomem_resource, ram_res); | |
2965faa5 DY |
970 | |
971 | unlock: | |
972 | mutex_unlock(&kexec_mutex); | |
973 | return ret; | |
974 | } | |
975 | ||
976 | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, | |
977 | size_t data_len) | |
978 | { | |
979 | struct elf_note note; | |
980 | ||
981 | note.n_namesz = strlen(name) + 1; | |
982 | note.n_descsz = data_len; | |
983 | note.n_type = type; | |
984 | memcpy(buf, ¬e, sizeof(note)); | |
985 | buf += (sizeof(note) + 3)/4; | |
986 | memcpy(buf, name, note.n_namesz); | |
987 | buf += (note.n_namesz + 3)/4; | |
988 | memcpy(buf, data, note.n_descsz); | |
989 | buf += (note.n_descsz + 3)/4; | |
990 | ||
991 | return buf; | |
992 | } | |
993 | ||
994 | static void final_note(u32 *buf) | |
995 | { | |
996 | struct elf_note note; | |
997 | ||
998 | note.n_namesz = 0; | |
999 | note.n_descsz = 0; | |
1000 | note.n_type = 0; | |
1001 | memcpy(buf, ¬e, sizeof(note)); | |
1002 | } | |
1003 | ||
1004 | void crash_save_cpu(struct pt_regs *regs, int cpu) | |
1005 | { | |
1006 | struct elf_prstatus prstatus; | |
1007 | u32 *buf; | |
1008 | ||
1009 | if ((cpu < 0) || (cpu >= nr_cpu_ids)) | |
1010 | return; | |
1011 | ||
1012 | /* Using ELF notes here is opportunistic. | |
1013 | * I need a well defined structure format | |
1014 | * for the data I pass, and I need tags | |
1015 | * on the data to indicate what information I have | |
1016 | * squirrelled away. ELF notes happen to provide | |
1017 | * all of that, so there is no need to invent something new. | |
1018 | */ | |
1019 | buf = (u32 *)per_cpu_ptr(crash_notes, cpu); | |
1020 | if (!buf) | |
1021 | return; | |
1022 | memset(&prstatus, 0, sizeof(prstatus)); | |
1023 | prstatus.pr_pid = current->pid; | |
1024 | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); | |
1025 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, | |
1026 | &prstatus, sizeof(prstatus)); | |
1027 | final_note(buf); | |
1028 | } | |
1029 | ||
1030 | static int __init crash_notes_memory_init(void) | |
1031 | { | |
1032 | /* Allocate memory for saving cpu registers. */ | |
bbb78b8f BH |
1033 | size_t size, align; |
1034 | ||
1035 | /* | |
1036 | * crash_notes could be allocated across 2 vmalloc pages when percpu | |
1037 | * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc | |
1038 | * pages are also on 2 continuous physical pages. In this case the | |
1039 | * 2nd part of crash_notes in 2nd page could be lost since only the | |
1040 | * starting address and size of crash_notes are exported through sysfs. | |
1041 | * Here round up the size of crash_notes to the nearest power of two | |
1042 | * and pass it to __alloc_percpu as align value. This can make sure | |
1043 | * crash_notes is allocated inside one physical page. | |
1044 | */ | |
1045 | size = sizeof(note_buf_t); | |
1046 | align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); | |
1047 | ||
1048 | /* | |
1049 | * Break compile if size is bigger than PAGE_SIZE since crash_notes | |
1050 | * definitely will be in 2 pages with that. | |
1051 | */ | |
1052 | BUILD_BUG_ON(size > PAGE_SIZE); | |
1053 | ||
1054 | crash_notes = __alloc_percpu(size, align); | |
2965faa5 | 1055 | if (!crash_notes) { |
de90a6bc | 1056 | pr_warn("Memory allocation for saving cpu register states failed\n"); |
2965faa5 DY |
1057 | return -ENOMEM; |
1058 | } | |
1059 | return 0; | |
1060 | } | |
1061 | subsys_initcall(crash_notes_memory_init); | |
1062 | ||
1063 | ||
1064 | /* | |
1065 | * parsing the "crashkernel" commandline | |
1066 | * | |
1067 | * this code is intended to be called from architecture specific code | |
1068 | */ | |
1069 | ||
1070 | ||
1071 | /* | |
1072 | * This function parses command lines in the format | |
1073 | * | |
1074 | * crashkernel=ramsize-range:size[,...][@offset] | |
1075 | * | |
1076 | * The function returns 0 on success and -EINVAL on failure. | |
1077 | */ | |
1078 | static int __init parse_crashkernel_mem(char *cmdline, | |
1079 | unsigned long long system_ram, | |
1080 | unsigned long long *crash_size, | |
1081 | unsigned long long *crash_base) | |
1082 | { | |
1083 | char *cur = cmdline, *tmp; | |
1084 | ||
1085 | /* for each entry of the comma-separated list */ | |
1086 | do { | |
1087 | unsigned long long start, end = ULLONG_MAX, size; | |
1088 | ||
1089 | /* get the start of the range */ | |
1090 | start = memparse(cur, &tmp); | |
1091 | if (cur == tmp) { | |
1092 | pr_warn("crashkernel: Memory value expected\n"); | |
1093 | return -EINVAL; | |
1094 | } | |
1095 | cur = tmp; | |
1096 | if (*cur != '-') { | |
1097 | pr_warn("crashkernel: '-' expected\n"); | |
1098 | return -EINVAL; | |
1099 | } | |
1100 | cur++; | |
1101 | ||
1102 | /* if no ':' is here, than we read the end */ | |
1103 | if (*cur != ':') { | |
1104 | end = memparse(cur, &tmp); | |
1105 | if (cur == tmp) { | |
1106 | pr_warn("crashkernel: Memory value expected\n"); | |
1107 | return -EINVAL; | |
1108 | } | |
1109 | cur = tmp; | |
1110 | if (end <= start) { | |
1111 | pr_warn("crashkernel: end <= start\n"); | |
1112 | return -EINVAL; | |
1113 | } | |
1114 | } | |
1115 | ||
1116 | if (*cur != ':') { | |
1117 | pr_warn("crashkernel: ':' expected\n"); | |
1118 | return -EINVAL; | |
1119 | } | |
1120 | cur++; | |
1121 | ||
1122 | size = memparse(cur, &tmp); | |
1123 | if (cur == tmp) { | |
1124 | pr_warn("Memory value expected\n"); | |
1125 | return -EINVAL; | |
1126 | } | |
1127 | cur = tmp; | |
1128 | if (size >= system_ram) { | |
1129 | pr_warn("crashkernel: invalid size\n"); | |
1130 | return -EINVAL; | |
1131 | } | |
1132 | ||
1133 | /* match ? */ | |
1134 | if (system_ram >= start && system_ram < end) { | |
1135 | *crash_size = size; | |
1136 | break; | |
1137 | } | |
1138 | } while (*cur++ == ','); | |
1139 | ||
1140 | if (*crash_size > 0) { | |
1141 | while (*cur && *cur != ' ' && *cur != '@') | |
1142 | cur++; | |
1143 | if (*cur == '@') { | |
1144 | cur++; | |
1145 | *crash_base = memparse(cur, &tmp); | |
1146 | if (cur == tmp) { | |
1147 | pr_warn("Memory value expected after '@'\n"); | |
1148 | return -EINVAL; | |
1149 | } | |
1150 | } | |
1151 | } | |
1152 | ||
1153 | return 0; | |
1154 | } | |
1155 | ||
1156 | /* | |
1157 | * That function parses "simple" (old) crashkernel command lines like | |
1158 | * | |
1159 | * crashkernel=size[@offset] | |
1160 | * | |
1161 | * It returns 0 on success and -EINVAL on failure. | |
1162 | */ | |
1163 | static int __init parse_crashkernel_simple(char *cmdline, | |
1164 | unsigned long long *crash_size, | |
1165 | unsigned long long *crash_base) | |
1166 | { | |
1167 | char *cur = cmdline; | |
1168 | ||
1169 | *crash_size = memparse(cmdline, &cur); | |
1170 | if (cmdline == cur) { | |
1171 | pr_warn("crashkernel: memory value expected\n"); | |
1172 | return -EINVAL; | |
1173 | } | |
1174 | ||
1175 | if (*cur == '@') | |
1176 | *crash_base = memparse(cur+1, &cur); | |
1177 | else if (*cur != ' ' && *cur != '\0') { | |
53b90c0c | 1178 | pr_warn("crashkernel: unrecognized char: %c\n", *cur); |
2965faa5 DY |
1179 | return -EINVAL; |
1180 | } | |
1181 | ||
1182 | return 0; | |
1183 | } | |
1184 | ||
1185 | #define SUFFIX_HIGH 0 | |
1186 | #define SUFFIX_LOW 1 | |
1187 | #define SUFFIX_NULL 2 | |
1188 | static __initdata char *suffix_tbl[] = { | |
1189 | [SUFFIX_HIGH] = ",high", | |
1190 | [SUFFIX_LOW] = ",low", | |
1191 | [SUFFIX_NULL] = NULL, | |
1192 | }; | |
1193 | ||
1194 | /* | |
1195 | * That function parses "suffix" crashkernel command lines like | |
1196 | * | |
1197 | * crashkernel=size,[high|low] | |
1198 | * | |
1199 | * It returns 0 on success and -EINVAL on failure. | |
1200 | */ | |
1201 | static int __init parse_crashkernel_suffix(char *cmdline, | |
1202 | unsigned long long *crash_size, | |
1203 | const char *suffix) | |
1204 | { | |
1205 | char *cur = cmdline; | |
1206 | ||
1207 | *crash_size = memparse(cmdline, &cur); | |
1208 | if (cmdline == cur) { | |
1209 | pr_warn("crashkernel: memory value expected\n"); | |
1210 | return -EINVAL; | |
1211 | } | |
1212 | ||
1213 | /* check with suffix */ | |
1214 | if (strncmp(cur, suffix, strlen(suffix))) { | |
53b90c0c | 1215 | pr_warn("crashkernel: unrecognized char: %c\n", *cur); |
2965faa5 DY |
1216 | return -EINVAL; |
1217 | } | |
1218 | cur += strlen(suffix); | |
1219 | if (*cur != ' ' && *cur != '\0') { | |
53b90c0c | 1220 | pr_warn("crashkernel: unrecognized char: %c\n", *cur); |
2965faa5 DY |
1221 | return -EINVAL; |
1222 | } | |
1223 | ||
1224 | return 0; | |
1225 | } | |
1226 | ||
1227 | static __init char *get_last_crashkernel(char *cmdline, | |
1228 | const char *name, | |
1229 | const char *suffix) | |
1230 | { | |
1231 | char *p = cmdline, *ck_cmdline = NULL; | |
1232 | ||
1233 | /* find crashkernel and use the last one if there are more */ | |
1234 | p = strstr(p, name); | |
1235 | while (p) { | |
1236 | char *end_p = strchr(p, ' '); | |
1237 | char *q; | |
1238 | ||
1239 | if (!end_p) | |
1240 | end_p = p + strlen(p); | |
1241 | ||
1242 | if (!suffix) { | |
1243 | int i; | |
1244 | ||
1245 | /* skip the one with any known suffix */ | |
1246 | for (i = 0; suffix_tbl[i]; i++) { | |
1247 | q = end_p - strlen(suffix_tbl[i]); | |
1248 | if (!strncmp(q, suffix_tbl[i], | |
1249 | strlen(suffix_tbl[i]))) | |
1250 | goto next; | |
1251 | } | |
1252 | ck_cmdline = p; | |
1253 | } else { | |
1254 | q = end_p - strlen(suffix); | |
1255 | if (!strncmp(q, suffix, strlen(suffix))) | |
1256 | ck_cmdline = p; | |
1257 | } | |
1258 | next: | |
1259 | p = strstr(p+1, name); | |
1260 | } | |
1261 | ||
1262 | if (!ck_cmdline) | |
1263 | return NULL; | |
1264 | ||
1265 | return ck_cmdline; | |
1266 | } | |
1267 | ||
1268 | static int __init __parse_crashkernel(char *cmdline, | |
1269 | unsigned long long system_ram, | |
1270 | unsigned long long *crash_size, | |
1271 | unsigned long long *crash_base, | |
1272 | const char *name, | |
1273 | const char *suffix) | |
1274 | { | |
1275 | char *first_colon, *first_space; | |
1276 | char *ck_cmdline; | |
1277 | ||
1278 | BUG_ON(!crash_size || !crash_base); | |
1279 | *crash_size = 0; | |
1280 | *crash_base = 0; | |
1281 | ||
1282 | ck_cmdline = get_last_crashkernel(cmdline, name, suffix); | |
1283 | ||
1284 | if (!ck_cmdline) | |
1285 | return -EINVAL; | |
1286 | ||
1287 | ck_cmdline += strlen(name); | |
1288 | ||
1289 | if (suffix) | |
1290 | return parse_crashkernel_suffix(ck_cmdline, crash_size, | |
1291 | suffix); | |
1292 | /* | |
1293 | * if the commandline contains a ':', then that's the extended | |
1294 | * syntax -- if not, it must be the classic syntax | |
1295 | */ | |
1296 | first_colon = strchr(ck_cmdline, ':'); | |
1297 | first_space = strchr(ck_cmdline, ' '); | |
1298 | if (first_colon && (!first_space || first_colon < first_space)) | |
1299 | return parse_crashkernel_mem(ck_cmdline, system_ram, | |
1300 | crash_size, crash_base); | |
1301 | ||
1302 | return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); | |
1303 | } | |
1304 | ||
1305 | /* | |
1306 | * That function is the entry point for command line parsing and should be | |
1307 | * called from the arch-specific code. | |
1308 | */ | |
1309 | int __init parse_crashkernel(char *cmdline, | |
1310 | unsigned long long system_ram, | |
1311 | unsigned long long *crash_size, | |
1312 | unsigned long long *crash_base) | |
1313 | { | |
1314 | return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, | |
1315 | "crashkernel=", NULL); | |
1316 | } | |
1317 | ||
1318 | int __init parse_crashkernel_high(char *cmdline, | |
1319 | unsigned long long system_ram, | |
1320 | unsigned long long *crash_size, | |
1321 | unsigned long long *crash_base) | |
1322 | { | |
1323 | return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, | |
1324 | "crashkernel=", suffix_tbl[SUFFIX_HIGH]); | |
1325 | } | |
1326 | ||
1327 | int __init parse_crashkernel_low(char *cmdline, | |
1328 | unsigned long long system_ram, | |
1329 | unsigned long long *crash_size, | |
1330 | unsigned long long *crash_base) | |
1331 | { | |
1332 | return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, | |
1333 | "crashkernel=", suffix_tbl[SUFFIX_LOW]); | |
1334 | } | |
1335 | ||
1336 | static void update_vmcoreinfo_note(void) | |
1337 | { | |
1338 | u32 *buf = vmcoreinfo_note; | |
1339 | ||
1340 | if (!vmcoreinfo_size) | |
1341 | return; | |
1342 | buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, | |
1343 | vmcoreinfo_size); | |
1344 | final_note(buf); | |
1345 | } | |
1346 | ||
1347 | void crash_save_vmcoreinfo(void) | |
1348 | { | |
1349 | vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); | |
1350 | update_vmcoreinfo_note(); | |
1351 | } | |
1352 | ||
1353 | void vmcoreinfo_append_str(const char *fmt, ...) | |
1354 | { | |
1355 | va_list args; | |
1356 | char buf[0x50]; | |
1357 | size_t r; | |
1358 | ||
1359 | va_start(args, fmt); | |
1360 | r = vscnprintf(buf, sizeof(buf), fmt, args); | |
1361 | va_end(args); | |
1362 | ||
1363 | r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); | |
1364 | ||
1365 | memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); | |
1366 | ||
1367 | vmcoreinfo_size += r; | |
1368 | } | |
1369 | ||
1370 | /* | |
1371 | * provide an empty default implementation here -- architecture | |
1372 | * code may override this | |
1373 | */ | |
1374 | void __weak arch_crash_save_vmcoreinfo(void) | |
1375 | {} | |
1376 | ||
1377 | unsigned long __weak paddr_vmcoreinfo_note(void) | |
1378 | { | |
1379 | return __pa((unsigned long)(char *)&vmcoreinfo_note); | |
1380 | } | |
1381 | ||
1382 | static int __init crash_save_vmcoreinfo_init(void) | |
1383 | { | |
1384 | VMCOREINFO_OSRELEASE(init_uts_ns.name.release); | |
1385 | VMCOREINFO_PAGESIZE(PAGE_SIZE); | |
1386 | ||
1387 | VMCOREINFO_SYMBOL(init_uts_ns); | |
1388 | VMCOREINFO_SYMBOL(node_online_map); | |
1389 | #ifdef CONFIG_MMU | |
1390 | VMCOREINFO_SYMBOL(swapper_pg_dir); | |
1391 | #endif | |
1392 | VMCOREINFO_SYMBOL(_stext); | |
1393 | VMCOREINFO_SYMBOL(vmap_area_list); | |
1394 | ||
1395 | #ifndef CONFIG_NEED_MULTIPLE_NODES | |
1396 | VMCOREINFO_SYMBOL(mem_map); | |
1397 | VMCOREINFO_SYMBOL(contig_page_data); | |
1398 | #endif | |
1399 | #ifdef CONFIG_SPARSEMEM | |
1400 | VMCOREINFO_SYMBOL(mem_section); | |
1401 | VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); | |
1402 | VMCOREINFO_STRUCT_SIZE(mem_section); | |
1403 | VMCOREINFO_OFFSET(mem_section, section_mem_map); | |
1404 | #endif | |
1405 | VMCOREINFO_STRUCT_SIZE(page); | |
1406 | VMCOREINFO_STRUCT_SIZE(pglist_data); | |
1407 | VMCOREINFO_STRUCT_SIZE(zone); | |
1408 | VMCOREINFO_STRUCT_SIZE(free_area); | |
1409 | VMCOREINFO_STRUCT_SIZE(list_head); | |
1410 | VMCOREINFO_SIZE(nodemask_t); | |
1411 | VMCOREINFO_OFFSET(page, flags); | |
0139aa7b | 1412 | VMCOREINFO_OFFSET(page, _refcount); |
2965faa5 DY |
1413 | VMCOREINFO_OFFSET(page, mapping); |
1414 | VMCOREINFO_OFFSET(page, lru); | |
1415 | VMCOREINFO_OFFSET(page, _mapcount); | |
1416 | VMCOREINFO_OFFSET(page, private); | |
8639a847 AK |
1417 | VMCOREINFO_OFFSET(page, compound_dtor); |
1418 | VMCOREINFO_OFFSET(page, compound_order); | |
d7f53518 | 1419 | VMCOREINFO_OFFSET(page, compound_head); |
2965faa5 DY |
1420 | VMCOREINFO_OFFSET(pglist_data, node_zones); |
1421 | VMCOREINFO_OFFSET(pglist_data, nr_zones); | |
1422 | #ifdef CONFIG_FLAT_NODE_MEM_MAP | |
1423 | VMCOREINFO_OFFSET(pglist_data, node_mem_map); | |
1424 | #endif | |
1425 | VMCOREINFO_OFFSET(pglist_data, node_start_pfn); | |
1426 | VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); | |
1427 | VMCOREINFO_OFFSET(pglist_data, node_id); | |
1428 | VMCOREINFO_OFFSET(zone, free_area); | |
1429 | VMCOREINFO_OFFSET(zone, vm_stat); | |
1430 | VMCOREINFO_OFFSET(zone, spanned_pages); | |
1431 | VMCOREINFO_OFFSET(free_area, free_list); | |
1432 | VMCOREINFO_OFFSET(list_head, next); | |
1433 | VMCOREINFO_OFFSET(list_head, prev); | |
1434 | VMCOREINFO_OFFSET(vmap_area, va_start); | |
1435 | VMCOREINFO_OFFSET(vmap_area, list); | |
1436 | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); | |
1437 | log_buf_kexec_setup(); | |
1438 | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); | |
1439 | VMCOREINFO_NUMBER(NR_FREE_PAGES); | |
1440 | VMCOREINFO_NUMBER(PG_lru); | |
1441 | VMCOREINFO_NUMBER(PG_private); | |
1442 | VMCOREINFO_NUMBER(PG_swapcache); | |
1443 | VMCOREINFO_NUMBER(PG_slab); | |
1444 | #ifdef CONFIG_MEMORY_FAILURE | |
1445 | VMCOREINFO_NUMBER(PG_hwpoison); | |
1446 | #endif | |
1447 | VMCOREINFO_NUMBER(PG_head_mask); | |
1448 | VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); | |
1303a27c BH |
1449 | #ifdef CONFIG_X86 |
1450 | VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); | |
1451 | #endif | |
8639a847 AK |
1452 | #ifdef CONFIG_HUGETLB_PAGE |
1453 | VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR); | |
2965faa5 DY |
1454 | #endif |
1455 | ||
1456 | arch_crash_save_vmcoreinfo(); | |
1457 | update_vmcoreinfo_note(); | |
1458 | ||
1459 | return 0; | |
1460 | } | |
1461 | ||
1462 | subsys_initcall(crash_save_vmcoreinfo_init); | |
1463 | ||
1464 | /* | |
1465 | * Move into place and start executing a preloaded standalone | |
1466 | * executable. If nothing was preloaded return an error. | |
1467 | */ | |
1468 | int kernel_kexec(void) | |
1469 | { | |
1470 | int error = 0; | |
1471 | ||
1472 | if (!mutex_trylock(&kexec_mutex)) | |
1473 | return -EBUSY; | |
1474 | if (!kexec_image) { | |
1475 | error = -EINVAL; | |
1476 | goto Unlock; | |
1477 | } | |
1478 | ||
1479 | #ifdef CONFIG_KEXEC_JUMP | |
1480 | if (kexec_image->preserve_context) { | |
1481 | lock_system_sleep(); | |
1482 | pm_prepare_console(); | |
1483 | error = freeze_processes(); | |
1484 | if (error) { | |
1485 | error = -EBUSY; | |
1486 | goto Restore_console; | |
1487 | } | |
1488 | suspend_console(); | |
1489 | error = dpm_suspend_start(PMSG_FREEZE); | |
1490 | if (error) | |
1491 | goto Resume_console; | |
1492 | /* At this point, dpm_suspend_start() has been called, | |
1493 | * but *not* dpm_suspend_end(). We *must* call | |
1494 | * dpm_suspend_end() now. Otherwise, drivers for | |
1495 | * some devices (e.g. interrupt controllers) become | |
1496 | * desynchronized with the actual state of the | |
1497 | * hardware at resume time, and evil weirdness ensues. | |
1498 | */ | |
1499 | error = dpm_suspend_end(PMSG_FREEZE); | |
1500 | if (error) | |
1501 | goto Resume_devices; | |
1502 | error = disable_nonboot_cpus(); | |
1503 | if (error) | |
1504 | goto Enable_cpus; | |
1505 | local_irq_disable(); | |
1506 | error = syscore_suspend(); | |
1507 | if (error) | |
1508 | goto Enable_irqs; | |
1509 | } else | |
1510 | #endif | |
1511 | { | |
1512 | kexec_in_progress = true; | |
1513 | kernel_restart_prepare(NULL); | |
1514 | migrate_to_reboot_cpu(); | |
1515 | ||
1516 | /* | |
1517 | * migrate_to_reboot_cpu() disables CPU hotplug assuming that | |
1518 | * no further code needs to use CPU hotplug (which is true in | |
1519 | * the reboot case). However, the kexec path depends on using | |
1520 | * CPU hotplug again; so re-enable it here. | |
1521 | */ | |
1522 | cpu_hotplug_enable(); | |
1523 | pr_emerg("Starting new kernel\n"); | |
1524 | machine_shutdown(); | |
1525 | } | |
1526 | ||
1527 | machine_kexec(kexec_image); | |
1528 | ||
1529 | #ifdef CONFIG_KEXEC_JUMP | |
1530 | if (kexec_image->preserve_context) { | |
1531 | syscore_resume(); | |
1532 | Enable_irqs: | |
1533 | local_irq_enable(); | |
1534 | Enable_cpus: | |
1535 | enable_nonboot_cpus(); | |
1536 | dpm_resume_start(PMSG_RESTORE); | |
1537 | Resume_devices: | |
1538 | dpm_resume_end(PMSG_RESTORE); | |
1539 | Resume_console: | |
1540 | resume_console(); | |
1541 | thaw_processes(); | |
1542 | Restore_console: | |
1543 | pm_restore_console(); | |
1544 | unlock_system_sleep(); | |
1545 | } | |
1546 | #endif | |
1547 | ||
1548 | Unlock: | |
1549 | mutex_unlock(&kexec_mutex); | |
1550 | return error; | |
1551 | } | |
1552 | ||
1553 | /* | |
7a0058ec XP |
1554 | * Protection mechanism for crashkernel reserved memory after |
1555 | * the kdump kernel is loaded. | |
2965faa5 DY |
1556 | * |
1557 | * Provide an empty default implementation here -- architecture | |
1558 | * code may override this | |
1559 | */ | |
9b492cf5 XP |
1560 | void __weak arch_kexec_protect_crashkres(void) |
1561 | {} | |
1562 | ||
1563 | void __weak arch_kexec_unprotect_crashkres(void) | |
1564 | {} |