locking/mutexes: Standardize arguments in lock/unlock slowpaths
[deliverable/linux.git] / kernel / locking / mutex.c
CommitLineData
6053ee3b 1/*
67a6de49 2 * kernel/locking/mutex.c
6053ee3b
IM
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
0d66bf6d
PZ
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
6053ee3b
IM
18 * Also see Documentation/mutex-design.txt.
19 */
20#include <linux/mutex.h>
1b375dc3 21#include <linux/ww_mutex.h>
6053ee3b 22#include <linux/sched.h>
8bd75c77 23#include <linux/sched/rt.h>
9984de1a 24#include <linux/export.h>
6053ee3b
IM
25#include <linux/spinlock.h>
26#include <linux/interrupt.h>
9a11b49a 27#include <linux/debug_locks.h>
c9122da1 28#include "mcs_spinlock.h"
6053ee3b
IM
29
30/*
31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32 * which forces all calls into the slowpath:
33 */
34#ifdef CONFIG_DEBUG_MUTEXES
35# include "mutex-debug.h"
36# include <asm-generic/mutex-null.h>
6f008e72
PZ
37/*
38 * Must be 0 for the debug case so we do not do the unlock outside of the
39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40 * case.
41 */
42# undef __mutex_slowpath_needs_to_unlock
43# define __mutex_slowpath_needs_to_unlock() 0
6053ee3b
IM
44#else
45# include "mutex.h"
46# include <asm/mutex.h>
47#endif
48
ef5d4707
IM
49void
50__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
6053ee3b
IM
51{
52 atomic_set(&lock->count, 1);
53 spin_lock_init(&lock->wait_lock);
54 INIT_LIST_HEAD(&lock->wait_list);
0d66bf6d 55 mutex_clear_owner(lock);
2bd2c92c 56#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4d9d951e 57 osq_lock_init(&lock->osq);
2bd2c92c 58#endif
6053ee3b 59
ef5d4707 60 debug_mutex_init(lock, name, key);
6053ee3b
IM
61}
62
63EXPORT_SYMBOL(__mutex_init);
64
e4564f79 65#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
66/*
67 * We split the mutex lock/unlock logic into separate fastpath and
68 * slowpath functions, to reduce the register pressure on the fastpath.
69 * We also put the fastpath first in the kernel image, to make sure the
70 * branch is predicted by the CPU as default-untaken.
71 */
22d9fd34 72__visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
6053ee3b 73
ef5dc121 74/**
6053ee3b
IM
75 * mutex_lock - acquire the mutex
76 * @lock: the mutex to be acquired
77 *
78 * Lock the mutex exclusively for this task. If the mutex is not
79 * available right now, it will sleep until it can get it.
80 *
81 * The mutex must later on be released by the same task that
82 * acquired it. Recursive locking is not allowed. The task
83 * may not exit without first unlocking the mutex. Also, kernel
84 * memory where the mutex resides mutex must not be freed with
85 * the mutex still locked. The mutex must first be initialized
86 * (or statically defined) before it can be locked. memset()-ing
87 * the mutex to 0 is not allowed.
88 *
89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90 * checks that will enforce the restrictions and will also do
91 * deadlock debugging. )
92 *
93 * This function is similar to (but not equivalent to) down().
94 */
b09d2501 95void __sched mutex_lock(struct mutex *lock)
6053ee3b 96{
c544bdb1 97 might_sleep();
6053ee3b
IM
98 /*
99 * The locking fastpath is the 1->0 transition from
100 * 'unlocked' into 'locked' state.
6053ee3b
IM
101 */
102 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
0d66bf6d 103 mutex_set_owner(lock);
6053ee3b
IM
104}
105
106EXPORT_SYMBOL(mutex_lock);
e4564f79 107#endif
6053ee3b 108
41fcb9f2 109#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2bd2c92c
WL
110/*
111 * In order to avoid a stampede of mutex spinners from acquiring the mutex
112 * more or less simultaneously, the spinners need to acquire a MCS lock
113 * first before spinning on the owner field.
114 *
2bd2c92c 115 */
2bd2c92c 116
41fcb9f2
WL
117/*
118 * Mutex spinning code migrated from kernel/sched/core.c
119 */
120
121static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
122{
123 if (lock->owner != owner)
124 return false;
125
126 /*
127 * Ensure we emit the owner->on_cpu, dereference _after_ checking
128 * lock->owner still matches owner, if that fails, owner might
129 * point to free()d memory, if it still matches, the rcu_read_lock()
130 * ensures the memory stays valid.
131 */
132 barrier();
133
134 return owner->on_cpu;
135}
136
137/*
138 * Look out! "owner" is an entirely speculative pointer
139 * access and not reliable.
140 */
141static noinline
142int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
143{
144 rcu_read_lock();
145 while (owner_running(lock, owner)) {
146 if (need_resched())
147 break;
148
3a6bfbc9 149 cpu_relax_lowlatency();
41fcb9f2
WL
150 }
151 rcu_read_unlock();
152
153 /*
154 * We break out the loop above on need_resched() and when the
155 * owner changed, which is a sign for heavy contention. Return
156 * success only when lock->owner is NULL.
157 */
158 return lock->owner == NULL;
159}
2bd2c92c
WL
160
161/*
162 * Initial check for entering the mutex spinning loop
163 */
164static inline int mutex_can_spin_on_owner(struct mutex *lock)
165{
1e40c2ed 166 struct task_struct *owner;
2bd2c92c
WL
167 int retval = 1;
168
46af29e4
JL
169 if (need_resched())
170 return 0;
171
2bd2c92c 172 rcu_read_lock();
1e40c2ed
PZ
173 owner = ACCESS_ONCE(lock->owner);
174 if (owner)
175 retval = owner->on_cpu;
2bd2c92c
WL
176 rcu_read_unlock();
177 /*
178 * if lock->owner is not set, the mutex owner may have just acquired
179 * it and not set the owner yet or the mutex has been released.
180 */
181 return retval;
182}
41fcb9f2
WL
183#endif
184
22d9fd34
AK
185__visible __used noinline
186void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
6053ee3b 187
ef5dc121 188/**
6053ee3b
IM
189 * mutex_unlock - release the mutex
190 * @lock: the mutex to be released
191 *
192 * Unlock a mutex that has been locked by this task previously.
193 *
194 * This function must not be used in interrupt context. Unlocking
195 * of a not locked mutex is not allowed.
196 *
197 * This function is similar to (but not equivalent to) up().
198 */
7ad5b3a5 199void __sched mutex_unlock(struct mutex *lock)
6053ee3b
IM
200{
201 /*
202 * The unlocking fastpath is the 0->1 transition from 'locked'
203 * into 'unlocked' state:
6053ee3b 204 */
0d66bf6d
PZ
205#ifndef CONFIG_DEBUG_MUTEXES
206 /*
207 * When debugging is enabled we must not clear the owner before time,
208 * the slow path will always be taken, and that clears the owner field
209 * after verifying that it was indeed current.
210 */
211 mutex_clear_owner(lock);
212#endif
6053ee3b
IM
213 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
214}
215
216EXPORT_SYMBOL(mutex_unlock);
217
040a0a37
ML
218/**
219 * ww_mutex_unlock - release the w/w mutex
220 * @lock: the mutex to be released
221 *
222 * Unlock a mutex that has been locked by this task previously with any of the
223 * ww_mutex_lock* functions (with or without an acquire context). It is
224 * forbidden to release the locks after releasing the acquire context.
225 *
226 * This function must not be used in interrupt context. Unlocking
227 * of a unlocked mutex is not allowed.
228 */
229void __sched ww_mutex_unlock(struct ww_mutex *lock)
230{
231 /*
232 * The unlocking fastpath is the 0->1 transition from 'locked'
233 * into 'unlocked' state:
234 */
235 if (lock->ctx) {
236#ifdef CONFIG_DEBUG_MUTEXES
237 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
238#endif
239 if (lock->ctx->acquired > 0)
240 lock->ctx->acquired--;
241 lock->ctx = NULL;
242 }
243
244#ifndef CONFIG_DEBUG_MUTEXES
245 /*
246 * When debugging is enabled we must not clear the owner before time,
247 * the slow path will always be taken, and that clears the owner field
248 * after verifying that it was indeed current.
249 */
250 mutex_clear_owner(&lock->base);
251#endif
252 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
253}
254EXPORT_SYMBOL(ww_mutex_unlock);
255
256static inline int __sched
257__mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
258{
259 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
260 struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
261
262 if (!hold_ctx)
263 return 0;
264
265 if (unlikely(ctx == hold_ctx))
266 return -EALREADY;
267
268 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
269 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
270#ifdef CONFIG_DEBUG_MUTEXES
271 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
272 ctx->contending_lock = ww;
273#endif
274 return -EDEADLK;
275 }
276
277 return 0;
278}
279
280static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
281 struct ww_acquire_ctx *ww_ctx)
282{
283#ifdef CONFIG_DEBUG_MUTEXES
284 /*
285 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
286 * but released with a normal mutex_unlock in this call.
287 *
288 * This should never happen, always use ww_mutex_unlock.
289 */
290 DEBUG_LOCKS_WARN_ON(ww->ctx);
291
292 /*
293 * Not quite done after calling ww_acquire_done() ?
294 */
295 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
296
297 if (ww_ctx->contending_lock) {
298 /*
299 * After -EDEADLK you tried to
300 * acquire a different ww_mutex? Bad!
301 */
302 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
303
304 /*
305 * You called ww_mutex_lock after receiving -EDEADLK,
306 * but 'forgot' to unlock everything else first?
307 */
308 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
309 ww_ctx->contending_lock = NULL;
310 }
311
312 /*
313 * Naughty, using a different class will lead to undefined behavior!
314 */
315 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
316#endif
317 ww_ctx->acquired++;
318}
319
320/*
321 * after acquiring lock with fastpath or when we lost out in contested
322 * slowpath, set ctx and wake up any waiters so they can recheck.
323 *
324 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
325 * as the fastpath and opportunistic spinning are disabled in that case.
326 */
327static __always_inline void
328ww_mutex_set_context_fastpath(struct ww_mutex *lock,
329 struct ww_acquire_ctx *ctx)
330{
331 unsigned long flags;
332 struct mutex_waiter *cur;
333
334 ww_mutex_lock_acquired(lock, ctx);
335
336 lock->ctx = ctx;
337
338 /*
339 * The lock->ctx update should be visible on all cores before
340 * the atomic read is done, otherwise contended waiters might be
341 * missed. The contended waiters will either see ww_ctx == NULL
342 * and keep spinning, or it will acquire wait_lock, add itself
343 * to waiter list and sleep.
344 */
345 smp_mb(); /* ^^^ */
346
347 /*
348 * Check if lock is contended, if not there is nobody to wake up
349 */
350 if (likely(atomic_read(&lock->base.count) == 0))
351 return;
352
353 /*
354 * Uh oh, we raced in fastpath, wake up everyone in this case,
355 * so they can see the new lock->ctx.
356 */
357 spin_lock_mutex(&lock->base.wait_lock, flags);
358 list_for_each_entry(cur, &lock->base.wait_list, list) {
359 debug_mutex_wake_waiter(&lock->base, cur);
360 wake_up_process(cur->task);
361 }
362 spin_unlock_mutex(&lock->base.wait_lock, flags);
363}
364
6053ee3b
IM
365/*
366 * Lock a mutex (possibly interruptible), slowpath:
367 */
040a0a37 368static __always_inline int __sched
e4564f79 369__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
040a0a37 370 struct lockdep_map *nest_lock, unsigned long ip,
b0267507 371 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
6053ee3b
IM
372{
373 struct task_struct *task = current;
374 struct mutex_waiter waiter;
1fb00c6c 375 unsigned long flags;
040a0a37 376 int ret;
6053ee3b 377
41719b03 378 preempt_disable();
e4c70a66 379 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
c0226027
FW
380
381#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
382 /*
383 * Optimistic spinning.
384 *
0c3c0f0d
JL
385 * We try to spin for acquisition when we find that the lock owner
386 * is currently running on a (different) CPU and while we don't
387 * need to reschedule. The rationale is that if the lock owner is
388 * running, it is likely to release the lock soon.
0d66bf6d
PZ
389 *
390 * Since this needs the lock owner, and this mutex implementation
391 * doesn't track the owner atomically in the lock field, we need to
392 * track it non-atomically.
393 *
394 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
395 * to serialize everything.
2bd2c92c
WL
396 *
397 * The mutex spinners are queued up using MCS lock so that only one
398 * spinner can compete for the mutex. However, if mutex spinning isn't
399 * going to happen, there is no point in going through the lock/unlock
400 * overhead.
0d66bf6d 401 */
2bd2c92c
WL
402 if (!mutex_can_spin_on_owner(lock))
403 goto slowpath;
0d66bf6d 404
fb0527bd
PZ
405 if (!osq_lock(&lock->osq))
406 goto slowpath;
407
0d66bf6d 408 for (;;) {
c6eb3dda 409 struct task_struct *owner;
0d66bf6d 410
b0267507 411 if (use_ww_ctx && ww_ctx->acquired > 0) {
040a0a37
ML
412 struct ww_mutex *ww;
413
414 ww = container_of(lock, struct ww_mutex, base);
415 /*
416 * If ww->ctx is set the contents are undefined, only
417 * by acquiring wait_lock there is a guarantee that
418 * they are not invalid when reading.
419 *
420 * As such, when deadlock detection needs to be
421 * performed the optimistic spinning cannot be done.
422 */
423 if (ACCESS_ONCE(ww->ctx))
47667fa1 424 break;
040a0a37
ML
425 }
426
0d66bf6d
PZ
427 /*
428 * If there's an owner, wait for it to either
429 * release the lock or go to sleep.
430 */
431 owner = ACCESS_ONCE(lock->owner);
47667fa1
JL
432 if (owner && !mutex_spin_on_owner(lock, owner))
433 break;
0d66bf6d 434
0d968dd8
JL
435 /* Try to acquire the mutex if it is unlocked. */
436 if (!mutex_is_locked(lock) &&
0dc8c730 437 (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
ac6e60ee 438 lock_acquired(&lock->dep_map, ip);
b0267507 439 if (use_ww_ctx) {
040a0a37
ML
440 struct ww_mutex *ww;
441 ww = container_of(lock, struct ww_mutex, base);
442
443 ww_mutex_set_context_fastpath(ww, ww_ctx);
444 }
445
ac6e60ee 446 mutex_set_owner(lock);
fb0527bd 447 osq_unlock(&lock->osq);
ac6e60ee
CM
448 preempt_enable();
449 return 0;
450 }
451
0d66bf6d
PZ
452 /*
453 * When there's no owner, we might have preempted between the
454 * owner acquiring the lock and setting the owner field. If
455 * we're an RT task that will live-lock because we won't let
456 * the owner complete.
457 */
458 if (!owner && (need_resched() || rt_task(task)))
47667fa1 459 break;
0d66bf6d 460
0d66bf6d
PZ
461 /*
462 * The cpu_relax() call is a compiler barrier which forces
463 * everything in this loop to be re-loaded. We don't need
464 * memory barriers as we'll eventually observe the right
465 * values at the cost of a few extra spins.
466 */
3a6bfbc9 467 cpu_relax_lowlatency();
0d66bf6d 468 }
fb0527bd 469 osq_unlock(&lock->osq);
2bd2c92c 470slowpath:
34c6bc2c
PZ
471 /*
472 * If we fell out of the spin path because of need_resched(),
473 * reschedule now, before we try-lock the mutex. This avoids getting
474 * scheduled out right after we obtained the mutex.
475 */
476 if (need_resched())
477 schedule_preempt_disabled();
0d66bf6d 478#endif
1fb00c6c 479 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 480
1e820c96
JL
481 /*
482 * Once more, try to acquire the lock. Only try-lock the mutex if
0d968dd8 483 * it is unlocked to reduce unnecessary xchg() operations.
1e820c96 484 */
0d968dd8 485 if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
ec83f425
DB
486 goto skip_wait;
487
9a11b49a 488 debug_mutex_lock_common(lock, &waiter);
c9f4f06d 489 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
6053ee3b
IM
490
491 /* add waiting tasks to the end of the waitqueue (FIFO): */
492 list_add_tail(&waiter.list, &lock->wait_list);
493 waiter.task = task;
494
e4564f79 495 lock_contended(&lock->dep_map, ip);
4fe87745 496
6053ee3b
IM
497 for (;;) {
498 /*
499 * Lets try to take the lock again - this is needed even if
500 * we get here for the first time (shortly after failing to
501 * acquire the lock), to make sure that we get a wakeup once
502 * it's unlocked. Later on, if we sleep, this is the
503 * operation that gives us the lock. We xchg it to -1, so
504 * that when we release the lock, we properly wake up the
1e820c96
JL
505 * other waiters. We only attempt the xchg if the count is
506 * non-negative in order to avoid unnecessary xchg operations:
6053ee3b 507 */
1e820c96 508 if (atomic_read(&lock->count) >= 0 &&
ec83f425 509 (atomic_xchg(&lock->count, -1) == 1))
6053ee3b
IM
510 break;
511
512 /*
513 * got a signal? (This code gets eliminated in the
514 * TASK_UNINTERRUPTIBLE case.)
515 */
6ad36762 516 if (unlikely(signal_pending_state(state, task))) {
040a0a37
ML
517 ret = -EINTR;
518 goto err;
519 }
6053ee3b 520
b0267507 521 if (use_ww_ctx && ww_ctx->acquired > 0) {
040a0a37
ML
522 ret = __mutex_lock_check_stamp(lock, ww_ctx);
523 if (ret)
524 goto err;
6053ee3b 525 }
040a0a37 526
6053ee3b
IM
527 __set_task_state(task, state);
528
25985edc 529 /* didn't get the lock, go to sleep: */
1fb00c6c 530 spin_unlock_mutex(&lock->wait_lock, flags);
bd2f5536 531 schedule_preempt_disabled();
1fb00c6c 532 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 533 }
ec83f425
DB
534 mutex_remove_waiter(lock, &waiter, current_thread_info());
535 /* set it to 0 if there are no waiters left: */
536 if (likely(list_empty(&lock->wait_list)))
537 atomic_set(&lock->count, 0);
538 debug_mutex_free_waiter(&waiter);
6053ee3b 539
ec83f425
DB
540skip_wait:
541 /* got the lock - cleanup and rejoice! */
c7e78cff 542 lock_acquired(&lock->dep_map, ip);
0d66bf6d 543 mutex_set_owner(lock);
6053ee3b 544
b0267507 545 if (use_ww_ctx) {
ec83f425 546 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
040a0a37
ML
547 struct mutex_waiter *cur;
548
549 /*
550 * This branch gets optimized out for the common case,
551 * and is only important for ww_mutex_lock.
552 */
040a0a37
ML
553 ww_mutex_lock_acquired(ww, ww_ctx);
554 ww->ctx = ww_ctx;
555
556 /*
557 * Give any possible sleeping processes the chance to wake up,
558 * so they can recheck if they have to back off.
559 */
560 list_for_each_entry(cur, &lock->wait_list, list) {
561 debug_mutex_wake_waiter(lock, cur);
562 wake_up_process(cur->task);
563 }
564 }
565
1fb00c6c 566 spin_unlock_mutex(&lock->wait_lock, flags);
41719b03 567 preempt_enable();
6053ee3b 568 return 0;
040a0a37
ML
569
570err:
571 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
572 spin_unlock_mutex(&lock->wait_lock, flags);
573 debug_mutex_free_waiter(&waiter);
574 mutex_release(&lock->dep_map, 1, ip);
575 preempt_enable();
576 return ret;
6053ee3b
IM
577}
578
ef5d4707
IM
579#ifdef CONFIG_DEBUG_LOCK_ALLOC
580void __sched
581mutex_lock_nested(struct mutex *lock, unsigned int subclass)
582{
583 might_sleep();
040a0a37 584 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
b0267507 585 subclass, NULL, _RET_IP_, NULL, 0);
ef5d4707
IM
586}
587
588EXPORT_SYMBOL_GPL(mutex_lock_nested);
d63a5a74 589
e4c70a66
PZ
590void __sched
591_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
592{
593 might_sleep();
040a0a37 594 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
b0267507 595 0, nest, _RET_IP_, NULL, 0);
e4c70a66
PZ
596}
597
598EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
599
ad776537
LH
600int __sched
601mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
602{
603 might_sleep();
040a0a37 604 return __mutex_lock_common(lock, TASK_KILLABLE,
b0267507 605 subclass, NULL, _RET_IP_, NULL, 0);
ad776537
LH
606}
607EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
608
d63a5a74
N
609int __sched
610mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
611{
612 might_sleep();
0d66bf6d 613 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
b0267507 614 subclass, NULL, _RET_IP_, NULL, 0);
d63a5a74
N
615}
616
617EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
040a0a37 618
23010027
DV
619static inline int
620ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
621{
622#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
623 unsigned tmp;
624
625 if (ctx->deadlock_inject_countdown-- == 0) {
626 tmp = ctx->deadlock_inject_interval;
627 if (tmp > UINT_MAX/4)
628 tmp = UINT_MAX;
629 else
630 tmp = tmp*2 + tmp + tmp/2;
631
632 ctx->deadlock_inject_interval = tmp;
633 ctx->deadlock_inject_countdown = tmp;
634 ctx->contending_lock = lock;
635
636 ww_mutex_unlock(lock);
637
638 return -EDEADLK;
639 }
640#endif
641
642 return 0;
643}
040a0a37
ML
644
645int __sched
646__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
647{
23010027
DV
648 int ret;
649
040a0a37 650 might_sleep();
23010027 651 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
b0267507 652 0, &ctx->dep_map, _RET_IP_, ctx, 1);
85f48961 653 if (!ret && ctx->acquired > 1)
23010027
DV
654 return ww_mutex_deadlock_injection(lock, ctx);
655
656 return ret;
040a0a37
ML
657}
658EXPORT_SYMBOL_GPL(__ww_mutex_lock);
659
660int __sched
661__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
662{
23010027
DV
663 int ret;
664
040a0a37 665 might_sleep();
23010027 666 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
b0267507 667 0, &ctx->dep_map, _RET_IP_, ctx, 1);
23010027 668
85f48961 669 if (!ret && ctx->acquired > 1)
23010027
DV
670 return ww_mutex_deadlock_injection(lock, ctx);
671
672 return ret;
040a0a37
ML
673}
674EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
675
ef5d4707
IM
676#endif
677
6053ee3b
IM
678/*
679 * Release the lock, slowpath:
680 */
7ad5b3a5 681static inline void
242489cf 682__mutex_unlock_common_slowpath(struct mutex *lock, int nested)
6053ee3b 683{
1fb00c6c 684 unsigned long flags;
6053ee3b 685
6053ee3b
IM
686 /*
687 * some architectures leave the lock unlocked in the fastpath failure
688 * case, others need to leave it locked. In the later case we have to
689 * unlock it here
690 */
691 if (__mutex_slowpath_needs_to_unlock())
692 atomic_set(&lock->count, 1);
693
1d8fe7dc
JL
694 spin_lock_mutex(&lock->wait_lock, flags);
695 mutex_release(&lock->dep_map, nested, _RET_IP_);
696 debug_mutex_unlock(lock);
697
6053ee3b
IM
698 if (!list_empty(&lock->wait_list)) {
699 /* get the first entry from the wait-list: */
700 struct mutex_waiter *waiter =
701 list_entry(lock->wait_list.next,
702 struct mutex_waiter, list);
703
704 debug_mutex_wake_waiter(lock, waiter);
705
706 wake_up_process(waiter->task);
707 }
708
1fb00c6c 709 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
710}
711
9a11b49a
IM
712/*
713 * Release the lock, slowpath:
714 */
22d9fd34 715__visible void
9a11b49a
IM
716__mutex_unlock_slowpath(atomic_t *lock_count)
717{
242489cf
DB
718 struct mutex *lock = container_of(lock_count, struct mutex, count);
719
720 __mutex_unlock_common_slowpath(lock, 1);
9a11b49a
IM
721}
722
e4564f79 723#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
724/*
725 * Here come the less common (and hence less performance-critical) APIs:
726 * mutex_lock_interruptible() and mutex_trylock().
727 */
7ad5b3a5 728static noinline int __sched
a41b56ef 729__mutex_lock_killable_slowpath(struct mutex *lock);
ad776537 730
7ad5b3a5 731static noinline int __sched
a41b56ef 732__mutex_lock_interruptible_slowpath(struct mutex *lock);
6053ee3b 733
ef5dc121
RD
734/**
735 * mutex_lock_interruptible - acquire the mutex, interruptible
6053ee3b
IM
736 * @lock: the mutex to be acquired
737 *
738 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
739 * been acquired or sleep until the mutex becomes available. If a
740 * signal arrives while waiting for the lock then this function
741 * returns -EINTR.
742 *
743 * This function is similar to (but not equivalent to) down_interruptible().
744 */
7ad5b3a5 745int __sched mutex_lock_interruptible(struct mutex *lock)
6053ee3b 746{
0d66bf6d
PZ
747 int ret;
748
c544bdb1 749 might_sleep();
a41b56ef
ML
750 ret = __mutex_fastpath_lock_retval(&lock->count);
751 if (likely(!ret)) {
0d66bf6d 752 mutex_set_owner(lock);
a41b56ef
ML
753 return 0;
754 } else
755 return __mutex_lock_interruptible_slowpath(lock);
6053ee3b
IM
756}
757
758EXPORT_SYMBOL(mutex_lock_interruptible);
759
7ad5b3a5 760int __sched mutex_lock_killable(struct mutex *lock)
ad776537 761{
0d66bf6d
PZ
762 int ret;
763
ad776537 764 might_sleep();
a41b56ef
ML
765 ret = __mutex_fastpath_lock_retval(&lock->count);
766 if (likely(!ret)) {
0d66bf6d 767 mutex_set_owner(lock);
a41b56ef
ML
768 return 0;
769 } else
770 return __mutex_lock_killable_slowpath(lock);
ad776537
LH
771}
772EXPORT_SYMBOL(mutex_lock_killable);
773
22d9fd34 774__visible void __sched
e4564f79
PZ
775__mutex_lock_slowpath(atomic_t *lock_count)
776{
777 struct mutex *lock = container_of(lock_count, struct mutex, count);
778
040a0a37 779 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
b0267507 780 NULL, _RET_IP_, NULL, 0);
e4564f79
PZ
781}
782
7ad5b3a5 783static noinline int __sched
a41b56ef 784__mutex_lock_killable_slowpath(struct mutex *lock)
ad776537 785{
040a0a37 786 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
b0267507 787 NULL, _RET_IP_, NULL, 0);
ad776537
LH
788}
789
7ad5b3a5 790static noinline int __sched
a41b56ef 791__mutex_lock_interruptible_slowpath(struct mutex *lock)
6053ee3b 792{
040a0a37 793 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
b0267507 794 NULL, _RET_IP_, NULL, 0);
040a0a37
ML
795}
796
797static noinline int __sched
798__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
799{
800 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
b0267507 801 NULL, _RET_IP_, ctx, 1);
6053ee3b 802}
040a0a37
ML
803
804static noinline int __sched
805__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
806 struct ww_acquire_ctx *ctx)
807{
808 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
b0267507 809 NULL, _RET_IP_, ctx, 1);
040a0a37
ML
810}
811
e4564f79 812#endif
6053ee3b
IM
813
814/*
815 * Spinlock based trylock, we take the spinlock and check whether we
816 * can get the lock:
817 */
818static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
819{
820 struct mutex *lock = container_of(lock_count, struct mutex, count);
1fb00c6c 821 unsigned long flags;
6053ee3b
IM
822 int prev;
823
72d5305d
JL
824 /* No need to trylock if the mutex is locked. */
825 if (mutex_is_locked(lock))
826 return 0;
827
1fb00c6c 828 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
829
830 prev = atomic_xchg(&lock->count, -1);
ef5d4707 831 if (likely(prev == 1)) {
0d66bf6d 832 mutex_set_owner(lock);
ef5d4707
IM
833 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
834 }
0d66bf6d 835
6053ee3b
IM
836 /* Set it back to 0 if there are no waiters: */
837 if (likely(list_empty(&lock->wait_list)))
838 atomic_set(&lock->count, 0);
839
1fb00c6c 840 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
841
842 return prev == 1;
843}
844
ef5dc121
RD
845/**
846 * mutex_trylock - try to acquire the mutex, without waiting
6053ee3b
IM
847 * @lock: the mutex to be acquired
848 *
849 * Try to acquire the mutex atomically. Returns 1 if the mutex
850 * has been acquired successfully, and 0 on contention.
851 *
852 * NOTE: this function follows the spin_trylock() convention, so
ef5dc121 853 * it is negated from the down_trylock() return values! Be careful
6053ee3b
IM
854 * about this when converting semaphore users to mutexes.
855 *
856 * This function must not be used in interrupt context. The
857 * mutex must be released by the same task that acquired it.
858 */
7ad5b3a5 859int __sched mutex_trylock(struct mutex *lock)
6053ee3b 860{
0d66bf6d
PZ
861 int ret;
862
863 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
864 if (ret)
865 mutex_set_owner(lock);
866
867 return ret;
6053ee3b 868}
6053ee3b 869EXPORT_SYMBOL(mutex_trylock);
a511e3f9 870
040a0a37
ML
871#ifndef CONFIG_DEBUG_LOCK_ALLOC
872int __sched
873__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
874{
875 int ret;
876
877 might_sleep();
878
879 ret = __mutex_fastpath_lock_retval(&lock->base.count);
880
881 if (likely(!ret)) {
882 ww_mutex_set_context_fastpath(lock, ctx);
883 mutex_set_owner(&lock->base);
884 } else
885 ret = __ww_mutex_lock_slowpath(lock, ctx);
886 return ret;
887}
888EXPORT_SYMBOL(__ww_mutex_lock);
889
890int __sched
891__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
892{
893 int ret;
894
895 might_sleep();
896
897 ret = __mutex_fastpath_lock_retval(&lock->base.count);
898
899 if (likely(!ret)) {
900 ww_mutex_set_context_fastpath(lock, ctx);
901 mutex_set_owner(&lock->base);
902 } else
903 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
904 return ret;
905}
906EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
907
908#endif
909
a511e3f9
AM
910/**
911 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
912 * @cnt: the atomic which we are to dec
913 * @lock: the mutex to return holding if we dec to 0
914 *
915 * return true and hold lock if we dec to 0, return false otherwise
916 */
917int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
918{
919 /* dec if we can't possibly hit 0 */
920 if (atomic_add_unless(cnt, -1, 1))
921 return 0;
922 /* we might hit 0, so take the lock */
923 mutex_lock(lock);
924 if (!atomic_dec_and_test(cnt)) {
925 /* when we actually did the dec, we didn't hit 0 */
926 mutex_unlock(lock);
927 return 0;
928 }
929 /* we hit 0, and we hold the lock */
930 return 1;
931}
932EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
This page took 0.798042 seconds and 5 git commands to generate.