m68k: Skip futex_atomic_cmpxchg_inatomic() test
[deliverable/linux.git] / kernel / locking / mutex.c
CommitLineData
6053ee3b 1/*
67a6de49 2 * kernel/locking/mutex.c
6053ee3b
IM
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
0d66bf6d
PZ
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
6053ee3b
IM
18 * Also see Documentation/mutex-design.txt.
19 */
20#include <linux/mutex.h>
1b375dc3 21#include <linux/ww_mutex.h>
6053ee3b 22#include <linux/sched.h>
8bd75c77 23#include <linux/sched/rt.h>
9984de1a 24#include <linux/export.h>
6053ee3b
IM
25#include <linux/spinlock.h>
26#include <linux/interrupt.h>
9a11b49a 27#include <linux/debug_locks.h>
e7224674 28#include <linux/mcs_spinlock.h>
6053ee3b
IM
29
30/*
31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32 * which forces all calls into the slowpath:
33 */
34#ifdef CONFIG_DEBUG_MUTEXES
35# include "mutex-debug.h"
36# include <asm-generic/mutex-null.h>
37#else
38# include "mutex.h"
39# include <asm/mutex.h>
40#endif
41
0dc8c730 42/*
cc189d25
WL
43 * A negative mutex count indicates that waiters are sleeping waiting for the
44 * mutex.
0dc8c730 45 */
0dc8c730 46#define MUTEX_SHOW_NO_WAITER(mutex) (atomic_read(&(mutex)->count) >= 0)
0dc8c730 47
ef5d4707
IM
48void
49__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
6053ee3b
IM
50{
51 atomic_set(&lock->count, 1);
52 spin_lock_init(&lock->wait_lock);
53 INIT_LIST_HEAD(&lock->wait_list);
0d66bf6d 54 mutex_clear_owner(lock);
2bd2c92c 55#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
e7224674 56 lock->mcs_lock = NULL;
2bd2c92c 57#endif
6053ee3b 58
ef5d4707 59 debug_mutex_init(lock, name, key);
6053ee3b
IM
60}
61
62EXPORT_SYMBOL(__mutex_init);
63
e4564f79 64#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
65/*
66 * We split the mutex lock/unlock logic into separate fastpath and
67 * slowpath functions, to reduce the register pressure on the fastpath.
68 * We also put the fastpath first in the kernel image, to make sure the
69 * branch is predicted by the CPU as default-untaken.
70 */
7918baa5 71static __used noinline void __sched
9a11b49a 72__mutex_lock_slowpath(atomic_t *lock_count);
6053ee3b 73
ef5dc121 74/**
6053ee3b
IM
75 * mutex_lock - acquire the mutex
76 * @lock: the mutex to be acquired
77 *
78 * Lock the mutex exclusively for this task. If the mutex is not
79 * available right now, it will sleep until it can get it.
80 *
81 * The mutex must later on be released by the same task that
82 * acquired it. Recursive locking is not allowed. The task
83 * may not exit without first unlocking the mutex. Also, kernel
84 * memory where the mutex resides mutex must not be freed with
85 * the mutex still locked. The mutex must first be initialized
86 * (or statically defined) before it can be locked. memset()-ing
87 * the mutex to 0 is not allowed.
88 *
89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90 * checks that will enforce the restrictions and will also do
91 * deadlock debugging. )
92 *
93 * This function is similar to (but not equivalent to) down().
94 */
b09d2501 95void __sched mutex_lock(struct mutex *lock)
6053ee3b 96{
c544bdb1 97 might_sleep();
6053ee3b
IM
98 /*
99 * The locking fastpath is the 1->0 transition from
100 * 'unlocked' into 'locked' state.
6053ee3b
IM
101 */
102 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
0d66bf6d 103 mutex_set_owner(lock);
6053ee3b
IM
104}
105
106EXPORT_SYMBOL(mutex_lock);
e4564f79 107#endif
6053ee3b 108
41fcb9f2 109#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2bd2c92c
WL
110/*
111 * In order to avoid a stampede of mutex spinners from acquiring the mutex
112 * more or less simultaneously, the spinners need to acquire a MCS lock
113 * first before spinning on the owner field.
114 *
2bd2c92c 115 */
2bd2c92c 116
41fcb9f2
WL
117/*
118 * Mutex spinning code migrated from kernel/sched/core.c
119 */
120
121static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
122{
123 if (lock->owner != owner)
124 return false;
125
126 /*
127 * Ensure we emit the owner->on_cpu, dereference _after_ checking
128 * lock->owner still matches owner, if that fails, owner might
129 * point to free()d memory, if it still matches, the rcu_read_lock()
130 * ensures the memory stays valid.
131 */
132 barrier();
133
134 return owner->on_cpu;
135}
136
137/*
138 * Look out! "owner" is an entirely speculative pointer
139 * access and not reliable.
140 */
141static noinline
142int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
143{
144 rcu_read_lock();
145 while (owner_running(lock, owner)) {
146 if (need_resched())
147 break;
148
149 arch_mutex_cpu_relax();
150 }
151 rcu_read_unlock();
152
153 /*
154 * We break out the loop above on need_resched() and when the
155 * owner changed, which is a sign for heavy contention. Return
156 * success only when lock->owner is NULL.
157 */
158 return lock->owner == NULL;
159}
2bd2c92c
WL
160
161/*
162 * Initial check for entering the mutex spinning loop
163 */
164static inline int mutex_can_spin_on_owner(struct mutex *lock)
165{
1e40c2ed 166 struct task_struct *owner;
2bd2c92c
WL
167 int retval = 1;
168
169 rcu_read_lock();
1e40c2ed
PZ
170 owner = ACCESS_ONCE(lock->owner);
171 if (owner)
172 retval = owner->on_cpu;
2bd2c92c
WL
173 rcu_read_unlock();
174 /*
175 * if lock->owner is not set, the mutex owner may have just acquired
176 * it and not set the owner yet or the mutex has been released.
177 */
178 return retval;
179}
41fcb9f2
WL
180#endif
181
7918baa5 182static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
6053ee3b 183
ef5dc121 184/**
6053ee3b
IM
185 * mutex_unlock - release the mutex
186 * @lock: the mutex to be released
187 *
188 * Unlock a mutex that has been locked by this task previously.
189 *
190 * This function must not be used in interrupt context. Unlocking
191 * of a not locked mutex is not allowed.
192 *
193 * This function is similar to (but not equivalent to) up().
194 */
7ad5b3a5 195void __sched mutex_unlock(struct mutex *lock)
6053ee3b
IM
196{
197 /*
198 * The unlocking fastpath is the 0->1 transition from 'locked'
199 * into 'unlocked' state:
6053ee3b 200 */
0d66bf6d
PZ
201#ifndef CONFIG_DEBUG_MUTEXES
202 /*
203 * When debugging is enabled we must not clear the owner before time,
204 * the slow path will always be taken, and that clears the owner field
205 * after verifying that it was indeed current.
206 */
207 mutex_clear_owner(lock);
208#endif
6053ee3b
IM
209 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
210}
211
212EXPORT_SYMBOL(mutex_unlock);
213
040a0a37
ML
214/**
215 * ww_mutex_unlock - release the w/w mutex
216 * @lock: the mutex to be released
217 *
218 * Unlock a mutex that has been locked by this task previously with any of the
219 * ww_mutex_lock* functions (with or without an acquire context). It is
220 * forbidden to release the locks after releasing the acquire context.
221 *
222 * This function must not be used in interrupt context. Unlocking
223 * of a unlocked mutex is not allowed.
224 */
225void __sched ww_mutex_unlock(struct ww_mutex *lock)
226{
227 /*
228 * The unlocking fastpath is the 0->1 transition from 'locked'
229 * into 'unlocked' state:
230 */
231 if (lock->ctx) {
232#ifdef CONFIG_DEBUG_MUTEXES
233 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
234#endif
235 if (lock->ctx->acquired > 0)
236 lock->ctx->acquired--;
237 lock->ctx = NULL;
238 }
239
240#ifndef CONFIG_DEBUG_MUTEXES
241 /*
242 * When debugging is enabled we must not clear the owner before time,
243 * the slow path will always be taken, and that clears the owner field
244 * after verifying that it was indeed current.
245 */
246 mutex_clear_owner(&lock->base);
247#endif
248 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
249}
250EXPORT_SYMBOL(ww_mutex_unlock);
251
252static inline int __sched
253__mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
254{
255 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
256 struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
257
258 if (!hold_ctx)
259 return 0;
260
261 if (unlikely(ctx == hold_ctx))
262 return -EALREADY;
263
264 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
265 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
266#ifdef CONFIG_DEBUG_MUTEXES
267 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
268 ctx->contending_lock = ww;
269#endif
270 return -EDEADLK;
271 }
272
273 return 0;
274}
275
276static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
277 struct ww_acquire_ctx *ww_ctx)
278{
279#ifdef CONFIG_DEBUG_MUTEXES
280 /*
281 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
282 * but released with a normal mutex_unlock in this call.
283 *
284 * This should never happen, always use ww_mutex_unlock.
285 */
286 DEBUG_LOCKS_WARN_ON(ww->ctx);
287
288 /*
289 * Not quite done after calling ww_acquire_done() ?
290 */
291 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
292
293 if (ww_ctx->contending_lock) {
294 /*
295 * After -EDEADLK you tried to
296 * acquire a different ww_mutex? Bad!
297 */
298 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
299
300 /*
301 * You called ww_mutex_lock after receiving -EDEADLK,
302 * but 'forgot' to unlock everything else first?
303 */
304 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
305 ww_ctx->contending_lock = NULL;
306 }
307
308 /*
309 * Naughty, using a different class will lead to undefined behavior!
310 */
311 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
312#endif
313 ww_ctx->acquired++;
314}
315
316/*
317 * after acquiring lock with fastpath or when we lost out in contested
318 * slowpath, set ctx and wake up any waiters so they can recheck.
319 *
320 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
321 * as the fastpath and opportunistic spinning are disabled in that case.
322 */
323static __always_inline void
324ww_mutex_set_context_fastpath(struct ww_mutex *lock,
325 struct ww_acquire_ctx *ctx)
326{
327 unsigned long flags;
328 struct mutex_waiter *cur;
329
330 ww_mutex_lock_acquired(lock, ctx);
331
332 lock->ctx = ctx;
333
334 /*
335 * The lock->ctx update should be visible on all cores before
336 * the atomic read is done, otherwise contended waiters might be
337 * missed. The contended waiters will either see ww_ctx == NULL
338 * and keep spinning, or it will acquire wait_lock, add itself
339 * to waiter list and sleep.
340 */
341 smp_mb(); /* ^^^ */
342
343 /*
344 * Check if lock is contended, if not there is nobody to wake up
345 */
346 if (likely(atomic_read(&lock->base.count) == 0))
347 return;
348
349 /*
350 * Uh oh, we raced in fastpath, wake up everyone in this case,
351 * so they can see the new lock->ctx.
352 */
353 spin_lock_mutex(&lock->base.wait_lock, flags);
354 list_for_each_entry(cur, &lock->base.wait_list, list) {
355 debug_mutex_wake_waiter(&lock->base, cur);
356 wake_up_process(cur->task);
357 }
358 spin_unlock_mutex(&lock->base.wait_lock, flags);
359}
360
6053ee3b
IM
361/*
362 * Lock a mutex (possibly interruptible), slowpath:
363 */
040a0a37 364static __always_inline int __sched
e4564f79 365__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
040a0a37 366 struct lockdep_map *nest_lock, unsigned long ip,
b0267507 367 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
6053ee3b
IM
368{
369 struct task_struct *task = current;
370 struct mutex_waiter waiter;
1fb00c6c 371 unsigned long flags;
040a0a37 372 int ret;
6053ee3b 373
41719b03 374 preempt_disable();
e4c70a66 375 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
c0226027
FW
376
377#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
378 /*
379 * Optimistic spinning.
380 *
381 * We try to spin for acquisition when we find that there are no
382 * pending waiters and the lock owner is currently running on a
383 * (different) CPU.
384 *
385 * The rationale is that if the lock owner is running, it is likely to
386 * release the lock soon.
387 *
388 * Since this needs the lock owner, and this mutex implementation
389 * doesn't track the owner atomically in the lock field, we need to
390 * track it non-atomically.
391 *
392 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
393 * to serialize everything.
2bd2c92c
WL
394 *
395 * The mutex spinners are queued up using MCS lock so that only one
396 * spinner can compete for the mutex. However, if mutex spinning isn't
397 * going to happen, there is no point in going through the lock/unlock
398 * overhead.
0d66bf6d 399 */
2bd2c92c
WL
400 if (!mutex_can_spin_on_owner(lock))
401 goto slowpath;
0d66bf6d
PZ
402
403 for (;;) {
c6eb3dda 404 struct task_struct *owner;
e7224674 405 struct mcs_spinlock node;
0d66bf6d 406
b0267507 407 if (use_ww_ctx && ww_ctx->acquired > 0) {
040a0a37
ML
408 struct ww_mutex *ww;
409
410 ww = container_of(lock, struct ww_mutex, base);
411 /*
412 * If ww->ctx is set the contents are undefined, only
413 * by acquiring wait_lock there is a guarantee that
414 * they are not invalid when reading.
415 *
416 * As such, when deadlock detection needs to be
417 * performed the optimistic spinning cannot be done.
418 */
419 if (ACCESS_ONCE(ww->ctx))
ec83f425 420 goto slowpath;
040a0a37
ML
421 }
422
0d66bf6d
PZ
423 /*
424 * If there's an owner, wait for it to either
425 * release the lock or go to sleep.
426 */
e7224674 427 mcs_spin_lock(&lock->mcs_lock, &node);
0d66bf6d 428 owner = ACCESS_ONCE(lock->owner);
2bd2c92c 429 if (owner && !mutex_spin_on_owner(lock, owner)) {
e7224674 430 mcs_spin_unlock(&lock->mcs_lock, &node);
ec83f425 431 goto slowpath;
2bd2c92c 432 }
0d66bf6d 433
0dc8c730
WL
434 if ((atomic_read(&lock->count) == 1) &&
435 (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
ac6e60ee 436 lock_acquired(&lock->dep_map, ip);
b0267507 437 if (use_ww_ctx) {
040a0a37
ML
438 struct ww_mutex *ww;
439 ww = container_of(lock, struct ww_mutex, base);
440
441 ww_mutex_set_context_fastpath(ww, ww_ctx);
442 }
443
ac6e60ee 444 mutex_set_owner(lock);
e7224674 445 mcs_spin_unlock(&lock->mcs_lock, &node);
ac6e60ee
CM
446 preempt_enable();
447 return 0;
448 }
e7224674 449 mcs_spin_unlock(&lock->mcs_lock, &node);
ac6e60ee 450
0d66bf6d
PZ
451 /*
452 * When there's no owner, we might have preempted between the
453 * owner acquiring the lock and setting the owner field. If
454 * we're an RT task that will live-lock because we won't let
455 * the owner complete.
456 */
457 if (!owner && (need_resched() || rt_task(task)))
ec83f425 458 goto slowpath;
0d66bf6d 459
0d66bf6d
PZ
460 /*
461 * The cpu_relax() call is a compiler barrier which forces
462 * everything in this loop to be re-loaded. We don't need
463 * memory barriers as we'll eventually observe the right
464 * values at the cost of a few extra spins.
465 */
335d7afb 466 arch_mutex_cpu_relax();
0d66bf6d 467 }
2bd2c92c 468slowpath:
0d66bf6d 469#endif
1fb00c6c 470 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 471
ec83f425
DB
472 /* once more, can we acquire the lock? */
473 if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, 0) == 1))
474 goto skip_wait;
475
9a11b49a 476 debug_mutex_lock_common(lock, &waiter);
c9f4f06d 477 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
6053ee3b
IM
478
479 /* add waiting tasks to the end of the waitqueue (FIFO): */
480 list_add_tail(&waiter.list, &lock->wait_list);
481 waiter.task = task;
482
e4564f79 483 lock_contended(&lock->dep_map, ip);
4fe87745 484
6053ee3b
IM
485 for (;;) {
486 /*
487 * Lets try to take the lock again - this is needed even if
488 * we get here for the first time (shortly after failing to
489 * acquire the lock), to make sure that we get a wakeup once
490 * it's unlocked. Later on, if we sleep, this is the
491 * operation that gives us the lock. We xchg it to -1, so
492 * that when we release the lock, we properly wake up the
493 * other waiters:
494 */
0dc8c730 495 if (MUTEX_SHOW_NO_WAITER(lock) &&
ec83f425 496 (atomic_xchg(&lock->count, -1) == 1))
6053ee3b
IM
497 break;
498
499 /*
500 * got a signal? (This code gets eliminated in the
501 * TASK_UNINTERRUPTIBLE case.)
502 */
6ad36762 503 if (unlikely(signal_pending_state(state, task))) {
040a0a37
ML
504 ret = -EINTR;
505 goto err;
506 }
6053ee3b 507
b0267507 508 if (use_ww_ctx && ww_ctx->acquired > 0) {
040a0a37
ML
509 ret = __mutex_lock_check_stamp(lock, ww_ctx);
510 if (ret)
511 goto err;
6053ee3b 512 }
040a0a37 513
6053ee3b
IM
514 __set_task_state(task, state);
515
25985edc 516 /* didn't get the lock, go to sleep: */
1fb00c6c 517 spin_unlock_mutex(&lock->wait_lock, flags);
bd2f5536 518 schedule_preempt_disabled();
1fb00c6c 519 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 520 }
ec83f425
DB
521 mutex_remove_waiter(lock, &waiter, current_thread_info());
522 /* set it to 0 if there are no waiters left: */
523 if (likely(list_empty(&lock->wait_list)))
524 atomic_set(&lock->count, 0);
525 debug_mutex_free_waiter(&waiter);
6053ee3b 526
ec83f425
DB
527skip_wait:
528 /* got the lock - cleanup and rejoice! */
c7e78cff 529 lock_acquired(&lock->dep_map, ip);
0d66bf6d 530 mutex_set_owner(lock);
6053ee3b 531
b0267507 532 if (use_ww_ctx) {
ec83f425 533 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
040a0a37
ML
534 struct mutex_waiter *cur;
535
536 /*
537 * This branch gets optimized out for the common case,
538 * and is only important for ww_mutex_lock.
539 */
040a0a37
ML
540 ww_mutex_lock_acquired(ww, ww_ctx);
541 ww->ctx = ww_ctx;
542
543 /*
544 * Give any possible sleeping processes the chance to wake up,
545 * so they can recheck if they have to back off.
546 */
547 list_for_each_entry(cur, &lock->wait_list, list) {
548 debug_mutex_wake_waiter(lock, cur);
549 wake_up_process(cur->task);
550 }
551 }
552
1fb00c6c 553 spin_unlock_mutex(&lock->wait_lock, flags);
41719b03 554 preempt_enable();
6053ee3b 555 return 0;
040a0a37
ML
556
557err:
558 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
559 spin_unlock_mutex(&lock->wait_lock, flags);
560 debug_mutex_free_waiter(&waiter);
561 mutex_release(&lock->dep_map, 1, ip);
562 preempt_enable();
563 return ret;
6053ee3b
IM
564}
565
ef5d4707
IM
566#ifdef CONFIG_DEBUG_LOCK_ALLOC
567void __sched
568mutex_lock_nested(struct mutex *lock, unsigned int subclass)
569{
570 might_sleep();
040a0a37 571 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
b0267507 572 subclass, NULL, _RET_IP_, NULL, 0);
ef5d4707
IM
573}
574
575EXPORT_SYMBOL_GPL(mutex_lock_nested);
d63a5a74 576
e4c70a66
PZ
577void __sched
578_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
579{
580 might_sleep();
040a0a37 581 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
b0267507 582 0, nest, _RET_IP_, NULL, 0);
e4c70a66
PZ
583}
584
585EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
586
ad776537
LH
587int __sched
588mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
589{
590 might_sleep();
040a0a37 591 return __mutex_lock_common(lock, TASK_KILLABLE,
b0267507 592 subclass, NULL, _RET_IP_, NULL, 0);
ad776537
LH
593}
594EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
595
d63a5a74
N
596int __sched
597mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
598{
599 might_sleep();
0d66bf6d 600 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
b0267507 601 subclass, NULL, _RET_IP_, NULL, 0);
d63a5a74
N
602}
603
604EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
040a0a37 605
23010027
DV
606static inline int
607ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
608{
609#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
610 unsigned tmp;
611
612 if (ctx->deadlock_inject_countdown-- == 0) {
613 tmp = ctx->deadlock_inject_interval;
614 if (tmp > UINT_MAX/4)
615 tmp = UINT_MAX;
616 else
617 tmp = tmp*2 + tmp + tmp/2;
618
619 ctx->deadlock_inject_interval = tmp;
620 ctx->deadlock_inject_countdown = tmp;
621 ctx->contending_lock = lock;
622
623 ww_mutex_unlock(lock);
624
625 return -EDEADLK;
626 }
627#endif
628
629 return 0;
630}
040a0a37
ML
631
632int __sched
633__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
634{
23010027
DV
635 int ret;
636
040a0a37 637 might_sleep();
23010027 638 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
b0267507 639 0, &ctx->dep_map, _RET_IP_, ctx, 1);
85f48961 640 if (!ret && ctx->acquired > 1)
23010027
DV
641 return ww_mutex_deadlock_injection(lock, ctx);
642
643 return ret;
040a0a37
ML
644}
645EXPORT_SYMBOL_GPL(__ww_mutex_lock);
646
647int __sched
648__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
649{
23010027
DV
650 int ret;
651
040a0a37 652 might_sleep();
23010027 653 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
b0267507 654 0, &ctx->dep_map, _RET_IP_, ctx, 1);
23010027 655
85f48961 656 if (!ret && ctx->acquired > 1)
23010027
DV
657 return ww_mutex_deadlock_injection(lock, ctx);
658
659 return ret;
040a0a37
ML
660}
661EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
662
ef5d4707
IM
663#endif
664
6053ee3b
IM
665/*
666 * Release the lock, slowpath:
667 */
7ad5b3a5 668static inline void
ef5d4707 669__mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
6053ee3b 670{
02706647 671 struct mutex *lock = container_of(lock_count, struct mutex, count);
1fb00c6c 672 unsigned long flags;
6053ee3b 673
1fb00c6c 674 spin_lock_mutex(&lock->wait_lock, flags);
ef5d4707 675 mutex_release(&lock->dep_map, nested, _RET_IP_);
9a11b49a 676 debug_mutex_unlock(lock);
6053ee3b
IM
677
678 /*
679 * some architectures leave the lock unlocked in the fastpath failure
680 * case, others need to leave it locked. In the later case we have to
681 * unlock it here
682 */
683 if (__mutex_slowpath_needs_to_unlock())
684 atomic_set(&lock->count, 1);
685
6053ee3b
IM
686 if (!list_empty(&lock->wait_list)) {
687 /* get the first entry from the wait-list: */
688 struct mutex_waiter *waiter =
689 list_entry(lock->wait_list.next,
690 struct mutex_waiter, list);
691
692 debug_mutex_wake_waiter(lock, waiter);
693
694 wake_up_process(waiter->task);
695 }
696
1fb00c6c 697 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
698}
699
9a11b49a
IM
700/*
701 * Release the lock, slowpath:
702 */
7918baa5 703static __used noinline void
9a11b49a
IM
704__mutex_unlock_slowpath(atomic_t *lock_count)
705{
ef5d4707 706 __mutex_unlock_common_slowpath(lock_count, 1);
9a11b49a
IM
707}
708
e4564f79 709#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
710/*
711 * Here come the less common (and hence less performance-critical) APIs:
712 * mutex_lock_interruptible() and mutex_trylock().
713 */
7ad5b3a5 714static noinline int __sched
a41b56ef 715__mutex_lock_killable_slowpath(struct mutex *lock);
ad776537 716
7ad5b3a5 717static noinline int __sched
a41b56ef 718__mutex_lock_interruptible_slowpath(struct mutex *lock);
6053ee3b 719
ef5dc121
RD
720/**
721 * mutex_lock_interruptible - acquire the mutex, interruptible
6053ee3b
IM
722 * @lock: the mutex to be acquired
723 *
724 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
725 * been acquired or sleep until the mutex becomes available. If a
726 * signal arrives while waiting for the lock then this function
727 * returns -EINTR.
728 *
729 * This function is similar to (but not equivalent to) down_interruptible().
730 */
7ad5b3a5 731int __sched mutex_lock_interruptible(struct mutex *lock)
6053ee3b 732{
0d66bf6d
PZ
733 int ret;
734
c544bdb1 735 might_sleep();
a41b56ef
ML
736 ret = __mutex_fastpath_lock_retval(&lock->count);
737 if (likely(!ret)) {
0d66bf6d 738 mutex_set_owner(lock);
a41b56ef
ML
739 return 0;
740 } else
741 return __mutex_lock_interruptible_slowpath(lock);
6053ee3b
IM
742}
743
744EXPORT_SYMBOL(mutex_lock_interruptible);
745
7ad5b3a5 746int __sched mutex_lock_killable(struct mutex *lock)
ad776537 747{
0d66bf6d
PZ
748 int ret;
749
ad776537 750 might_sleep();
a41b56ef
ML
751 ret = __mutex_fastpath_lock_retval(&lock->count);
752 if (likely(!ret)) {
0d66bf6d 753 mutex_set_owner(lock);
a41b56ef
ML
754 return 0;
755 } else
756 return __mutex_lock_killable_slowpath(lock);
ad776537
LH
757}
758EXPORT_SYMBOL(mutex_lock_killable);
759
7918baa5 760static __used noinline void __sched
e4564f79
PZ
761__mutex_lock_slowpath(atomic_t *lock_count)
762{
763 struct mutex *lock = container_of(lock_count, struct mutex, count);
764
040a0a37 765 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
b0267507 766 NULL, _RET_IP_, NULL, 0);
e4564f79
PZ
767}
768
7ad5b3a5 769static noinline int __sched
a41b56ef 770__mutex_lock_killable_slowpath(struct mutex *lock)
ad776537 771{
040a0a37 772 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
b0267507 773 NULL, _RET_IP_, NULL, 0);
ad776537
LH
774}
775
7ad5b3a5 776static noinline int __sched
a41b56ef 777__mutex_lock_interruptible_slowpath(struct mutex *lock)
6053ee3b 778{
040a0a37 779 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
b0267507 780 NULL, _RET_IP_, NULL, 0);
040a0a37
ML
781}
782
783static noinline int __sched
784__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
785{
786 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
b0267507 787 NULL, _RET_IP_, ctx, 1);
6053ee3b 788}
040a0a37
ML
789
790static noinline int __sched
791__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
792 struct ww_acquire_ctx *ctx)
793{
794 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
b0267507 795 NULL, _RET_IP_, ctx, 1);
040a0a37
ML
796}
797
e4564f79 798#endif
6053ee3b
IM
799
800/*
801 * Spinlock based trylock, we take the spinlock and check whether we
802 * can get the lock:
803 */
804static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
805{
806 struct mutex *lock = container_of(lock_count, struct mutex, count);
1fb00c6c 807 unsigned long flags;
6053ee3b
IM
808 int prev;
809
1fb00c6c 810 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
811
812 prev = atomic_xchg(&lock->count, -1);
ef5d4707 813 if (likely(prev == 1)) {
0d66bf6d 814 mutex_set_owner(lock);
ef5d4707
IM
815 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
816 }
0d66bf6d 817
6053ee3b
IM
818 /* Set it back to 0 if there are no waiters: */
819 if (likely(list_empty(&lock->wait_list)))
820 atomic_set(&lock->count, 0);
821
1fb00c6c 822 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
823
824 return prev == 1;
825}
826
ef5dc121
RD
827/**
828 * mutex_trylock - try to acquire the mutex, without waiting
6053ee3b
IM
829 * @lock: the mutex to be acquired
830 *
831 * Try to acquire the mutex atomically. Returns 1 if the mutex
832 * has been acquired successfully, and 0 on contention.
833 *
834 * NOTE: this function follows the spin_trylock() convention, so
ef5dc121 835 * it is negated from the down_trylock() return values! Be careful
6053ee3b
IM
836 * about this when converting semaphore users to mutexes.
837 *
838 * This function must not be used in interrupt context. The
839 * mutex must be released by the same task that acquired it.
840 */
7ad5b3a5 841int __sched mutex_trylock(struct mutex *lock)
6053ee3b 842{
0d66bf6d
PZ
843 int ret;
844
845 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
846 if (ret)
847 mutex_set_owner(lock);
848
849 return ret;
6053ee3b 850}
6053ee3b 851EXPORT_SYMBOL(mutex_trylock);
a511e3f9 852
040a0a37
ML
853#ifndef CONFIG_DEBUG_LOCK_ALLOC
854int __sched
855__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
856{
857 int ret;
858
859 might_sleep();
860
861 ret = __mutex_fastpath_lock_retval(&lock->base.count);
862
863 if (likely(!ret)) {
864 ww_mutex_set_context_fastpath(lock, ctx);
865 mutex_set_owner(&lock->base);
866 } else
867 ret = __ww_mutex_lock_slowpath(lock, ctx);
868 return ret;
869}
870EXPORT_SYMBOL(__ww_mutex_lock);
871
872int __sched
873__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
874{
875 int ret;
876
877 might_sleep();
878
879 ret = __mutex_fastpath_lock_retval(&lock->base.count);
880
881 if (likely(!ret)) {
882 ww_mutex_set_context_fastpath(lock, ctx);
883 mutex_set_owner(&lock->base);
884 } else
885 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
886 return ret;
887}
888EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
889
890#endif
891
a511e3f9
AM
892/**
893 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
894 * @cnt: the atomic which we are to dec
895 * @lock: the mutex to return holding if we dec to 0
896 *
897 * return true and hold lock if we dec to 0, return false otherwise
898 */
899int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
900{
901 /* dec if we can't possibly hit 0 */
902 if (atomic_add_unless(cnt, -1, 1))
903 return 0;
904 /* we might hit 0, so take the lock */
905 mutex_lock(lock);
906 if (!atomic_dec_and_test(cnt)) {
907 /* when we actually did the dec, we didn't hit 0 */
908 mutex_unlock(lock);
909 return 0;
910 }
911 /* we hit 0, and we hold the lock */
912 return 1;
913}
914EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
This page took 0.529974 seconds and 5 git commands to generate.