perfcounters: fix "perf counters kills oprofile" bug, v2
[deliverable/linux.git] / kernel / perf_counter.c
CommitLineData
0793a61d
TG
1/*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10#include <linux/fs.h>
11#include <linux/cpu.h>
12#include <linux/smp.h>
04289bb9 13#include <linux/file.h>
0793a61d
TG
14#include <linux/poll.h>
15#include <linux/sysfs.h>
16#include <linux/ptrace.h>
17#include <linux/percpu.h>
18#include <linux/uaccess.h>
19#include <linux/syscalls.h>
20#include <linux/anon_inodes.h>
aa9c4c0f 21#include <linux/kernel_stat.h>
0793a61d
TG
22#include <linux/perf_counter.h>
23
24/*
25 * Each CPU has a list of per CPU counters:
26 */
27DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
28
088e2852 29int perf_max_counters __read_mostly = 1;
0793a61d
TG
30static int perf_reserved_percpu __read_mostly;
31static int perf_overcommit __read_mostly = 1;
32
33/*
34 * Mutex for (sysadmin-configurable) counter reservations:
35 */
36static DEFINE_MUTEX(perf_resource_mutex);
37
38/*
39 * Architecture provided APIs - weak aliases:
40 */
5c92d124 41extern __weak const struct hw_perf_counter_ops *
621a01ea 42hw_perf_counter_init(struct perf_counter *counter)
0793a61d 43{
ff6f0541 44 return NULL;
0793a61d
TG
45}
46
01b2838c 47u64 __weak hw_perf_save_disable(void) { return 0; }
01ea1cca 48void __weak hw_perf_restore(u64 ctrl) { barrier(); }
01d0287f 49void __weak hw_perf_counter_setup(int cpu) { barrier(); }
3cbed429
PM
50int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
51 struct perf_cpu_context *cpuctx,
52 struct perf_counter_context *ctx, int cpu)
53{
54 return 0;
55}
0793a61d 56
4eb96fcf
PM
57void __weak perf_counter_print_debug(void) { }
58
04289bb9
IM
59static void
60list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
61{
62 struct perf_counter *group_leader = counter->group_leader;
63
64 /*
65 * Depending on whether it is a standalone or sibling counter,
66 * add it straight to the context's counter list, or to the group
67 * leader's sibling list:
68 */
69 if (counter->group_leader == counter)
70 list_add_tail(&counter->list_entry, &ctx->counter_list);
71 else
72 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
73}
74
75static void
76list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
77{
78 struct perf_counter *sibling, *tmp;
79
80 list_del_init(&counter->list_entry);
81
04289bb9
IM
82 /*
83 * If this was a group counter with sibling counters then
84 * upgrade the siblings to singleton counters by adding them
85 * to the context list directly:
86 */
87 list_for_each_entry_safe(sibling, tmp,
88 &counter->sibling_list, list_entry) {
89
90 list_del_init(&sibling->list_entry);
91 list_add_tail(&sibling->list_entry, &ctx->counter_list);
04289bb9
IM
92 sibling->group_leader = sibling;
93 }
94}
95
3b6f9e5c
PM
96static void
97counter_sched_out(struct perf_counter *counter,
98 struct perf_cpu_context *cpuctx,
99 struct perf_counter_context *ctx)
100{
101 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
102 return;
103
104 counter->state = PERF_COUNTER_STATE_INACTIVE;
105 counter->hw_ops->disable(counter);
106 counter->oncpu = -1;
107
108 if (!is_software_counter(counter))
109 cpuctx->active_oncpu--;
110 ctx->nr_active--;
111 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
112 cpuctx->exclusive = 0;
113}
114
d859e29f
PM
115static void
116group_sched_out(struct perf_counter *group_counter,
117 struct perf_cpu_context *cpuctx,
118 struct perf_counter_context *ctx)
119{
120 struct perf_counter *counter;
121
122 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
123 return;
124
125 counter_sched_out(group_counter, cpuctx, ctx);
126
127 /*
128 * Schedule out siblings (if any):
129 */
130 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
131 counter_sched_out(counter, cpuctx, ctx);
132
133 if (group_counter->hw_event.exclusive)
134 cpuctx->exclusive = 0;
135}
136
0793a61d
TG
137/*
138 * Cross CPU call to remove a performance counter
139 *
140 * We disable the counter on the hardware level first. After that we
141 * remove it from the context list.
142 */
04289bb9 143static void __perf_counter_remove_from_context(void *info)
0793a61d
TG
144{
145 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
146 struct perf_counter *counter = info;
147 struct perf_counter_context *ctx = counter->ctx;
9b51f66d 148 unsigned long flags;
5c92d124 149 u64 perf_flags;
0793a61d
TG
150
151 /*
152 * If this is a task context, we need to check whether it is
153 * the current task context of this cpu. If not it has been
154 * scheduled out before the smp call arrived.
155 */
156 if (ctx->task && cpuctx->task_ctx != ctx)
157 return;
158
aa9c4c0f
IM
159 curr_rq_lock_irq_save(&flags);
160 spin_lock(&ctx->lock);
0793a61d 161
3b6f9e5c
PM
162 counter_sched_out(counter, cpuctx, ctx);
163
164 counter->task = NULL;
0793a61d
TG
165 ctx->nr_counters--;
166
167 /*
168 * Protect the list operation against NMI by disabling the
169 * counters on a global level. NOP for non NMI based counters.
170 */
01b2838c 171 perf_flags = hw_perf_save_disable();
04289bb9 172 list_del_counter(counter, ctx);
01b2838c 173 hw_perf_restore(perf_flags);
0793a61d
TG
174
175 if (!ctx->task) {
176 /*
177 * Allow more per task counters with respect to the
178 * reservation:
179 */
180 cpuctx->max_pertask =
181 min(perf_max_counters - ctx->nr_counters,
182 perf_max_counters - perf_reserved_percpu);
183 }
184
aa9c4c0f
IM
185 spin_unlock(&ctx->lock);
186 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
187}
188
189
190/*
191 * Remove the counter from a task's (or a CPU's) list of counters.
192 *
d859e29f 193 * Must be called with counter->mutex and ctx->mutex held.
0793a61d
TG
194 *
195 * CPU counters are removed with a smp call. For task counters we only
196 * call when the task is on a CPU.
197 */
04289bb9 198static void perf_counter_remove_from_context(struct perf_counter *counter)
0793a61d
TG
199{
200 struct perf_counter_context *ctx = counter->ctx;
201 struct task_struct *task = ctx->task;
202
203 if (!task) {
204 /*
205 * Per cpu counters are removed via an smp call and
206 * the removal is always sucessful.
207 */
208 smp_call_function_single(counter->cpu,
04289bb9 209 __perf_counter_remove_from_context,
0793a61d
TG
210 counter, 1);
211 return;
212 }
213
214retry:
04289bb9 215 task_oncpu_function_call(task, __perf_counter_remove_from_context,
0793a61d
TG
216 counter);
217
218 spin_lock_irq(&ctx->lock);
219 /*
220 * If the context is active we need to retry the smp call.
221 */
04289bb9 222 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
0793a61d
TG
223 spin_unlock_irq(&ctx->lock);
224 goto retry;
225 }
226
227 /*
228 * The lock prevents that this context is scheduled in so we
04289bb9 229 * can remove the counter safely, if the call above did not
0793a61d
TG
230 * succeed.
231 */
04289bb9 232 if (!list_empty(&counter->list_entry)) {
0793a61d 233 ctx->nr_counters--;
04289bb9 234 list_del_counter(counter, ctx);
0793a61d
TG
235 counter->task = NULL;
236 }
237 spin_unlock_irq(&ctx->lock);
238}
239
d859e29f
PM
240/*
241 * Cross CPU call to disable a performance counter
242 */
243static void __perf_counter_disable(void *info)
244{
245 struct perf_counter *counter = info;
246 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
247 struct perf_counter_context *ctx = counter->ctx;
248 unsigned long flags;
249
250 /*
251 * If this is a per-task counter, need to check whether this
252 * counter's task is the current task on this cpu.
253 */
254 if (ctx->task && cpuctx->task_ctx != ctx)
255 return;
256
257 curr_rq_lock_irq_save(&flags);
258 spin_lock(&ctx->lock);
259
260 /*
261 * If the counter is on, turn it off.
262 * If it is in error state, leave it in error state.
263 */
264 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
265 if (counter == counter->group_leader)
266 group_sched_out(counter, cpuctx, ctx);
267 else
268 counter_sched_out(counter, cpuctx, ctx);
269 counter->state = PERF_COUNTER_STATE_OFF;
270 }
271
272 spin_unlock(&ctx->lock);
273 curr_rq_unlock_irq_restore(&flags);
274}
275
276/*
277 * Disable a counter.
278 */
279static void perf_counter_disable(struct perf_counter *counter)
280{
281 struct perf_counter_context *ctx = counter->ctx;
282 struct task_struct *task = ctx->task;
283
284 if (!task) {
285 /*
286 * Disable the counter on the cpu that it's on
287 */
288 smp_call_function_single(counter->cpu, __perf_counter_disable,
289 counter, 1);
290 return;
291 }
292
293 retry:
294 task_oncpu_function_call(task, __perf_counter_disable, counter);
295
296 spin_lock_irq(&ctx->lock);
297 /*
298 * If the counter is still active, we need to retry the cross-call.
299 */
300 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
301 spin_unlock_irq(&ctx->lock);
302 goto retry;
303 }
304
305 /*
306 * Since we have the lock this context can't be scheduled
307 * in, so we can change the state safely.
308 */
309 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
310 counter->state = PERF_COUNTER_STATE_OFF;
311
312 spin_unlock_irq(&ctx->lock);
313}
314
315/*
316 * Disable a counter and all its children.
317 */
318static void perf_counter_disable_family(struct perf_counter *counter)
319{
320 struct perf_counter *child;
321
322 perf_counter_disable(counter);
323
324 /*
325 * Lock the mutex to protect the list of children
326 */
327 mutex_lock(&counter->mutex);
328 list_for_each_entry(child, &counter->child_list, child_list)
329 perf_counter_disable(child);
330 mutex_unlock(&counter->mutex);
331}
332
235c7fc7
IM
333static int
334counter_sched_in(struct perf_counter *counter,
335 struct perf_cpu_context *cpuctx,
336 struct perf_counter_context *ctx,
337 int cpu)
338{
3b6f9e5c 339 if (counter->state <= PERF_COUNTER_STATE_OFF)
235c7fc7
IM
340 return 0;
341
342 counter->state = PERF_COUNTER_STATE_ACTIVE;
343 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
344 /*
345 * The new state must be visible before we turn it on in the hardware:
346 */
347 smp_wmb();
348
349 if (counter->hw_ops->enable(counter)) {
350 counter->state = PERF_COUNTER_STATE_INACTIVE;
351 counter->oncpu = -1;
352 return -EAGAIN;
353 }
354
3b6f9e5c
PM
355 if (!is_software_counter(counter))
356 cpuctx->active_oncpu++;
235c7fc7
IM
357 ctx->nr_active++;
358
3b6f9e5c
PM
359 if (counter->hw_event.exclusive)
360 cpuctx->exclusive = 1;
361
235c7fc7
IM
362 return 0;
363}
364
3b6f9e5c
PM
365/*
366 * Return 1 for a group consisting entirely of software counters,
367 * 0 if the group contains any hardware counters.
368 */
369static int is_software_only_group(struct perf_counter *leader)
370{
371 struct perf_counter *counter;
372
373 if (!is_software_counter(leader))
374 return 0;
375 list_for_each_entry(counter, &leader->sibling_list, list_entry)
376 if (!is_software_counter(counter))
377 return 0;
378 return 1;
379}
380
381/*
382 * Work out whether we can put this counter group on the CPU now.
383 */
384static int group_can_go_on(struct perf_counter *counter,
385 struct perf_cpu_context *cpuctx,
386 int can_add_hw)
387{
388 /*
389 * Groups consisting entirely of software counters can always go on.
390 */
391 if (is_software_only_group(counter))
392 return 1;
393 /*
394 * If an exclusive group is already on, no other hardware
395 * counters can go on.
396 */
397 if (cpuctx->exclusive)
398 return 0;
399 /*
400 * If this group is exclusive and there are already
401 * counters on the CPU, it can't go on.
402 */
403 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
404 return 0;
405 /*
406 * Otherwise, try to add it if all previous groups were able
407 * to go on.
408 */
409 return can_add_hw;
410}
411
0793a61d 412/*
235c7fc7 413 * Cross CPU call to install and enable a performance counter
0793a61d
TG
414 */
415static void __perf_install_in_context(void *info)
416{
417 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
418 struct perf_counter *counter = info;
419 struct perf_counter_context *ctx = counter->ctx;
d859e29f 420 struct perf_counter *leader = counter->group_leader;
0793a61d 421 int cpu = smp_processor_id();
9b51f66d 422 unsigned long flags;
5c92d124 423 u64 perf_flags;
3b6f9e5c 424 int err;
0793a61d
TG
425
426 /*
427 * If this is a task context, we need to check whether it is
428 * the current task context of this cpu. If not it has been
429 * scheduled out before the smp call arrived.
430 */
431 if (ctx->task && cpuctx->task_ctx != ctx)
432 return;
433
aa9c4c0f
IM
434 curr_rq_lock_irq_save(&flags);
435 spin_lock(&ctx->lock);
0793a61d
TG
436
437 /*
438 * Protect the list operation against NMI by disabling the
439 * counters on a global level. NOP for non NMI based counters.
440 */
01b2838c 441 perf_flags = hw_perf_save_disable();
0793a61d 442
235c7fc7 443 list_add_counter(counter, ctx);
0793a61d
TG
444 ctx->nr_counters++;
445
d859e29f
PM
446 /*
447 * Don't put the counter on if it is disabled or if
448 * it is in a group and the group isn't on.
449 */
450 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
451 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
452 goto unlock;
453
3b6f9e5c
PM
454 /*
455 * An exclusive counter can't go on if there are already active
456 * hardware counters, and no hardware counter can go on if there
457 * is already an exclusive counter on.
458 */
d859e29f 459 if (!group_can_go_on(counter, cpuctx, 1))
3b6f9e5c
PM
460 err = -EEXIST;
461 else
462 err = counter_sched_in(counter, cpuctx, ctx, cpu);
463
d859e29f
PM
464 if (err) {
465 /*
466 * This counter couldn't go on. If it is in a group
467 * then we have to pull the whole group off.
468 * If the counter group is pinned then put it in error state.
469 */
470 if (leader != counter)
471 group_sched_out(leader, cpuctx, ctx);
472 if (leader->hw_event.pinned)
473 leader->state = PERF_COUNTER_STATE_ERROR;
474 }
0793a61d 475
3b6f9e5c 476 if (!err && !ctx->task && cpuctx->max_pertask)
0793a61d
TG
477 cpuctx->max_pertask--;
478
d859e29f 479 unlock:
235c7fc7
IM
480 hw_perf_restore(perf_flags);
481
aa9c4c0f
IM
482 spin_unlock(&ctx->lock);
483 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
484}
485
486/*
487 * Attach a performance counter to a context
488 *
489 * First we add the counter to the list with the hardware enable bit
490 * in counter->hw_config cleared.
491 *
492 * If the counter is attached to a task which is on a CPU we use a smp
493 * call to enable it in the task context. The task might have been
494 * scheduled away, but we check this in the smp call again.
d859e29f
PM
495 *
496 * Must be called with ctx->mutex held.
0793a61d
TG
497 */
498static void
499perf_install_in_context(struct perf_counter_context *ctx,
500 struct perf_counter *counter,
501 int cpu)
502{
503 struct task_struct *task = ctx->task;
504
505 counter->ctx = ctx;
506 if (!task) {
507 /*
508 * Per cpu counters are installed via an smp call and
509 * the install is always sucessful.
510 */
511 smp_call_function_single(cpu, __perf_install_in_context,
512 counter, 1);
513 return;
514 }
515
516 counter->task = task;
517retry:
518 task_oncpu_function_call(task, __perf_install_in_context,
519 counter);
520
521 spin_lock_irq(&ctx->lock);
522 /*
0793a61d
TG
523 * we need to retry the smp call.
524 */
d859e29f 525 if (ctx->is_active && list_empty(&counter->list_entry)) {
0793a61d
TG
526 spin_unlock_irq(&ctx->lock);
527 goto retry;
528 }
529
530 /*
531 * The lock prevents that this context is scheduled in so we
532 * can add the counter safely, if it the call above did not
533 * succeed.
534 */
04289bb9
IM
535 if (list_empty(&counter->list_entry)) {
536 list_add_counter(counter, ctx);
0793a61d
TG
537 ctx->nr_counters++;
538 }
539 spin_unlock_irq(&ctx->lock);
540}
541
d859e29f
PM
542/*
543 * Cross CPU call to enable a performance counter
544 */
545static void __perf_counter_enable(void *info)
04289bb9 546{
d859e29f
PM
547 struct perf_counter *counter = info;
548 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
549 struct perf_counter_context *ctx = counter->ctx;
550 struct perf_counter *leader = counter->group_leader;
551 unsigned long flags;
552 int err;
04289bb9 553
d859e29f
PM
554 /*
555 * If this is a per-task counter, need to check whether this
556 * counter's task is the current task on this cpu.
557 */
558 if (ctx->task && cpuctx->task_ctx != ctx)
3cbed429
PM
559 return;
560
d859e29f
PM
561 curr_rq_lock_irq_save(&flags);
562 spin_lock(&ctx->lock);
563
564 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
565 goto unlock;
566 counter->state = PERF_COUNTER_STATE_INACTIVE;
04289bb9
IM
567
568 /*
d859e29f
PM
569 * If the counter is in a group and isn't the group leader,
570 * then don't put it on unless the group is on.
04289bb9 571 */
d859e29f
PM
572 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
573 goto unlock;
3b6f9e5c 574
d859e29f
PM
575 if (!group_can_go_on(counter, cpuctx, 1))
576 err = -EEXIST;
577 else
578 err = counter_sched_in(counter, cpuctx, ctx,
579 smp_processor_id());
580
581 if (err) {
582 /*
583 * If this counter can't go on and it's part of a
584 * group, then the whole group has to come off.
585 */
586 if (leader != counter)
587 group_sched_out(leader, cpuctx, ctx);
588 if (leader->hw_event.pinned)
589 leader->state = PERF_COUNTER_STATE_ERROR;
590 }
591
592 unlock:
593 spin_unlock(&ctx->lock);
594 curr_rq_unlock_irq_restore(&flags);
595}
596
597/*
598 * Enable a counter.
599 */
600static void perf_counter_enable(struct perf_counter *counter)
601{
602 struct perf_counter_context *ctx = counter->ctx;
603 struct task_struct *task = ctx->task;
604
605 if (!task) {
606 /*
607 * Enable the counter on the cpu that it's on
608 */
609 smp_call_function_single(counter->cpu, __perf_counter_enable,
610 counter, 1);
611 return;
612 }
613
614 spin_lock_irq(&ctx->lock);
615 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
616 goto out;
617
618 /*
619 * If the counter is in error state, clear that first.
620 * That way, if we see the counter in error state below, we
621 * know that it has gone back into error state, as distinct
622 * from the task having been scheduled away before the
623 * cross-call arrived.
624 */
625 if (counter->state == PERF_COUNTER_STATE_ERROR)
626 counter->state = PERF_COUNTER_STATE_OFF;
627
628 retry:
629 spin_unlock_irq(&ctx->lock);
630 task_oncpu_function_call(task, __perf_counter_enable, counter);
631
632 spin_lock_irq(&ctx->lock);
633
634 /*
635 * If the context is active and the counter is still off,
636 * we need to retry the cross-call.
637 */
638 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
639 goto retry;
640
641 /*
642 * Since we have the lock this context can't be scheduled
643 * in, so we can change the state safely.
644 */
645 if (counter->state == PERF_COUNTER_STATE_OFF)
646 counter->state = PERF_COUNTER_STATE_INACTIVE;
647 out:
648 spin_unlock_irq(&ctx->lock);
649}
650
651/*
652 * Enable a counter and all its children.
653 */
654static void perf_counter_enable_family(struct perf_counter *counter)
655{
656 struct perf_counter *child;
657
658 perf_counter_enable(counter);
659
660 /*
661 * Lock the mutex to protect the list of children
662 */
663 mutex_lock(&counter->mutex);
664 list_for_each_entry(child, &counter->child_list, child_list)
665 perf_counter_enable(child);
666 mutex_unlock(&counter->mutex);
04289bb9
IM
667}
668
235c7fc7
IM
669void __perf_counter_sched_out(struct perf_counter_context *ctx,
670 struct perf_cpu_context *cpuctx)
671{
672 struct perf_counter *counter;
3cbed429 673 u64 flags;
235c7fc7 674
d859e29f
PM
675 spin_lock(&ctx->lock);
676 ctx->is_active = 0;
235c7fc7 677 if (likely(!ctx->nr_counters))
d859e29f 678 goto out;
235c7fc7 679
3cbed429 680 flags = hw_perf_save_disable();
235c7fc7
IM
681 if (ctx->nr_active) {
682 list_for_each_entry(counter, &ctx->counter_list, list_entry)
683 group_sched_out(counter, cpuctx, ctx);
684 }
3cbed429 685 hw_perf_restore(flags);
d859e29f 686 out:
235c7fc7
IM
687 spin_unlock(&ctx->lock);
688}
689
0793a61d
TG
690/*
691 * Called from scheduler to remove the counters of the current task,
692 * with interrupts disabled.
693 *
694 * We stop each counter and update the counter value in counter->count.
695 *
7671581f 696 * This does not protect us against NMI, but disable()
0793a61d
TG
697 * sets the disabled bit in the control field of counter _before_
698 * accessing the counter control register. If a NMI hits, then it will
699 * not restart the counter.
700 */
701void perf_counter_task_sched_out(struct task_struct *task, int cpu)
702{
703 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
704 struct perf_counter_context *ctx = &task->perf_counter_ctx;
0793a61d
TG
705
706 if (likely(!cpuctx->task_ctx))
707 return;
708
235c7fc7
IM
709 __perf_counter_sched_out(ctx, cpuctx);
710
0793a61d
TG
711 cpuctx->task_ctx = NULL;
712}
713
235c7fc7 714static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
04289bb9 715{
235c7fc7 716 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
04289bb9
IM
717}
718
7995888f 719static int
04289bb9
IM
720group_sched_in(struct perf_counter *group_counter,
721 struct perf_cpu_context *cpuctx,
722 struct perf_counter_context *ctx,
723 int cpu)
724{
95cdd2e7 725 struct perf_counter *counter, *partial_group;
3cbed429
PM
726 int ret;
727
728 if (group_counter->state == PERF_COUNTER_STATE_OFF)
729 return 0;
730
731 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
732 if (ret)
733 return ret < 0 ? ret : 0;
04289bb9 734
95cdd2e7
IM
735 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
736 return -EAGAIN;
04289bb9
IM
737
738 /*
739 * Schedule in siblings as one group (if any):
740 */
7995888f 741 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
95cdd2e7
IM
742 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
743 partial_group = counter;
744 goto group_error;
745 }
95cdd2e7
IM
746 }
747
3cbed429 748 return 0;
95cdd2e7
IM
749
750group_error:
751 /*
752 * Groups can be scheduled in as one unit only, so undo any
753 * partial group before returning:
754 */
755 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
756 if (counter == partial_group)
757 break;
758 counter_sched_out(counter, cpuctx, ctx);
7995888f 759 }
95cdd2e7 760 counter_sched_out(group_counter, cpuctx, ctx);
7995888f 761
95cdd2e7 762 return -EAGAIN;
04289bb9
IM
763}
764
235c7fc7
IM
765static void
766__perf_counter_sched_in(struct perf_counter_context *ctx,
767 struct perf_cpu_context *cpuctx, int cpu)
0793a61d 768{
0793a61d 769 struct perf_counter *counter;
3cbed429 770 u64 flags;
dd0e6ba2 771 int can_add_hw = 1;
0793a61d 772
d859e29f
PM
773 spin_lock(&ctx->lock);
774 ctx->is_active = 1;
0793a61d 775 if (likely(!ctx->nr_counters))
d859e29f 776 goto out;
0793a61d 777
3cbed429 778 flags = hw_perf_save_disable();
3b6f9e5c
PM
779
780 /*
781 * First go through the list and put on any pinned groups
782 * in order to give them the best chance of going on.
783 */
784 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
785 if (counter->state <= PERF_COUNTER_STATE_OFF ||
786 !counter->hw_event.pinned)
787 continue;
788 if (counter->cpu != -1 && counter->cpu != cpu)
789 continue;
790
791 if (group_can_go_on(counter, cpuctx, 1))
792 group_sched_in(counter, cpuctx, ctx, cpu);
793
794 /*
795 * If this pinned group hasn't been scheduled,
796 * put it in error state.
797 */
798 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
799 counter->state = PERF_COUNTER_STATE_ERROR;
800 }
801
04289bb9 802 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
3b6f9e5c
PM
803 /*
804 * Ignore counters in OFF or ERROR state, and
805 * ignore pinned counters since we did them already.
806 */
807 if (counter->state <= PERF_COUNTER_STATE_OFF ||
808 counter->hw_event.pinned)
809 continue;
810
04289bb9
IM
811 /*
812 * Listen to the 'cpu' scheduling filter constraint
813 * of counters:
814 */
0793a61d
TG
815 if (counter->cpu != -1 && counter->cpu != cpu)
816 continue;
817
3b6f9e5c 818 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
dd0e6ba2
PM
819 if (group_sched_in(counter, cpuctx, ctx, cpu))
820 can_add_hw = 0;
3b6f9e5c 821 }
0793a61d 822 }
3cbed429 823 hw_perf_restore(flags);
d859e29f 824 out:
0793a61d 825 spin_unlock(&ctx->lock);
235c7fc7
IM
826}
827
828/*
829 * Called from scheduler to add the counters of the current task
830 * with interrupts disabled.
831 *
832 * We restore the counter value and then enable it.
833 *
834 * This does not protect us against NMI, but enable()
835 * sets the enabled bit in the control field of counter _before_
836 * accessing the counter control register. If a NMI hits, then it will
837 * keep the counter running.
838 */
839void perf_counter_task_sched_in(struct task_struct *task, int cpu)
840{
841 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
842 struct perf_counter_context *ctx = &task->perf_counter_ctx;
04289bb9 843
235c7fc7 844 __perf_counter_sched_in(ctx, cpuctx, cpu);
0793a61d
TG
845 cpuctx->task_ctx = ctx;
846}
847
235c7fc7
IM
848static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
849{
850 struct perf_counter_context *ctx = &cpuctx->ctx;
851
852 __perf_counter_sched_in(ctx, cpuctx, cpu);
853}
854
1d1c7ddb
IM
855int perf_counter_task_disable(void)
856{
857 struct task_struct *curr = current;
858 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
859 struct perf_counter *counter;
aa9c4c0f 860 unsigned long flags;
1d1c7ddb
IM
861 u64 perf_flags;
862 int cpu;
863
864 if (likely(!ctx->nr_counters))
865 return 0;
866
aa9c4c0f 867 curr_rq_lock_irq_save(&flags);
1d1c7ddb
IM
868 cpu = smp_processor_id();
869
aa9c4c0f
IM
870 /* force the update of the task clock: */
871 __task_delta_exec(curr, 1);
872
1d1c7ddb
IM
873 perf_counter_task_sched_out(curr, cpu);
874
875 spin_lock(&ctx->lock);
876
877 /*
878 * Disable all the counters:
879 */
880 perf_flags = hw_perf_save_disable();
881
3b6f9e5c
PM
882 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
883 if (counter->state != PERF_COUNTER_STATE_ERROR)
884 counter->state = PERF_COUNTER_STATE_OFF;
885 }
9b51f66d 886
1d1c7ddb
IM
887 hw_perf_restore(perf_flags);
888
889 spin_unlock(&ctx->lock);
890
aa9c4c0f 891 curr_rq_unlock_irq_restore(&flags);
1d1c7ddb
IM
892
893 return 0;
894}
895
896int perf_counter_task_enable(void)
897{
898 struct task_struct *curr = current;
899 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
900 struct perf_counter *counter;
aa9c4c0f 901 unsigned long flags;
1d1c7ddb
IM
902 u64 perf_flags;
903 int cpu;
904
905 if (likely(!ctx->nr_counters))
906 return 0;
907
aa9c4c0f 908 curr_rq_lock_irq_save(&flags);
1d1c7ddb
IM
909 cpu = smp_processor_id();
910
aa9c4c0f
IM
911 /* force the update of the task clock: */
912 __task_delta_exec(curr, 1);
913
235c7fc7
IM
914 perf_counter_task_sched_out(curr, cpu);
915
1d1c7ddb
IM
916 spin_lock(&ctx->lock);
917
918 /*
919 * Disable all the counters:
920 */
921 perf_flags = hw_perf_save_disable();
922
923 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
3b6f9e5c 924 if (counter->state > PERF_COUNTER_STATE_OFF)
1d1c7ddb 925 continue;
6a930700 926 counter->state = PERF_COUNTER_STATE_INACTIVE;
aa9c4c0f 927 counter->hw_event.disabled = 0;
1d1c7ddb
IM
928 }
929 hw_perf_restore(perf_flags);
930
931 spin_unlock(&ctx->lock);
932
933 perf_counter_task_sched_in(curr, cpu);
934
aa9c4c0f 935 curr_rq_unlock_irq_restore(&flags);
1d1c7ddb
IM
936
937 return 0;
938}
939
235c7fc7
IM
940/*
941 * Round-robin a context's counters:
942 */
943static void rotate_ctx(struct perf_counter_context *ctx)
0793a61d 944{
0793a61d 945 struct perf_counter *counter;
5c92d124 946 u64 perf_flags;
0793a61d 947
235c7fc7 948 if (!ctx->nr_counters)
0793a61d
TG
949 return;
950
0793a61d 951 spin_lock(&ctx->lock);
0793a61d 952 /*
04289bb9 953 * Rotate the first entry last (works just fine for group counters too):
0793a61d 954 */
01b2838c 955 perf_flags = hw_perf_save_disable();
04289bb9
IM
956 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
957 list_del(&counter->list_entry);
958 list_add_tail(&counter->list_entry, &ctx->counter_list);
0793a61d
TG
959 break;
960 }
01b2838c 961 hw_perf_restore(perf_flags);
0793a61d
TG
962
963 spin_unlock(&ctx->lock);
235c7fc7
IM
964}
965
966void perf_counter_task_tick(struct task_struct *curr, int cpu)
967{
968 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
969 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
970 const int rotate_percpu = 0;
971
972 if (rotate_percpu)
973 perf_counter_cpu_sched_out(cpuctx);
974 perf_counter_task_sched_out(curr, cpu);
0793a61d 975
235c7fc7
IM
976 if (rotate_percpu)
977 rotate_ctx(&cpuctx->ctx);
978 rotate_ctx(ctx);
979
980 if (rotate_percpu)
981 perf_counter_cpu_sched_in(cpuctx, cpu);
0793a61d
TG
982 perf_counter_task_sched_in(curr, cpu);
983}
984
0793a61d
TG
985/*
986 * Cross CPU call to read the hardware counter
987 */
7671581f 988static void __read(void *info)
0793a61d 989{
621a01ea 990 struct perf_counter *counter = info;
aa9c4c0f 991 unsigned long flags;
621a01ea 992
aa9c4c0f 993 curr_rq_lock_irq_save(&flags);
7671581f 994 counter->hw_ops->read(counter);
aa9c4c0f 995 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
996}
997
04289bb9 998static u64 perf_counter_read(struct perf_counter *counter)
0793a61d
TG
999{
1000 /*
1001 * If counter is enabled and currently active on a CPU, update the
1002 * value in the counter structure:
1003 */
6a930700 1004 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
0793a61d 1005 smp_call_function_single(counter->oncpu,
7671581f 1006 __read, counter, 1);
0793a61d
TG
1007 }
1008
ee06094f 1009 return atomic64_read(&counter->count);
0793a61d
TG
1010}
1011
1012/*
1013 * Cross CPU call to switch performance data pointers
1014 */
1015static void __perf_switch_irq_data(void *info)
1016{
1017 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1018 struct perf_counter *counter = info;
1019 struct perf_counter_context *ctx = counter->ctx;
1020 struct perf_data *oldirqdata = counter->irqdata;
1021
1022 /*
1023 * If this is a task context, we need to check whether it is
1024 * the current task context of this cpu. If not it has been
1025 * scheduled out before the smp call arrived.
1026 */
1027 if (ctx->task) {
1028 if (cpuctx->task_ctx != ctx)
1029 return;
1030 spin_lock(&ctx->lock);
1031 }
1032
1033 /* Change the pointer NMI safe */
1034 atomic_long_set((atomic_long_t *)&counter->irqdata,
1035 (unsigned long) counter->usrdata);
1036 counter->usrdata = oldirqdata;
1037
1038 if (ctx->task)
1039 spin_unlock(&ctx->lock);
1040}
1041
1042static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
1043{
1044 struct perf_counter_context *ctx = counter->ctx;
1045 struct perf_data *oldirqdata = counter->irqdata;
1046 struct task_struct *task = ctx->task;
1047
1048 if (!task) {
1049 smp_call_function_single(counter->cpu,
1050 __perf_switch_irq_data,
1051 counter, 1);
1052 return counter->usrdata;
1053 }
1054
1055retry:
1056 spin_lock_irq(&ctx->lock);
6a930700 1057 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
0793a61d
TG
1058 counter->irqdata = counter->usrdata;
1059 counter->usrdata = oldirqdata;
1060 spin_unlock_irq(&ctx->lock);
1061 return oldirqdata;
1062 }
1063 spin_unlock_irq(&ctx->lock);
1064 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
1065 /* Might have failed, because task was scheduled out */
1066 if (counter->irqdata == oldirqdata)
1067 goto retry;
1068
1069 return counter->usrdata;
1070}
1071
1072static void put_context(struct perf_counter_context *ctx)
1073{
1074 if (ctx->task)
1075 put_task_struct(ctx->task);
1076}
1077
1078static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1079{
1080 struct perf_cpu_context *cpuctx;
1081 struct perf_counter_context *ctx;
1082 struct task_struct *task;
1083
1084 /*
1085 * If cpu is not a wildcard then this is a percpu counter:
1086 */
1087 if (cpu != -1) {
1088 /* Must be root to operate on a CPU counter: */
1089 if (!capable(CAP_SYS_ADMIN))
1090 return ERR_PTR(-EACCES);
1091
1092 if (cpu < 0 || cpu > num_possible_cpus())
1093 return ERR_PTR(-EINVAL);
1094
1095 /*
1096 * We could be clever and allow to attach a counter to an
1097 * offline CPU and activate it when the CPU comes up, but
1098 * that's for later.
1099 */
1100 if (!cpu_isset(cpu, cpu_online_map))
1101 return ERR_PTR(-ENODEV);
1102
1103 cpuctx = &per_cpu(perf_cpu_context, cpu);
1104 ctx = &cpuctx->ctx;
1105
0793a61d
TG
1106 return ctx;
1107 }
1108
1109 rcu_read_lock();
1110 if (!pid)
1111 task = current;
1112 else
1113 task = find_task_by_vpid(pid);
1114 if (task)
1115 get_task_struct(task);
1116 rcu_read_unlock();
1117
1118 if (!task)
1119 return ERR_PTR(-ESRCH);
1120
1121 ctx = &task->perf_counter_ctx;
1122 ctx->task = task;
1123
1124 /* Reuse ptrace permission checks for now. */
1125 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1126 put_context(ctx);
1127 return ERR_PTR(-EACCES);
1128 }
1129
1130 return ctx;
1131}
1132
1133/*
1134 * Called when the last reference to the file is gone.
1135 */
1136static int perf_release(struct inode *inode, struct file *file)
1137{
1138 struct perf_counter *counter = file->private_data;
1139 struct perf_counter_context *ctx = counter->ctx;
1140
1141 file->private_data = NULL;
1142
d859e29f 1143 mutex_lock(&ctx->mutex);
0793a61d
TG
1144 mutex_lock(&counter->mutex);
1145
04289bb9 1146 perf_counter_remove_from_context(counter);
0793a61d
TG
1147 put_context(ctx);
1148
1149 mutex_unlock(&counter->mutex);
d859e29f 1150 mutex_unlock(&ctx->mutex);
0793a61d
TG
1151
1152 kfree(counter);
1153
1154 return 0;
1155}
1156
1157/*
1158 * Read the performance counter - simple non blocking version for now
1159 */
1160static ssize_t
1161perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1162{
1163 u64 cntval;
1164
1165 if (count != sizeof(cntval))
1166 return -EINVAL;
1167
3b6f9e5c
PM
1168 /*
1169 * Return end-of-file for a read on a counter that is in
1170 * error state (i.e. because it was pinned but it couldn't be
1171 * scheduled on to the CPU at some point).
1172 */
1173 if (counter->state == PERF_COUNTER_STATE_ERROR)
1174 return 0;
1175
0793a61d 1176 mutex_lock(&counter->mutex);
04289bb9 1177 cntval = perf_counter_read(counter);
0793a61d
TG
1178 mutex_unlock(&counter->mutex);
1179
1180 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1181}
1182
1183static ssize_t
1184perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
1185{
1186 if (!usrdata->len)
1187 return 0;
1188
1189 count = min(count, (size_t)usrdata->len);
1190 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
1191 return -EFAULT;
1192
1193 /* Adjust the counters */
1194 usrdata->len -= count;
1195 if (!usrdata->len)
1196 usrdata->rd_idx = 0;
1197 else
1198 usrdata->rd_idx += count;
1199
1200 return count;
1201}
1202
1203static ssize_t
1204perf_read_irq_data(struct perf_counter *counter,
1205 char __user *buf,
1206 size_t count,
1207 int nonblocking)
1208{
1209 struct perf_data *irqdata, *usrdata;
1210 DECLARE_WAITQUEUE(wait, current);
3b6f9e5c 1211 ssize_t res, res2;
0793a61d
TG
1212
1213 irqdata = counter->irqdata;
1214 usrdata = counter->usrdata;
1215
1216 if (usrdata->len + irqdata->len >= count)
1217 goto read_pending;
1218
1219 if (nonblocking)
1220 return -EAGAIN;
1221
1222 spin_lock_irq(&counter->waitq.lock);
1223 __add_wait_queue(&counter->waitq, &wait);
1224 for (;;) {
1225 set_current_state(TASK_INTERRUPTIBLE);
1226 if (usrdata->len + irqdata->len >= count)
1227 break;
1228
1229 if (signal_pending(current))
1230 break;
1231
3b6f9e5c
PM
1232 if (counter->state == PERF_COUNTER_STATE_ERROR)
1233 break;
1234
0793a61d
TG
1235 spin_unlock_irq(&counter->waitq.lock);
1236 schedule();
1237 spin_lock_irq(&counter->waitq.lock);
1238 }
1239 __remove_wait_queue(&counter->waitq, &wait);
1240 __set_current_state(TASK_RUNNING);
1241 spin_unlock_irq(&counter->waitq.lock);
1242
3b6f9e5c
PM
1243 if (usrdata->len + irqdata->len < count &&
1244 counter->state != PERF_COUNTER_STATE_ERROR)
0793a61d
TG
1245 return -ERESTARTSYS;
1246read_pending:
1247 mutex_lock(&counter->mutex);
1248
1249 /* Drain pending data first: */
1250 res = perf_copy_usrdata(usrdata, buf, count);
1251 if (res < 0 || res == count)
1252 goto out;
1253
1254 /* Switch irq buffer: */
1255 usrdata = perf_switch_irq_data(counter);
3b6f9e5c
PM
1256 res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
1257 if (res2 < 0) {
0793a61d
TG
1258 if (!res)
1259 res = -EFAULT;
1260 } else {
3b6f9e5c 1261 res += res2;
0793a61d
TG
1262 }
1263out:
1264 mutex_unlock(&counter->mutex);
1265
1266 return res;
1267}
1268
1269static ssize_t
1270perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1271{
1272 struct perf_counter *counter = file->private_data;
1273
9f66a381 1274 switch (counter->hw_event.record_type) {
0793a61d
TG
1275 case PERF_RECORD_SIMPLE:
1276 return perf_read_hw(counter, buf, count);
1277
1278 case PERF_RECORD_IRQ:
1279 case PERF_RECORD_GROUP:
1280 return perf_read_irq_data(counter, buf, count,
1281 file->f_flags & O_NONBLOCK);
1282 }
1283 return -EINVAL;
1284}
1285
1286static unsigned int perf_poll(struct file *file, poll_table *wait)
1287{
1288 struct perf_counter *counter = file->private_data;
1289 unsigned int events = 0;
1290 unsigned long flags;
1291
1292 poll_wait(file, &counter->waitq, wait);
1293
1294 spin_lock_irqsave(&counter->waitq.lock, flags);
1295 if (counter->usrdata->len || counter->irqdata->len)
1296 events |= POLLIN;
1297 spin_unlock_irqrestore(&counter->waitq.lock, flags);
1298
1299 return events;
1300}
1301
d859e29f
PM
1302static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1303{
1304 struct perf_counter *counter = file->private_data;
1305 int err = 0;
1306
1307 switch (cmd) {
1308 case PERF_COUNTER_IOC_ENABLE:
1309 perf_counter_enable_family(counter);
1310 break;
1311 case PERF_COUNTER_IOC_DISABLE:
1312 perf_counter_disable_family(counter);
1313 break;
1314 default:
1315 err = -ENOTTY;
1316 }
1317 return err;
1318}
1319
0793a61d
TG
1320static const struct file_operations perf_fops = {
1321 .release = perf_release,
1322 .read = perf_read,
1323 .poll = perf_poll,
d859e29f
PM
1324 .unlocked_ioctl = perf_ioctl,
1325 .compat_ioctl = perf_ioctl,
0793a61d
TG
1326};
1327
95cdd2e7 1328static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
5c92d124 1329{
9abf8a08
PM
1330 int cpu = raw_smp_processor_id();
1331
1332 atomic64_set(&counter->hw.prev_count, cpu_clock(cpu));
95cdd2e7 1333 return 0;
5c92d124
IM
1334}
1335
9abf8a08
PM
1336static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1337{
1338 int cpu = raw_smp_processor_id();
1339 s64 prev;
1340 u64 now;
1341
1342 now = cpu_clock(cpu);
1343 prev = atomic64_read(&counter->hw.prev_count);
1344 atomic64_set(&counter->hw.prev_count, now);
1345 atomic64_add(now - prev, &counter->count);
1346}
1347
5c92d124
IM
1348static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1349{
9abf8a08 1350 cpu_clock_perf_counter_update(counter);
5c92d124
IM
1351}
1352
1353static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1354{
9abf8a08 1355 cpu_clock_perf_counter_update(counter);
5c92d124
IM
1356}
1357
1358static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
7671581f
IM
1359 .enable = cpu_clock_perf_counter_enable,
1360 .disable = cpu_clock_perf_counter_disable,
1361 .read = cpu_clock_perf_counter_read,
5c92d124
IM
1362};
1363
aa9c4c0f
IM
1364/*
1365 * Called from within the scheduler:
1366 */
1367static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
bae43c99 1368{
aa9c4c0f
IM
1369 struct task_struct *curr = counter->task;
1370 u64 delta;
1371
aa9c4c0f
IM
1372 delta = __task_delta_exec(curr, update);
1373
1374 return curr->se.sum_exec_runtime + delta;
1375}
1376
1377static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1378{
1379 u64 prev;
8cb391e8
IM
1380 s64 delta;
1381
1382 prev = atomic64_read(&counter->hw.prev_count);
8cb391e8
IM
1383
1384 atomic64_set(&counter->hw.prev_count, now);
1385
1386 delta = now - prev;
8cb391e8
IM
1387
1388 atomic64_add(delta, &counter->count);
bae43c99
IM
1389}
1390
8cb391e8 1391static void task_clock_perf_counter_read(struct perf_counter *counter)
bae43c99 1392{
aa9c4c0f
IM
1393 u64 now = task_clock_perf_counter_val(counter, 1);
1394
1395 task_clock_perf_counter_update(counter, now);
bae43c99
IM
1396}
1397
95cdd2e7 1398static int task_clock_perf_counter_enable(struct perf_counter *counter)
8cb391e8 1399{
aa9c4c0f
IM
1400 u64 now = task_clock_perf_counter_val(counter, 0);
1401
1402 atomic64_set(&counter->hw.prev_count, now);
95cdd2e7
IM
1403
1404 return 0;
8cb391e8
IM
1405}
1406
1407static void task_clock_perf_counter_disable(struct perf_counter *counter)
bae43c99 1408{
aa9c4c0f
IM
1409 u64 now = task_clock_perf_counter_val(counter, 0);
1410
1411 task_clock_perf_counter_update(counter, now);
bae43c99
IM
1412}
1413
1414static const struct hw_perf_counter_ops perf_ops_task_clock = {
7671581f
IM
1415 .enable = task_clock_perf_counter_enable,
1416 .disable = task_clock_perf_counter_disable,
1417 .read = task_clock_perf_counter_read,
bae43c99
IM
1418};
1419
e06c61a8
IM
1420static u64 get_page_faults(void)
1421{
1422 struct task_struct *curr = current;
1423
1424 return curr->maj_flt + curr->min_flt;
1425}
1426
1427static void page_faults_perf_counter_update(struct perf_counter *counter)
1428{
1429 u64 prev, now;
1430 s64 delta;
1431
1432 prev = atomic64_read(&counter->hw.prev_count);
1433 now = get_page_faults();
1434
1435 atomic64_set(&counter->hw.prev_count, now);
1436
1437 delta = now - prev;
e06c61a8
IM
1438
1439 atomic64_add(delta, &counter->count);
1440}
1441
1442static void page_faults_perf_counter_read(struct perf_counter *counter)
1443{
1444 page_faults_perf_counter_update(counter);
1445}
1446
95cdd2e7 1447static int page_faults_perf_counter_enable(struct perf_counter *counter)
e06c61a8
IM
1448{
1449 /*
1450 * page-faults is a per-task value already,
1451 * so we dont have to clear it on switch-in.
1452 */
95cdd2e7
IM
1453
1454 return 0;
e06c61a8
IM
1455}
1456
1457static void page_faults_perf_counter_disable(struct perf_counter *counter)
1458{
1459 page_faults_perf_counter_update(counter);
1460}
1461
1462static const struct hw_perf_counter_ops perf_ops_page_faults = {
7671581f
IM
1463 .enable = page_faults_perf_counter_enable,
1464 .disable = page_faults_perf_counter_disable,
1465 .read = page_faults_perf_counter_read,
e06c61a8
IM
1466};
1467
5d6a27d8
IM
1468static u64 get_context_switches(void)
1469{
1470 struct task_struct *curr = current;
1471
1472 return curr->nvcsw + curr->nivcsw;
1473}
1474
1475static void context_switches_perf_counter_update(struct perf_counter *counter)
1476{
1477 u64 prev, now;
1478 s64 delta;
1479
1480 prev = atomic64_read(&counter->hw.prev_count);
1481 now = get_context_switches();
1482
1483 atomic64_set(&counter->hw.prev_count, now);
1484
1485 delta = now - prev;
5d6a27d8
IM
1486
1487 atomic64_add(delta, &counter->count);
1488}
1489
1490static void context_switches_perf_counter_read(struct perf_counter *counter)
1491{
1492 context_switches_perf_counter_update(counter);
1493}
1494
95cdd2e7 1495static int context_switches_perf_counter_enable(struct perf_counter *counter)
5d6a27d8
IM
1496{
1497 /*
1498 * ->nvcsw + curr->nivcsw is a per-task value already,
1499 * so we dont have to clear it on switch-in.
1500 */
95cdd2e7
IM
1501
1502 return 0;
5d6a27d8
IM
1503}
1504
1505static void context_switches_perf_counter_disable(struct perf_counter *counter)
1506{
1507 context_switches_perf_counter_update(counter);
1508}
1509
1510static const struct hw_perf_counter_ops perf_ops_context_switches = {
7671581f
IM
1511 .enable = context_switches_perf_counter_enable,
1512 .disable = context_switches_perf_counter_disable,
1513 .read = context_switches_perf_counter_read,
5d6a27d8
IM
1514};
1515
6c594c21
IM
1516static inline u64 get_cpu_migrations(void)
1517{
1518 return current->se.nr_migrations;
1519}
1520
1521static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1522{
1523 u64 prev, now;
1524 s64 delta;
1525
1526 prev = atomic64_read(&counter->hw.prev_count);
1527 now = get_cpu_migrations();
1528
1529 atomic64_set(&counter->hw.prev_count, now);
1530
1531 delta = now - prev;
6c594c21
IM
1532
1533 atomic64_add(delta, &counter->count);
1534}
1535
1536static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1537{
1538 cpu_migrations_perf_counter_update(counter);
1539}
1540
95cdd2e7 1541static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
6c594c21
IM
1542{
1543 /*
1544 * se.nr_migrations is a per-task value already,
1545 * so we dont have to clear it on switch-in.
1546 */
95cdd2e7
IM
1547
1548 return 0;
6c594c21
IM
1549}
1550
1551static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1552{
1553 cpu_migrations_perf_counter_update(counter);
1554}
1555
1556static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
7671581f
IM
1557 .enable = cpu_migrations_perf_counter_enable,
1558 .disable = cpu_migrations_perf_counter_disable,
1559 .read = cpu_migrations_perf_counter_read,
6c594c21
IM
1560};
1561
5c92d124
IM
1562static const struct hw_perf_counter_ops *
1563sw_perf_counter_init(struct perf_counter *counter)
1564{
1565 const struct hw_perf_counter_ops *hw_ops = NULL;
1566
1567 switch (counter->hw_event.type) {
1568 case PERF_COUNT_CPU_CLOCK:
1569 hw_ops = &perf_ops_cpu_clock;
1570 break;
bae43c99
IM
1571 case PERF_COUNT_TASK_CLOCK:
1572 hw_ops = &perf_ops_task_clock;
1573 break;
e06c61a8
IM
1574 case PERF_COUNT_PAGE_FAULTS:
1575 hw_ops = &perf_ops_page_faults;
1576 break;
5d6a27d8
IM
1577 case PERF_COUNT_CONTEXT_SWITCHES:
1578 hw_ops = &perf_ops_context_switches;
1579 break;
6c594c21
IM
1580 case PERF_COUNT_CPU_MIGRATIONS:
1581 hw_ops = &perf_ops_cpu_migrations;
1582 break;
5c92d124
IM
1583 default:
1584 break;
1585 }
1586 return hw_ops;
1587}
1588
0793a61d
TG
1589/*
1590 * Allocate and initialize a counter structure
1591 */
1592static struct perf_counter *
04289bb9
IM
1593perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1594 int cpu,
9b51f66d
IM
1595 struct perf_counter *group_leader,
1596 gfp_t gfpflags)
0793a61d 1597{
5c92d124 1598 const struct hw_perf_counter_ops *hw_ops;
621a01ea 1599 struct perf_counter *counter;
0793a61d 1600
9b51f66d 1601 counter = kzalloc(sizeof(*counter), gfpflags);
0793a61d
TG
1602 if (!counter)
1603 return NULL;
1604
04289bb9
IM
1605 /*
1606 * Single counters are their own group leaders, with an
1607 * empty sibling list:
1608 */
1609 if (!group_leader)
1610 group_leader = counter;
1611
0793a61d 1612 mutex_init(&counter->mutex);
04289bb9
IM
1613 INIT_LIST_HEAD(&counter->list_entry);
1614 INIT_LIST_HEAD(&counter->sibling_list);
0793a61d
TG
1615 init_waitqueue_head(&counter->waitq);
1616
d859e29f
PM
1617 INIT_LIST_HEAD(&counter->child_list);
1618
9f66a381
IM
1619 counter->irqdata = &counter->data[0];
1620 counter->usrdata = &counter->data[1];
1621 counter->cpu = cpu;
1622 counter->hw_event = *hw_event;
1623 counter->wakeup_pending = 0;
04289bb9 1624 counter->group_leader = group_leader;
621a01ea
IM
1625 counter->hw_ops = NULL;
1626
235c7fc7 1627 counter->state = PERF_COUNTER_STATE_INACTIVE;
a86ed508
IM
1628 if (hw_event->disabled)
1629 counter->state = PERF_COUNTER_STATE_OFF;
1630
5c92d124
IM
1631 hw_ops = NULL;
1632 if (!hw_event->raw && hw_event->type < 0)
1633 hw_ops = sw_perf_counter_init(counter);
9b51f66d 1634 if (!hw_ops)
5c92d124 1635 hw_ops = hw_perf_counter_init(counter);
5c92d124 1636
621a01ea
IM
1637 if (!hw_ops) {
1638 kfree(counter);
1639 return NULL;
1640 }
1641 counter->hw_ops = hw_ops;
0793a61d
TG
1642
1643 return counter;
1644}
1645
1646/**
9f66a381
IM
1647 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
1648 *
1649 * @hw_event_uptr: event type attributes for monitoring/sampling
0793a61d 1650 * @pid: target pid
9f66a381
IM
1651 * @cpu: target cpu
1652 * @group_fd: group leader counter fd
0793a61d 1653 */
1d1c7ddb
IM
1654asmlinkage int
1655sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
1656 pid_t pid, int cpu, int group_fd)
0793a61d 1657{
04289bb9 1658 struct perf_counter *counter, *group_leader;
9f66a381 1659 struct perf_counter_hw_event hw_event;
04289bb9 1660 struct perf_counter_context *ctx;
9b51f66d 1661 struct file *counter_file = NULL;
04289bb9
IM
1662 struct file *group_file = NULL;
1663 int fput_needed = 0;
9b51f66d 1664 int fput_needed2 = 0;
0793a61d
TG
1665 int ret;
1666
9f66a381 1667 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
eab656ae
TG
1668 return -EFAULT;
1669
04289bb9 1670 /*
ccff286d
IM
1671 * Get the target context (task or percpu):
1672 */
1673 ctx = find_get_context(pid, cpu);
1674 if (IS_ERR(ctx))
1675 return PTR_ERR(ctx);
1676
1677 /*
1678 * Look up the group leader (we will attach this counter to it):
04289bb9
IM
1679 */
1680 group_leader = NULL;
1681 if (group_fd != -1) {
1682 ret = -EINVAL;
1683 group_file = fget_light(group_fd, &fput_needed);
1684 if (!group_file)
ccff286d 1685 goto err_put_context;
04289bb9 1686 if (group_file->f_op != &perf_fops)
ccff286d 1687 goto err_put_context;
04289bb9
IM
1688
1689 group_leader = group_file->private_data;
1690 /*
ccff286d
IM
1691 * Do not allow a recursive hierarchy (this new sibling
1692 * becoming part of another group-sibling):
1693 */
1694 if (group_leader->group_leader != group_leader)
1695 goto err_put_context;
1696 /*
1697 * Do not allow to attach to a group in a different
1698 * task or CPU context:
04289bb9 1699 */
ccff286d
IM
1700 if (group_leader->ctx != ctx)
1701 goto err_put_context;
3b6f9e5c
PM
1702 /*
1703 * Only a group leader can be exclusive or pinned
1704 */
1705 if (hw_event.exclusive || hw_event.pinned)
1706 goto err_put_context;
04289bb9
IM
1707 }
1708
5c92d124 1709 ret = -EINVAL;
9b51f66d 1710 counter = perf_counter_alloc(&hw_event, cpu, group_leader, GFP_KERNEL);
0793a61d
TG
1711 if (!counter)
1712 goto err_put_context;
1713
0793a61d
TG
1714 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1715 if (ret < 0)
9b51f66d
IM
1716 goto err_free_put_context;
1717
1718 counter_file = fget_light(ret, &fput_needed2);
1719 if (!counter_file)
1720 goto err_free_put_context;
1721
1722 counter->filp = counter_file;
d859e29f 1723 mutex_lock(&ctx->mutex);
9b51f66d 1724 perf_install_in_context(ctx, counter, cpu);
d859e29f 1725 mutex_unlock(&ctx->mutex);
9b51f66d
IM
1726
1727 fput_light(counter_file, fput_needed2);
0793a61d 1728
04289bb9
IM
1729out_fput:
1730 fput_light(group_file, fput_needed);
1731
0793a61d
TG
1732 return ret;
1733
9b51f66d 1734err_free_put_context:
0793a61d
TG
1735 kfree(counter);
1736
1737err_put_context:
1738 put_context(ctx);
1739
04289bb9 1740 goto out_fput;
0793a61d
TG
1741}
1742
9b51f66d
IM
1743/*
1744 * Initialize the perf_counter context in a task_struct:
1745 */
1746static void
1747__perf_counter_init_context(struct perf_counter_context *ctx,
1748 struct task_struct *task)
1749{
1750 memset(ctx, 0, sizeof(*ctx));
1751 spin_lock_init(&ctx->lock);
d859e29f 1752 mutex_init(&ctx->mutex);
9b51f66d
IM
1753 INIT_LIST_HEAD(&ctx->counter_list);
1754 ctx->task = task;
1755}
1756
1757/*
1758 * inherit a counter from parent task to child task:
1759 */
d859e29f 1760static struct perf_counter *
9b51f66d
IM
1761inherit_counter(struct perf_counter *parent_counter,
1762 struct task_struct *parent,
1763 struct perf_counter_context *parent_ctx,
1764 struct task_struct *child,
d859e29f 1765 struct perf_counter *group_leader,
9b51f66d
IM
1766 struct perf_counter_context *child_ctx)
1767{
1768 struct perf_counter *child_counter;
1769
d859e29f
PM
1770 /*
1771 * Instead of creating recursive hierarchies of counters,
1772 * we link inherited counters back to the original parent,
1773 * which has a filp for sure, which we use as the reference
1774 * count:
1775 */
1776 if (parent_counter->parent)
1777 parent_counter = parent_counter->parent;
1778
9b51f66d 1779 child_counter = perf_counter_alloc(&parent_counter->hw_event,
d859e29f
PM
1780 parent_counter->cpu, group_leader,
1781 GFP_KERNEL);
9b51f66d 1782 if (!child_counter)
d859e29f 1783 return NULL;
9b51f66d
IM
1784
1785 /*
1786 * Link it up in the child's context:
1787 */
1788 child_counter->ctx = child_ctx;
1789 child_counter->task = child;
1790 list_add_counter(child_counter, child_ctx);
1791 child_ctx->nr_counters++;
1792
1793 child_counter->parent = parent_counter;
9b51f66d
IM
1794 /*
1795 * inherit into child's child as well:
1796 */
1797 child_counter->hw_event.inherit = 1;
1798
1799 /*
1800 * Get a reference to the parent filp - we will fput it
1801 * when the child counter exits. This is safe to do because
1802 * we are in the parent and we know that the filp still
1803 * exists and has a nonzero count:
1804 */
1805 atomic_long_inc(&parent_counter->filp->f_count);
1806
d859e29f
PM
1807 /*
1808 * Link this into the parent counter's child list
1809 */
1810 mutex_lock(&parent_counter->mutex);
1811 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
1812
1813 /*
1814 * Make the child state follow the state of the parent counter,
1815 * not its hw_event.disabled bit. We hold the parent's mutex,
1816 * so we won't race with perf_counter_{en,dis}able_family.
1817 */
1818 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
1819 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
1820 else
1821 child_counter->state = PERF_COUNTER_STATE_OFF;
1822
1823 mutex_unlock(&parent_counter->mutex);
1824
1825 return child_counter;
1826}
1827
1828static int inherit_group(struct perf_counter *parent_counter,
1829 struct task_struct *parent,
1830 struct perf_counter_context *parent_ctx,
1831 struct task_struct *child,
1832 struct perf_counter_context *child_ctx)
1833{
1834 struct perf_counter *leader;
1835 struct perf_counter *sub;
1836
1837 leader = inherit_counter(parent_counter, parent, parent_ctx,
1838 child, NULL, child_ctx);
1839 if (!leader)
1840 return -ENOMEM;
1841 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
1842 if (!inherit_counter(sub, parent, parent_ctx,
1843 child, leader, child_ctx))
1844 return -ENOMEM;
1845 }
9b51f66d
IM
1846 return 0;
1847}
1848
d859e29f
PM
1849static void sync_child_counter(struct perf_counter *child_counter,
1850 struct perf_counter *parent_counter)
1851{
1852 u64 parent_val, child_val;
1853
1854 parent_val = atomic64_read(&parent_counter->count);
1855 child_val = atomic64_read(&child_counter->count);
1856
1857 /*
1858 * Add back the child's count to the parent's count:
1859 */
1860 atomic64_add(child_val, &parent_counter->count);
1861
1862 /*
1863 * Remove this counter from the parent's list
1864 */
1865 mutex_lock(&parent_counter->mutex);
1866 list_del_init(&child_counter->child_list);
1867 mutex_unlock(&parent_counter->mutex);
1868
1869 /*
1870 * Release the parent counter, if this was the last
1871 * reference to it.
1872 */
1873 fput(parent_counter->filp);
1874}
1875
9b51f66d
IM
1876static void
1877__perf_counter_exit_task(struct task_struct *child,
1878 struct perf_counter *child_counter,
1879 struct perf_counter_context *child_ctx)
1880{
1881 struct perf_counter *parent_counter;
d859e29f 1882 struct perf_counter *sub, *tmp;
9b51f66d
IM
1883
1884 /*
235c7fc7
IM
1885 * If we do not self-reap then we have to wait for the
1886 * child task to unschedule (it will happen for sure),
1887 * so that its counter is at its final count. (This
1888 * condition triggers rarely - child tasks usually get
1889 * off their CPU before the parent has a chance to
1890 * get this far into the reaping action)
9b51f66d 1891 */
235c7fc7
IM
1892 if (child != current) {
1893 wait_task_inactive(child, 0);
1894 list_del_init(&child_counter->list_entry);
1895 } else {
0cc0c027 1896 struct perf_cpu_context *cpuctx;
235c7fc7
IM
1897 unsigned long flags;
1898 u64 perf_flags;
1899
1900 /*
1901 * Disable and unlink this counter.
1902 *
1903 * Be careful about zapping the list - IRQ/NMI context
1904 * could still be processing it:
1905 */
1906 curr_rq_lock_irq_save(&flags);
1907 perf_flags = hw_perf_save_disable();
0cc0c027
IM
1908
1909 cpuctx = &__get_cpu_var(perf_cpu_context);
1910
d859e29f 1911 group_sched_out(child_counter, cpuctx, child_ctx);
0cc0c027 1912
235c7fc7 1913 list_del_init(&child_counter->list_entry);
0cc0c027 1914
235c7fc7 1915 child_ctx->nr_counters--;
9b51f66d 1916
235c7fc7
IM
1917 hw_perf_restore(perf_flags);
1918 curr_rq_unlock_irq_restore(&flags);
1919 }
9b51f66d
IM
1920
1921 parent_counter = child_counter->parent;
1922 /*
1923 * It can happen that parent exits first, and has counters
1924 * that are still around due to the child reference. These
1925 * counters need to be zapped - but otherwise linger.
1926 */
d859e29f
PM
1927 if (parent_counter) {
1928 sync_child_counter(child_counter, parent_counter);
1929 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
1930 list_entry) {
1931 if (sub->parent)
1932 sync_child_counter(sub, sub->parent);
1933 kfree(sub);
1934 }
1935 }
9b51f66d 1936
65d37086
MG
1937 if (!child_counter->filp || !atomic_long_read(&child_counter->filp->f_count))
1938 kfree(child_counter);
9b51f66d
IM
1939}
1940
1941/*
d859e29f 1942 * When a child task exits, feed back counter values to parent counters.
9b51f66d 1943 *
d859e29f 1944 * Note: we may be running in child context, but the PID is not hashed
9b51f66d
IM
1945 * anymore so new counters will not be added.
1946 */
1947void perf_counter_exit_task(struct task_struct *child)
1948{
1949 struct perf_counter *child_counter, *tmp;
1950 struct perf_counter_context *child_ctx;
1951
1952 child_ctx = &child->perf_counter_ctx;
1953
1954 if (likely(!child_ctx->nr_counters))
1955 return;
1956
1957 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
1958 list_entry)
1959 __perf_counter_exit_task(child, child_counter, child_ctx);
1960}
1961
1962/*
1963 * Initialize the perf_counter context in task_struct
1964 */
1965void perf_counter_init_task(struct task_struct *child)
1966{
1967 struct perf_counter_context *child_ctx, *parent_ctx;
d859e29f 1968 struct perf_counter *counter;
9b51f66d 1969 struct task_struct *parent = current;
9b51f66d
IM
1970
1971 child_ctx = &child->perf_counter_ctx;
1972 parent_ctx = &parent->perf_counter_ctx;
1973
1974 __perf_counter_init_context(child_ctx, child);
1975
1976 /*
1977 * This is executed from the parent task context, so inherit
1978 * counters that have been marked for cloning:
1979 */
1980
1981 if (likely(!parent_ctx->nr_counters))
1982 return;
1983
1984 /*
1985 * Lock the parent list. No need to lock the child - not PID
1986 * hashed yet and not running, so nobody can access it.
1987 */
d859e29f 1988 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
1989
1990 /*
1991 * We dont have to disable NMIs - we are only looking at
1992 * the list, not manipulating it:
1993 */
1994 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
d859e29f 1995 if (!counter->hw_event.inherit)
9b51f66d
IM
1996 continue;
1997
d859e29f 1998 if (inherit_group(counter, parent,
9b51f66d
IM
1999 parent_ctx, child, child_ctx))
2000 break;
2001 }
2002
d859e29f 2003 mutex_unlock(&parent_ctx->mutex);
9b51f66d
IM
2004}
2005
04289bb9 2006static void __cpuinit perf_counter_init_cpu(int cpu)
0793a61d 2007{
04289bb9 2008 struct perf_cpu_context *cpuctx;
0793a61d 2009
04289bb9
IM
2010 cpuctx = &per_cpu(perf_cpu_context, cpu);
2011 __perf_counter_init_context(&cpuctx->ctx, NULL);
0793a61d
TG
2012
2013 mutex_lock(&perf_resource_mutex);
04289bb9 2014 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
0793a61d 2015 mutex_unlock(&perf_resource_mutex);
04289bb9 2016
01d0287f 2017 hw_perf_counter_setup(cpu);
0793a61d
TG
2018}
2019
2020#ifdef CONFIG_HOTPLUG_CPU
04289bb9 2021static void __perf_counter_exit_cpu(void *info)
0793a61d
TG
2022{
2023 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2024 struct perf_counter_context *ctx = &cpuctx->ctx;
2025 struct perf_counter *counter, *tmp;
2026
04289bb9
IM
2027 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2028 __perf_counter_remove_from_context(counter);
0793a61d 2029}
04289bb9 2030static void perf_counter_exit_cpu(int cpu)
0793a61d 2031{
d859e29f
PM
2032 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2033 struct perf_counter_context *ctx = &cpuctx->ctx;
2034
2035 mutex_lock(&ctx->mutex);
04289bb9 2036 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
d859e29f 2037 mutex_unlock(&ctx->mutex);
0793a61d
TG
2038}
2039#else
04289bb9 2040static inline void perf_counter_exit_cpu(int cpu) { }
0793a61d
TG
2041#endif
2042
2043static int __cpuinit
2044perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2045{
2046 unsigned int cpu = (long)hcpu;
2047
2048 switch (action) {
2049
2050 case CPU_UP_PREPARE:
2051 case CPU_UP_PREPARE_FROZEN:
04289bb9 2052 perf_counter_init_cpu(cpu);
0793a61d
TG
2053 break;
2054
2055 case CPU_DOWN_PREPARE:
2056 case CPU_DOWN_PREPARE_FROZEN:
04289bb9 2057 perf_counter_exit_cpu(cpu);
0793a61d
TG
2058 break;
2059
2060 default:
2061 break;
2062 }
2063
2064 return NOTIFY_OK;
2065}
2066
2067static struct notifier_block __cpuinitdata perf_cpu_nb = {
2068 .notifier_call = perf_cpu_notify,
2069};
2070
2071static int __init perf_counter_init(void)
2072{
2073 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2074 (void *)(long)smp_processor_id());
2075 register_cpu_notifier(&perf_cpu_nb);
2076
2077 return 0;
2078}
2079early_initcall(perf_counter_init);
2080
2081static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2082{
2083 return sprintf(buf, "%d\n", perf_reserved_percpu);
2084}
2085
2086static ssize_t
2087perf_set_reserve_percpu(struct sysdev_class *class,
2088 const char *buf,
2089 size_t count)
2090{
2091 struct perf_cpu_context *cpuctx;
2092 unsigned long val;
2093 int err, cpu, mpt;
2094
2095 err = strict_strtoul(buf, 10, &val);
2096 if (err)
2097 return err;
2098 if (val > perf_max_counters)
2099 return -EINVAL;
2100
2101 mutex_lock(&perf_resource_mutex);
2102 perf_reserved_percpu = val;
2103 for_each_online_cpu(cpu) {
2104 cpuctx = &per_cpu(perf_cpu_context, cpu);
2105 spin_lock_irq(&cpuctx->ctx.lock);
2106 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2107 perf_max_counters - perf_reserved_percpu);
2108 cpuctx->max_pertask = mpt;
2109 spin_unlock_irq(&cpuctx->ctx.lock);
2110 }
2111 mutex_unlock(&perf_resource_mutex);
2112
2113 return count;
2114}
2115
2116static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2117{
2118 return sprintf(buf, "%d\n", perf_overcommit);
2119}
2120
2121static ssize_t
2122perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2123{
2124 unsigned long val;
2125 int err;
2126
2127 err = strict_strtoul(buf, 10, &val);
2128 if (err)
2129 return err;
2130 if (val > 1)
2131 return -EINVAL;
2132
2133 mutex_lock(&perf_resource_mutex);
2134 perf_overcommit = val;
2135 mutex_unlock(&perf_resource_mutex);
2136
2137 return count;
2138}
2139
2140static SYSDEV_CLASS_ATTR(
2141 reserve_percpu,
2142 0644,
2143 perf_show_reserve_percpu,
2144 perf_set_reserve_percpu
2145 );
2146
2147static SYSDEV_CLASS_ATTR(
2148 overcommit,
2149 0644,
2150 perf_show_overcommit,
2151 perf_set_overcommit
2152 );
2153
2154static struct attribute *perfclass_attrs[] = {
2155 &attr_reserve_percpu.attr,
2156 &attr_overcommit.attr,
2157 NULL
2158};
2159
2160static struct attribute_group perfclass_attr_group = {
2161 .attrs = perfclass_attrs,
2162 .name = "perf_counters",
2163};
2164
2165static int __init perf_counter_sysfs_init(void)
2166{
2167 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2168 &perfclass_attr_group);
2169}
2170device_initcall(perf_counter_sysfs_init);
This page took 0.127639 seconds and 5 git commands to generate.