rcu: Finish folding ->fqs_state into ->gp_state
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
af658dca 57#include <linux/trace_events.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
385b73c0 73static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
af859bea 74static struct lock_class_key rcu_exp_sched_class[RCU_NUM_LVLS];
88b91c7c 75
f7f7bac9
SRRH
76/*
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
83 */
a8a29b3b
AB
84#ifdef CONFIG_TRACING
85# define DEFINE_RCU_TPS(sname) \
f7f7bac9 86static char sname##_varname[] = #sname; \
a8a29b3b
AB
87static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
88# define RCU_STATE_NAME(sname) sname##_varname
89#else
90# define DEFINE_RCU_TPS(sname)
91# define RCU_STATE_NAME(sname) __stringify(sname)
92#endif
93
94#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
95DEFINE_RCU_TPS(sname) \
c92fb057 96static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 97struct rcu_state sname##_state = { \
6c90cc7b 98 .level = { &sname##_state.node[0] }, \
2723249a 99 .rda = &sname##_data, \
037b64ed 100 .call = cr, \
77f81fe0 101 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
102 .gpnum = 0UL - 300UL, \
103 .completed = 0UL - 300UL, \
7b2e6011 104 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
105 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
106 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 107 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 108 .name = RCU_STATE_NAME(sname), \
a4889858 109 .abbr = sabbr, \
2723249a 110}
64db4cff 111
a41bfeb2
SRRH
112RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
113RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 114
b28a7c01 115static struct rcu_state *const rcu_state_p;
2927a689 116static struct rcu_data __percpu *const rcu_data_p;
6ce75a23 117LIST_HEAD(rcu_struct_flavors);
27f4d280 118
a3dc2948
PM
119/* Dump rcu_node combining tree at boot to verify correct setup. */
120static bool dump_tree;
121module_param(dump_tree, bool, 0444);
7fa27001
PM
122/* Control rcu_node-tree auto-balancing at boot time. */
123static bool rcu_fanout_exact;
124module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
125/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
126static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 127module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 128int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102
AG
129/* Number of rcu_nodes at specified level. */
130static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2
PM
131int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
132
b0d30417
PM
133/*
134 * The rcu_scheduler_active variable transitions from zero to one just
135 * before the first task is spawned. So when this variable is zero, RCU
136 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 137 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
138 * is one, RCU must actually do all the hard work required to detect real
139 * grace periods. This variable is also used to suppress boot-time false
140 * positives from lockdep-RCU error checking.
141 */
bbad9379
PM
142int rcu_scheduler_active __read_mostly;
143EXPORT_SYMBOL_GPL(rcu_scheduler_active);
144
b0d30417
PM
145/*
146 * The rcu_scheduler_fully_active variable transitions from zero to one
147 * during the early_initcall() processing, which is after the scheduler
148 * is capable of creating new tasks. So RCU processing (for example,
149 * creating tasks for RCU priority boosting) must be delayed until after
150 * rcu_scheduler_fully_active transitions from zero to one. We also
151 * currently delay invocation of any RCU callbacks until after this point.
152 *
153 * It might later prove better for people registering RCU callbacks during
154 * early boot to take responsibility for these callbacks, but one step at
155 * a time.
156 */
157static int rcu_scheduler_fully_active __read_mostly;
158
0aa04b05
PM
159static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
160static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 161static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
162static void invoke_rcu_core(void);
163static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 164
a94844b2 165/* rcuc/rcub kthread realtime priority */
26730f55 166#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 167static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
168#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
169static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
170#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
171module_param(kthread_prio, int, 0644);
172
8d7dc928 173/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
174
175#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
176static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
177module_param(gp_preinit_delay, int, 0644);
178#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
179static const int gp_preinit_delay;
180#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181
8d7dc928
PM
182#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
183static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 184module_param(gp_init_delay, int, 0644);
8d7dc928
PM
185#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
186static const int gp_init_delay;
187#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 188
0f41c0dd
PM
189#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
190static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
191module_param(gp_cleanup_delay, int, 0644);
192#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
193static const int gp_cleanup_delay;
194#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195
eab128e8
PM
196/*
197 * Number of grace periods between delays, normalized by the duration of
198 * the delay. The longer the the delay, the more the grace periods between
199 * each delay. The reason for this normalization is that it means that,
200 * for non-zero delays, the overall slowdown of grace periods is constant
201 * regardless of the duration of the delay. This arrangement balances
202 * the need for long delays to increase some race probabilities with the
203 * need for fast grace periods to increase other race probabilities.
204 */
205#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 206
4a298656
PM
207/*
208 * Track the rcutorture test sequence number and the update version
209 * number within a given test. The rcutorture_testseq is incremented
210 * on every rcutorture module load and unload, so has an odd value
211 * when a test is running. The rcutorture_vernum is set to zero
212 * when rcutorture starts and is incremented on each rcutorture update.
213 * These variables enable correlating rcutorture output with the
214 * RCU tracing information.
215 */
216unsigned long rcutorture_testseq;
217unsigned long rcutorture_vernum;
218
0aa04b05
PM
219/*
220 * Compute the mask of online CPUs for the specified rcu_node structure.
221 * This will not be stable unless the rcu_node structure's ->lock is
222 * held, but the bit corresponding to the current CPU will be stable
223 * in most contexts.
224 */
225unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
226{
7d0ae808 227 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
228}
229
fc2219d4 230/*
7d0ae808 231 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
232 * permit this function to be invoked without holding the root rcu_node
233 * structure's ->lock, but of course results can be subject to change.
234 */
235static int rcu_gp_in_progress(struct rcu_state *rsp)
236{
7d0ae808 237 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
238}
239
b1f77b05 240/*
d6714c22 241 * Note a quiescent state. Because we do not need to know
b1f77b05 242 * how many quiescent states passed, just if there was at least
d6714c22 243 * one since the start of the grace period, this just sets a flag.
e4cc1f22 244 * The caller must have disabled preemption.
b1f77b05 245 */
284a8c93 246void rcu_sched_qs(void)
b1f77b05 247{
284a8c93
PM
248 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
249 trace_rcu_grace_period(TPS("rcu_sched"),
250 __this_cpu_read(rcu_sched_data.gpnum),
251 TPS("cpuqs"));
252 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
253 }
b1f77b05
IM
254}
255
284a8c93 256void rcu_bh_qs(void)
b1f77b05 257{
284a8c93
PM
258 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
259 trace_rcu_grace_period(TPS("rcu_bh"),
260 __this_cpu_read(rcu_bh_data.gpnum),
261 TPS("cpuqs"));
262 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
263 }
b1f77b05 264}
64db4cff 265
4a81e832
PM
266static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
267
268static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
269 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
270 .dynticks = ATOMIC_INIT(1),
271#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
272 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
273 .dynticks_idle = ATOMIC_INIT(1),
274#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
275};
276
5cd37193
PM
277DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
278EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
279
4a81e832
PM
280/*
281 * Let the RCU core know that this CPU has gone through the scheduler,
282 * which is a quiescent state. This is called when the need for a
283 * quiescent state is urgent, so we burn an atomic operation and full
284 * memory barriers to let the RCU core know about it, regardless of what
285 * this CPU might (or might not) do in the near future.
286 *
287 * We inform the RCU core by emulating a zero-duration dyntick-idle
288 * period, which we in turn do by incrementing the ->dynticks counter
289 * by two.
290 */
291static void rcu_momentary_dyntick_idle(void)
292{
293 unsigned long flags;
294 struct rcu_data *rdp;
295 struct rcu_dynticks *rdtp;
296 int resched_mask;
297 struct rcu_state *rsp;
298
299 local_irq_save(flags);
300
301 /*
302 * Yes, we can lose flag-setting operations. This is OK, because
303 * the flag will be set again after some delay.
304 */
305 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
306 raw_cpu_write(rcu_sched_qs_mask, 0);
307
308 /* Find the flavor that needs a quiescent state. */
309 for_each_rcu_flavor(rsp) {
310 rdp = raw_cpu_ptr(rsp->rda);
311 if (!(resched_mask & rsp->flavor_mask))
312 continue;
313 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
7d0ae808
PM
314 if (READ_ONCE(rdp->mynode->completed) !=
315 READ_ONCE(rdp->cond_resched_completed))
4a81e832
PM
316 continue;
317
318 /*
319 * Pretend to be momentarily idle for the quiescent state.
320 * This allows the grace-period kthread to record the
321 * quiescent state, with no need for this CPU to do anything
322 * further.
323 */
324 rdtp = this_cpu_ptr(&rcu_dynticks);
325 smp_mb__before_atomic(); /* Earlier stuff before QS. */
326 atomic_add(2, &rdtp->dynticks); /* QS. */
327 smp_mb__after_atomic(); /* Later stuff after QS. */
328 break;
329 }
330 local_irq_restore(flags);
331}
332
25502a6c
PM
333/*
334 * Note a context switch. This is a quiescent state for RCU-sched,
335 * and requires special handling for preemptible RCU.
e4cc1f22 336 * The caller must have disabled preemption.
25502a6c 337 */
38200cf2 338void rcu_note_context_switch(void)
25502a6c 339{
bb73c52b 340 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 341 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 342 rcu_sched_qs();
38200cf2 343 rcu_preempt_note_context_switch();
4a81e832
PM
344 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
345 rcu_momentary_dyntick_idle();
f7f7bac9 346 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 347 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 348}
29ce8310 349EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 350
5cd37193 351/*
1925d196 352 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
353 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
354 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 355 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
356 * be none of them). Either way, do a lightweight quiescent state for
357 * all RCU flavors.
bb73c52b
BF
358 *
359 * The barrier() calls are redundant in the common case when this is
360 * called externally, but just in case this is called from within this
361 * file.
362 *
5cd37193
PM
363 */
364void rcu_all_qs(void)
365{
bb73c52b 366 barrier(); /* Avoid RCU read-side critical sections leaking down. */
5cd37193
PM
367 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
368 rcu_momentary_dyntick_idle();
369 this_cpu_inc(rcu_qs_ctr);
bb73c52b 370 barrier(); /* Avoid RCU read-side critical sections leaking up. */
5cd37193
PM
371}
372EXPORT_SYMBOL_GPL(rcu_all_qs);
373
878d7439
ED
374static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
375static long qhimark = 10000; /* If this many pending, ignore blimit. */
376static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 377
878d7439
ED
378module_param(blimit, long, 0444);
379module_param(qhimark, long, 0444);
380module_param(qlowmark, long, 0444);
3d76c082 381
026ad283
PM
382static ulong jiffies_till_first_fqs = ULONG_MAX;
383static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
384
385module_param(jiffies_till_first_fqs, ulong, 0644);
386module_param(jiffies_till_next_fqs, ulong, 0644);
387
4a81e832
PM
388/*
389 * How long the grace period must be before we start recruiting
390 * quiescent-state help from rcu_note_context_switch().
391 */
392static ulong jiffies_till_sched_qs = HZ / 20;
393module_param(jiffies_till_sched_qs, ulong, 0644);
394
48a7639c 395static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 396 struct rcu_data *rdp);
217af2a2
PM
397static void force_qs_rnp(struct rcu_state *rsp,
398 int (*f)(struct rcu_data *rsp, bool *isidle,
399 unsigned long *maxj),
400 bool *isidle, unsigned long *maxj);
4cdfc175 401static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 402static int rcu_pending(void);
64db4cff
PM
403
404/*
917963d0 405 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 406 */
917963d0
PM
407unsigned long rcu_batches_started(void)
408{
409 return rcu_state_p->gpnum;
410}
411EXPORT_SYMBOL_GPL(rcu_batches_started);
412
413/*
414 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 415 */
917963d0
PM
416unsigned long rcu_batches_started_sched(void)
417{
418 return rcu_sched_state.gpnum;
419}
420EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
421
422/*
423 * Return the number of RCU BH batches started thus far for debug & stats.
424 */
425unsigned long rcu_batches_started_bh(void)
426{
427 return rcu_bh_state.gpnum;
428}
429EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
430
431/*
432 * Return the number of RCU batches completed thus far for debug & stats.
433 */
434unsigned long rcu_batches_completed(void)
435{
436 return rcu_state_p->completed;
437}
438EXPORT_SYMBOL_GPL(rcu_batches_completed);
439
440/*
441 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 442 */
9733e4f0 443unsigned long rcu_batches_completed_sched(void)
64db4cff 444{
d6714c22 445 return rcu_sched_state.completed;
64db4cff 446}
d6714c22 447EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
448
449/*
917963d0 450 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 451 */
9733e4f0 452unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
453{
454 return rcu_bh_state.completed;
455}
456EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
457
a381d757
ACB
458/*
459 * Force a quiescent state.
460 */
461void rcu_force_quiescent_state(void)
462{
e534165b 463 force_quiescent_state(rcu_state_p);
a381d757
ACB
464}
465EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
466
bf66f18e
PM
467/*
468 * Force a quiescent state for RCU BH.
469 */
470void rcu_bh_force_quiescent_state(void)
471{
4cdfc175 472 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
473}
474EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
475
e7580f33
PM
476/*
477 * Force a quiescent state for RCU-sched.
478 */
479void rcu_sched_force_quiescent_state(void)
480{
481 force_quiescent_state(&rcu_sched_state);
482}
483EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
484
afea227f
PM
485/*
486 * Show the state of the grace-period kthreads.
487 */
488void show_rcu_gp_kthreads(void)
489{
490 struct rcu_state *rsp;
491
492 for_each_rcu_flavor(rsp) {
493 pr_info("%s: wait state: %d ->state: %#lx\n",
494 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
495 /* sched_show_task(rsp->gp_kthread); */
496 }
497}
498EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
499
4a298656
PM
500/*
501 * Record the number of times rcutorture tests have been initiated and
502 * terminated. This information allows the debugfs tracing stats to be
503 * correlated to the rcutorture messages, even when the rcutorture module
504 * is being repeatedly loaded and unloaded. In other words, we cannot
505 * store this state in rcutorture itself.
506 */
507void rcutorture_record_test_transition(void)
508{
509 rcutorture_testseq++;
510 rcutorture_vernum = 0;
511}
512EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
513
ad0dc7f9
PM
514/*
515 * Send along grace-period-related data for rcutorture diagnostics.
516 */
517void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
518 unsigned long *gpnum, unsigned long *completed)
519{
520 struct rcu_state *rsp = NULL;
521
522 switch (test_type) {
523 case RCU_FLAVOR:
e534165b 524 rsp = rcu_state_p;
ad0dc7f9
PM
525 break;
526 case RCU_BH_FLAVOR:
527 rsp = &rcu_bh_state;
528 break;
529 case RCU_SCHED_FLAVOR:
530 rsp = &rcu_sched_state;
531 break;
532 default:
533 break;
534 }
535 if (rsp != NULL) {
7d0ae808
PM
536 *flags = READ_ONCE(rsp->gp_flags);
537 *gpnum = READ_ONCE(rsp->gpnum);
538 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
539 return;
540 }
541 *flags = 0;
542 *gpnum = 0;
543 *completed = 0;
544}
545EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
546
4a298656
PM
547/*
548 * Record the number of writer passes through the current rcutorture test.
549 * This is also used to correlate debugfs tracing stats with the rcutorture
550 * messages.
551 */
552void rcutorture_record_progress(unsigned long vernum)
553{
554 rcutorture_vernum++;
555}
556EXPORT_SYMBOL_GPL(rcutorture_record_progress);
557
64db4cff
PM
558/*
559 * Does the CPU have callbacks ready to be invoked?
560 */
561static int
562cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
563{
3fbfbf7a
PM
564 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
565 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
566}
567
365187fb
PM
568/*
569 * Return the root node of the specified rcu_state structure.
570 */
571static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
572{
573 return &rsp->node[0];
574}
575
576/*
577 * Is there any need for future grace periods?
578 * Interrupts must be disabled. If the caller does not hold the root
579 * rnp_node structure's ->lock, the results are advisory only.
580 */
581static int rcu_future_needs_gp(struct rcu_state *rsp)
582{
583 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 584 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
585 int *fp = &rnp->need_future_gp[idx];
586
7d0ae808 587 return READ_ONCE(*fp);
365187fb
PM
588}
589
64db4cff 590/*
dc35c893
PM
591 * Does the current CPU require a not-yet-started grace period?
592 * The caller must have disabled interrupts to prevent races with
593 * normal callback registry.
64db4cff
PM
594 */
595static int
596cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
597{
dc35c893 598 int i;
3fbfbf7a 599
dc35c893
PM
600 if (rcu_gp_in_progress(rsp))
601 return 0; /* No, a grace period is already in progress. */
365187fb 602 if (rcu_future_needs_gp(rsp))
34ed6246 603 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
604 if (!rdp->nxttail[RCU_NEXT_TAIL])
605 return 0; /* No, this is a no-CBs (or offline) CPU. */
606 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
607 return 1; /* Yes, this CPU has newly registered callbacks. */
608 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
609 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
7d0ae808 610 ULONG_CMP_LT(READ_ONCE(rsp->completed),
dc35c893
PM
611 rdp->nxtcompleted[i]))
612 return 1; /* Yes, CBs for future grace period. */
613 return 0; /* No grace period needed. */
64db4cff
PM
614}
615
9b2e4f18 616/*
adf5091e 617 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
618 *
619 * If the new value of the ->dynticks_nesting counter now is zero,
620 * we really have entered idle, and must do the appropriate accounting.
621 * The caller must have disabled interrupts.
622 */
28ced795 623static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 624{
96d3fd0d
PM
625 struct rcu_state *rsp;
626 struct rcu_data *rdp;
28ced795 627 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 628
f7f7bac9 629 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
630 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
631 !user && !is_idle_task(current)) {
289828e6
PM
632 struct task_struct *idle __maybe_unused =
633 idle_task(smp_processor_id());
0989cb46 634
f7f7bac9 635 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 636 ftrace_dump(DUMP_ORIG);
0989cb46
PM
637 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
638 current->pid, current->comm,
639 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 640 }
96d3fd0d
PM
641 for_each_rcu_flavor(rsp) {
642 rdp = this_cpu_ptr(rsp->rda);
643 do_nocb_deferred_wakeup(rdp);
644 }
198bbf81 645 rcu_prepare_for_idle();
9b2e4f18 646 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 647 smp_mb__before_atomic(); /* See above. */
9b2e4f18 648 atomic_inc(&rdtp->dynticks);
4e857c58 649 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
1ce46ee5
PM
650 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
651 atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 652 rcu_dynticks_task_enter();
c44e2cdd
PM
653
654 /*
adf5091e 655 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
656 * in an RCU read-side critical section.
657 */
f78f5b90
PM
658 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
659 "Illegal idle entry in RCU read-side critical section.");
660 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
661 "Illegal idle entry in RCU-bh read-side critical section.");
662 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
663 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 664}
64db4cff 665
adf5091e
FW
666/*
667 * Enter an RCU extended quiescent state, which can be either the
668 * idle loop or adaptive-tickless usermode execution.
64db4cff 669 */
adf5091e 670static void rcu_eqs_enter(bool user)
64db4cff 671{
4145fa7f 672 long long oldval;
64db4cff
PM
673 struct rcu_dynticks *rdtp;
674
c9d4b0af 675 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 676 oldval = rdtp->dynticks_nesting;
1ce46ee5
PM
677 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
678 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 679 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 680 rdtp->dynticks_nesting = 0;
28ced795 681 rcu_eqs_enter_common(oldval, user);
3a592405 682 } else {
29e37d81 683 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 684 }
64db4cff 685}
adf5091e
FW
686
687/**
688 * rcu_idle_enter - inform RCU that current CPU is entering idle
689 *
690 * Enter idle mode, in other words, -leave- the mode in which RCU
691 * read-side critical sections can occur. (Though RCU read-side
692 * critical sections can occur in irq handlers in idle, a possibility
693 * handled by irq_enter() and irq_exit().)
694 *
695 * We crowbar the ->dynticks_nesting field to zero to allow for
696 * the possibility of usermode upcalls having messed up our count
697 * of interrupt nesting level during the prior busy period.
698 */
699void rcu_idle_enter(void)
700{
c5d900bf
FW
701 unsigned long flags;
702
703 local_irq_save(flags);
cb349ca9 704 rcu_eqs_enter(false);
28ced795 705 rcu_sysidle_enter(0);
c5d900bf 706 local_irq_restore(flags);
adf5091e 707}
8a2ecf47 708EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 709
d1ec4c34 710#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
711/**
712 * rcu_user_enter - inform RCU that we are resuming userspace.
713 *
714 * Enter RCU idle mode right before resuming userspace. No use of RCU
715 * is permitted between this call and rcu_user_exit(). This way the
716 * CPU doesn't need to maintain the tick for RCU maintenance purposes
717 * when the CPU runs in userspace.
718 */
719void rcu_user_enter(void)
720{
91d1aa43 721 rcu_eqs_enter(1);
adf5091e 722}
d1ec4c34 723#endif /* CONFIG_NO_HZ_FULL */
19dd1591 724
9b2e4f18
PM
725/**
726 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
727 *
728 * Exit from an interrupt handler, which might possibly result in entering
729 * idle mode, in other words, leaving the mode in which read-side critical
730 * sections can occur.
64db4cff 731 *
9b2e4f18
PM
732 * This code assumes that the idle loop never does anything that might
733 * result in unbalanced calls to irq_enter() and irq_exit(). If your
734 * architecture violates this assumption, RCU will give you what you
735 * deserve, good and hard. But very infrequently and irreproducibly.
736 *
737 * Use things like work queues to work around this limitation.
738 *
739 * You have been warned.
64db4cff 740 */
9b2e4f18 741void rcu_irq_exit(void)
64db4cff
PM
742{
743 unsigned long flags;
4145fa7f 744 long long oldval;
64db4cff
PM
745 struct rcu_dynticks *rdtp;
746
747 local_irq_save(flags);
c9d4b0af 748 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 749 oldval = rdtp->dynticks_nesting;
9b2e4f18 750 rdtp->dynticks_nesting--;
1ce46ee5
PM
751 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
752 rdtp->dynticks_nesting < 0);
b6fc6020 753 if (rdtp->dynticks_nesting)
f7f7bac9 754 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 755 else
28ced795
CL
756 rcu_eqs_enter_common(oldval, true);
757 rcu_sysidle_enter(1);
9b2e4f18
PM
758 local_irq_restore(flags);
759}
760
761/*
adf5091e 762 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
763 *
764 * If the new value of the ->dynticks_nesting counter was previously zero,
765 * we really have exited idle, and must do the appropriate accounting.
766 * The caller must have disabled interrupts.
767 */
28ced795 768static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 769{
28ced795
CL
770 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
771
176f8f7a 772 rcu_dynticks_task_exit();
4e857c58 773 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
774 atomic_inc(&rdtp->dynticks);
775 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 776 smp_mb__after_atomic(); /* See above. */
1ce46ee5
PM
777 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
778 !(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 779 rcu_cleanup_after_idle();
f7f7bac9 780 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
781 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
782 !user && !is_idle_task(current)) {
289828e6
PM
783 struct task_struct *idle __maybe_unused =
784 idle_task(smp_processor_id());
0989cb46 785
f7f7bac9 786 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 787 oldval, rdtp->dynticks_nesting);
bf1304e9 788 ftrace_dump(DUMP_ORIG);
0989cb46
PM
789 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
790 current->pid, current->comm,
791 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
792 }
793}
794
adf5091e
FW
795/*
796 * Exit an RCU extended quiescent state, which can be either the
797 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 798 */
adf5091e 799static void rcu_eqs_exit(bool user)
9b2e4f18 800{
9b2e4f18
PM
801 struct rcu_dynticks *rdtp;
802 long long oldval;
803
c9d4b0af 804 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 805 oldval = rdtp->dynticks_nesting;
1ce46ee5 806 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 807 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 808 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 809 } else {
29e37d81 810 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 811 rcu_eqs_exit_common(oldval, user);
3a592405 812 }
9b2e4f18 813}
adf5091e
FW
814
815/**
816 * rcu_idle_exit - inform RCU that current CPU is leaving idle
817 *
818 * Exit idle mode, in other words, -enter- the mode in which RCU
819 * read-side critical sections can occur.
820 *
821 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
822 * allow for the possibility of usermode upcalls messing up our count
823 * of interrupt nesting level during the busy period that is just
824 * now starting.
825 */
826void rcu_idle_exit(void)
827{
c5d900bf
FW
828 unsigned long flags;
829
830 local_irq_save(flags);
cb349ca9 831 rcu_eqs_exit(false);
28ced795 832 rcu_sysidle_exit(0);
c5d900bf 833 local_irq_restore(flags);
adf5091e 834}
8a2ecf47 835EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 836
d1ec4c34 837#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
838/**
839 * rcu_user_exit - inform RCU that we are exiting userspace.
840 *
841 * Exit RCU idle mode while entering the kernel because it can
842 * run a RCU read side critical section anytime.
843 */
844void rcu_user_exit(void)
845{
91d1aa43 846 rcu_eqs_exit(1);
adf5091e 847}
d1ec4c34 848#endif /* CONFIG_NO_HZ_FULL */
19dd1591 849
9b2e4f18
PM
850/**
851 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
852 *
853 * Enter an interrupt handler, which might possibly result in exiting
854 * idle mode, in other words, entering the mode in which read-side critical
855 * sections can occur.
856 *
857 * Note that the Linux kernel is fully capable of entering an interrupt
858 * handler that it never exits, for example when doing upcalls to
859 * user mode! This code assumes that the idle loop never does upcalls to
860 * user mode. If your architecture does do upcalls from the idle loop (or
861 * does anything else that results in unbalanced calls to the irq_enter()
862 * and irq_exit() functions), RCU will give you what you deserve, good
863 * and hard. But very infrequently and irreproducibly.
864 *
865 * Use things like work queues to work around this limitation.
866 *
867 * You have been warned.
868 */
869void rcu_irq_enter(void)
870{
871 unsigned long flags;
872 struct rcu_dynticks *rdtp;
873 long long oldval;
874
875 local_irq_save(flags);
c9d4b0af 876 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
877 oldval = rdtp->dynticks_nesting;
878 rdtp->dynticks_nesting++;
1ce46ee5
PM
879 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
880 rdtp->dynticks_nesting == 0);
b6fc6020 881 if (oldval)
f7f7bac9 882 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 883 else
28ced795
CL
884 rcu_eqs_exit_common(oldval, true);
885 rcu_sysidle_exit(1);
64db4cff 886 local_irq_restore(flags);
64db4cff
PM
887}
888
889/**
890 * rcu_nmi_enter - inform RCU of entry to NMI context
891 *
734d1680
PM
892 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
893 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
894 * that the CPU is active. This implementation permits nested NMIs, as
895 * long as the nesting level does not overflow an int. (You will probably
896 * run out of stack space first.)
64db4cff
PM
897 */
898void rcu_nmi_enter(void)
899{
c9d4b0af 900 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 901 int incby = 2;
64db4cff 902
734d1680
PM
903 /* Complain about underflow. */
904 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
905
906 /*
907 * If idle from RCU viewpoint, atomically increment ->dynticks
908 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
909 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
910 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
911 * to be in the outermost NMI handler that interrupted an RCU-idle
912 * period (observation due to Andy Lutomirski).
913 */
914 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
915 smp_mb__before_atomic(); /* Force delay from prior write. */
916 atomic_inc(&rdtp->dynticks);
917 /* atomic_inc() before later RCU read-side crit sects */
918 smp_mb__after_atomic(); /* See above. */
919 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
920 incby = 1;
921 }
922 rdtp->dynticks_nmi_nesting += incby;
923 barrier();
64db4cff
PM
924}
925
926/**
927 * rcu_nmi_exit - inform RCU of exit from NMI context
928 *
734d1680
PM
929 * If we are returning from the outermost NMI handler that interrupted an
930 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
931 * to let the RCU grace-period handling know that the CPU is back to
932 * being RCU-idle.
64db4cff
PM
933 */
934void rcu_nmi_exit(void)
935{
c9d4b0af 936 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 937
734d1680
PM
938 /*
939 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
940 * (We are exiting an NMI handler, so RCU better be paying attention
941 * to us!)
942 */
943 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
944 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
945
946 /*
947 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
948 * leave it in non-RCU-idle state.
949 */
950 if (rdtp->dynticks_nmi_nesting != 1) {
951 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 952 return;
734d1680
PM
953 }
954
955 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
956 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 957 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 958 smp_mb__before_atomic(); /* See above. */
23b5c8fa 959 atomic_inc(&rdtp->dynticks);
4e857c58 960 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 961 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
962}
963
964/**
5c173eb8
PM
965 * __rcu_is_watching - are RCU read-side critical sections safe?
966 *
967 * Return true if RCU is watching the running CPU, which means that
968 * this CPU can safely enter RCU read-side critical sections. Unlike
969 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
970 * least disabled preemption.
971 */
9418fb20 972bool notrace __rcu_is_watching(void)
5c173eb8
PM
973{
974 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
975}
976
977/**
978 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 979 *
9b2e4f18 980 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 981 * or NMI handler, return true.
64db4cff 982 */
9418fb20 983bool notrace rcu_is_watching(void)
64db4cff 984{
f534ed1f 985 bool ret;
34240697 986
46f00d18 987 preempt_disable_notrace();
5c173eb8 988 ret = __rcu_is_watching();
46f00d18 989 preempt_enable_notrace();
34240697 990 return ret;
64db4cff 991}
5c173eb8 992EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 993
62fde6ed 994#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
995
996/*
997 * Is the current CPU online? Disable preemption to avoid false positives
998 * that could otherwise happen due to the current CPU number being sampled,
999 * this task being preempted, its old CPU being taken offline, resuming
1000 * on some other CPU, then determining that its old CPU is now offline.
1001 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1002 * the check for rcu_scheduler_fully_active. Note also that it is OK
1003 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1004 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1005 * offline to continue to use RCU for one jiffy after marking itself
1006 * offline in the cpu_online_mask. This leniency is necessary given the
1007 * non-atomic nature of the online and offline processing, for example,
1008 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1009 * notifiers.
1010 *
1011 * This is also why RCU internally marks CPUs online during the
1012 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
1013 *
1014 * Disable checking if in an NMI handler because we cannot safely report
1015 * errors from NMI handlers anyway.
1016 */
1017bool rcu_lockdep_current_cpu_online(void)
1018{
2036d94a
PM
1019 struct rcu_data *rdp;
1020 struct rcu_node *rnp;
c0d6d01b
PM
1021 bool ret;
1022
1023 if (in_nmi())
f6f7ee9a 1024 return true;
c0d6d01b 1025 preempt_disable();
c9d4b0af 1026 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1027 rnp = rdp->mynode;
0aa04b05 1028 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1029 !rcu_scheduler_fully_active;
1030 preempt_enable();
1031 return ret;
1032}
1033EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1034
62fde6ed 1035#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1036
64db4cff 1037/**
9b2e4f18 1038 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1039 *
9b2e4f18
PM
1040 * If the current CPU is idle or running at a first-level (not nested)
1041 * interrupt from idle, return true. The caller must have at least
1042 * disabled preemption.
64db4cff 1043 */
62e3cb14 1044static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1045{
c9d4b0af 1046 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1047}
1048
64db4cff
PM
1049/*
1050 * Snapshot the specified CPU's dynticks counter so that we can later
1051 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1052 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1053 */
217af2a2
PM
1054static int dyntick_save_progress_counter(struct rcu_data *rdp,
1055 bool *isidle, unsigned long *maxj)
64db4cff 1056{
23b5c8fa 1057 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 1058 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
1059 if ((rdp->dynticks_snap & 0x1) == 0) {
1060 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1061 return 1;
1062 } else {
7d0ae808 1063 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1064 rdp->mynode->gpnum))
7d0ae808 1065 WRITE_ONCE(rdp->gpwrap, true);
7941dbde
ACB
1066 return 0;
1067 }
64db4cff
PM
1068}
1069
1070/*
1071 * Return true if the specified CPU has passed through a quiescent
1072 * state by virtue of being in or having passed through an dynticks
1073 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1074 * for this same CPU, or by virtue of having been offline.
64db4cff 1075 */
217af2a2
PM
1076static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1077 bool *isidle, unsigned long *maxj)
64db4cff 1078{
7eb4f455 1079 unsigned int curr;
4a81e832 1080 int *rcrmp;
7eb4f455 1081 unsigned int snap;
64db4cff 1082
7eb4f455
PM
1083 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1084 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
1085
1086 /*
1087 * If the CPU passed through or entered a dynticks idle phase with
1088 * no active irq/NMI handlers, then we can safely pretend that the CPU
1089 * already acknowledged the request to pass through a quiescent
1090 * state. Either way, that CPU cannot possibly be in an RCU
1091 * read-side critical section that started before the beginning
1092 * of the current RCU grace period.
1093 */
7eb4f455 1094 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 1095 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1096 rdp->dynticks_fqs++;
1097 return 1;
1098 }
1099
a82dcc76
PM
1100 /*
1101 * Check for the CPU being offline, but only if the grace period
1102 * is old enough. We don't need to worry about the CPU changing
1103 * state: If we see it offline even once, it has been through a
1104 * quiescent state.
1105 *
1106 * The reason for insisting that the grace period be at least
1107 * one jiffy old is that CPUs that are not quite online and that
1108 * have just gone offline can still execute RCU read-side critical
1109 * sections.
1110 */
1111 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1112 return 0; /* Grace period is not old enough. */
1113 barrier();
1114 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 1115 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1116 rdp->offline_fqs++;
1117 return 1;
1118 }
65d798f0
PM
1119
1120 /*
4a81e832
PM
1121 * A CPU running for an extended time within the kernel can
1122 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1123 * even context-switching back and forth between a pair of
1124 * in-kernel CPU-bound tasks cannot advance grace periods.
1125 * So if the grace period is old enough, make the CPU pay attention.
1126 * Note that the unsynchronized assignments to the per-CPU
1127 * rcu_sched_qs_mask variable are safe. Yes, setting of
1128 * bits can be lost, but they will be set again on the next
1129 * force-quiescent-state pass. So lost bit sets do not result
1130 * in incorrect behavior, merely in a grace period lasting
1131 * a few jiffies longer than it might otherwise. Because
1132 * there are at most four threads involved, and because the
1133 * updates are only once every few jiffies, the probability of
1134 * lossage (and thus of slight grace-period extension) is
1135 * quite low.
1136 *
1137 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1138 * is set too high, we override with half of the RCU CPU stall
1139 * warning delay.
6193c76a 1140 */
4a81e832
PM
1141 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1142 if (ULONG_CMP_GE(jiffies,
1143 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1144 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
7d0ae808
PM
1145 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1146 WRITE_ONCE(rdp->cond_resched_completed,
1147 READ_ONCE(rdp->mynode->completed));
4a81e832 1148 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
7d0ae808
PM
1149 WRITE_ONCE(*rcrmp,
1150 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
4a81e832
PM
1151 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1152 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1153 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1154 /* Time to beat on that CPU again! */
1155 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1156 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1157 }
6193c76a
PM
1158 }
1159
a82dcc76 1160 return 0;
64db4cff
PM
1161}
1162
64db4cff
PM
1163static void record_gp_stall_check_time(struct rcu_state *rsp)
1164{
cb1e78cf 1165 unsigned long j = jiffies;
6193c76a 1166 unsigned long j1;
26cdfedf
PM
1167
1168 rsp->gp_start = j;
1169 smp_wmb(); /* Record start time before stall time. */
6193c76a 1170 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1171 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1172 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1173 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1174}
1175
fb81a44b
PM
1176/*
1177 * Complain about starvation of grace-period kthread.
1178 */
1179static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1180{
1181 unsigned long gpa;
1182 unsigned long j;
1183
1184 j = jiffies;
7d0ae808 1185 gpa = READ_ONCE(rsp->gp_activity);
fb81a44b 1186 if (j - gpa > 2 * HZ)
319362c9 1187 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
81e701e4 1188 rsp->name, j - gpa,
319362c9
PM
1189 rsp->gpnum, rsp->completed,
1190 rsp->gp_flags, rsp->gp_state,
1191 rsp->gp_kthread ? rsp->gp_kthread->state : 0);
64db4cff
PM
1192}
1193
b637a328 1194/*
bc1dce51 1195 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1196 */
1197static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1198{
1199 int cpu;
1200 unsigned long flags;
1201 struct rcu_node *rnp;
1202
1203 rcu_for_each_leaf_node(rsp, rnp) {
1204 raw_spin_lock_irqsave(&rnp->lock, flags);
1205 if (rnp->qsmask != 0) {
1206 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1207 if (rnp->qsmask & (1UL << cpu))
1208 dump_cpu_task(rnp->grplo + cpu);
1209 }
1210 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1211 }
1212}
1213
6ccd2ecd 1214static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1215{
1216 int cpu;
1217 long delta;
1218 unsigned long flags;
6ccd2ecd
PM
1219 unsigned long gpa;
1220 unsigned long j;
285fe294 1221 int ndetected = 0;
64db4cff 1222 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1223 long totqlen = 0;
64db4cff
PM
1224
1225 /* Only let one CPU complain about others per time interval. */
1226
1304afb2 1227 raw_spin_lock_irqsave(&rnp->lock, flags);
7d0ae808 1228 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1229 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1230 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1231 return;
1232 }
7d0ae808
PM
1233 WRITE_ONCE(rsp->jiffies_stall,
1234 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1304afb2 1235 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1236
8cdd32a9
PM
1237 /*
1238 * OK, time to rat on our buddy...
1239 * See Documentation/RCU/stallwarn.txt for info on how to debug
1240 * RCU CPU stall warnings.
1241 */
d7f3e207 1242 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1243 rsp->name);
a858af28 1244 print_cpu_stall_info_begin();
a0b6c9a7 1245 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1246 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1247 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1248 if (rnp->qsmask != 0) {
1249 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1250 if (rnp->qsmask & (1UL << cpu)) {
1251 print_cpu_stall_info(rsp,
1252 rnp->grplo + cpu);
1253 ndetected++;
1254 }
1255 }
3acd9eb3 1256 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1257 }
a858af28 1258
a858af28 1259 print_cpu_stall_info_end();
53bb857c
PM
1260 for_each_possible_cpu(cpu)
1261 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1262 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1263 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1264 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1265 if (ndetected) {
b637a328 1266 rcu_dump_cpu_stacks(rsp);
6ccd2ecd 1267 } else {
7d0ae808
PM
1268 if (READ_ONCE(rsp->gpnum) != gpnum ||
1269 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1270 pr_err("INFO: Stall ended before state dump start\n");
1271 } else {
1272 j = jiffies;
7d0ae808 1273 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1274 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1275 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1276 jiffies_till_next_fqs,
1277 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1278 /* In this case, the current CPU might be at fault. */
1279 sched_show_task(current);
1280 }
1281 }
c1dc0b9c 1282
4cdfc175 1283 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1284 rcu_print_detail_task_stall(rsp);
1285
fb81a44b
PM
1286 rcu_check_gp_kthread_starvation(rsp);
1287
4cdfc175 1288 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1289}
1290
1291static void print_cpu_stall(struct rcu_state *rsp)
1292{
53bb857c 1293 int cpu;
64db4cff
PM
1294 unsigned long flags;
1295 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1296 long totqlen = 0;
64db4cff 1297
8cdd32a9
PM
1298 /*
1299 * OK, time to rat on ourselves...
1300 * See Documentation/RCU/stallwarn.txt for info on how to debug
1301 * RCU CPU stall warnings.
1302 */
d7f3e207 1303 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1304 print_cpu_stall_info_begin();
1305 print_cpu_stall_info(rsp, smp_processor_id());
1306 print_cpu_stall_info_end();
53bb857c
PM
1307 for_each_possible_cpu(cpu)
1308 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1309 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1310 jiffies - rsp->gp_start,
1311 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1312
1313 rcu_check_gp_kthread_starvation(rsp);
1314
bc1dce51 1315 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1316
1304afb2 1317 raw_spin_lock_irqsave(&rnp->lock, flags);
7d0ae808
PM
1318 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1319 WRITE_ONCE(rsp->jiffies_stall,
1320 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1304afb2 1321 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1322
b021fe3e
PZ
1323 /*
1324 * Attempt to revive the RCU machinery by forcing a context switch.
1325 *
1326 * A context switch would normally allow the RCU state machine to make
1327 * progress and it could be we're stuck in kernel space without context
1328 * switches for an entirely unreasonable amount of time.
1329 */
1330 resched_cpu(smp_processor_id());
64db4cff
PM
1331}
1332
1333static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1334{
26cdfedf
PM
1335 unsigned long completed;
1336 unsigned long gpnum;
1337 unsigned long gps;
bad6e139
PM
1338 unsigned long j;
1339 unsigned long js;
64db4cff
PM
1340 struct rcu_node *rnp;
1341
26cdfedf 1342 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1343 return;
cb1e78cf 1344 j = jiffies;
26cdfedf
PM
1345
1346 /*
1347 * Lots of memory barriers to reject false positives.
1348 *
1349 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1350 * then rsp->gp_start, and finally rsp->completed. These values
1351 * are updated in the opposite order with memory barriers (or
1352 * equivalent) during grace-period initialization and cleanup.
1353 * Now, a false positive can occur if we get an new value of
1354 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1355 * the memory barriers, the only way that this can happen is if one
1356 * grace period ends and another starts between these two fetches.
1357 * Detect this by comparing rsp->completed with the previous fetch
1358 * from rsp->gpnum.
1359 *
1360 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1361 * and rsp->gp_start suffice to forestall false positives.
1362 */
7d0ae808 1363 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1364 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1365 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1366 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1367 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1368 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1369 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1370 if (ULONG_CMP_GE(completed, gpnum) ||
1371 ULONG_CMP_LT(j, js) ||
1372 ULONG_CMP_GE(gps, js))
1373 return; /* No stall or GP completed since entering function. */
64db4cff 1374 rnp = rdp->mynode;
c96ea7cf 1375 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1376 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1377
1378 /* We haven't checked in, so go dump stack. */
1379 print_cpu_stall(rsp);
1380
bad6e139
PM
1381 } else if (rcu_gp_in_progress(rsp) &&
1382 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1383
bad6e139 1384 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1385 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1386 }
1387}
1388
53d84e00
PM
1389/**
1390 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1391 *
1392 * Set the stall-warning timeout way off into the future, thus preventing
1393 * any RCU CPU stall-warning messages from appearing in the current set of
1394 * RCU grace periods.
1395 *
1396 * The caller must disable hard irqs.
1397 */
1398void rcu_cpu_stall_reset(void)
1399{
6ce75a23
PM
1400 struct rcu_state *rsp;
1401
1402 for_each_rcu_flavor(rsp)
7d0ae808 1403 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1404}
1405
3f5d3ea6 1406/*
d3f3f3f2
PM
1407 * Initialize the specified rcu_data structure's default callback list
1408 * to empty. The default callback list is the one that is not used by
1409 * no-callbacks CPUs.
3f5d3ea6 1410 */
d3f3f3f2 1411static void init_default_callback_list(struct rcu_data *rdp)
3f5d3ea6
PM
1412{
1413 int i;
1414
1415 rdp->nxtlist = NULL;
1416 for (i = 0; i < RCU_NEXT_SIZE; i++)
1417 rdp->nxttail[i] = &rdp->nxtlist;
1418}
1419
d3f3f3f2
PM
1420/*
1421 * Initialize the specified rcu_data structure's callback list to empty.
1422 */
1423static void init_callback_list(struct rcu_data *rdp)
1424{
1425 if (init_nocb_callback_list(rdp))
1426 return;
1427 init_default_callback_list(rdp);
1428}
1429
dc35c893
PM
1430/*
1431 * Determine the value that ->completed will have at the end of the
1432 * next subsequent grace period. This is used to tag callbacks so that
1433 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1434 * been dyntick-idle for an extended period with callbacks under the
1435 * influence of RCU_FAST_NO_HZ.
1436 *
1437 * The caller must hold rnp->lock with interrupts disabled.
1438 */
1439static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1440 struct rcu_node *rnp)
1441{
1442 /*
1443 * If RCU is idle, we just wait for the next grace period.
1444 * But we can only be sure that RCU is idle if we are looking
1445 * at the root rcu_node structure -- otherwise, a new grace
1446 * period might have started, but just not yet gotten around
1447 * to initializing the current non-root rcu_node structure.
1448 */
1449 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1450 return rnp->completed + 1;
1451
1452 /*
1453 * Otherwise, wait for a possible partial grace period and
1454 * then the subsequent full grace period.
1455 */
1456 return rnp->completed + 2;
1457}
1458
0446be48
PM
1459/*
1460 * Trace-event helper function for rcu_start_future_gp() and
1461 * rcu_nocb_wait_gp().
1462 */
1463static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1464 unsigned long c, const char *s)
0446be48
PM
1465{
1466 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1467 rnp->completed, c, rnp->level,
1468 rnp->grplo, rnp->grphi, s);
1469}
1470
1471/*
1472 * Start some future grace period, as needed to handle newly arrived
1473 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1474 * rcu_node structure's ->need_future_gp field. Returns true if there
1475 * is reason to awaken the grace-period kthread.
0446be48
PM
1476 *
1477 * The caller must hold the specified rcu_node structure's ->lock.
1478 */
48a7639c
PM
1479static bool __maybe_unused
1480rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1481 unsigned long *c_out)
0446be48
PM
1482{
1483 unsigned long c;
1484 int i;
48a7639c 1485 bool ret = false;
0446be48
PM
1486 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1487
1488 /*
1489 * Pick up grace-period number for new callbacks. If this
1490 * grace period is already marked as needed, return to the caller.
1491 */
1492 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1493 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1494 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1495 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1496 goto out;
0446be48
PM
1497 }
1498
1499 /*
1500 * If either this rcu_node structure or the root rcu_node structure
1501 * believe that a grace period is in progress, then we must wait
1502 * for the one following, which is in "c". Because our request
1503 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1504 * need to explicitly start one. We only do the lockless check
1505 * of rnp_root's fields if the current rcu_node structure thinks
1506 * there is no grace period in flight, and because we hold rnp->lock,
1507 * the only possible change is when rnp_root's two fields are
1508 * equal, in which case rnp_root->gpnum might be concurrently
1509 * incremented. But that is OK, as it will just result in our
1510 * doing some extra useless work.
0446be48
PM
1511 */
1512 if (rnp->gpnum != rnp->completed ||
7d0ae808 1513 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1514 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1515 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1516 goto out;
0446be48
PM
1517 }
1518
1519 /*
1520 * There might be no grace period in progress. If we don't already
1521 * hold it, acquire the root rcu_node structure's lock in order to
1522 * start one (if needed).
1523 */
6303b9c8 1524 if (rnp != rnp_root) {
0446be48 1525 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1526 smp_mb__after_unlock_lock();
1527 }
0446be48
PM
1528
1529 /*
1530 * Get a new grace-period number. If there really is no grace
1531 * period in progress, it will be smaller than the one we obtained
1532 * earlier. Adjust callbacks as needed. Note that even no-CBs
1533 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1534 */
1535 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1536 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1537 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1538 rdp->nxtcompleted[i] = c;
1539
1540 /*
1541 * If the needed for the required grace period is already
1542 * recorded, trace and leave.
1543 */
1544 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1545 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1546 goto unlock_out;
1547 }
1548
1549 /* Record the need for the future grace period. */
1550 rnp_root->need_future_gp[c & 0x1]++;
1551
1552 /* If a grace period is not already in progress, start one. */
1553 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1554 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1555 } else {
f7f7bac9 1556 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1557 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1558 }
1559unlock_out:
1560 if (rnp != rnp_root)
1561 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1562out:
1563 if (c_out != NULL)
1564 *c_out = c;
1565 return ret;
0446be48
PM
1566}
1567
1568/*
1569 * Clean up any old requests for the just-ended grace period. Also return
1570 * whether any additional grace periods have been requested. Also invoke
1571 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1572 * waiting for this grace period to complete.
1573 */
1574static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1575{
1576 int c = rnp->completed;
1577 int needmore;
1578 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1579
1580 rcu_nocb_gp_cleanup(rsp, rnp);
1581 rnp->need_future_gp[c & 0x1] = 0;
1582 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1583 trace_rcu_future_gp(rnp, rdp, c,
1584 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1585 return needmore;
1586}
1587
48a7639c
PM
1588/*
1589 * Awaken the grace-period kthread for the specified flavor of RCU.
1590 * Don't do a self-awaken, and don't bother awakening when there is
1591 * nothing for the grace-period kthread to do (as in several CPUs
1592 * raced to awaken, and we lost), and finally don't try to awaken
1593 * a kthread that has not yet been created.
1594 */
1595static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1596{
1597 if (current == rsp->gp_kthread ||
7d0ae808 1598 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1599 !rsp->gp_kthread)
1600 return;
1601 wake_up(&rsp->gp_wq);
1602}
1603
dc35c893
PM
1604/*
1605 * If there is room, assign a ->completed number to any callbacks on
1606 * this CPU that have not already been assigned. Also accelerate any
1607 * callbacks that were previously assigned a ->completed number that has
1608 * since proven to be too conservative, which can happen if callbacks get
1609 * assigned a ->completed number while RCU is idle, but with reference to
1610 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1611 * not hurt to call it repeatedly. Returns an flag saying that we should
1612 * awaken the RCU grace-period kthread.
dc35c893
PM
1613 *
1614 * The caller must hold rnp->lock with interrupts disabled.
1615 */
48a7639c 1616static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1617 struct rcu_data *rdp)
1618{
1619 unsigned long c;
1620 int i;
48a7639c 1621 bool ret;
dc35c893
PM
1622
1623 /* If the CPU has no callbacks, nothing to do. */
1624 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1625 return false;
dc35c893
PM
1626
1627 /*
1628 * Starting from the sublist containing the callbacks most
1629 * recently assigned a ->completed number and working down, find the
1630 * first sublist that is not assignable to an upcoming grace period.
1631 * Such a sublist has something in it (first two tests) and has
1632 * a ->completed number assigned that will complete sooner than
1633 * the ->completed number for newly arrived callbacks (last test).
1634 *
1635 * The key point is that any later sublist can be assigned the
1636 * same ->completed number as the newly arrived callbacks, which
1637 * means that the callbacks in any of these later sublist can be
1638 * grouped into a single sublist, whether or not they have already
1639 * been assigned a ->completed number.
1640 */
1641 c = rcu_cbs_completed(rsp, rnp);
1642 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1643 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1644 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1645 break;
1646
1647 /*
1648 * If there are no sublist for unassigned callbacks, leave.
1649 * At the same time, advance "i" one sublist, so that "i" will
1650 * index into the sublist where all the remaining callbacks should
1651 * be grouped into.
1652 */
1653 if (++i >= RCU_NEXT_TAIL)
48a7639c 1654 return false;
dc35c893
PM
1655
1656 /*
1657 * Assign all subsequent callbacks' ->completed number to the next
1658 * full grace period and group them all in the sublist initially
1659 * indexed by "i".
1660 */
1661 for (; i <= RCU_NEXT_TAIL; i++) {
1662 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1663 rdp->nxtcompleted[i] = c;
1664 }
910ee45d 1665 /* Record any needed additional grace periods. */
48a7639c 1666 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1667
1668 /* Trace depending on how much we were able to accelerate. */
1669 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1670 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1671 else
f7f7bac9 1672 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1673 return ret;
dc35c893
PM
1674}
1675
1676/*
1677 * Move any callbacks whose grace period has completed to the
1678 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1679 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1680 * sublist. This function is idempotent, so it does not hurt to
1681 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1682 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1683 *
1684 * The caller must hold rnp->lock with interrupts disabled.
1685 */
48a7639c 1686static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1687 struct rcu_data *rdp)
1688{
1689 int i, j;
1690
1691 /* If the CPU has no callbacks, nothing to do. */
1692 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1693 return false;
dc35c893
PM
1694
1695 /*
1696 * Find all callbacks whose ->completed numbers indicate that they
1697 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1698 */
1699 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1700 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1701 break;
1702 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1703 }
1704 /* Clean up any sublist tail pointers that were misordered above. */
1705 for (j = RCU_WAIT_TAIL; j < i; j++)
1706 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1707
1708 /* Copy down callbacks to fill in empty sublists. */
1709 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1710 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1711 break;
1712 rdp->nxttail[j] = rdp->nxttail[i];
1713 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1714 }
1715
1716 /* Classify any remaining callbacks. */
48a7639c 1717 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1718}
1719
d09b62df 1720/*
ba9fbe95
PM
1721 * Update CPU-local rcu_data state to record the beginnings and ends of
1722 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1723 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1724 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1725 */
48a7639c
PM
1726static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1727 struct rcu_data *rdp)
d09b62df 1728{
48a7639c
PM
1729 bool ret;
1730
ba9fbe95 1731 /* Handle the ends of any preceding grace periods first. */
e3663b10 1732 if (rdp->completed == rnp->completed &&
7d0ae808 1733 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1734
ba9fbe95 1735 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1736 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1737
dc35c893
PM
1738 } else {
1739
1740 /* Advance callbacks. */
48a7639c 1741 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1742
1743 /* Remember that we saw this grace-period completion. */
1744 rdp->completed = rnp->completed;
f7f7bac9 1745 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1746 }
398ebe60 1747
7d0ae808 1748 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1749 /*
1750 * If the current grace period is waiting for this CPU,
1751 * set up to detect a quiescent state, otherwise don't
1752 * go looking for one.
1753 */
1754 rdp->gpnum = rnp->gpnum;
f7f7bac9 1755 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633 1756 rdp->passed_quiesce = 0;
5cd37193 1757 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
6eaef633
PM
1758 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1759 zero_cpu_stall_ticks(rdp);
7d0ae808 1760 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1761 }
48a7639c 1762 return ret;
6eaef633
PM
1763}
1764
d34ea322 1765static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1766{
1767 unsigned long flags;
48a7639c 1768 bool needwake;
6eaef633
PM
1769 struct rcu_node *rnp;
1770
1771 local_irq_save(flags);
1772 rnp = rdp->mynode;
7d0ae808
PM
1773 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1774 rdp->completed == READ_ONCE(rnp->completed) &&
1775 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
6eaef633
PM
1776 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1777 local_irq_restore(flags);
1778 return;
1779 }
6303b9c8 1780 smp_mb__after_unlock_lock();
48a7639c 1781 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1782 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1783 if (needwake)
1784 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1785}
1786
0f41c0dd
PM
1787static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1788{
1789 if (delay > 0 &&
1790 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1791 schedule_timeout_uninterruptible(delay);
1792}
1793
b3dbec76 1794/*
f7be8209 1795 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1796 */
7fdefc10 1797static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1798{
0aa04b05 1799 unsigned long oldmask;
b3dbec76 1800 struct rcu_data *rdp;
7fdefc10 1801 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1802
7d0ae808 1803 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1804 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1805 smp_mb__after_unlock_lock();
7d0ae808 1806 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209
PM
1807 /* Spurious wakeup, tell caller to go back to sleep. */
1808 raw_spin_unlock_irq(&rnp->lock);
1809 return 0;
1810 }
7d0ae808 1811 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1812
f7be8209
PM
1813 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1814 /*
1815 * Grace period already in progress, don't start another.
1816 * Not supposed to be able to happen.
1817 */
7fdefc10
PM
1818 raw_spin_unlock_irq(&rnp->lock);
1819 return 0;
1820 }
1821
7fdefc10 1822 /* Advance to a new grace period and initialize state. */
26cdfedf 1823 record_gp_stall_check_time(rsp);
765a3f4f
PM
1824 /* Record GP times before starting GP, hence smp_store_release(). */
1825 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1826 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1827 raw_spin_unlock_irq(&rnp->lock);
1828
0aa04b05
PM
1829 /*
1830 * Apply per-leaf buffered online and offline operations to the
1831 * rcu_node tree. Note that this new grace period need not wait
1832 * for subsequent online CPUs, and that quiescent-state forcing
1833 * will handle subsequent offline CPUs.
1834 */
1835 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 1836 rcu_gp_slow(rsp, gp_preinit_delay);
0aa04b05
PM
1837 raw_spin_lock_irq(&rnp->lock);
1838 smp_mb__after_unlock_lock();
1839 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1840 !rnp->wait_blkd_tasks) {
1841 /* Nothing to do on this leaf rcu_node structure. */
1842 raw_spin_unlock_irq(&rnp->lock);
1843 continue;
1844 }
1845
1846 /* Record old state, apply changes to ->qsmaskinit field. */
1847 oldmask = rnp->qsmaskinit;
1848 rnp->qsmaskinit = rnp->qsmaskinitnext;
1849
1850 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1851 if (!oldmask != !rnp->qsmaskinit) {
1852 if (!oldmask) /* First online CPU for this rcu_node. */
1853 rcu_init_new_rnp(rnp);
1854 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1855 rnp->wait_blkd_tasks = true;
1856 else /* Last offline CPU and can propagate. */
1857 rcu_cleanup_dead_rnp(rnp);
1858 }
1859
1860 /*
1861 * If all waited-on tasks from prior grace period are
1862 * done, and if all this rcu_node structure's CPUs are
1863 * still offline, propagate up the rcu_node tree and
1864 * clear ->wait_blkd_tasks. Otherwise, if one of this
1865 * rcu_node structure's CPUs has since come back online,
1866 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1867 * checks for this, so just call it unconditionally).
1868 */
1869 if (rnp->wait_blkd_tasks &&
1870 (!rcu_preempt_has_tasks(rnp) ||
1871 rnp->qsmaskinit)) {
1872 rnp->wait_blkd_tasks = false;
1873 rcu_cleanup_dead_rnp(rnp);
1874 }
1875
1876 raw_spin_unlock_irq(&rnp->lock);
1877 }
7fdefc10
PM
1878
1879 /*
1880 * Set the quiescent-state-needed bits in all the rcu_node
1881 * structures for all currently online CPUs in breadth-first order,
1882 * starting from the root rcu_node structure, relying on the layout
1883 * of the tree within the rsp->node[] array. Note that other CPUs
1884 * will access only the leaves of the hierarchy, thus seeing that no
1885 * grace period is in progress, at least until the corresponding
1886 * leaf node has been initialized. In addition, we have excluded
1887 * CPU-hotplug operations.
1888 *
1889 * The grace period cannot complete until the initialization
1890 * process finishes, because this kthread handles both.
1891 */
1892 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 1893 rcu_gp_slow(rsp, gp_init_delay);
b3dbec76 1894 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1895 smp_mb__after_unlock_lock();
b3dbec76 1896 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1897 rcu_preempt_check_blocked_tasks(rnp);
1898 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 1899 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 1900 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 1901 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 1902 if (rnp == rdp->mynode)
48a7639c 1903 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1904 rcu_preempt_boost_start_gp(rnp);
1905 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1906 rnp->level, rnp->grplo,
1907 rnp->grphi, rnp->qsmask);
1908 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1909 cond_resched_rcu_qs();
7d0ae808 1910 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1911 }
b3dbec76 1912
7fdefc10
PM
1913 return 1;
1914}
b3dbec76 1915
b9a425cf
PM
1916/*
1917 * Helper function for wait_event_interruptible_timeout() wakeup
1918 * at force-quiescent-state time.
1919 */
1920static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1921{
1922 struct rcu_node *rnp = rcu_get_root(rsp);
1923
1924 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1925 *gfp = READ_ONCE(rsp->gp_flags);
1926 if (*gfp & RCU_GP_FLAG_FQS)
1927 return true;
1928
1929 /* The current grace period has completed. */
1930 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1931 return true;
1932
1933 return false;
1934}
1935
4cdfc175
PM
1936/*
1937 * Do one round of quiescent-state forcing.
1938 */
77f81fe0 1939static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 1940{
217af2a2
PM
1941 bool isidle = false;
1942 unsigned long maxj;
4cdfc175
PM
1943 struct rcu_node *rnp = rcu_get_root(rsp);
1944
7d0ae808 1945 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 1946 rsp->n_force_qs++;
77f81fe0 1947 if (first_time) {
4cdfc175 1948 /* Collect dyntick-idle snapshots. */
0edd1b17 1949 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1950 isidle = true;
0edd1b17
PM
1951 maxj = jiffies - ULONG_MAX / 4;
1952 }
217af2a2
PM
1953 force_qs_rnp(rsp, dyntick_save_progress_counter,
1954 &isidle, &maxj);
0edd1b17 1955 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1956 } else {
1957 /* Handle dyntick-idle and offline CPUs. */
675da67f 1958 isidle = true;
217af2a2 1959 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1960 }
1961 /* Clear flag to prevent immediate re-entry. */
7d0ae808 1962 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
4cdfc175 1963 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1964 smp_mb__after_unlock_lock();
7d0ae808
PM
1965 WRITE_ONCE(rsp->gp_flags,
1966 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
4cdfc175
PM
1967 raw_spin_unlock_irq(&rnp->lock);
1968 }
4cdfc175
PM
1969}
1970
7fdefc10
PM
1971/*
1972 * Clean up after the old grace period.
1973 */
4cdfc175 1974static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1975{
1976 unsigned long gp_duration;
48a7639c 1977 bool needgp = false;
dae6e64d 1978 int nocb = 0;
7fdefc10
PM
1979 struct rcu_data *rdp;
1980 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1981
7d0ae808 1982 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1983 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1984 smp_mb__after_unlock_lock();
7fdefc10
PM
1985 gp_duration = jiffies - rsp->gp_start;
1986 if (gp_duration > rsp->gp_max)
1987 rsp->gp_max = gp_duration;
b3dbec76 1988
7fdefc10
PM
1989 /*
1990 * We know the grace period is complete, but to everyone else
1991 * it appears to still be ongoing. But it is also the case
1992 * that to everyone else it looks like there is nothing that
1993 * they can do to advance the grace period. It is therefore
1994 * safe for us to drop the lock in order to mark the grace
1995 * period as completed in all of the rcu_node structures.
7fdefc10 1996 */
5d4b8659 1997 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1998
5d4b8659
PM
1999 /*
2000 * Propagate new ->completed value to rcu_node structures so
2001 * that other CPUs don't have to wait until the start of the next
2002 * grace period to process their callbacks. This also avoids
2003 * some nasty RCU grace-period initialization races by forcing
2004 * the end of the current grace period to be completely recorded in
2005 * all of the rcu_node structures before the beginning of the next
2006 * grace period is recorded in any of the rcu_node structures.
2007 */
2008 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 2009 raw_spin_lock_irq(&rnp->lock);
6303b9c8 2010 smp_mb__after_unlock_lock();
5c60d25f
PM
2011 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2012 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2013 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2014 rdp = this_cpu_ptr(rsp->rda);
2015 if (rnp == rdp->mynode)
48a7639c 2016 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2017 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2018 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 2019 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 2020 cond_resched_rcu_qs();
7d0ae808 2021 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2022 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2023 }
5d4b8659
PM
2024 rnp = rcu_get_root(rsp);
2025 raw_spin_lock_irq(&rnp->lock);
765a3f4f 2026 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 2027 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2028
765a3f4f 2029 /* Declare grace period done. */
7d0ae808 2030 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2031 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2032 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2033 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2034 /* Advance CBs to reduce false positives below. */
2035 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2036 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2037 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2038 trace_rcu_grace_period(rsp->name,
7d0ae808 2039 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2040 TPS("newreq"));
2041 }
7fdefc10 2042 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
2043}
2044
2045/*
2046 * Body of kthread that handles grace periods.
2047 */
2048static int __noreturn rcu_gp_kthread(void *arg)
2049{
77f81fe0 2050 bool first_gp_fqs;
88d6df61 2051 int gf;
d40011f6 2052 unsigned long j;
4cdfc175 2053 int ret;
7fdefc10
PM
2054 struct rcu_state *rsp = arg;
2055 struct rcu_node *rnp = rcu_get_root(rsp);
2056
5871968d 2057 rcu_bind_gp_kthread();
7fdefc10
PM
2058 for (;;) {
2059
2060 /* Handle grace-period start. */
2061 for (;;) {
63c4db78 2062 trace_rcu_grace_period(rsp->name,
7d0ae808 2063 READ_ONCE(rsp->gpnum),
63c4db78 2064 TPS("reqwait"));
afea227f 2065 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 2066 wait_event_interruptible(rsp->gp_wq,
7d0ae808 2067 READ_ONCE(rsp->gp_flags) &
4cdfc175 2068 RCU_GP_FLAG_INIT);
319362c9 2069 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2070 /* Locking provides needed memory barrier. */
f7be8209 2071 if (rcu_gp_init(rsp))
7fdefc10 2072 break;
bde6c3aa 2073 cond_resched_rcu_qs();
7d0ae808 2074 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2075 WARN_ON(signal_pending(current));
63c4db78 2076 trace_rcu_grace_period(rsp->name,
7d0ae808 2077 READ_ONCE(rsp->gpnum),
63c4db78 2078 TPS("reqwaitsig"));
7fdefc10 2079 }
cabc49c1 2080
4cdfc175 2081 /* Handle quiescent-state forcing. */
77f81fe0 2082 first_gp_fqs = true;
d40011f6
PM
2083 j = jiffies_till_first_fqs;
2084 if (j > HZ) {
2085 j = HZ;
2086 jiffies_till_first_fqs = HZ;
2087 }
88d6df61 2088 ret = 0;
cabc49c1 2089 for (;;) {
88d6df61
PM
2090 if (!ret)
2091 rsp->jiffies_force_qs = jiffies + j;
63c4db78 2092 trace_rcu_grace_period(rsp->name,
7d0ae808 2093 READ_ONCE(rsp->gpnum),
63c4db78 2094 TPS("fqswait"));
afea227f 2095 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 2096 ret = wait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2097 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2098 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2099 /* Locking provides needed memory barriers. */
4cdfc175 2100 /* If grace period done, leave loop. */
7d0ae808 2101 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2102 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2103 break;
4cdfc175 2104 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2105 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2106 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2107 trace_rcu_grace_period(rsp->name,
7d0ae808 2108 READ_ONCE(rsp->gpnum),
63c4db78 2109 TPS("fqsstart"));
77f81fe0
PM
2110 rcu_gp_fqs(rsp, first_gp_fqs);
2111 first_gp_fqs = false;
63c4db78 2112 trace_rcu_grace_period(rsp->name,
7d0ae808 2113 READ_ONCE(rsp->gpnum),
63c4db78 2114 TPS("fqsend"));
bde6c3aa 2115 cond_resched_rcu_qs();
7d0ae808 2116 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175
PM
2117 } else {
2118 /* Deal with stray signal. */
bde6c3aa 2119 cond_resched_rcu_qs();
7d0ae808 2120 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2121 WARN_ON(signal_pending(current));
63c4db78 2122 trace_rcu_grace_period(rsp->name,
7d0ae808 2123 READ_ONCE(rsp->gpnum),
63c4db78 2124 TPS("fqswaitsig"));
4cdfc175 2125 }
d40011f6
PM
2126 j = jiffies_till_next_fqs;
2127 if (j > HZ) {
2128 j = HZ;
2129 jiffies_till_next_fqs = HZ;
2130 } else if (j < 1) {
2131 j = 1;
2132 jiffies_till_next_fqs = 1;
2133 }
cabc49c1 2134 }
4cdfc175
PM
2135
2136 /* Handle grace-period end. */
319362c9 2137 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2138 rcu_gp_cleanup(rsp);
319362c9 2139 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2140 }
b3dbec76
PM
2141}
2142
64db4cff
PM
2143/*
2144 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2145 * in preparation for detecting the next grace period. The caller must hold
b8462084 2146 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2147 *
2148 * Note that it is legal for a dying CPU (which is marked as offline) to
2149 * invoke this function. This can happen when the dying CPU reports its
2150 * quiescent state.
48a7639c
PM
2151 *
2152 * Returns true if the grace-period kthread must be awakened.
64db4cff 2153 */
48a7639c 2154static bool
910ee45d
PM
2155rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2156 struct rcu_data *rdp)
64db4cff 2157{
b8462084 2158 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2159 /*
b3dbec76 2160 * Either we have not yet spawned the grace-period
62da1921
PM
2161 * task, this CPU does not need another grace period,
2162 * or a grace period is already in progress.
b3dbec76 2163 * Either way, don't start a new grace period.
afe24b12 2164 */
48a7639c 2165 return false;
afe24b12 2166 }
7d0ae808
PM
2167 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2168 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2169 TPS("newreq"));
62da1921 2170
016a8d5b
SR
2171 /*
2172 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2173 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2174 * the wakeup to our caller.
016a8d5b 2175 */
48a7639c 2176 return true;
64db4cff
PM
2177}
2178
910ee45d
PM
2179/*
2180 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2181 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2182 * is invoked indirectly from rcu_advance_cbs(), which would result in
2183 * endless recursion -- or would do so if it wasn't for the self-deadlock
2184 * that is encountered beforehand.
48a7639c
PM
2185 *
2186 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2187 */
48a7639c 2188static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2189{
2190 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2191 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2192 bool ret = false;
910ee45d
PM
2193
2194 /*
2195 * If there is no grace period in progress right now, any
2196 * callbacks we have up to this point will be satisfied by the
2197 * next grace period. Also, advancing the callbacks reduces the
2198 * probability of false positives from cpu_needs_another_gp()
2199 * resulting in pointless grace periods. So, advance callbacks
2200 * then start the grace period!
2201 */
48a7639c
PM
2202 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2203 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2204 return ret;
910ee45d
PM
2205}
2206
f41d911f 2207/*
d3f6bad3
PM
2208 * Report a full set of quiescent states to the specified rcu_state
2209 * data structure. This involves cleaning up after the prior grace
2210 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
2211 * if one is needed. Note that the caller must hold rnp->lock, which
2212 * is released before return.
f41d911f 2213 */
d3f6bad3 2214static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2215 __releases(rcu_get_root(rsp)->lock)
f41d911f 2216{
fc2219d4 2217 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2218 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
cabc49c1 2219 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 2220 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2221}
2222
64db4cff 2223/*
d3f6bad3
PM
2224 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2225 * Allows quiescent states for a group of CPUs to be reported at one go
2226 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2227 * must be represented by the same rcu_node structure (which need not be a
2228 * leaf rcu_node structure, though it often will be). The gps parameter
2229 * is the grace-period snapshot, which means that the quiescent states
2230 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2231 * must be held upon entry, and it is released before return.
64db4cff
PM
2232 */
2233static void
d3f6bad3 2234rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2235 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2236 __releases(rnp->lock)
2237{
654e9533 2238 unsigned long oldmask = 0;
28ecd580
PM
2239 struct rcu_node *rnp_c;
2240
64db4cff
PM
2241 /* Walk up the rcu_node hierarchy. */
2242 for (;;) {
654e9533 2243 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2244
654e9533
PM
2245 /*
2246 * Our bit has already been cleared, or the
2247 * relevant grace period is already over, so done.
2248 */
1304afb2 2249 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2250 return;
2251 }
654e9533 2252 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2253 rnp->qsmask &= ~mask;
d4c08f2a
PM
2254 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2255 mask, rnp->qsmask, rnp->level,
2256 rnp->grplo, rnp->grphi,
2257 !!rnp->gp_tasks);
27f4d280 2258 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2259
2260 /* Other bits still set at this level, so done. */
1304afb2 2261 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2262 return;
2263 }
2264 mask = rnp->grpmask;
2265 if (rnp->parent == NULL) {
2266
2267 /* No more levels. Exit loop holding root lock. */
2268
2269 break;
2270 }
1304afb2 2271 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 2272 rnp_c = rnp;
64db4cff 2273 rnp = rnp->parent;
1304afb2 2274 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2275 smp_mb__after_unlock_lock();
654e9533 2276 oldmask = rnp_c->qsmask;
64db4cff
PM
2277 }
2278
2279 /*
2280 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2281 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2282 * to clean up and start the next grace period if one is needed.
64db4cff 2283 */
d3f6bad3 2284 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2285}
2286
cc99a310
PM
2287/*
2288 * Record a quiescent state for all tasks that were previously queued
2289 * on the specified rcu_node structure and that were blocking the current
2290 * RCU grace period. The caller must hold the specified rnp->lock with
2291 * irqs disabled, and this lock is released upon return, but irqs remain
2292 * disabled.
2293 */
0aa04b05 2294static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2295 struct rcu_node *rnp, unsigned long flags)
2296 __releases(rnp->lock)
2297{
654e9533 2298 unsigned long gps;
cc99a310
PM
2299 unsigned long mask;
2300 struct rcu_node *rnp_p;
2301
a77da14c
PM
2302 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2303 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
cc99a310
PM
2304 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2305 return; /* Still need more quiescent states! */
2306 }
2307
2308 rnp_p = rnp->parent;
2309 if (rnp_p == NULL) {
2310 /*
a77da14c
PM
2311 * Only one rcu_node structure in the tree, so don't
2312 * try to report up to its nonexistent parent!
cc99a310
PM
2313 */
2314 rcu_report_qs_rsp(rsp, flags);
2315 return;
2316 }
2317
654e9533
PM
2318 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2319 gps = rnp->gpnum;
cc99a310
PM
2320 mask = rnp->grpmask;
2321 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2322 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2323 smp_mb__after_unlock_lock();
654e9533 2324 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2325}
2326
64db4cff 2327/*
d3f6bad3
PM
2328 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2329 * structure. This must be either called from the specified CPU, or
2330 * called when the specified CPU is known to be offline (and when it is
2331 * also known that no other CPU is concurrently trying to help the offline
2332 * CPU). The lastcomp argument is used to make sure we are still in the
2333 * grace period of interest. We don't want to end the current grace period
2334 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2335 */
2336static void
d7d6a11e 2337rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2338{
2339 unsigned long flags;
2340 unsigned long mask;
48a7639c 2341 bool needwake;
64db4cff
PM
2342 struct rcu_node *rnp;
2343
2344 rnp = rdp->mynode;
1304afb2 2345 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2346 smp_mb__after_unlock_lock();
5cd37193
PM
2347 if ((rdp->passed_quiesce == 0 &&
2348 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2349 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2350 rdp->gpwrap) {
64db4cff
PM
2351
2352 /*
e4cc1f22
PM
2353 * The grace period in which this quiescent state was
2354 * recorded has ended, so don't report it upwards.
2355 * We will instead need a new quiescent state that lies
2356 * within the current grace period.
64db4cff 2357 */
e4cc1f22 2358 rdp->passed_quiesce = 0; /* need qs for new gp. */
5cd37193 2359 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1304afb2 2360 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2361 return;
2362 }
2363 mask = rdp->grpmask;
2364 if ((rnp->qsmask & mask) == 0) {
1304afb2 2365 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2366 } else {
2367 rdp->qs_pending = 0;
2368
2369 /*
2370 * This GP can't end until cpu checks in, so all of our
2371 * callbacks can be processed during the next GP.
2372 */
48a7639c 2373 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2374
654e9533
PM
2375 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2376 /* ^^^ Released rnp->lock */
48a7639c
PM
2377 if (needwake)
2378 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2379 }
2380}
2381
2382/*
2383 * Check to see if there is a new grace period of which this CPU
2384 * is not yet aware, and if so, set up local rcu_data state for it.
2385 * Otherwise, see if this CPU has just passed through its first
2386 * quiescent state for this grace period, and record that fact if so.
2387 */
2388static void
2389rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2390{
05eb552b
PM
2391 /* Check for grace-period ends and beginnings. */
2392 note_gp_changes(rsp, rdp);
64db4cff
PM
2393
2394 /*
2395 * Does this CPU still need to do its part for current grace period?
2396 * If no, return and let the other CPUs do their part as well.
2397 */
2398 if (!rdp->qs_pending)
2399 return;
2400
2401 /*
2402 * Was there a quiescent state since the beginning of the grace
2403 * period? If no, then exit and wait for the next call.
2404 */
5cd37193
PM
2405 if (!rdp->passed_quiesce &&
2406 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
64db4cff
PM
2407 return;
2408
d3f6bad3
PM
2409 /*
2410 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2411 * judge of that).
2412 */
d7d6a11e 2413 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2414}
2415
e74f4c45 2416/*
b1420f1c
PM
2417 * Send the specified CPU's RCU callbacks to the orphanage. The
2418 * specified CPU must be offline, and the caller must hold the
7b2e6011 2419 * ->orphan_lock.
e74f4c45 2420 */
b1420f1c
PM
2421static void
2422rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2423 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2424{
3fbfbf7a 2425 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2426 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2427 return;
2428
b1420f1c
PM
2429 /*
2430 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2431 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2432 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2433 */
a50c3af9 2434 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2435 rsp->qlen_lazy += rdp->qlen_lazy;
2436 rsp->qlen += rdp->qlen;
2437 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2438 rdp->qlen_lazy = 0;
7d0ae808 2439 WRITE_ONCE(rdp->qlen, 0);
a50c3af9
PM
2440 }
2441
2442 /*
b1420f1c
PM
2443 * Next, move those callbacks still needing a grace period to
2444 * the orphanage, where some other CPU will pick them up.
2445 * Some of the callbacks might have gone partway through a grace
2446 * period, but that is too bad. They get to start over because we
2447 * cannot assume that grace periods are synchronized across CPUs.
2448 * We don't bother updating the ->nxttail[] array yet, instead
2449 * we just reset the whole thing later on.
a50c3af9 2450 */
b1420f1c
PM
2451 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2452 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2453 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2454 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2455 }
2456
2457 /*
b1420f1c
PM
2458 * Then move the ready-to-invoke callbacks to the orphanage,
2459 * where some other CPU will pick them up. These will not be
2460 * required to pass though another grace period: They are done.
a50c3af9 2461 */
e5601400 2462 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2463 *rsp->orphan_donetail = rdp->nxtlist;
2464 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2465 }
e74f4c45 2466
b33078b6
PM
2467 /*
2468 * Finally, initialize the rcu_data structure's list to empty and
2469 * disallow further callbacks on this CPU.
2470 */
3f5d3ea6 2471 init_callback_list(rdp);
b33078b6 2472 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
b1420f1c
PM
2473}
2474
2475/*
2476 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2477 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2478 */
96d3fd0d 2479static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2480{
2481 int i;
fa07a58f 2482 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2483
3fbfbf7a 2484 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2485 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2486 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2487 return;
2488
b1420f1c
PM
2489 /* Do the accounting first. */
2490 rdp->qlen_lazy += rsp->qlen_lazy;
2491 rdp->qlen += rsp->qlen;
2492 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2493 if (rsp->qlen_lazy != rsp->qlen)
2494 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2495 rsp->qlen_lazy = 0;
2496 rsp->qlen = 0;
2497
2498 /*
2499 * We do not need a memory barrier here because the only way we
2500 * can get here if there is an rcu_barrier() in flight is if
2501 * we are the task doing the rcu_barrier().
2502 */
2503
2504 /* First adopt the ready-to-invoke callbacks. */
2505 if (rsp->orphan_donelist != NULL) {
2506 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2507 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2508 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2509 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2510 rdp->nxttail[i] = rsp->orphan_donetail;
2511 rsp->orphan_donelist = NULL;
2512 rsp->orphan_donetail = &rsp->orphan_donelist;
2513 }
2514
2515 /* And then adopt the callbacks that still need a grace period. */
2516 if (rsp->orphan_nxtlist != NULL) {
2517 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2518 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2519 rsp->orphan_nxtlist = NULL;
2520 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2521 }
2522}
2523
2524/*
2525 * Trace the fact that this CPU is going offline.
2526 */
2527static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2528{
2529 RCU_TRACE(unsigned long mask);
2530 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2531 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2532
ea46351c
PM
2533 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2534 return;
2535
b1420f1c 2536 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2537 trace_rcu_grace_period(rsp->name,
2538 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2539 TPS("cpuofl"));
64db4cff
PM
2540}
2541
8af3a5e7
PM
2542/*
2543 * All CPUs for the specified rcu_node structure have gone offline,
2544 * and all tasks that were preempted within an RCU read-side critical
2545 * section while running on one of those CPUs have since exited their RCU
2546 * read-side critical section. Some other CPU is reporting this fact with
2547 * the specified rcu_node structure's ->lock held and interrupts disabled.
2548 * This function therefore goes up the tree of rcu_node structures,
2549 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2550 * the leaf rcu_node structure's ->qsmaskinit field has already been
2551 * updated
2552 *
2553 * This function does check that the specified rcu_node structure has
2554 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2555 * prematurely. That said, invoking it after the fact will cost you
2556 * a needless lock acquisition. So once it has done its work, don't
2557 * invoke it again.
2558 */
2559static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2560{
2561 long mask;
2562 struct rcu_node *rnp = rnp_leaf;
2563
ea46351c
PM
2564 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2565 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2566 return;
2567 for (;;) {
2568 mask = rnp->grpmask;
2569 rnp = rnp->parent;
2570 if (!rnp)
2571 break;
2572 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2573 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2574 rnp->qsmaskinit &= ~mask;
0aa04b05 2575 rnp->qsmask &= ~mask;
8af3a5e7
PM
2576 if (rnp->qsmaskinit) {
2577 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2578 return;
2579 }
2580 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2581 }
2582}
2583
88428cc5
PM
2584/*
2585 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2586 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2587 * bit masks.
2588 */
2589static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2590{
2591 unsigned long flags;
2592 unsigned long mask;
2593 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2594 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2595
ea46351c
PM
2596 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2597 return;
2598
88428cc5
PM
2599 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2600 mask = rdp->grpmask;
2601 raw_spin_lock_irqsave(&rnp->lock, flags);
2602 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2603 rnp->qsmaskinitnext &= ~mask;
2604 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2605}
2606
64db4cff 2607/*
e5601400 2608 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2609 * this fact from process context. Do the remainder of the cleanup,
2610 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2611 * adopting them. There can only be one CPU hotplug operation at a time,
2612 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2613 */
e5601400 2614static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2615{
2036d94a 2616 unsigned long flags;
e5601400 2617 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2618 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2619
ea46351c
PM
2620 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2621 return;
2622
2036d94a 2623 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2624 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2625
b1420f1c 2626 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2627 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2628 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2629 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2630 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2631
cf01537e
PM
2632 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2633 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2634 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
2635}
2636
64db4cff
PM
2637/*
2638 * Invoke any RCU callbacks that have made it to the end of their grace
2639 * period. Thottle as specified by rdp->blimit.
2640 */
37c72e56 2641static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2642{
2643 unsigned long flags;
2644 struct rcu_head *next, *list, **tail;
878d7439
ED
2645 long bl, count, count_lazy;
2646 int i;
64db4cff 2647
dc35c893 2648 /* If no callbacks are ready, just return. */
29c00b4a 2649 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2650 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
7d0ae808 2651 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
4968c300
PM
2652 need_resched(), is_idle_task(current),
2653 rcu_is_callbacks_kthread());
64db4cff 2654 return;
29c00b4a 2655 }
64db4cff
PM
2656
2657 /*
2658 * Extract the list of ready callbacks, disabling to prevent
2659 * races with call_rcu() from interrupt handlers.
2660 */
2661 local_irq_save(flags);
8146c4e2 2662 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2663 bl = rdp->blimit;
486e2593 2664 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2665 list = rdp->nxtlist;
2666 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2667 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2668 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2669 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2670 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2671 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2672 local_irq_restore(flags);
2673
2674 /* Invoke callbacks. */
486e2593 2675 count = count_lazy = 0;
64db4cff
PM
2676 while (list) {
2677 next = list->next;
2678 prefetch(next);
551d55a9 2679 debug_rcu_head_unqueue(list);
486e2593
PM
2680 if (__rcu_reclaim(rsp->name, list))
2681 count_lazy++;
64db4cff 2682 list = next;
dff1672d
PM
2683 /* Stop only if limit reached and CPU has something to do. */
2684 if (++count >= bl &&
2685 (need_resched() ||
2686 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2687 break;
2688 }
2689
2690 local_irq_save(flags);
4968c300
PM
2691 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2692 is_idle_task(current),
2693 rcu_is_callbacks_kthread());
64db4cff
PM
2694
2695 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2696 if (list != NULL) {
2697 *tail = rdp->nxtlist;
2698 rdp->nxtlist = list;
b41772ab
PM
2699 for (i = 0; i < RCU_NEXT_SIZE; i++)
2700 if (&rdp->nxtlist == rdp->nxttail[i])
2701 rdp->nxttail[i] = tail;
64db4cff
PM
2702 else
2703 break;
2704 }
b1420f1c
PM
2705 smp_mb(); /* List handling before counting for rcu_barrier(). */
2706 rdp->qlen_lazy -= count_lazy;
7d0ae808 2707 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
b1420f1c 2708 rdp->n_cbs_invoked += count;
64db4cff
PM
2709
2710 /* Reinstate batch limit if we have worked down the excess. */
2711 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2712 rdp->blimit = blimit;
2713
37c72e56
PM
2714 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2715 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2716 rdp->qlen_last_fqs_check = 0;
2717 rdp->n_force_qs_snap = rsp->n_force_qs;
2718 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2719 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2720 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2721
64db4cff
PM
2722 local_irq_restore(flags);
2723
e0f23060 2724 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2725 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2726 invoke_rcu_core();
64db4cff
PM
2727}
2728
2729/*
2730 * Check to see if this CPU is in a non-context-switch quiescent state
2731 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2732 * Also schedule RCU core processing.
64db4cff 2733 *
9b2e4f18 2734 * This function must be called from hardirq context. It is normally
64db4cff
PM
2735 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2736 * false, there is no point in invoking rcu_check_callbacks().
2737 */
c3377c2d 2738void rcu_check_callbacks(int user)
64db4cff 2739{
f7f7bac9 2740 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2741 increment_cpu_stall_ticks();
9b2e4f18 2742 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2743
2744 /*
2745 * Get here if this CPU took its interrupt from user
2746 * mode or from the idle loop, and if this is not a
2747 * nested interrupt. In this case, the CPU is in
d6714c22 2748 * a quiescent state, so note it.
64db4cff
PM
2749 *
2750 * No memory barrier is required here because both
d6714c22
PM
2751 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2752 * variables that other CPUs neither access nor modify,
2753 * at least not while the corresponding CPU is online.
64db4cff
PM
2754 */
2755
284a8c93
PM
2756 rcu_sched_qs();
2757 rcu_bh_qs();
64db4cff
PM
2758
2759 } else if (!in_softirq()) {
2760
2761 /*
2762 * Get here if this CPU did not take its interrupt from
2763 * softirq, in other words, if it is not interrupting
2764 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2765 * critical section, so note it.
64db4cff
PM
2766 */
2767
284a8c93 2768 rcu_bh_qs();
64db4cff 2769 }
86aea0e6 2770 rcu_preempt_check_callbacks();
e3950ecd 2771 if (rcu_pending())
a46e0899 2772 invoke_rcu_core();
8315f422
PM
2773 if (user)
2774 rcu_note_voluntary_context_switch(current);
f7f7bac9 2775 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2776}
2777
64db4cff
PM
2778/*
2779 * Scan the leaf rcu_node structures, processing dyntick state for any that
2780 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2781 * Also initiate boosting for any threads blocked on the root rcu_node.
2782 *
ee47eb9f 2783 * The caller must have suppressed start of new grace periods.
64db4cff 2784 */
217af2a2
PM
2785static void force_qs_rnp(struct rcu_state *rsp,
2786 int (*f)(struct rcu_data *rsp, bool *isidle,
2787 unsigned long *maxj),
2788 bool *isidle, unsigned long *maxj)
64db4cff
PM
2789{
2790 unsigned long bit;
2791 int cpu;
2792 unsigned long flags;
2793 unsigned long mask;
a0b6c9a7 2794 struct rcu_node *rnp;
64db4cff 2795
a0b6c9a7 2796 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2797 cond_resched_rcu_qs();
64db4cff 2798 mask = 0;
1304afb2 2799 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2800 smp_mb__after_unlock_lock();
a0b6c9a7 2801 if (rnp->qsmask == 0) {
a77da14c
PM
2802 if (rcu_state_p == &rcu_sched_state ||
2803 rsp != rcu_state_p ||
2804 rcu_preempt_blocked_readers_cgp(rnp)) {
2805 /*
2806 * No point in scanning bits because they
2807 * are all zero. But we might need to
2808 * priority-boost blocked readers.
2809 */
2810 rcu_initiate_boost(rnp, flags);
2811 /* rcu_initiate_boost() releases rnp->lock */
2812 continue;
2813 }
2814 if (rnp->parent &&
2815 (rnp->parent->qsmask & rnp->grpmask)) {
2816 /*
2817 * Race between grace-period
2818 * initialization and task exiting RCU
2819 * read-side critical section: Report.
2820 */
2821 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2822 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2823 continue;
2824 }
64db4cff 2825 }
a0b6c9a7 2826 cpu = rnp->grplo;
64db4cff 2827 bit = 1;
a0b6c9a7 2828 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17 2829 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
2830 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2831 mask |= bit;
2832 }
64db4cff 2833 }
45f014c5 2834 if (mask != 0) {
654e9533
PM
2835 /* Idle/offline CPUs, report (releases rnp->lock. */
2836 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2837 } else {
2838 /* Nothing to do here, so just drop the lock. */
2839 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2840 }
64db4cff 2841 }
64db4cff
PM
2842}
2843
2844/*
2845 * Force quiescent states on reluctant CPUs, and also detect which
2846 * CPUs are in dyntick-idle mode.
2847 */
4cdfc175 2848static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2849{
2850 unsigned long flags;
394f2769
PM
2851 bool ret;
2852 struct rcu_node *rnp;
2853 struct rcu_node *rnp_old = NULL;
2854
2855 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2856 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2857 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2858 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2859 !raw_spin_trylock(&rnp->fqslock);
2860 if (rnp_old != NULL)
2861 raw_spin_unlock(&rnp_old->fqslock);
2862 if (ret) {
a792563b 2863 rsp->n_force_qs_lh++;
394f2769
PM
2864 return;
2865 }
2866 rnp_old = rnp;
2867 }
2868 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2869
394f2769
PM
2870 /* Reached the root of the rcu_node tree, acquire lock. */
2871 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2872 smp_mb__after_unlock_lock();
394f2769 2873 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2874 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2875 rsp->n_force_qs_lh++;
394f2769 2876 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2877 return; /* Someone beat us to it. */
46a1e34e 2878 }
7d0ae808 2879 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
394f2769 2880 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2881 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2882}
2883
64db4cff 2884/*
e0f23060
PM
2885 * This does the RCU core processing work for the specified rcu_state
2886 * and rcu_data structures. This may be called only from the CPU to
2887 * whom the rdp belongs.
64db4cff
PM
2888 */
2889static void
1bca8cf1 2890__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2891{
2892 unsigned long flags;
48a7639c 2893 bool needwake;
fa07a58f 2894 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2895
2e597558
PM
2896 WARN_ON_ONCE(rdp->beenonline == 0);
2897
64db4cff
PM
2898 /* Update RCU state based on any recent quiescent states. */
2899 rcu_check_quiescent_state(rsp, rdp);
2900
2901 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2902 local_irq_save(flags);
64db4cff 2903 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2904 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2905 needwake = rcu_start_gp(rsp);
b8462084 2906 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2907 if (needwake)
2908 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2909 } else {
2910 local_irq_restore(flags);
64db4cff
PM
2911 }
2912
2913 /* If there are callbacks ready, invoke them. */
09223371 2914 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2915 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2916
2917 /* Do any needed deferred wakeups of rcuo kthreads. */
2918 do_nocb_deferred_wakeup(rdp);
09223371
SL
2919}
2920
64db4cff 2921/*
e0f23060 2922 * Do RCU core processing for the current CPU.
64db4cff 2923 */
09223371 2924static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2925{
6ce75a23
PM
2926 struct rcu_state *rsp;
2927
bfa00b4c
PM
2928 if (cpu_is_offline(smp_processor_id()))
2929 return;
f7f7bac9 2930 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2931 for_each_rcu_flavor(rsp)
2932 __rcu_process_callbacks(rsp);
f7f7bac9 2933 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2934}
2935
a26ac245 2936/*
e0f23060
PM
2937 * Schedule RCU callback invocation. If the specified type of RCU
2938 * does not support RCU priority boosting, just do a direct call,
2939 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2940 * are running on the current CPU with softirqs disabled, the
e0f23060 2941 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2942 */
a46e0899 2943static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2944{
7d0ae808 2945 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2946 return;
a46e0899
PM
2947 if (likely(!rsp->boost)) {
2948 rcu_do_batch(rsp, rdp);
a26ac245
PM
2949 return;
2950 }
a46e0899 2951 invoke_rcu_callbacks_kthread();
a26ac245
PM
2952}
2953
a46e0899 2954static void invoke_rcu_core(void)
09223371 2955{
b0f74036
PM
2956 if (cpu_online(smp_processor_id()))
2957 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2958}
2959
29154c57
PM
2960/*
2961 * Handle any core-RCU processing required by a call_rcu() invocation.
2962 */
2963static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2964 struct rcu_head *head, unsigned long flags)
64db4cff 2965{
48a7639c
PM
2966 bool needwake;
2967
62fde6ed
PM
2968 /*
2969 * If called from an extended quiescent state, invoke the RCU
2970 * core in order to force a re-evaluation of RCU's idleness.
2971 */
9910affa 2972 if (!rcu_is_watching())
62fde6ed
PM
2973 invoke_rcu_core();
2974
a16b7a69 2975 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2976 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2977 return;
64db4cff 2978
37c72e56
PM
2979 /*
2980 * Force the grace period if too many callbacks or too long waiting.
2981 * Enforce hysteresis, and don't invoke force_quiescent_state()
2982 * if some other CPU has recently done so. Also, don't bother
2983 * invoking force_quiescent_state() if the newly enqueued callback
2984 * is the only one waiting for a grace period to complete.
2985 */
2655d57e 2986 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2987
2988 /* Are we ignoring a completed grace period? */
470716fc 2989 note_gp_changes(rsp, rdp);
b52573d2
PM
2990
2991 /* Start a new grace period if one not already started. */
2992 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2993 struct rcu_node *rnp_root = rcu_get_root(rsp);
2994
b8462084 2995 raw_spin_lock(&rnp_root->lock);
6303b9c8 2996 smp_mb__after_unlock_lock();
48a7639c 2997 needwake = rcu_start_gp(rsp);
b8462084 2998 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2999 if (needwake)
3000 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3001 } else {
3002 /* Give the grace period a kick. */
3003 rdp->blimit = LONG_MAX;
3004 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3005 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 3006 force_quiescent_state(rsp);
b52573d2
PM
3007 rdp->n_force_qs_snap = rsp->n_force_qs;
3008 rdp->qlen_last_fqs_check = rdp->qlen;
3009 }
4cdfc175 3010 }
29154c57
PM
3011}
3012
ae150184
PM
3013/*
3014 * RCU callback function to leak a callback.
3015 */
3016static void rcu_leak_callback(struct rcu_head *rhp)
3017{
3018}
3019
3fbfbf7a
PM
3020/*
3021 * Helper function for call_rcu() and friends. The cpu argument will
3022 * normally be -1, indicating "currently running CPU". It may specify
3023 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3024 * is expected to specify a CPU.
3025 */
64db4cff 3026static void
b6a4ae76 3027__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3028 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3029{
3030 unsigned long flags;
3031 struct rcu_data *rdp;
3032
1146edcb 3033 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
3034 if (debug_rcu_head_queue(head)) {
3035 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3036 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3037 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3038 return;
3039 }
64db4cff
PM
3040 head->func = func;
3041 head->next = NULL;
3042
64db4cff
PM
3043 /*
3044 * Opportunistically note grace-period endings and beginnings.
3045 * Note that we might see a beginning right after we see an
3046 * end, but never vice versa, since this CPU has to pass through
3047 * a quiescent state betweentimes.
3048 */
3049 local_irq_save(flags);
394f99a9 3050 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3051
3052 /* Add the callback to our list. */
3fbfbf7a
PM
3053 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3054 int offline;
3055
3056 if (cpu != -1)
3057 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3058 if (likely(rdp->mynode)) {
3059 /* Post-boot, so this should be for a no-CBs CPU. */
3060 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3061 WARN_ON_ONCE(offline);
3062 /* Offline CPU, _call_rcu() illegal, leak callback. */
3063 local_irq_restore(flags);
3064 return;
3065 }
3066 /*
3067 * Very early boot, before rcu_init(). Initialize if needed
3068 * and then drop through to queue the callback.
3069 */
3070 BUG_ON(cpu != -1);
34404ca8 3071 WARN_ON_ONCE(!rcu_is_watching());
143da9c2
PM
3072 if (!likely(rdp->nxtlist))
3073 init_default_callback_list(rdp);
0d8ee37e 3074 }
7d0ae808 3075 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
486e2593
PM
3076 if (lazy)
3077 rdp->qlen_lazy++;
c57afe80
PM
3078 else
3079 rcu_idle_count_callbacks_posted();
b1420f1c
PM
3080 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3081 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3082 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 3083
d4c08f2a
PM
3084 if (__is_kfree_rcu_offset((unsigned long)func))
3085 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 3086 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3087 else
486e2593 3088 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3089
29154c57
PM
3090 /* Go handle any RCU core processing required. */
3091 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3092 local_irq_restore(flags);
3093}
3094
3095/*
d6714c22 3096 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3097 */
b6a4ae76 3098void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3099{
3fbfbf7a 3100 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3101}
d6714c22 3102EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3103
3104/*
486e2593 3105 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff 3106 */
b6a4ae76 3107void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3108{
3fbfbf7a 3109 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3110}
3111EXPORT_SYMBOL_GPL(call_rcu_bh);
3112
495aa969
ACB
3113/*
3114 * Queue an RCU callback for lazy invocation after a grace period.
3115 * This will likely be later named something like "call_rcu_lazy()",
3116 * but this change will require some way of tagging the lazy RCU
3117 * callbacks in the list of pending callbacks. Until then, this
3118 * function may only be called from __kfree_rcu().
3119 */
3120void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3121 rcu_callback_t func)
495aa969 3122{
e534165b 3123 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3124}
3125EXPORT_SYMBOL_GPL(kfree_call_rcu);
3126
6d813391
PM
3127/*
3128 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3129 * any blocking grace-period wait automatically implies a grace period
3130 * if there is only one CPU online at any point time during execution
3131 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3132 * occasionally incorrectly indicate that there are multiple CPUs online
3133 * when there was in fact only one the whole time, as this just adds
3134 * some overhead: RCU still operates correctly.
6d813391
PM
3135 */
3136static inline int rcu_blocking_is_gp(void)
3137{
95f0c1de
PM
3138 int ret;
3139
6d813391 3140 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3141 preempt_disable();
3142 ret = num_online_cpus() <= 1;
3143 preempt_enable();
3144 return ret;
6d813391
PM
3145}
3146
6ebb237b
PM
3147/**
3148 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3149 *
3150 * Control will return to the caller some time after a full rcu-sched
3151 * grace period has elapsed, in other words after all currently executing
3152 * rcu-sched read-side critical sections have completed. These read-side
3153 * critical sections are delimited by rcu_read_lock_sched() and
3154 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3155 * local_irq_disable(), and so on may be used in place of
3156 * rcu_read_lock_sched().
3157 *
3158 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3159 * non-threaded hardware-interrupt handlers, in progress on entry will
3160 * have completed before this primitive returns. However, this does not
3161 * guarantee that softirq handlers will have completed, since in some
3162 * kernels, these handlers can run in process context, and can block.
3163 *
3164 * Note that this guarantee implies further memory-ordering guarantees.
3165 * On systems with more than one CPU, when synchronize_sched() returns,
3166 * each CPU is guaranteed to have executed a full memory barrier since the
3167 * end of its last RCU-sched read-side critical section whose beginning
3168 * preceded the call to synchronize_sched(). In addition, each CPU having
3169 * an RCU read-side critical section that extends beyond the return from
3170 * synchronize_sched() is guaranteed to have executed a full memory barrier
3171 * after the beginning of synchronize_sched() and before the beginning of
3172 * that RCU read-side critical section. Note that these guarantees include
3173 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3174 * that are executing in the kernel.
3175 *
3176 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3177 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3178 * to have executed a full memory barrier during the execution of
3179 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3180 * again only if the system has more than one CPU).
6ebb237b
PM
3181 *
3182 * This primitive provides the guarantees made by the (now removed)
3183 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3184 * guarantees that rcu_read_lock() sections will have completed.
3185 * In "classic RCU", these two guarantees happen to be one and
3186 * the same, but can differ in realtime RCU implementations.
3187 */
3188void synchronize_sched(void)
3189{
f78f5b90
PM
3190 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3191 lock_is_held(&rcu_lock_map) ||
3192 lock_is_held(&rcu_sched_lock_map),
3193 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3194 if (rcu_blocking_is_gp())
3195 return;
5afff48b 3196 if (rcu_gp_is_expedited())
3705b88d
AM
3197 synchronize_sched_expedited();
3198 else
3199 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3200}
3201EXPORT_SYMBOL_GPL(synchronize_sched);
3202
3203/**
3204 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3205 *
3206 * Control will return to the caller some time after a full rcu_bh grace
3207 * period has elapsed, in other words after all currently executing rcu_bh
3208 * read-side critical sections have completed. RCU read-side critical
3209 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3210 * and may be nested.
f0a0e6f2
PM
3211 *
3212 * See the description of synchronize_sched() for more detailed information
3213 * on memory ordering guarantees.
6ebb237b
PM
3214 */
3215void synchronize_rcu_bh(void)
3216{
f78f5b90
PM
3217 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3218 lock_is_held(&rcu_lock_map) ||
3219 lock_is_held(&rcu_sched_lock_map),
3220 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3221 if (rcu_blocking_is_gp())
3222 return;
5afff48b 3223 if (rcu_gp_is_expedited())
3705b88d
AM
3224 synchronize_rcu_bh_expedited();
3225 else
3226 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3227}
3228EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3229
765a3f4f
PM
3230/**
3231 * get_state_synchronize_rcu - Snapshot current RCU state
3232 *
3233 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3234 * to determine whether or not a full grace period has elapsed in the
3235 * meantime.
3236 */
3237unsigned long get_state_synchronize_rcu(void)
3238{
3239 /*
3240 * Any prior manipulation of RCU-protected data must happen
3241 * before the load from ->gpnum.
3242 */
3243 smp_mb(); /* ^^^ */
3244
3245 /*
3246 * Make sure this load happens before the purportedly
3247 * time-consuming work between get_state_synchronize_rcu()
3248 * and cond_synchronize_rcu().
3249 */
e534165b 3250 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3251}
3252EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3253
3254/**
3255 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3256 *
3257 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3258 *
3259 * If a full RCU grace period has elapsed since the earlier call to
3260 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3261 * synchronize_rcu() to wait for a full grace period.
3262 *
3263 * Yes, this function does not take counter wrap into account. But
3264 * counter wrap is harmless. If the counter wraps, we have waited for
3265 * more than 2 billion grace periods (and way more on a 64-bit system!),
3266 * so waiting for one additional grace period should be just fine.
3267 */
3268void cond_synchronize_rcu(unsigned long oldstate)
3269{
3270 unsigned long newstate;
3271
3272 /*
3273 * Ensure that this load happens before any RCU-destructive
3274 * actions the caller might carry out after we return.
3275 */
e534165b 3276 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3277 if (ULONG_CMP_GE(oldstate, newstate))
3278 synchronize_rcu();
3279}
3280EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3281
24560056
PM
3282/**
3283 * get_state_synchronize_sched - Snapshot current RCU-sched state
3284 *
3285 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3286 * to determine whether or not a full grace period has elapsed in the
3287 * meantime.
3288 */
3289unsigned long get_state_synchronize_sched(void)
3290{
3291 /*
3292 * Any prior manipulation of RCU-protected data must happen
3293 * before the load from ->gpnum.
3294 */
3295 smp_mb(); /* ^^^ */
3296
3297 /*
3298 * Make sure this load happens before the purportedly
3299 * time-consuming work between get_state_synchronize_sched()
3300 * and cond_synchronize_sched().
3301 */
3302 return smp_load_acquire(&rcu_sched_state.gpnum);
3303}
3304EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3305
3306/**
3307 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3308 *
3309 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3310 *
3311 * If a full RCU-sched grace period has elapsed since the earlier call to
3312 * get_state_synchronize_sched(), just return. Otherwise, invoke
3313 * synchronize_sched() to wait for a full grace period.
3314 *
3315 * Yes, this function does not take counter wrap into account. But
3316 * counter wrap is harmless. If the counter wraps, we have waited for
3317 * more than 2 billion grace periods (and way more on a 64-bit system!),
3318 * so waiting for one additional grace period should be just fine.
3319 */
3320void cond_synchronize_sched(unsigned long oldstate)
3321{
3322 unsigned long newstate;
3323
3324 /*
3325 * Ensure that this load happens before any RCU-destructive
3326 * actions the caller might carry out after we return.
3327 */
3328 newstate = smp_load_acquire(&rcu_sched_state.completed);
3329 if (ULONG_CMP_GE(oldstate, newstate))
3330 synchronize_sched();
3331}
3332EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3333
28f00767
PM
3334/* Adjust sequence number for start of update-side operation. */
3335static void rcu_seq_start(unsigned long *sp)
3336{
3337 WRITE_ONCE(*sp, *sp + 1);
3338 smp_mb(); /* Ensure update-side operation after counter increment. */
3339 WARN_ON_ONCE(!(*sp & 0x1));
3340}
3341
3342/* Adjust sequence number for end of update-side operation. */
3343static void rcu_seq_end(unsigned long *sp)
3344{
3345 smp_mb(); /* Ensure update-side operation before counter increment. */
3346 WRITE_ONCE(*sp, *sp + 1);
3347 WARN_ON_ONCE(*sp & 0x1);
3348}
3349
3350/* Take a snapshot of the update side's sequence number. */
3351static unsigned long rcu_seq_snap(unsigned long *sp)
3352{
3353 unsigned long s;
3354
3355 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3356 s = (READ_ONCE(*sp) + 3) & ~0x1;
3357 smp_mb(); /* Above access must not bleed into critical section. */
3358 return s;
3359}
3360
3361/*
3362 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3363 * full update-side operation has occurred.
3364 */
3365static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3366{
3367 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3368}
3369
3370/* Wrapper functions for expedited grace periods. */
3371static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3372{
3373 rcu_seq_start(&rsp->expedited_sequence);
3374}
3375static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3376{
3377 rcu_seq_end(&rsp->expedited_sequence);
704dd435 3378 smp_mb(); /* Ensure that consecutive grace periods serialize. */
28f00767
PM
3379}
3380static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3381{
3382 return rcu_seq_snap(&rsp->expedited_sequence);
3383}
3384static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3385{
3386 return rcu_seq_done(&rsp->expedited_sequence, s);
3387}
3388
29fd9309
PM
3389/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3390static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
2cd6ffaf 3391 struct rcu_data *rdp,
29fd9309 3392 atomic_long_t *stat, unsigned long s)
3d3b7db0 3393{
28f00767 3394 if (rcu_exp_gp_seq_done(rsp, s)) {
385b73c0
PM
3395 if (rnp)
3396 mutex_unlock(&rnp->exp_funnel_mutex);
2cd6ffaf
PM
3397 else if (rdp)
3398 mutex_unlock(&rdp->exp_funnel_mutex);
385b73c0
PM
3399 /* Ensure test happens before caller kfree(). */
3400 smp_mb__before_atomic(); /* ^^^ */
3401 atomic_long_inc(stat);
385b73c0
PM
3402 return true;
3403 }
3404 return false;
3405}
3406
b09e5f86
PM
3407/*
3408 * Funnel-lock acquisition for expedited grace periods. Returns a
3409 * pointer to the root rcu_node structure, or NULL if some other
3410 * task did the expedited grace period for us.
3411 */
3412static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3413{
2cd6ffaf 3414 struct rcu_data *rdp;
b09e5f86
PM
3415 struct rcu_node *rnp0;
3416 struct rcu_node *rnp1 = NULL;
3417
3d3b7db0 3418 /*
cdacbe1f
PM
3419 * First try directly acquiring the root lock in order to reduce
3420 * latency in the common case where expedited grace periods are
3421 * rare. We check mutex_is_locked() to avoid pathological levels of
3422 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3d3b7db0 3423 */
cdacbe1f
PM
3424 rnp0 = rcu_get_root(rsp);
3425 if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3426 if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3427 if (sync_exp_work_done(rsp, rnp0, NULL,
3428 &rsp->expedited_workdone0, s))
3429 return NULL;
3430 return rnp0;
3431 }
3432 }
3433
b09e5f86
PM
3434 /*
3435 * Each pass through the following loop works its way
3436 * up the rcu_node tree, returning if others have done the
3437 * work or otherwise falls through holding the root rnp's
3438 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3439 * can be inexact, as it is just promoting locality and is not
3440 * strictly needed for correctness.
3441 */
2cd6ffaf
PM
3442 rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3443 if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s))
3444 return NULL;
3445 mutex_lock(&rdp->exp_funnel_mutex);
3446 rnp0 = rdp->mynode;
b09e5f86 3447 for (; rnp0 != NULL; rnp0 = rnp0->parent) {
2cd6ffaf
PM
3448 if (sync_exp_work_done(rsp, rnp1, rdp,
3449 &rsp->expedited_workdone2, s))
b09e5f86
PM
3450 return NULL;
3451 mutex_lock(&rnp0->exp_funnel_mutex);
3452 if (rnp1)
3453 mutex_unlock(&rnp1->exp_funnel_mutex);
2cd6ffaf
PM
3454 else
3455 mutex_unlock(&rdp->exp_funnel_mutex);
b09e5f86
PM
3456 rnp1 = rnp0;
3457 }
2cd6ffaf
PM
3458 if (sync_exp_work_done(rsp, rnp1, rdp,
3459 &rsp->expedited_workdone3, s))
b09e5f86
PM
3460 return NULL;
3461 return rnp1;
3462}
3463
cf3620a6 3464/* Invoked on each online non-idle CPU for expedited quiescent state. */
b09e5f86
PM
3465static int synchronize_sched_expedited_cpu_stop(void *data)
3466{
cf3620a6
PM
3467 struct rcu_data *rdp = data;
3468 struct rcu_state *rsp = rdp->rsp;
b09e5f86
PM
3469
3470 /* We are here: If we are last, do the wakeup. */
cf3620a6 3471 rdp->exp_done = true;
b09e5f86
PM
3472 if (atomic_dec_and_test(&rsp->expedited_need_qs))
3473 wake_up(&rsp->expedited_wq);
3d3b7db0
PM
3474 return 0;
3475}
3476
cf3620a6
PM
3477static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3478{
3479 int cpu;
3480 unsigned long jiffies_stall;
3481 unsigned long jiffies_start;
3482 struct rcu_data *rdp;
3483 int ret;
3484
3485 jiffies_stall = rcu_jiffies_till_stall_check();
3486 jiffies_start = jiffies;
3487
3488 for (;;) {
3489 ret = wait_event_interruptible_timeout(
3490 rsp->expedited_wq,
3491 !atomic_read(&rsp->expedited_need_qs),
3492 jiffies_stall);
3493 if (ret > 0)
3494 return;
3495 if (ret < 0) {
3496 /* Hit a signal, disable CPU stall warnings. */
3497 wait_event(rsp->expedited_wq,
3498 !atomic_read(&rsp->expedited_need_qs));
3499 return;
3500 }
3501 pr_err("INFO: %s detected expedited stalls on CPUs: {",
3502 rsp->name);
3503 for_each_online_cpu(cpu) {
3504 rdp = per_cpu_ptr(rsp->rda, cpu);
3505
3506 if (rdp->exp_done)
3507 continue;
3508 pr_cont(" %d", cpu);
3509 }
3510 pr_cont(" } %lu jiffies s: %lu\n",
3511 jiffies - jiffies_start, rsp->expedited_sequence);
3512 for_each_online_cpu(cpu) {
3513 rdp = per_cpu_ptr(rsp->rda, cpu);
3514
3515 if (rdp->exp_done)
3516 continue;
3517 dump_cpu_task(cpu);
3518 }
3519 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3520 }
3521}
3522
236fefaf
PM
3523/**
3524 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3525 *
3526 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3527 * approach to force the grace period to end quickly. This consumes
3528 * significant time on all CPUs and is unfriendly to real-time workloads,
3529 * so is thus not recommended for any sort of common-case code. In fact,
3530 * if you are using synchronize_sched_expedited() in a loop, please
3531 * restructure your code to batch your updates, and then use a single
3532 * synchronize_sched() instead.
3d3b7db0 3533 *
d6ada2cf
PM
3534 * This implementation can be thought of as an application of sequence
3535 * locking to expedited grace periods, but using the sequence counter to
3536 * determine when someone else has already done the work instead of for
385b73c0 3537 * retrying readers.
3d3b7db0
PM
3538 */
3539void synchronize_sched_expedited(void)
3540{
e0775cef 3541 int cpu;
7fd0ddc5 3542 unsigned long s;
b09e5f86 3543 struct rcu_node *rnp;
40694d66 3544 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 3545
d6ada2cf 3546 /* Take a snapshot of the sequence number. */
28f00767 3547 s = rcu_exp_gp_seq_snap(rsp);
3d3b7db0 3548
dd56af42
PM
3549 if (!try_get_online_cpus()) {
3550 /* CPU hotplug operation in flight, fall back to normal GP. */
3551 wait_rcu_gp(call_rcu_sched);
3552 atomic_long_inc(&rsp->expedited_normal);
3553 return;
3554 }
1cc85961 3555 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0 3556
b09e5f86 3557 rnp = exp_funnel_lock(rsp, s);
29fd9309
PM
3558 if (rnp == NULL) {
3559 put_online_cpus();
b09e5f86 3560 return; /* Someone else did our work for us. */
e0775cef
PM
3561 }
3562
28f00767 3563 rcu_exp_gp_seq_start(rsp);
3d3b7db0 3564
c190c3b1 3565 /* Stop each CPU that is online, non-idle, and not us. */
3a6d7c64
PZ
3566 init_waitqueue_head(&rsp->expedited_wq);
3567 atomic_set(&rsp->expedited_need_qs, 1); /* Extra count avoids race. */
c190c3b1 3568 for_each_online_cpu(cpu) {
3a6d7c64 3569 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
c190c3b1 3570 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3d3b7db0 3571
cf3620a6 3572 rdp->exp_done = false;
3d3b7db0 3573
c190c3b1
PZ
3574 /* Skip our CPU and any idle CPUs. */
3575 if (raw_smp_processor_id() == cpu ||
3576 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3577 continue;
3a6d7c64
PZ
3578 atomic_inc(&rsp->expedited_need_qs);
3579 stop_one_cpu_nowait(cpu, synchronize_sched_expedited_cpu_stop,
cf3620a6 3580 rdp, &rdp->exp_stop_work);
3d3b7db0
PM
3581 }
3582
3a6d7c64
PZ
3583 /* Remove extra count and, if necessary, wait for CPUs to stop. */
3584 if (!atomic_dec_and_test(&rsp->expedited_need_qs))
cf3620a6 3585 synchronize_sched_expedited_wait(rsp);
e0775cef 3586
28f00767 3587 rcu_exp_gp_seq_end(rsp);
b09e5f86 3588 mutex_unlock(&rnp->exp_funnel_mutex);
3d3b7db0
PM
3589
3590 put_online_cpus();
3591}
3592EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3593
64db4cff
PM
3594/*
3595 * Check to see if there is any immediate RCU-related work to be done
3596 * by the current CPU, for the specified type of RCU, returning 1 if so.
3597 * The checks are in order of increasing expense: checks that can be
3598 * carried out against CPU-local state are performed first. However,
3599 * we must check for CPU stalls first, else we might not get a chance.
3600 */
3601static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3602{
2f51f988
PM
3603 struct rcu_node *rnp = rdp->mynode;
3604
64db4cff
PM
3605 rdp->n_rcu_pending++;
3606
3607 /* Check for CPU stalls, if enabled. */
3608 check_cpu_stall(rsp, rdp);
3609
a096932f
PM
3610 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3611 if (rcu_nohz_full_cpu(rsp))
3612 return 0;
3613
64db4cff 3614 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3615 if (rcu_scheduler_fully_active &&
5cd37193
PM
3616 rdp->qs_pending && !rdp->passed_quiesce &&
3617 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
d21670ac 3618 rdp->n_rp_qs_pending++;
5cd37193
PM
3619 } else if (rdp->qs_pending &&
3620 (rdp->passed_quiesce ||
3621 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
d21670ac 3622 rdp->n_rp_report_qs++;
64db4cff 3623 return 1;
7ba5c840 3624 }
64db4cff
PM
3625
3626 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3627 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3628 rdp->n_rp_cb_ready++;
64db4cff 3629 return 1;
7ba5c840 3630 }
64db4cff
PM
3631
3632 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3633 if (cpu_needs_another_gp(rsp, rdp)) {
3634 rdp->n_rp_cpu_needs_gp++;
64db4cff 3635 return 1;
7ba5c840 3636 }
64db4cff
PM
3637
3638 /* Has another RCU grace period completed? */
7d0ae808 3639 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3640 rdp->n_rp_gp_completed++;
64db4cff 3641 return 1;
7ba5c840 3642 }
64db4cff
PM
3643
3644 /* Has a new RCU grace period started? */
7d0ae808
PM
3645 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3646 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3647 rdp->n_rp_gp_started++;
64db4cff 3648 return 1;
7ba5c840 3649 }
64db4cff 3650
96d3fd0d
PM
3651 /* Does this CPU need a deferred NOCB wakeup? */
3652 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3653 rdp->n_rp_nocb_defer_wakeup++;
3654 return 1;
3655 }
3656
64db4cff 3657 /* nothing to do */
7ba5c840 3658 rdp->n_rp_need_nothing++;
64db4cff
PM
3659 return 0;
3660}
3661
3662/*
3663 * Check to see if there is any immediate RCU-related work to be done
3664 * by the current CPU, returning 1 if so. This function is part of the
3665 * RCU implementation; it is -not- an exported member of the RCU API.
3666 */
e3950ecd 3667static int rcu_pending(void)
64db4cff 3668{
6ce75a23
PM
3669 struct rcu_state *rsp;
3670
3671 for_each_rcu_flavor(rsp)
e3950ecd 3672 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3673 return 1;
3674 return 0;
64db4cff
PM
3675}
3676
3677/*
c0f4dfd4
PM
3678 * Return true if the specified CPU has any callback. If all_lazy is
3679 * non-NULL, store an indication of whether all callbacks are lazy.
3680 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3681 */
82072c4f 3682static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3683{
c0f4dfd4
PM
3684 bool al = true;
3685 bool hc = false;
3686 struct rcu_data *rdp;
6ce75a23
PM
3687 struct rcu_state *rsp;
3688
c0f4dfd4 3689 for_each_rcu_flavor(rsp) {
aa6da514 3690 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3691 if (!rdp->nxtlist)
3692 continue;
3693 hc = true;
3694 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3695 al = false;
69c8d28c
PM
3696 break;
3697 }
c0f4dfd4
PM
3698 }
3699 if (all_lazy)
3700 *all_lazy = al;
3701 return hc;
64db4cff
PM
3702}
3703
a83eff0a
PM
3704/*
3705 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3706 * the compiler is expected to optimize this away.
3707 */
e66c33d5 3708static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3709 int cpu, unsigned long done)
3710{
3711 trace_rcu_barrier(rsp->name, s, cpu,
3712 atomic_read(&rsp->barrier_cpu_count), done);
3713}
3714
b1420f1c
PM
3715/*
3716 * RCU callback function for _rcu_barrier(). If we are last, wake
3717 * up the task executing _rcu_barrier().
3718 */
24ebbca8 3719static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3720{
24ebbca8
PM
3721 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3722 struct rcu_state *rsp = rdp->rsp;
3723
a83eff0a 3724 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 3725 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 3726 complete(&rsp->barrier_completion);
a83eff0a 3727 } else {
4f525a52 3728 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 3729 }
d0ec774c
PM
3730}
3731
3732/*
3733 * Called with preemption disabled, and from cross-cpu IRQ context.
3734 */
3735static void rcu_barrier_func(void *type)
3736{
037b64ed 3737 struct rcu_state *rsp = type;
fa07a58f 3738 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3739
4f525a52 3740 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
24ebbca8 3741 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3742 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3743}
3744
d0ec774c
PM
3745/*
3746 * Orchestrate the specified type of RCU barrier, waiting for all
3747 * RCU callbacks of the specified type to complete.
3748 */
037b64ed 3749static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3750{
b1420f1c 3751 int cpu;
b1420f1c 3752 struct rcu_data *rdp;
4f525a52 3753 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3754
4f525a52 3755 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 3756
e74f4c45 3757 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3758 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3759
4f525a52
PM
3760 /* Did someone else do our work for us? */
3761 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3762 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
3763 smp_mb(); /* caller's subsequent code after above check. */
3764 mutex_unlock(&rsp->barrier_mutex);
3765 return;
3766 }
3767
4f525a52
PM
3768 /* Mark the start of the barrier operation. */
3769 rcu_seq_start(&rsp->barrier_sequence);
3770 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 3771
d0ec774c 3772 /*
b1420f1c
PM
3773 * Initialize the count to one rather than to zero in order to
3774 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3775 * (or preemption of this task). Exclude CPU-hotplug operations
3776 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3777 */
7db74df8 3778 init_completion(&rsp->barrier_completion);
24ebbca8 3779 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3780 get_online_cpus();
b1420f1c
PM
3781
3782 /*
1331e7a1
PM
3783 * Force each CPU with callbacks to register a new callback.
3784 * When that callback is invoked, we will know that all of the
3785 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3786 */
3fbfbf7a 3787 for_each_possible_cpu(cpu) {
d1e43fa5 3788 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3789 continue;
b1420f1c 3790 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3791 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3792 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3793 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 3794 rsp->barrier_sequence);
d7e29933
PM
3795 } else {
3796 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 3797 rsp->barrier_sequence);
41050a00 3798 smp_mb__before_atomic();
d7e29933
PM
3799 atomic_inc(&rsp->barrier_cpu_count);
3800 __call_rcu(&rdp->barrier_head,
3801 rcu_barrier_callback, rsp, cpu, 0);
3802 }
7d0ae808 3803 } else if (READ_ONCE(rdp->qlen)) {
a83eff0a 3804 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 3805 rsp->barrier_sequence);
037b64ed 3806 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3807 } else {
a83eff0a 3808 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 3809 rsp->barrier_sequence);
b1420f1c
PM
3810 }
3811 }
1331e7a1 3812 put_online_cpus();
b1420f1c
PM
3813
3814 /*
3815 * Now that we have an rcu_barrier_callback() callback on each
3816 * CPU, and thus each counted, remove the initial count.
3817 */
24ebbca8 3818 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3819 complete(&rsp->barrier_completion);
b1420f1c
PM
3820
3821 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3822 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3823
4f525a52
PM
3824 /* Mark the end of the barrier operation. */
3825 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3826 rcu_seq_end(&rsp->barrier_sequence);
3827
b1420f1c 3828 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3829 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3830}
d0ec774c
PM
3831
3832/**
3833 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3834 */
3835void rcu_barrier_bh(void)
3836{
037b64ed 3837 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3838}
3839EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3840
3841/**
3842 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3843 */
3844void rcu_barrier_sched(void)
3845{
037b64ed 3846 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3847}
3848EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3849
0aa04b05
PM
3850/*
3851 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3852 * first CPU in a given leaf rcu_node structure coming online. The caller
3853 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3854 * disabled.
3855 */
3856static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3857{
3858 long mask;
3859 struct rcu_node *rnp = rnp_leaf;
3860
3861 for (;;) {
3862 mask = rnp->grpmask;
3863 rnp = rnp->parent;
3864 if (rnp == NULL)
3865 return;
3866 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3867 rnp->qsmaskinit |= mask;
3868 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3869 }
3870}
3871
64db4cff 3872/*
27569620 3873 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3874 */
27569620
PM
3875static void __init
3876rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff 3877{
19a5ecde 3878 static struct lock_class_key rcu_exp_sched_rdp_class;
64db4cff 3879 unsigned long flags;
394f99a9 3880 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3881 struct rcu_node *rnp = rcu_get_root(rsp);
3882
3883 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3884 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3885 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
27569620 3886 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3887 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3888 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3889 rdp->cpu = cpu;
d4c08f2a 3890 rdp->rsp = rsp;
2cd6ffaf 3891 mutex_init(&rdp->exp_funnel_mutex);
3fbfbf7a 3892 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3893 raw_spin_unlock_irqrestore(&rnp->lock, flags);
19a5ecde
PM
3894 if (rsp == &rcu_sched_state)
3895 lockdep_set_class_and_name(&rdp->exp_funnel_mutex,
3896 &rcu_exp_sched_rdp_class,
3897 "rcu_data_exp_sched");
27569620
PM
3898}
3899
3900/*
3901 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3902 * offline event can be happening at a given time. Note also that we
3903 * can accept some slop in the rsp->completed access due to the fact
3904 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3905 */
49fb4c62 3906static void
9b67122a 3907rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3908{
3909 unsigned long flags;
64db4cff 3910 unsigned long mask;
394f99a9 3911 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3912 struct rcu_node *rnp = rcu_get_root(rsp);
3913
3914 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3915 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3916 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3917 rdp->qlen_last_fqs_check = 0;
3918 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3919 rdp->blimit = blimit;
39c8d313
PM
3920 if (!rdp->nxtlist)
3921 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3922 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3923 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3924 atomic_set(&rdp->dynticks->dynticks,
3925 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3926 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3927
0aa04b05
PM
3928 /*
3929 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3930 * propagation up the rcu_node tree will happen at the beginning
3931 * of the next grace period.
3932 */
64db4cff
PM
3933 rnp = rdp->mynode;
3934 mask = rdp->grpmask;
0aa04b05
PM
3935 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3936 smp_mb__after_unlock_lock();
3937 rnp->qsmaskinitnext |= mask;
3938 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3939 rdp->completed = rnp->completed;
3940 rdp->passed_quiesce = false;
a738eec6 3941 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
0aa04b05
PM
3942 rdp->qs_pending = false;
3943 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3944 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
3945}
3946
49fb4c62 3947static void rcu_prepare_cpu(int cpu)
64db4cff 3948{
6ce75a23
PM
3949 struct rcu_state *rsp;
3950
3951 for_each_rcu_flavor(rsp)
9b67122a 3952 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3953}
3954
3955/*
f41d911f 3956 * Handle CPU online/offline notification events.
64db4cff 3957 */
88428cc5
PM
3958int rcu_cpu_notify(struct notifier_block *self,
3959 unsigned long action, void *hcpu)
64db4cff
PM
3960{
3961 long cpu = (long)hcpu;
e534165b 3962 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3963 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3964 struct rcu_state *rsp;
64db4cff
PM
3965
3966 switch (action) {
3967 case CPU_UP_PREPARE:
3968 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3969 rcu_prepare_cpu(cpu);
3970 rcu_prepare_kthreads(cpu);
35ce7f29 3971 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
3972 break;
3973 case CPU_ONLINE:
0f962a5e 3974 case CPU_DOWN_FAILED:
5d01bbd1 3975 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3976 break;
3977 case CPU_DOWN_PREPARE:
34ed6246 3978 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3979 break;
d0ec774c
PM
3980 case CPU_DYING:
3981 case CPU_DYING_FROZEN:
6ce75a23
PM
3982 for_each_rcu_flavor(rsp)
3983 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3984 break;
88428cc5
PM
3985 case CPU_DYING_IDLE:
3986 for_each_rcu_flavor(rsp) {
3987 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3988 }
3989 break;
64db4cff
PM
3990 case CPU_DEAD:
3991 case CPU_DEAD_FROZEN:
3992 case CPU_UP_CANCELED:
3993 case CPU_UP_CANCELED_FROZEN:
776d6807 3994 for_each_rcu_flavor(rsp) {
6ce75a23 3995 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
3996 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3997 }
64db4cff
PM
3998 break;
3999 default:
4000 break;
4001 }
34ed6246 4002 return NOTIFY_OK;
64db4cff
PM
4003}
4004
d1d74d14
BP
4005static int rcu_pm_notify(struct notifier_block *self,
4006 unsigned long action, void *hcpu)
4007{
4008 switch (action) {
4009 case PM_HIBERNATION_PREPARE:
4010 case PM_SUSPEND_PREPARE:
4011 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 4012 rcu_expedite_gp();
d1d74d14
BP
4013 break;
4014 case PM_POST_HIBERNATION:
4015 case PM_POST_SUSPEND:
5afff48b
PM
4016 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4017 rcu_unexpedite_gp();
d1d74d14
BP
4018 break;
4019 default:
4020 break;
4021 }
4022 return NOTIFY_OK;
4023}
4024
b3dbec76 4025/*
9386c0b7 4026 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
4027 */
4028static int __init rcu_spawn_gp_kthread(void)
4029{
4030 unsigned long flags;
a94844b2 4031 int kthread_prio_in = kthread_prio;
b3dbec76
PM
4032 struct rcu_node *rnp;
4033 struct rcu_state *rsp;
a94844b2 4034 struct sched_param sp;
b3dbec76
PM
4035 struct task_struct *t;
4036
a94844b2
PM
4037 /* Force priority into range. */
4038 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4039 kthread_prio = 1;
4040 else if (kthread_prio < 0)
4041 kthread_prio = 0;
4042 else if (kthread_prio > 99)
4043 kthread_prio = 99;
4044 if (kthread_prio != kthread_prio_in)
4045 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4046 kthread_prio, kthread_prio_in);
4047
9386c0b7 4048 rcu_scheduler_fully_active = 1;
b3dbec76 4049 for_each_rcu_flavor(rsp) {
a94844b2 4050 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
4051 BUG_ON(IS_ERR(t));
4052 rnp = rcu_get_root(rsp);
4053 raw_spin_lock_irqsave(&rnp->lock, flags);
4054 rsp->gp_kthread = t;
a94844b2
PM
4055 if (kthread_prio) {
4056 sp.sched_priority = kthread_prio;
4057 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4058 }
4059 wake_up_process(t);
b3dbec76
PM
4060 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4061 }
35ce7f29 4062 rcu_spawn_nocb_kthreads();
9386c0b7 4063 rcu_spawn_boost_kthreads();
b3dbec76
PM
4064 return 0;
4065}
4066early_initcall(rcu_spawn_gp_kthread);
4067
bbad9379
PM
4068/*
4069 * This function is invoked towards the end of the scheduler's initialization
4070 * process. Before this is called, the idle task might contain
4071 * RCU read-side critical sections (during which time, this idle
4072 * task is booting the system). After this function is called, the
4073 * idle tasks are prohibited from containing RCU read-side critical
4074 * sections. This function also enables RCU lockdep checking.
4075 */
4076void rcu_scheduler_starting(void)
4077{
4078 WARN_ON(num_online_cpus() != 1);
4079 WARN_ON(nr_context_switches() > 0);
4080 rcu_scheduler_active = 1;
4081}
4082
64db4cff
PM
4083/*
4084 * Compute the per-level fanout, either using the exact fanout specified
7fa27001 4085 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
64db4cff 4086 */
199977bf 4087static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
64db4cff 4088{
64db4cff
PM
4089 int i;
4090
7fa27001 4091 if (rcu_fanout_exact) {
199977bf 4092 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
66292405 4093 for (i = rcu_num_lvls - 2; i >= 0; i--)
199977bf 4094 levelspread[i] = RCU_FANOUT;
66292405
PM
4095 } else {
4096 int ccur;
4097 int cprv;
4098
4099 cprv = nr_cpu_ids;
4100 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf
AG
4101 ccur = levelcnt[i];
4102 levelspread[i] = (cprv + ccur - 1) / ccur;
66292405
PM
4103 cprv = ccur;
4104 }
64db4cff
PM
4105 }
4106}
64db4cff
PM
4107
4108/*
4109 * Helper function for rcu_init() that initializes one rcu_state structure.
4110 */
394f99a9
LJ
4111static void __init rcu_init_one(struct rcu_state *rsp,
4112 struct rcu_data __percpu *rda)
64db4cff 4113{
cb007102
AG
4114 static const char * const buf[] = RCU_NODE_NAME_INIT;
4115 static const char * const fqs[] = RCU_FQS_NAME_INIT;
385b73c0 4116 static const char * const exp[] = RCU_EXP_NAME_INIT;
af859bea 4117 static const char * const exp_sched[] = RCU_EXP_SCHED_NAME_INIT;
4a81e832 4118 static u8 fl_mask = 0x1;
199977bf
AG
4119
4120 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4121 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4122 int cpustride = 1;
4123 int i;
4124 int j;
4125 struct rcu_node *rnp;
4126
05b84aec 4127 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4128
3eaaaf6c
PM
4129 /* Silence gcc 4.8 false positive about array index out of range. */
4130 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4131 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4132
64db4cff
PM
4133 /* Initialize the level-tracking arrays. */
4134
f885b7f2 4135 for (i = 0; i < rcu_num_lvls; i++)
199977bf 4136 levelcnt[i] = num_rcu_lvl[i];
f885b7f2 4137 for (i = 1; i < rcu_num_lvls; i++)
199977bf
AG
4138 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4139 rcu_init_levelspread(levelspread, levelcnt);
4a81e832
PM
4140 rsp->flavor_mask = fl_mask;
4141 fl_mask <<= 1;
64db4cff
PM
4142
4143 /* Initialize the elements themselves, starting from the leaves. */
4144
f885b7f2 4145 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4146 cpustride *= levelspread[i];
64db4cff 4147 rnp = rsp->level[i];
199977bf 4148 for (j = 0; j < levelcnt[i]; j++, rnp++) {
1304afb2 4149 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
4150 lockdep_set_class_and_name(&rnp->lock,
4151 &rcu_node_class[i], buf[i]);
394f2769
PM
4152 raw_spin_lock_init(&rnp->fqslock);
4153 lockdep_set_class_and_name(&rnp->fqslock,
4154 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4155 rnp->gpnum = rsp->gpnum;
4156 rnp->completed = rsp->completed;
64db4cff
PM
4157 rnp->qsmask = 0;
4158 rnp->qsmaskinit = 0;
4159 rnp->grplo = j * cpustride;
4160 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4161 if (rnp->grphi >= nr_cpu_ids)
4162 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4163 if (i == 0) {
4164 rnp->grpnum = 0;
4165 rnp->grpmask = 0;
4166 rnp->parent = NULL;
4167 } else {
199977bf 4168 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4169 rnp->grpmask = 1UL << rnp->grpnum;
4170 rnp->parent = rsp->level[i - 1] +
199977bf 4171 j / levelspread[i - 1];
64db4cff
PM
4172 }
4173 rnp->level = i;
12f5f524 4174 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4175 rcu_init_one_nocb(rnp);
385b73c0 4176 mutex_init(&rnp->exp_funnel_mutex);
af859bea
PM
4177 if (rsp == &rcu_sched_state)
4178 lockdep_set_class_and_name(
4179 &rnp->exp_funnel_mutex,
4180 &rcu_exp_sched_class[i], exp_sched[i]);
4181 else
4182 lockdep_set_class_and_name(
4183 &rnp->exp_funnel_mutex,
4184 &rcu_exp_class[i], exp[i]);
64db4cff
PM
4185 }
4186 }
0c34029a 4187
b3dbec76 4188 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 4189 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4190 for_each_possible_cpu(i) {
4a90a068 4191 while (i > rnp->grphi)
0c34029a 4192 rnp++;
394f99a9 4193 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4194 rcu_boot_init_percpu_data(i, rsp);
4195 }
6ce75a23 4196 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4197}
4198
f885b7f2
PM
4199/*
4200 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4201 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4202 * the ->node array in the rcu_state structure.
4203 */
4204static void __init rcu_init_geometry(void)
4205{
026ad283 4206 ulong d;
f885b7f2 4207 int i;
05b84aec 4208 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4209
026ad283
PM
4210 /*
4211 * Initialize any unspecified boot parameters.
4212 * The default values of jiffies_till_first_fqs and
4213 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4214 * value, which is a function of HZ, then adding one for each
4215 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4216 */
4217 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4218 if (jiffies_till_first_fqs == ULONG_MAX)
4219 jiffies_till_first_fqs = d;
4220 if (jiffies_till_next_fqs == ULONG_MAX)
4221 jiffies_till_next_fqs = d;
4222
f885b7f2 4223 /* If the compile-time values are accurate, just leave. */
47d631af 4224 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4225 nr_cpu_ids == NR_CPUS)
f885b7f2 4226 return;
39479098
PM
4227 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4228 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4229
f885b7f2 4230 /*
ee968ac6
PM
4231 * The boot-time rcu_fanout_leaf parameter must be at least two
4232 * and cannot exceed the number of bits in the rcu_node masks.
4233 * Complain and fall back to the compile-time values if this
4234 * limit is exceeded.
f885b7f2 4235 */
ee968ac6 4236 if (rcu_fanout_leaf < 2 ||
75cf15a4 4237 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4238 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4239 WARN_ON(1);
4240 return;
4241 }
4242
f885b7f2
PM
4243 /*
4244 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4245 * with the given number of levels.
f885b7f2 4246 */
9618138b 4247 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4248 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4249 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4250
4251 /*
75cf15a4 4252 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4253 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4254 */
ee968ac6
PM
4255 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4256 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4257 WARN_ON(1);
4258 return;
4259 }
f885b7f2 4260
679f9858 4261 /* Calculate the number of levels in the tree. */
9618138b 4262 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4263 }
9618138b 4264 rcu_num_lvls = i + 1;
679f9858 4265
f885b7f2 4266 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4267 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4268 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4269 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4270 }
f885b7f2
PM
4271
4272 /* Calculate the total number of rcu_node structures. */
4273 rcu_num_nodes = 0;
679f9858 4274 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4275 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4276}
4277
a3dc2948
PM
4278/*
4279 * Dump out the structure of the rcu_node combining tree associated
4280 * with the rcu_state structure referenced by rsp.
4281 */
4282static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4283{
4284 int level = 0;
4285 struct rcu_node *rnp;
4286
4287 pr_info("rcu_node tree layout dump\n");
4288 pr_info(" ");
4289 rcu_for_each_node_breadth_first(rsp, rnp) {
4290 if (rnp->level != level) {
4291 pr_cont("\n");
4292 pr_info(" ");
4293 level = rnp->level;
4294 }
4295 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4296 }
4297 pr_cont("\n");
4298}
4299
9f680ab4 4300void __init rcu_init(void)
64db4cff 4301{
017c4261 4302 int cpu;
9f680ab4 4303
47627678
PM
4304 rcu_early_boot_tests();
4305
f41d911f 4306 rcu_bootup_announce();
f885b7f2 4307 rcu_init_geometry();
394f99a9 4308 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 4309 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
a3dc2948
PM
4310 if (dump_tree)
4311 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4312 __rcu_init_preempt();
b5b39360 4313 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4314
4315 /*
4316 * We don't need protection against CPU-hotplug here because
4317 * this is called early in boot, before either interrupts
4318 * or the scheduler are operational.
4319 */
4320 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 4321 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
4322 for_each_online_cpu(cpu)
4323 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
4324}
4325
4102adab 4326#include "tree_plugin.h"
This page took 0.822734 seconds and 5 git commands to generate.