torture: Dump ftrace buffer when the RCU grace period stalls
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a41bfeb2 82#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
83static char sname##_varname[] = #sname; \
84static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 85struct rcu_state sname##_state = { \
6c90cc7b 86 .level = { &sname##_state.node[0] }, \
037b64ed 87 .call = cr, \
af446b70 88 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
89 .gpnum = 0UL - 300UL, \
90 .completed = 0UL - 300UL, \
7b2e6011 91 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
92 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
93 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 94 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 95 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 96 .name = sname##_varname, \
a4889858 97 .abbr = sabbr, \
a41bfeb2
SRRH
98}; \
99DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 100
a41bfeb2
SRRH
101RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
102RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 103
27f4d280 104static struct rcu_state *rcu_state;
6ce75a23 105LIST_HEAD(rcu_struct_flavors);
27f4d280 106
f885b7f2
PM
107/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
108static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 109module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
112 NUM_RCU_LVL_0,
113 NUM_RCU_LVL_1,
114 NUM_RCU_LVL_2,
115 NUM_RCU_LVL_3,
116 NUM_RCU_LVL_4,
117};
118int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
119
b0d30417
PM
120/*
121 * The rcu_scheduler_active variable transitions from zero to one just
122 * before the first task is spawned. So when this variable is zero, RCU
123 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 124 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
125 * is one, RCU must actually do all the hard work required to detect real
126 * grace periods. This variable is also used to suppress boot-time false
127 * positives from lockdep-RCU error checking.
128 */
bbad9379
PM
129int rcu_scheduler_active __read_mostly;
130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
b0d30417
PM
132/*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144static int rcu_scheduler_fully_active __read_mostly;
145
a46e0899
PM
146#ifdef CONFIG_RCU_BOOST
147
a26ac245
PM
148/*
149 * Control variables for per-CPU and per-rcu_node kthreads. These
150 * handle all flavors of RCU.
151 */
152static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 153DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 155DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 156
a46e0899
PM
157#endif /* #ifdef CONFIG_RCU_BOOST */
158
5d01bbd1 159static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
160static void invoke_rcu_core(void);
161static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 162
4a298656
PM
163/*
164 * Track the rcutorture test sequence number and the update version
165 * number within a given test. The rcutorture_testseq is incremented
166 * on every rcutorture module load and unload, so has an odd value
167 * when a test is running. The rcutorture_vernum is set to zero
168 * when rcutorture starts and is incremented on each rcutorture update.
169 * These variables enable correlating rcutorture output with the
170 * RCU tracing information.
171 */
172unsigned long rcutorture_testseq;
173unsigned long rcutorture_vernum;
174
fc2219d4
PM
175/*
176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
177 * permit this function to be invoked without holding the root rcu_node
178 * structure's ->lock, but of course results can be subject to change.
179 */
180static int rcu_gp_in_progress(struct rcu_state *rsp)
181{
182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183}
184
b1f77b05 185/*
d6714c22 186 * Note a quiescent state. Because we do not need to know
b1f77b05 187 * how many quiescent states passed, just if there was at least
d6714c22 188 * one since the start of the grace period, this just sets a flag.
e4cc1f22 189 * The caller must have disabled preemption.
b1f77b05 190 */
d6714c22 191void rcu_sched_qs(int cpu)
b1f77b05 192{
25502a6c 193 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 194
e4cc1f22 195 if (rdp->passed_quiesce == 0)
f7f7bac9 196 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 197 rdp->passed_quiesce = 1;
b1f77b05
IM
198}
199
d6714c22 200void rcu_bh_qs(int cpu)
b1f77b05 201{
25502a6c 202 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 203
e4cc1f22 204 if (rdp->passed_quiesce == 0)
f7f7bac9 205 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 206 rdp->passed_quiesce = 1;
b1f77b05 207}
64db4cff 208
25502a6c
PM
209/*
210 * Note a context switch. This is a quiescent state for RCU-sched,
211 * and requires special handling for preemptible RCU.
e4cc1f22 212 * The caller must have disabled preemption.
25502a6c
PM
213 */
214void rcu_note_context_switch(int cpu)
215{
f7f7bac9 216 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 217 rcu_sched_qs(cpu);
cba6d0d6 218 rcu_preempt_note_context_switch(cpu);
f7f7bac9 219 trace_rcu_utilization(TPS("End context switch"));
25502a6c 220}
29ce8310 221EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 222
01896f7e 223static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 224 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 225 .dynticks = ATOMIC_INIT(1),
2333210b
PM
226#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
227 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
228 .dynticks_idle = ATOMIC_INIT(1),
229#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
90a4d2c0 230};
64db4cff 231
878d7439
ED
232static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
233static long qhimark = 10000; /* If this many pending, ignore blimit. */
234static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 235
878d7439
ED
236module_param(blimit, long, 0444);
237module_param(qhimark, long, 0444);
238module_param(qlowmark, long, 0444);
3d76c082 239
026ad283
PM
240static ulong jiffies_till_first_fqs = ULONG_MAX;
241static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
242
243module_param(jiffies_till_first_fqs, ulong, 0644);
244module_param(jiffies_till_next_fqs, ulong, 0644);
245
910ee45d
PM
246static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
247 struct rcu_data *rdp);
217af2a2
PM
248static void force_qs_rnp(struct rcu_state *rsp,
249 int (*f)(struct rcu_data *rsp, bool *isidle,
250 unsigned long *maxj),
251 bool *isidle, unsigned long *maxj);
4cdfc175 252static void force_quiescent_state(struct rcu_state *rsp);
a157229c 253static int rcu_pending(int cpu);
64db4cff
PM
254
255/*
d6714c22 256 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 257 */
d6714c22 258long rcu_batches_completed_sched(void)
64db4cff 259{
d6714c22 260 return rcu_sched_state.completed;
64db4cff 261}
d6714c22 262EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
263
264/*
265 * Return the number of RCU BH batches processed thus far for debug & stats.
266 */
267long rcu_batches_completed_bh(void)
268{
269 return rcu_bh_state.completed;
270}
271EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
272
bf66f18e
PM
273/*
274 * Force a quiescent state for RCU BH.
275 */
276void rcu_bh_force_quiescent_state(void)
277{
4cdfc175 278 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
279}
280EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
281
4a298656
PM
282/*
283 * Record the number of times rcutorture tests have been initiated and
284 * terminated. This information allows the debugfs tracing stats to be
285 * correlated to the rcutorture messages, even when the rcutorture module
286 * is being repeatedly loaded and unloaded. In other words, we cannot
287 * store this state in rcutorture itself.
288 */
289void rcutorture_record_test_transition(void)
290{
291 rcutorture_testseq++;
292 rcutorture_vernum = 0;
293}
294EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
295
ad0dc7f9
PM
296/*
297 * Send along grace-period-related data for rcutorture diagnostics.
298 */
299void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
300 unsigned long *gpnum, unsigned long *completed)
301{
302 struct rcu_state *rsp = NULL;
303
304 switch (test_type) {
305 case RCU_FLAVOR:
306 rsp = rcu_state;
307 break;
308 case RCU_BH_FLAVOR:
309 rsp = &rcu_bh_state;
310 break;
311 case RCU_SCHED_FLAVOR:
312 rsp = &rcu_sched_state;
313 break;
314 default:
315 break;
316 }
317 if (rsp != NULL) {
318 *flags = ACCESS_ONCE(rsp->gp_flags);
319 *gpnum = ACCESS_ONCE(rsp->gpnum);
320 *completed = ACCESS_ONCE(rsp->completed);
321 return;
322 }
323 *flags = 0;
324 *gpnum = 0;
325 *completed = 0;
326}
327EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
328
4a298656
PM
329/*
330 * Record the number of writer passes through the current rcutorture test.
331 * This is also used to correlate debugfs tracing stats with the rcutorture
332 * messages.
333 */
334void rcutorture_record_progress(unsigned long vernum)
335{
336 rcutorture_vernum++;
337}
338EXPORT_SYMBOL_GPL(rcutorture_record_progress);
339
bf66f18e
PM
340/*
341 * Force a quiescent state for RCU-sched.
342 */
343void rcu_sched_force_quiescent_state(void)
344{
4cdfc175 345 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
346}
347EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
348
64db4cff
PM
349/*
350 * Does the CPU have callbacks ready to be invoked?
351 */
352static int
353cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
354{
3fbfbf7a
PM
355 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
356 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
357}
358
359/*
dc35c893
PM
360 * Does the current CPU require a not-yet-started grace period?
361 * The caller must have disabled interrupts to prevent races with
362 * normal callback registry.
64db4cff
PM
363 */
364static int
365cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
366{
dc35c893 367 int i;
3fbfbf7a 368
dc35c893
PM
369 if (rcu_gp_in_progress(rsp))
370 return 0; /* No, a grace period is already in progress. */
dae6e64d 371 if (rcu_nocb_needs_gp(rsp))
34ed6246 372 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
373 if (!rdp->nxttail[RCU_NEXT_TAIL])
374 return 0; /* No, this is a no-CBs (or offline) CPU. */
375 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
376 return 1; /* Yes, this CPU has newly registered callbacks. */
377 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
378 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
379 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
380 rdp->nxtcompleted[i]))
381 return 1; /* Yes, CBs for future grace period. */
382 return 0; /* No grace period needed. */
64db4cff
PM
383}
384
385/*
386 * Return the root node of the specified rcu_state structure.
387 */
388static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
389{
390 return &rsp->node[0];
391}
392
9b2e4f18 393/*
adf5091e 394 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
395 *
396 * If the new value of the ->dynticks_nesting counter now is zero,
397 * we really have entered idle, and must do the appropriate accounting.
398 * The caller must have disabled interrupts.
399 */
adf5091e
FW
400static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
401 bool user)
9b2e4f18 402{
96d3fd0d
PM
403 struct rcu_state *rsp;
404 struct rcu_data *rdp;
405
f7f7bac9 406 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 407 if (!user && !is_idle_task(current)) {
289828e6
PM
408 struct task_struct *idle __maybe_unused =
409 idle_task(smp_processor_id());
0989cb46 410
f7f7bac9 411 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 412 ftrace_dump(DUMP_ORIG);
0989cb46
PM
413 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
414 current->pid, current->comm,
415 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 416 }
96d3fd0d
PM
417 for_each_rcu_flavor(rsp) {
418 rdp = this_cpu_ptr(rsp->rda);
419 do_nocb_deferred_wakeup(rdp);
420 }
aea1b35e 421 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
422 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
423 smp_mb__before_atomic_inc(); /* See above. */
424 atomic_inc(&rdtp->dynticks);
425 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
426 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
427
428 /*
adf5091e 429 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
430 * in an RCU read-side critical section.
431 */
432 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
433 "Illegal idle entry in RCU read-side critical section.");
434 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
435 "Illegal idle entry in RCU-bh read-side critical section.");
436 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
437 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 438}
64db4cff 439
adf5091e
FW
440/*
441 * Enter an RCU extended quiescent state, which can be either the
442 * idle loop or adaptive-tickless usermode execution.
64db4cff 443 */
adf5091e 444static void rcu_eqs_enter(bool user)
64db4cff 445{
4145fa7f 446 long long oldval;
64db4cff
PM
447 struct rcu_dynticks *rdtp;
448
c9d4b0af 449 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 450 oldval = rdtp->dynticks_nesting;
29e37d81 451 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 452 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 453 rdtp->dynticks_nesting = 0;
3a592405
PM
454 rcu_eqs_enter_common(rdtp, oldval, user);
455 } else {
29e37d81 456 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 457 }
64db4cff 458}
adf5091e
FW
459
460/**
461 * rcu_idle_enter - inform RCU that current CPU is entering idle
462 *
463 * Enter idle mode, in other words, -leave- the mode in which RCU
464 * read-side critical sections can occur. (Though RCU read-side
465 * critical sections can occur in irq handlers in idle, a possibility
466 * handled by irq_enter() and irq_exit().)
467 *
468 * We crowbar the ->dynticks_nesting field to zero to allow for
469 * the possibility of usermode upcalls having messed up our count
470 * of interrupt nesting level during the prior busy period.
471 */
472void rcu_idle_enter(void)
473{
c5d900bf
FW
474 unsigned long flags;
475
476 local_irq_save(flags);
cb349ca9 477 rcu_eqs_enter(false);
c9d4b0af 478 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 479 local_irq_restore(flags);
adf5091e 480}
8a2ecf47 481EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 482
2b1d5024 483#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
484/**
485 * rcu_user_enter - inform RCU that we are resuming userspace.
486 *
487 * Enter RCU idle mode right before resuming userspace. No use of RCU
488 * is permitted between this call and rcu_user_exit(). This way the
489 * CPU doesn't need to maintain the tick for RCU maintenance purposes
490 * when the CPU runs in userspace.
491 */
492void rcu_user_enter(void)
493{
91d1aa43 494 rcu_eqs_enter(1);
adf5091e 495}
2b1d5024 496#endif /* CONFIG_RCU_USER_QS */
19dd1591 497
9b2e4f18
PM
498/**
499 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
500 *
501 * Exit from an interrupt handler, which might possibly result in entering
502 * idle mode, in other words, leaving the mode in which read-side critical
503 * sections can occur.
64db4cff 504 *
9b2e4f18
PM
505 * This code assumes that the idle loop never does anything that might
506 * result in unbalanced calls to irq_enter() and irq_exit(). If your
507 * architecture violates this assumption, RCU will give you what you
508 * deserve, good and hard. But very infrequently and irreproducibly.
509 *
510 * Use things like work queues to work around this limitation.
511 *
512 * You have been warned.
64db4cff 513 */
9b2e4f18 514void rcu_irq_exit(void)
64db4cff
PM
515{
516 unsigned long flags;
4145fa7f 517 long long oldval;
64db4cff
PM
518 struct rcu_dynticks *rdtp;
519
520 local_irq_save(flags);
c9d4b0af 521 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 522 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
523 rdtp->dynticks_nesting--;
524 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 525 if (rdtp->dynticks_nesting)
f7f7bac9 526 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 527 else
cb349ca9 528 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 529 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
530 local_irq_restore(flags);
531}
532
533/*
adf5091e 534 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
535 *
536 * If the new value of the ->dynticks_nesting counter was previously zero,
537 * we really have exited idle, and must do the appropriate accounting.
538 * The caller must have disabled interrupts.
539 */
adf5091e
FW
540static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
541 int user)
9b2e4f18 542{
23b5c8fa
PM
543 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
544 atomic_inc(&rdtp->dynticks);
545 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
546 smp_mb__after_atomic_inc(); /* See above. */
547 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 548 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 549 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 550 if (!user && !is_idle_task(current)) {
289828e6
PM
551 struct task_struct *idle __maybe_unused =
552 idle_task(smp_processor_id());
0989cb46 553
f7f7bac9 554 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 555 oldval, rdtp->dynticks_nesting);
bf1304e9 556 ftrace_dump(DUMP_ORIG);
0989cb46
PM
557 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
558 current->pid, current->comm,
559 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
560 }
561}
562
adf5091e
FW
563/*
564 * Exit an RCU extended quiescent state, which can be either the
565 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 566 */
adf5091e 567static void rcu_eqs_exit(bool user)
9b2e4f18 568{
9b2e4f18
PM
569 struct rcu_dynticks *rdtp;
570 long long oldval;
571
c9d4b0af 572 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 573 oldval = rdtp->dynticks_nesting;
29e37d81 574 WARN_ON_ONCE(oldval < 0);
3a592405 575 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 576 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 577 } else {
29e37d81 578 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3a592405
PM
579 rcu_eqs_exit_common(rdtp, oldval, user);
580 }
9b2e4f18 581}
adf5091e
FW
582
583/**
584 * rcu_idle_exit - inform RCU that current CPU is leaving idle
585 *
586 * Exit idle mode, in other words, -enter- the mode in which RCU
587 * read-side critical sections can occur.
588 *
589 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
590 * allow for the possibility of usermode upcalls messing up our count
591 * of interrupt nesting level during the busy period that is just
592 * now starting.
593 */
594void rcu_idle_exit(void)
595{
c5d900bf
FW
596 unsigned long flags;
597
598 local_irq_save(flags);
cb349ca9 599 rcu_eqs_exit(false);
c9d4b0af 600 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 601 local_irq_restore(flags);
adf5091e 602}
8a2ecf47 603EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 604
2b1d5024 605#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
606/**
607 * rcu_user_exit - inform RCU that we are exiting userspace.
608 *
609 * Exit RCU idle mode while entering the kernel because it can
610 * run a RCU read side critical section anytime.
611 */
612void rcu_user_exit(void)
613{
91d1aa43 614 rcu_eqs_exit(1);
adf5091e 615}
2b1d5024 616#endif /* CONFIG_RCU_USER_QS */
19dd1591 617
9b2e4f18
PM
618/**
619 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
620 *
621 * Enter an interrupt handler, which might possibly result in exiting
622 * idle mode, in other words, entering the mode in which read-side critical
623 * sections can occur.
624 *
625 * Note that the Linux kernel is fully capable of entering an interrupt
626 * handler that it never exits, for example when doing upcalls to
627 * user mode! This code assumes that the idle loop never does upcalls to
628 * user mode. If your architecture does do upcalls from the idle loop (or
629 * does anything else that results in unbalanced calls to the irq_enter()
630 * and irq_exit() functions), RCU will give you what you deserve, good
631 * and hard. But very infrequently and irreproducibly.
632 *
633 * Use things like work queues to work around this limitation.
634 *
635 * You have been warned.
636 */
637void rcu_irq_enter(void)
638{
639 unsigned long flags;
640 struct rcu_dynticks *rdtp;
641 long long oldval;
642
643 local_irq_save(flags);
c9d4b0af 644 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
645 oldval = rdtp->dynticks_nesting;
646 rdtp->dynticks_nesting++;
647 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 648 if (oldval)
f7f7bac9 649 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 650 else
cb349ca9 651 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 652 rcu_sysidle_exit(rdtp, 1);
64db4cff 653 local_irq_restore(flags);
64db4cff
PM
654}
655
656/**
657 * rcu_nmi_enter - inform RCU of entry to NMI context
658 *
659 * If the CPU was idle with dynamic ticks active, and there is no
660 * irq handler running, this updates rdtp->dynticks_nmi to let the
661 * RCU grace-period handling know that the CPU is active.
662 */
663void rcu_nmi_enter(void)
664{
c9d4b0af 665 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 666
23b5c8fa
PM
667 if (rdtp->dynticks_nmi_nesting == 0 &&
668 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 669 return;
23b5c8fa
PM
670 rdtp->dynticks_nmi_nesting++;
671 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
672 atomic_inc(&rdtp->dynticks);
673 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
674 smp_mb__after_atomic_inc(); /* See above. */
675 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
676}
677
678/**
679 * rcu_nmi_exit - inform RCU of exit from NMI context
680 *
681 * If the CPU was idle with dynamic ticks active, and there is no
682 * irq handler running, this updates rdtp->dynticks_nmi to let the
683 * RCU grace-period handling know that the CPU is no longer active.
684 */
685void rcu_nmi_exit(void)
686{
c9d4b0af 687 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 688
23b5c8fa
PM
689 if (rdtp->dynticks_nmi_nesting == 0 ||
690 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 691 return;
23b5c8fa
PM
692 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
693 smp_mb__before_atomic_inc(); /* See above. */
694 atomic_inc(&rdtp->dynticks);
695 smp_mb__after_atomic_inc(); /* Force delay to next write. */
696 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
697}
698
699/**
5c173eb8
PM
700 * __rcu_is_watching - are RCU read-side critical sections safe?
701 *
702 * Return true if RCU is watching the running CPU, which means that
703 * this CPU can safely enter RCU read-side critical sections. Unlike
704 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
705 * least disabled preemption.
706 */
9418fb20 707bool notrace __rcu_is_watching(void)
5c173eb8
PM
708{
709 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
710}
711
712/**
713 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 714 *
9b2e4f18 715 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 716 * or NMI handler, return true.
64db4cff 717 */
9418fb20 718bool notrace rcu_is_watching(void)
64db4cff 719{
34240697
PM
720 int ret;
721
722 preempt_disable();
5c173eb8 723 ret = __rcu_is_watching();
34240697
PM
724 preempt_enable();
725 return ret;
64db4cff 726}
5c173eb8 727EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 728
62fde6ed 729#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
730
731/*
732 * Is the current CPU online? Disable preemption to avoid false positives
733 * that could otherwise happen due to the current CPU number being sampled,
734 * this task being preempted, its old CPU being taken offline, resuming
735 * on some other CPU, then determining that its old CPU is now offline.
736 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
737 * the check for rcu_scheduler_fully_active. Note also that it is OK
738 * for a CPU coming online to use RCU for one jiffy prior to marking itself
739 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
740 * offline to continue to use RCU for one jiffy after marking itself
741 * offline in the cpu_online_mask. This leniency is necessary given the
742 * non-atomic nature of the online and offline processing, for example,
743 * the fact that a CPU enters the scheduler after completing the CPU_DYING
744 * notifiers.
745 *
746 * This is also why RCU internally marks CPUs online during the
747 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
748 *
749 * Disable checking if in an NMI handler because we cannot safely report
750 * errors from NMI handlers anyway.
751 */
752bool rcu_lockdep_current_cpu_online(void)
753{
2036d94a
PM
754 struct rcu_data *rdp;
755 struct rcu_node *rnp;
c0d6d01b
PM
756 bool ret;
757
758 if (in_nmi())
f6f7ee9a 759 return true;
c0d6d01b 760 preempt_disable();
c9d4b0af 761 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
762 rnp = rdp->mynode;
763 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
764 !rcu_scheduler_fully_active;
765 preempt_enable();
766 return ret;
767}
768EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
769
62fde6ed 770#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 771
64db4cff 772/**
9b2e4f18 773 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 774 *
9b2e4f18
PM
775 * If the current CPU is idle or running at a first-level (not nested)
776 * interrupt from idle, return true. The caller must have at least
777 * disabled preemption.
64db4cff 778 */
62e3cb14 779static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 780{
c9d4b0af 781 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
782}
783
64db4cff
PM
784/*
785 * Snapshot the specified CPU's dynticks counter so that we can later
786 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 787 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 788 */
217af2a2
PM
789static int dyntick_save_progress_counter(struct rcu_data *rdp,
790 bool *isidle, unsigned long *maxj)
64db4cff 791{
23b5c8fa 792 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 793 rcu_sysidle_check_cpu(rdp, isidle, maxj);
f0e7c19d 794 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
795}
796
6193c76a
PM
797/*
798 * This function really isn't for public consumption, but RCU is special in
799 * that context switches can allow the state machine to make progress.
800 */
801extern void resched_cpu(int cpu);
802
64db4cff
PM
803/*
804 * Return true if the specified CPU has passed through a quiescent
805 * state by virtue of being in or having passed through an dynticks
806 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 807 * for this same CPU, or by virtue of having been offline.
64db4cff 808 */
217af2a2
PM
809static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
810 bool *isidle, unsigned long *maxj)
64db4cff 811{
7eb4f455
PM
812 unsigned int curr;
813 unsigned int snap;
64db4cff 814
7eb4f455
PM
815 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
816 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
817
818 /*
819 * If the CPU passed through or entered a dynticks idle phase with
820 * no active irq/NMI handlers, then we can safely pretend that the CPU
821 * already acknowledged the request to pass through a quiescent
822 * state. Either way, that CPU cannot possibly be in an RCU
823 * read-side critical section that started before the beginning
824 * of the current RCU grace period.
825 */
7eb4f455 826 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 827 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
828 rdp->dynticks_fqs++;
829 return 1;
830 }
831
a82dcc76
PM
832 /*
833 * Check for the CPU being offline, but only if the grace period
834 * is old enough. We don't need to worry about the CPU changing
835 * state: If we see it offline even once, it has been through a
836 * quiescent state.
837 *
838 * The reason for insisting that the grace period be at least
839 * one jiffy old is that CPUs that are not quite online and that
840 * have just gone offline can still execute RCU read-side critical
841 * sections.
842 */
843 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
844 return 0; /* Grace period is not old enough. */
845 barrier();
846 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 847 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
848 rdp->offline_fqs++;
849 return 1;
850 }
65d798f0
PM
851
852 /*
853 * There is a possibility that a CPU in adaptive-ticks state
854 * might run in the kernel with the scheduling-clock tick disabled
855 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
856 * force the CPU to restart the scheduling-clock tick in this
857 * CPU is in this state.
858 */
859 rcu_kick_nohz_cpu(rdp->cpu);
860
6193c76a
PM
861 /*
862 * Alternatively, the CPU might be running in the kernel
863 * for an extended period of time without a quiescent state.
864 * Attempt to force the CPU through the scheduler to gain the
865 * needed quiescent state, but only if the grace period has gone
866 * on for an uncommonly long time. If there are many stuck CPUs,
867 * we will beat on the first one until it gets unstuck, then move
868 * to the next. Only do this for the primary flavor of RCU.
869 */
870 if (rdp->rsp == rcu_state &&
cb1e78cf 871 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
6193c76a
PM
872 rdp->rsp->jiffies_resched += 5;
873 resched_cpu(rdp->cpu);
874 }
875
a82dcc76 876 return 0;
64db4cff
PM
877}
878
64db4cff
PM
879static void record_gp_stall_check_time(struct rcu_state *rsp)
880{
cb1e78cf 881 unsigned long j = jiffies;
6193c76a 882 unsigned long j1;
26cdfedf
PM
883
884 rsp->gp_start = j;
885 smp_wmb(); /* Record start time before stall time. */
6193c76a
PM
886 j1 = rcu_jiffies_till_stall_check();
887 rsp->jiffies_stall = j + j1;
888 rsp->jiffies_resched = j + j1 / 2;
64db4cff
PM
889}
890
b637a328
PM
891/*
892 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
893 * for architectures that do not implement trigger_all_cpu_backtrace().
894 * The NMI-triggered stack traces are more accurate because they are
895 * printed by the target CPU.
896 */
897static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
898{
899 int cpu;
900 unsigned long flags;
901 struct rcu_node *rnp;
902
903 rcu_for_each_leaf_node(rsp, rnp) {
904 raw_spin_lock_irqsave(&rnp->lock, flags);
905 if (rnp->qsmask != 0) {
906 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
907 if (rnp->qsmask & (1UL << cpu))
908 dump_cpu_task(rnp->grplo + cpu);
909 }
910 raw_spin_unlock_irqrestore(&rnp->lock, flags);
911 }
912}
913
64db4cff
PM
914static void print_other_cpu_stall(struct rcu_state *rsp)
915{
916 int cpu;
917 long delta;
918 unsigned long flags;
285fe294 919 int ndetected = 0;
64db4cff 920 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 921 long totqlen = 0;
64db4cff
PM
922
923 /* Only let one CPU complain about others per time interval. */
924
1304afb2 925 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 926 delta = jiffies - rsp->jiffies_stall;
fc2219d4 927 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 928 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
929 return;
930 }
6bfc09e2 931 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 932 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 933
8cdd32a9
PM
934 /*
935 * OK, time to rat on our buddy...
936 * See Documentation/RCU/stallwarn.txt for info on how to debug
937 * RCU CPU stall warnings.
938 */
d7f3e207 939 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 940 rsp->name);
a858af28 941 print_cpu_stall_info_begin();
a0b6c9a7 942 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 943 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 944 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
945 if (rnp->qsmask != 0) {
946 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
947 if (rnp->qsmask & (1UL << cpu)) {
948 print_cpu_stall_info(rsp,
949 rnp->grplo + cpu);
950 ndetected++;
951 }
952 }
3acd9eb3 953 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 954 }
a858af28
PM
955
956 /*
957 * Now rat on any tasks that got kicked up to the root rcu_node
958 * due to CPU offlining.
959 */
960 rnp = rcu_get_root(rsp);
961 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 962 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
963 raw_spin_unlock_irqrestore(&rnp->lock, flags);
964
965 print_cpu_stall_info_end();
53bb857c
PM
966 for_each_possible_cpu(cpu)
967 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
968 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 969 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 970 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 971 if (ndetected == 0)
d7f3e207 972 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 973 else if (!trigger_all_cpu_backtrace())
b637a328 974 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 975
4cdfc175 976 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
977
978 rcu_print_detail_task_stall(rsp);
979
4cdfc175 980 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
981}
982
b021fe3e
PZ
983/*
984 * This function really isn't for public consumption, but RCU is special in
985 * that context switches can allow the state machine to make progress.
986 */
987extern void resched_cpu(int cpu);
988
64db4cff
PM
989static void print_cpu_stall(struct rcu_state *rsp)
990{
53bb857c 991 int cpu;
64db4cff
PM
992 unsigned long flags;
993 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 994 long totqlen = 0;
64db4cff 995
8cdd32a9
PM
996 /*
997 * OK, time to rat on ourselves...
998 * See Documentation/RCU/stallwarn.txt for info on how to debug
999 * RCU CPU stall warnings.
1000 */
d7f3e207 1001 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1002 print_cpu_stall_info_begin();
1003 print_cpu_stall_info(rsp, smp_processor_id());
1004 print_cpu_stall_info_end();
53bb857c
PM
1005 for_each_possible_cpu(cpu)
1006 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1007 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
1008 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
1009 if (!trigger_all_cpu_backtrace())
1010 dump_stack();
c1dc0b9c 1011
1304afb2 1012 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 1013 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 1014 rsp->jiffies_stall = jiffies +
6bfc09e2 1015 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1016 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1017
b021fe3e
PZ
1018 /*
1019 * Attempt to revive the RCU machinery by forcing a context switch.
1020 *
1021 * A context switch would normally allow the RCU state machine to make
1022 * progress and it could be we're stuck in kernel space without context
1023 * switches for an entirely unreasonable amount of time.
1024 */
1025 resched_cpu(smp_processor_id());
64db4cff
PM
1026}
1027
1028static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1029{
26cdfedf
PM
1030 unsigned long completed;
1031 unsigned long gpnum;
1032 unsigned long gps;
bad6e139
PM
1033 unsigned long j;
1034 unsigned long js;
64db4cff
PM
1035 struct rcu_node *rnp;
1036
26cdfedf 1037 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1038 return;
cb1e78cf 1039 j = jiffies;
26cdfedf
PM
1040
1041 /*
1042 * Lots of memory barriers to reject false positives.
1043 *
1044 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1045 * then rsp->gp_start, and finally rsp->completed. These values
1046 * are updated in the opposite order with memory barriers (or
1047 * equivalent) during grace-period initialization and cleanup.
1048 * Now, a false positive can occur if we get an new value of
1049 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1050 * the memory barriers, the only way that this can happen is if one
1051 * grace period ends and another starts between these two fetches.
1052 * Detect this by comparing rsp->completed with the previous fetch
1053 * from rsp->gpnum.
1054 *
1055 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1056 * and rsp->gp_start suffice to forestall false positives.
1057 */
1058 gpnum = ACCESS_ONCE(rsp->gpnum);
1059 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1060 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1061 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1062 gps = ACCESS_ONCE(rsp->gp_start);
1063 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1064 completed = ACCESS_ONCE(rsp->completed);
1065 if (ULONG_CMP_GE(completed, gpnum) ||
1066 ULONG_CMP_LT(j, js) ||
1067 ULONG_CMP_GE(gps, js))
1068 return; /* No stall or GP completed since entering function. */
64db4cff 1069 rnp = rdp->mynode;
c96ea7cf 1070 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1071 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1072
1073 /* We haven't checked in, so go dump stack. */
1074 print_cpu_stall(rsp);
1075
bad6e139
PM
1076 } else if (rcu_gp_in_progress(rsp) &&
1077 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1078
bad6e139 1079 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1080 print_other_cpu_stall(rsp);
1081 }
1082}
1083
53d84e00
PM
1084/**
1085 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1086 *
1087 * Set the stall-warning timeout way off into the future, thus preventing
1088 * any RCU CPU stall-warning messages from appearing in the current set of
1089 * RCU grace periods.
1090 *
1091 * The caller must disable hard irqs.
1092 */
1093void rcu_cpu_stall_reset(void)
1094{
6ce75a23
PM
1095 struct rcu_state *rsp;
1096
1097 for_each_rcu_flavor(rsp)
1098 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
1099}
1100
3f5d3ea6
PM
1101/*
1102 * Initialize the specified rcu_data structure's callback list to empty.
1103 */
1104static void init_callback_list(struct rcu_data *rdp)
1105{
1106 int i;
1107
34ed6246
PM
1108 if (init_nocb_callback_list(rdp))
1109 return;
3f5d3ea6
PM
1110 rdp->nxtlist = NULL;
1111 for (i = 0; i < RCU_NEXT_SIZE; i++)
1112 rdp->nxttail[i] = &rdp->nxtlist;
1113}
1114
dc35c893
PM
1115/*
1116 * Determine the value that ->completed will have at the end of the
1117 * next subsequent grace period. This is used to tag callbacks so that
1118 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1119 * been dyntick-idle for an extended period with callbacks under the
1120 * influence of RCU_FAST_NO_HZ.
1121 *
1122 * The caller must hold rnp->lock with interrupts disabled.
1123 */
1124static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1125 struct rcu_node *rnp)
1126{
1127 /*
1128 * If RCU is idle, we just wait for the next grace period.
1129 * But we can only be sure that RCU is idle if we are looking
1130 * at the root rcu_node structure -- otherwise, a new grace
1131 * period might have started, but just not yet gotten around
1132 * to initializing the current non-root rcu_node structure.
1133 */
1134 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1135 return rnp->completed + 1;
1136
1137 /*
1138 * Otherwise, wait for a possible partial grace period and
1139 * then the subsequent full grace period.
1140 */
1141 return rnp->completed + 2;
1142}
1143
0446be48
PM
1144/*
1145 * Trace-event helper function for rcu_start_future_gp() and
1146 * rcu_nocb_wait_gp().
1147 */
1148static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1149 unsigned long c, const char *s)
0446be48
PM
1150{
1151 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1152 rnp->completed, c, rnp->level,
1153 rnp->grplo, rnp->grphi, s);
1154}
1155
1156/*
1157 * Start some future grace period, as needed to handle newly arrived
1158 * callbacks. The required future grace periods are recorded in each
1159 * rcu_node structure's ->need_future_gp field.
1160 *
1161 * The caller must hold the specified rcu_node structure's ->lock.
1162 */
1163static unsigned long __maybe_unused
1164rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1165{
1166 unsigned long c;
1167 int i;
1168 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1169
1170 /*
1171 * Pick up grace-period number for new callbacks. If this
1172 * grace period is already marked as needed, return to the caller.
1173 */
1174 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1175 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1176 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1177 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1178 return c;
1179 }
1180
1181 /*
1182 * If either this rcu_node structure or the root rcu_node structure
1183 * believe that a grace period is in progress, then we must wait
1184 * for the one following, which is in "c". Because our request
1185 * will be noticed at the end of the current grace period, we don't
1186 * need to explicitly start one.
1187 */
1188 if (rnp->gpnum != rnp->completed ||
1189 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1190 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1191 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1192 return c;
1193 }
1194
1195 /*
1196 * There might be no grace period in progress. If we don't already
1197 * hold it, acquire the root rcu_node structure's lock in order to
1198 * start one (if needed).
1199 */
6303b9c8 1200 if (rnp != rnp_root) {
0446be48 1201 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1202 smp_mb__after_unlock_lock();
1203 }
0446be48
PM
1204
1205 /*
1206 * Get a new grace-period number. If there really is no grace
1207 * period in progress, it will be smaller than the one we obtained
1208 * earlier. Adjust callbacks as needed. Note that even no-CBs
1209 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1210 */
1211 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1212 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1213 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1214 rdp->nxtcompleted[i] = c;
1215
1216 /*
1217 * If the needed for the required grace period is already
1218 * recorded, trace and leave.
1219 */
1220 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1221 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1222 goto unlock_out;
1223 }
1224
1225 /* Record the need for the future grace period. */
1226 rnp_root->need_future_gp[c & 0x1]++;
1227
1228 /* If a grace period is not already in progress, start one. */
1229 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1230 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1231 } else {
f7f7bac9 1232 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1233 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1234 }
1235unlock_out:
1236 if (rnp != rnp_root)
1237 raw_spin_unlock(&rnp_root->lock);
1238 return c;
1239}
1240
1241/*
1242 * Clean up any old requests for the just-ended grace period. Also return
1243 * whether any additional grace periods have been requested. Also invoke
1244 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1245 * waiting for this grace period to complete.
1246 */
1247static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1248{
1249 int c = rnp->completed;
1250 int needmore;
1251 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1252
1253 rcu_nocb_gp_cleanup(rsp, rnp);
1254 rnp->need_future_gp[c & 0x1] = 0;
1255 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1256 trace_rcu_future_gp(rnp, rdp, c,
1257 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1258 return needmore;
1259}
1260
dc35c893
PM
1261/*
1262 * If there is room, assign a ->completed number to any callbacks on
1263 * this CPU that have not already been assigned. Also accelerate any
1264 * callbacks that were previously assigned a ->completed number that has
1265 * since proven to be too conservative, which can happen if callbacks get
1266 * assigned a ->completed number while RCU is idle, but with reference to
1267 * a non-root rcu_node structure. This function is idempotent, so it does
1268 * not hurt to call it repeatedly.
1269 *
1270 * The caller must hold rnp->lock with interrupts disabled.
1271 */
1272static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1273 struct rcu_data *rdp)
1274{
1275 unsigned long c;
1276 int i;
1277
1278 /* If the CPU has no callbacks, nothing to do. */
1279 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1280 return;
1281
1282 /*
1283 * Starting from the sublist containing the callbacks most
1284 * recently assigned a ->completed number and working down, find the
1285 * first sublist that is not assignable to an upcoming grace period.
1286 * Such a sublist has something in it (first two tests) and has
1287 * a ->completed number assigned that will complete sooner than
1288 * the ->completed number for newly arrived callbacks (last test).
1289 *
1290 * The key point is that any later sublist can be assigned the
1291 * same ->completed number as the newly arrived callbacks, which
1292 * means that the callbacks in any of these later sublist can be
1293 * grouped into a single sublist, whether or not they have already
1294 * been assigned a ->completed number.
1295 */
1296 c = rcu_cbs_completed(rsp, rnp);
1297 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1298 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1299 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1300 break;
1301
1302 /*
1303 * If there are no sublist for unassigned callbacks, leave.
1304 * At the same time, advance "i" one sublist, so that "i" will
1305 * index into the sublist where all the remaining callbacks should
1306 * be grouped into.
1307 */
1308 if (++i >= RCU_NEXT_TAIL)
1309 return;
1310
1311 /*
1312 * Assign all subsequent callbacks' ->completed number to the next
1313 * full grace period and group them all in the sublist initially
1314 * indexed by "i".
1315 */
1316 for (; i <= RCU_NEXT_TAIL; i++) {
1317 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1318 rdp->nxtcompleted[i] = c;
1319 }
910ee45d
PM
1320 /* Record any needed additional grace periods. */
1321 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1322
1323 /* Trace depending on how much we were able to accelerate. */
1324 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1325 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1326 else
f7f7bac9 1327 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1328}
1329
1330/*
1331 * Move any callbacks whose grace period has completed to the
1332 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1333 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1334 * sublist. This function is idempotent, so it does not hurt to
1335 * invoke it repeatedly. As long as it is not invoked -too- often...
1336 *
1337 * The caller must hold rnp->lock with interrupts disabled.
1338 */
1339static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1340 struct rcu_data *rdp)
1341{
1342 int i, j;
1343
1344 /* If the CPU has no callbacks, nothing to do. */
1345 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1346 return;
1347
1348 /*
1349 * Find all callbacks whose ->completed numbers indicate that they
1350 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1351 */
1352 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1353 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1354 break;
1355 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1356 }
1357 /* Clean up any sublist tail pointers that were misordered above. */
1358 for (j = RCU_WAIT_TAIL; j < i; j++)
1359 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1360
1361 /* Copy down callbacks to fill in empty sublists. */
1362 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1363 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1364 break;
1365 rdp->nxttail[j] = rdp->nxttail[i];
1366 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1367 }
1368
1369 /* Classify any remaining callbacks. */
1370 rcu_accelerate_cbs(rsp, rnp, rdp);
1371}
1372
d09b62df 1373/*
ba9fbe95
PM
1374 * Update CPU-local rcu_data state to record the beginnings and ends of
1375 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1376 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1377 */
ba9fbe95 1378static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1379{
ba9fbe95 1380 /* Handle the ends of any preceding grace periods first. */
dc35c893 1381 if (rdp->completed == rnp->completed) {
d09b62df 1382
ba9fbe95 1383 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1384 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1385
dc35c893
PM
1386 } else {
1387
1388 /* Advance callbacks. */
1389 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1390
1391 /* Remember that we saw this grace-period completion. */
1392 rdp->completed = rnp->completed;
f7f7bac9 1393 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1394 }
398ebe60 1395
6eaef633
PM
1396 if (rdp->gpnum != rnp->gpnum) {
1397 /*
1398 * If the current grace period is waiting for this CPU,
1399 * set up to detect a quiescent state, otherwise don't
1400 * go looking for one.
1401 */
1402 rdp->gpnum = rnp->gpnum;
f7f7bac9 1403 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1404 rdp->passed_quiesce = 0;
1405 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1406 zero_cpu_stall_ticks(rdp);
1407 }
1408}
1409
d34ea322 1410static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1411{
1412 unsigned long flags;
1413 struct rcu_node *rnp;
1414
1415 local_irq_save(flags);
1416 rnp = rdp->mynode;
d34ea322
PM
1417 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1418 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1419 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1420 local_irq_restore(flags);
1421 return;
1422 }
6303b9c8 1423 smp_mb__after_unlock_lock();
d34ea322 1424 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1425 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1426}
1427
b3dbec76 1428/*
f7be8209 1429 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1430 */
7fdefc10 1431static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1432{
1433 struct rcu_data *rdp;
7fdefc10 1434 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1435
eb75767b 1436 rcu_bind_gp_kthread();
7fdefc10 1437 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1438 smp_mb__after_unlock_lock();
f7be8209
PM
1439 if (rsp->gp_flags == 0) {
1440 /* Spurious wakeup, tell caller to go back to sleep. */
1441 raw_spin_unlock_irq(&rnp->lock);
1442 return 0;
1443 }
4cdfc175 1444 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1445
f7be8209
PM
1446 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1447 /*
1448 * Grace period already in progress, don't start another.
1449 * Not supposed to be able to happen.
1450 */
7fdefc10
PM
1451 raw_spin_unlock_irq(&rnp->lock);
1452 return 0;
1453 }
1454
7fdefc10 1455 /* Advance to a new grace period and initialize state. */
26cdfedf 1456 record_gp_stall_check_time(rsp);
765a3f4f
PM
1457 /* Record GP times before starting GP, hence smp_store_release(). */
1458 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1459 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1460 raw_spin_unlock_irq(&rnp->lock);
1461
1462 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1463 mutex_lock(&rsp->onoff_mutex);
765a3f4f 1464 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
7fdefc10
PM
1465
1466 /*
1467 * Set the quiescent-state-needed bits in all the rcu_node
1468 * structures for all currently online CPUs in breadth-first order,
1469 * starting from the root rcu_node structure, relying on the layout
1470 * of the tree within the rsp->node[] array. Note that other CPUs
1471 * will access only the leaves of the hierarchy, thus seeing that no
1472 * grace period is in progress, at least until the corresponding
1473 * leaf node has been initialized. In addition, we have excluded
1474 * CPU-hotplug operations.
1475 *
1476 * The grace period cannot complete until the initialization
1477 * process finishes, because this kthread handles both.
1478 */
1479 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1480 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1481 smp_mb__after_unlock_lock();
b3dbec76 1482 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1483 rcu_preempt_check_blocked_tasks(rnp);
1484 rnp->qsmask = rnp->qsmaskinit;
0446be48 1485 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1486 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1487 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1488 if (rnp == rdp->mynode)
ce3d9c03 1489 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1490 rcu_preempt_boost_start_gp(rnp);
1491 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1492 rnp->level, rnp->grplo,
1493 rnp->grphi, rnp->qsmask);
1494 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1495#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1496 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1497 system_state == SYSTEM_RUNNING)
971394f3 1498 udelay(200);
661a85dc 1499#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1500 cond_resched();
1501 }
b3dbec76 1502
a4fbe35a 1503 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1504 return 1;
1505}
b3dbec76 1506
4cdfc175
PM
1507/*
1508 * Do one round of quiescent-state forcing.
1509 */
01896f7e 1510static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1511{
1512 int fqs_state = fqs_state_in;
217af2a2
PM
1513 bool isidle = false;
1514 unsigned long maxj;
4cdfc175
PM
1515 struct rcu_node *rnp = rcu_get_root(rsp);
1516
1517 rsp->n_force_qs++;
1518 if (fqs_state == RCU_SAVE_DYNTICK) {
1519 /* Collect dyntick-idle snapshots. */
0edd1b17
PM
1520 if (is_sysidle_rcu_state(rsp)) {
1521 isidle = 1;
1522 maxj = jiffies - ULONG_MAX / 4;
1523 }
217af2a2
PM
1524 force_qs_rnp(rsp, dyntick_save_progress_counter,
1525 &isidle, &maxj);
0edd1b17 1526 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1527 fqs_state = RCU_FORCE_QS;
1528 } else {
1529 /* Handle dyntick-idle and offline CPUs. */
0edd1b17 1530 isidle = 0;
217af2a2 1531 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1532 }
1533 /* Clear flag to prevent immediate re-entry. */
1534 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1535 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1536 smp_mb__after_unlock_lock();
4cdfc175
PM
1537 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1538 raw_spin_unlock_irq(&rnp->lock);
1539 }
1540 return fqs_state;
1541}
1542
7fdefc10
PM
1543/*
1544 * Clean up after the old grace period.
1545 */
4cdfc175 1546static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1547{
1548 unsigned long gp_duration;
dae6e64d 1549 int nocb = 0;
7fdefc10
PM
1550 struct rcu_data *rdp;
1551 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1552
7fdefc10 1553 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1554 smp_mb__after_unlock_lock();
7fdefc10
PM
1555 gp_duration = jiffies - rsp->gp_start;
1556 if (gp_duration > rsp->gp_max)
1557 rsp->gp_max = gp_duration;
b3dbec76 1558
7fdefc10
PM
1559 /*
1560 * We know the grace period is complete, but to everyone else
1561 * it appears to still be ongoing. But it is also the case
1562 * that to everyone else it looks like there is nothing that
1563 * they can do to advance the grace period. It is therefore
1564 * safe for us to drop the lock in order to mark the grace
1565 * period as completed in all of the rcu_node structures.
7fdefc10 1566 */
5d4b8659 1567 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1568
5d4b8659
PM
1569 /*
1570 * Propagate new ->completed value to rcu_node structures so
1571 * that other CPUs don't have to wait until the start of the next
1572 * grace period to process their callbacks. This also avoids
1573 * some nasty RCU grace-period initialization races by forcing
1574 * the end of the current grace period to be completely recorded in
1575 * all of the rcu_node structures before the beginning of the next
1576 * grace period is recorded in any of the rcu_node structures.
1577 */
1578 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1579 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1580 smp_mb__after_unlock_lock();
0446be48 1581 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1582 rdp = this_cpu_ptr(rsp->rda);
1583 if (rnp == rdp->mynode)
470716fc 1584 __note_gp_changes(rsp, rnp, rdp);
78e4bc34 1585 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1586 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1587 raw_spin_unlock_irq(&rnp->lock);
1588 cond_resched();
7fdefc10 1589 }
5d4b8659
PM
1590 rnp = rcu_get_root(rsp);
1591 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1592 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1593 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1594
765a3f4f
PM
1595 /* Declare grace period done. */
1596 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
f7f7bac9 1597 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1598 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1599 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1600 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
bb311ecc 1601 if (cpu_needs_another_gp(rsp, rdp)) {
b3f2d025 1602 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1603 trace_rcu_grace_period(rsp->name,
1604 ACCESS_ONCE(rsp->gpnum),
1605 TPS("newreq"));
1606 }
7fdefc10 1607 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1608}
1609
1610/*
1611 * Body of kthread that handles grace periods.
1612 */
1613static int __noreturn rcu_gp_kthread(void *arg)
1614{
4cdfc175 1615 int fqs_state;
88d6df61 1616 int gf;
d40011f6 1617 unsigned long j;
4cdfc175 1618 int ret;
7fdefc10
PM
1619 struct rcu_state *rsp = arg;
1620 struct rcu_node *rnp = rcu_get_root(rsp);
1621
1622 for (;;) {
1623
1624 /* Handle grace-period start. */
1625 for (;;) {
63c4db78
PM
1626 trace_rcu_grace_period(rsp->name,
1627 ACCESS_ONCE(rsp->gpnum),
1628 TPS("reqwait"));
4cdfc175 1629 wait_event_interruptible(rsp->gp_wq,
591c6d17 1630 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1631 RCU_GP_FLAG_INIT);
78e4bc34 1632 /* Locking provides needed memory barrier. */
f7be8209 1633 if (rcu_gp_init(rsp))
7fdefc10
PM
1634 break;
1635 cond_resched();
1636 flush_signals(current);
63c4db78
PM
1637 trace_rcu_grace_period(rsp->name,
1638 ACCESS_ONCE(rsp->gpnum),
1639 TPS("reqwaitsig"));
7fdefc10 1640 }
cabc49c1 1641
4cdfc175
PM
1642 /* Handle quiescent-state forcing. */
1643 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1644 j = jiffies_till_first_fqs;
1645 if (j > HZ) {
1646 j = HZ;
1647 jiffies_till_first_fqs = HZ;
1648 }
88d6df61 1649 ret = 0;
cabc49c1 1650 for (;;) {
88d6df61
PM
1651 if (!ret)
1652 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1653 trace_rcu_grace_period(rsp->name,
1654 ACCESS_ONCE(rsp->gpnum),
1655 TPS("fqswait"));
4cdfc175 1656 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1657 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1658 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1659 (!ACCESS_ONCE(rnp->qsmask) &&
1660 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1661 j);
78e4bc34 1662 /* Locking provides needed memory barriers. */
4cdfc175 1663 /* If grace period done, leave loop. */
cabc49c1 1664 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1665 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1666 break;
4cdfc175 1667 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1668 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1669 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1670 trace_rcu_grace_period(rsp->name,
1671 ACCESS_ONCE(rsp->gpnum),
1672 TPS("fqsstart"));
4cdfc175 1673 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1674 trace_rcu_grace_period(rsp->name,
1675 ACCESS_ONCE(rsp->gpnum),
1676 TPS("fqsend"));
4cdfc175
PM
1677 cond_resched();
1678 } else {
1679 /* Deal with stray signal. */
1680 cond_resched();
1681 flush_signals(current);
63c4db78
PM
1682 trace_rcu_grace_period(rsp->name,
1683 ACCESS_ONCE(rsp->gpnum),
1684 TPS("fqswaitsig"));
4cdfc175 1685 }
d40011f6
PM
1686 j = jiffies_till_next_fqs;
1687 if (j > HZ) {
1688 j = HZ;
1689 jiffies_till_next_fqs = HZ;
1690 } else if (j < 1) {
1691 j = 1;
1692 jiffies_till_next_fqs = 1;
1693 }
cabc49c1 1694 }
4cdfc175
PM
1695
1696 /* Handle grace-period end. */
1697 rcu_gp_cleanup(rsp);
b3dbec76 1698 }
b3dbec76
PM
1699}
1700
016a8d5b
SR
1701static void rsp_wakeup(struct irq_work *work)
1702{
1703 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1704
1705 /* Wake up rcu_gp_kthread() to start the grace period. */
1706 wake_up(&rsp->gp_wq);
1707}
1708
64db4cff
PM
1709/*
1710 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1711 * in preparation for detecting the next grace period. The caller must hold
b8462084 1712 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1713 *
1714 * Note that it is legal for a dying CPU (which is marked as offline) to
1715 * invoke this function. This can happen when the dying CPU reports its
1716 * quiescent state.
64db4cff
PM
1717 */
1718static void
910ee45d
PM
1719rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1720 struct rcu_data *rdp)
64db4cff 1721{
b8462084 1722 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1723 /*
b3dbec76 1724 * Either we have not yet spawned the grace-period
62da1921
PM
1725 * task, this CPU does not need another grace period,
1726 * or a grace period is already in progress.
b3dbec76 1727 * Either way, don't start a new grace period.
afe24b12 1728 */
afe24b12
PM
1729 return;
1730 }
4cdfc175 1731 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1732 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1733 TPS("newreq"));
62da1921 1734
016a8d5b
SR
1735 /*
1736 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c
PM
1737 * could cause possible deadlocks with the rq->lock. Defer
1738 * the wakeup to interrupt context. And don't bother waking
1739 * up the running kthread.
016a8d5b 1740 */
1eafd31c
PM
1741 if (current != rsp->gp_kthread)
1742 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1743}
1744
910ee45d
PM
1745/*
1746 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1747 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1748 * is invoked indirectly from rcu_advance_cbs(), which would result in
1749 * endless recursion -- or would do so if it wasn't for the self-deadlock
1750 * that is encountered beforehand.
1751 */
1752static void
1753rcu_start_gp(struct rcu_state *rsp)
1754{
1755 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1756 struct rcu_node *rnp = rcu_get_root(rsp);
1757
1758 /*
1759 * If there is no grace period in progress right now, any
1760 * callbacks we have up to this point will be satisfied by the
1761 * next grace period. Also, advancing the callbacks reduces the
1762 * probability of false positives from cpu_needs_another_gp()
1763 * resulting in pointless grace periods. So, advance callbacks
1764 * then start the grace period!
1765 */
1766 rcu_advance_cbs(rsp, rnp, rdp);
1767 rcu_start_gp_advanced(rsp, rnp, rdp);
1768}
1769
f41d911f 1770/*
d3f6bad3
PM
1771 * Report a full set of quiescent states to the specified rcu_state
1772 * data structure. This involves cleaning up after the prior grace
1773 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1774 * if one is needed. Note that the caller must hold rnp->lock, which
1775 * is released before return.
f41d911f 1776 */
d3f6bad3 1777static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1778 __releases(rcu_get_root(rsp)->lock)
f41d911f 1779{
fc2219d4 1780 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1781 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1782 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1783}
1784
64db4cff 1785/*
d3f6bad3
PM
1786 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1787 * Allows quiescent states for a group of CPUs to be reported at one go
1788 * to the specified rcu_node structure, though all the CPUs in the group
1789 * must be represented by the same rcu_node structure (which need not be
1790 * a leaf rcu_node structure, though it often will be). That structure's
1791 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1792 */
1793static void
d3f6bad3
PM
1794rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1795 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1796 __releases(rnp->lock)
1797{
28ecd580
PM
1798 struct rcu_node *rnp_c;
1799
64db4cff
PM
1800 /* Walk up the rcu_node hierarchy. */
1801 for (;;) {
1802 if (!(rnp->qsmask & mask)) {
1803
1804 /* Our bit has already been cleared, so done. */
1304afb2 1805 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1806 return;
1807 }
1808 rnp->qsmask &= ~mask;
d4c08f2a
PM
1809 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1810 mask, rnp->qsmask, rnp->level,
1811 rnp->grplo, rnp->grphi,
1812 !!rnp->gp_tasks);
27f4d280 1813 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1814
1815 /* Other bits still set at this level, so done. */
1304afb2 1816 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1817 return;
1818 }
1819 mask = rnp->grpmask;
1820 if (rnp->parent == NULL) {
1821
1822 /* No more levels. Exit loop holding root lock. */
1823
1824 break;
1825 }
1304afb2 1826 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1827 rnp_c = rnp;
64db4cff 1828 rnp = rnp->parent;
1304afb2 1829 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1830 smp_mb__after_unlock_lock();
28ecd580 1831 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1832 }
1833
1834 /*
1835 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1836 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1837 * to clean up and start the next grace period if one is needed.
64db4cff 1838 */
d3f6bad3 1839 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1840}
1841
1842/*
d3f6bad3
PM
1843 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1844 * structure. This must be either called from the specified CPU, or
1845 * called when the specified CPU is known to be offline (and when it is
1846 * also known that no other CPU is concurrently trying to help the offline
1847 * CPU). The lastcomp argument is used to make sure we are still in the
1848 * grace period of interest. We don't want to end the current grace period
1849 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1850 */
1851static void
d7d6a11e 1852rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1853{
1854 unsigned long flags;
1855 unsigned long mask;
1856 struct rcu_node *rnp;
1857
1858 rnp = rdp->mynode;
1304afb2 1859 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1860 smp_mb__after_unlock_lock();
d7d6a11e
PM
1861 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1862 rnp->completed == rnp->gpnum) {
64db4cff
PM
1863
1864 /*
e4cc1f22
PM
1865 * The grace period in which this quiescent state was
1866 * recorded has ended, so don't report it upwards.
1867 * We will instead need a new quiescent state that lies
1868 * within the current grace period.
64db4cff 1869 */
e4cc1f22 1870 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1871 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1872 return;
1873 }
1874 mask = rdp->grpmask;
1875 if ((rnp->qsmask & mask) == 0) {
1304afb2 1876 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1877 } else {
1878 rdp->qs_pending = 0;
1879
1880 /*
1881 * This GP can't end until cpu checks in, so all of our
1882 * callbacks can be processed during the next GP.
1883 */
dc35c893 1884 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1885
d3f6bad3 1886 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1887 }
1888}
1889
1890/*
1891 * Check to see if there is a new grace period of which this CPU
1892 * is not yet aware, and if so, set up local rcu_data state for it.
1893 * Otherwise, see if this CPU has just passed through its first
1894 * quiescent state for this grace period, and record that fact if so.
1895 */
1896static void
1897rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1898{
05eb552b
PM
1899 /* Check for grace-period ends and beginnings. */
1900 note_gp_changes(rsp, rdp);
64db4cff
PM
1901
1902 /*
1903 * Does this CPU still need to do its part for current grace period?
1904 * If no, return and let the other CPUs do their part as well.
1905 */
1906 if (!rdp->qs_pending)
1907 return;
1908
1909 /*
1910 * Was there a quiescent state since the beginning of the grace
1911 * period? If no, then exit and wait for the next call.
1912 */
e4cc1f22 1913 if (!rdp->passed_quiesce)
64db4cff
PM
1914 return;
1915
d3f6bad3
PM
1916 /*
1917 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1918 * judge of that).
1919 */
d7d6a11e 1920 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1921}
1922
1923#ifdef CONFIG_HOTPLUG_CPU
1924
e74f4c45 1925/*
b1420f1c
PM
1926 * Send the specified CPU's RCU callbacks to the orphanage. The
1927 * specified CPU must be offline, and the caller must hold the
7b2e6011 1928 * ->orphan_lock.
e74f4c45 1929 */
b1420f1c
PM
1930static void
1931rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1932 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1933{
3fbfbf7a 1934 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1935 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1936 return;
1937
b1420f1c
PM
1938 /*
1939 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1940 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1941 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1942 */
a50c3af9 1943 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1944 rsp->qlen_lazy += rdp->qlen_lazy;
1945 rsp->qlen += rdp->qlen;
1946 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1947 rdp->qlen_lazy = 0;
1d1fb395 1948 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1949 }
1950
1951 /*
b1420f1c
PM
1952 * Next, move those callbacks still needing a grace period to
1953 * the orphanage, where some other CPU will pick them up.
1954 * Some of the callbacks might have gone partway through a grace
1955 * period, but that is too bad. They get to start over because we
1956 * cannot assume that grace periods are synchronized across CPUs.
1957 * We don't bother updating the ->nxttail[] array yet, instead
1958 * we just reset the whole thing later on.
a50c3af9 1959 */
b1420f1c
PM
1960 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1961 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1962 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1963 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1964 }
1965
1966 /*
b1420f1c
PM
1967 * Then move the ready-to-invoke callbacks to the orphanage,
1968 * where some other CPU will pick them up. These will not be
1969 * required to pass though another grace period: They are done.
a50c3af9 1970 */
e5601400 1971 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1972 *rsp->orphan_donetail = rdp->nxtlist;
1973 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1974 }
e74f4c45 1975
b1420f1c 1976 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1977 init_callback_list(rdp);
b1420f1c
PM
1978}
1979
1980/*
1981 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1982 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 1983 */
96d3fd0d 1984static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
1985{
1986 int i;
1987 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1988
3fbfbf7a 1989 /* No-CBs CPUs are handled specially. */
96d3fd0d 1990 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
1991 return;
1992
b1420f1c
PM
1993 /* Do the accounting first. */
1994 rdp->qlen_lazy += rsp->qlen_lazy;
1995 rdp->qlen += rsp->qlen;
1996 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1997 if (rsp->qlen_lazy != rsp->qlen)
1998 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1999 rsp->qlen_lazy = 0;
2000 rsp->qlen = 0;
2001
2002 /*
2003 * We do not need a memory barrier here because the only way we
2004 * can get here if there is an rcu_barrier() in flight is if
2005 * we are the task doing the rcu_barrier().
2006 */
2007
2008 /* First adopt the ready-to-invoke callbacks. */
2009 if (rsp->orphan_donelist != NULL) {
2010 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2011 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2012 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2013 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2014 rdp->nxttail[i] = rsp->orphan_donetail;
2015 rsp->orphan_donelist = NULL;
2016 rsp->orphan_donetail = &rsp->orphan_donelist;
2017 }
2018
2019 /* And then adopt the callbacks that still need a grace period. */
2020 if (rsp->orphan_nxtlist != NULL) {
2021 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2022 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2023 rsp->orphan_nxtlist = NULL;
2024 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2025 }
2026}
2027
2028/*
2029 * Trace the fact that this CPU is going offline.
2030 */
2031static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2032{
2033 RCU_TRACE(unsigned long mask);
2034 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2035 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2036
2037 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2038 trace_rcu_grace_period(rsp->name,
2039 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2040 TPS("cpuofl"));
64db4cff
PM
2041}
2042
2043/*
e5601400 2044 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2045 * this fact from process context. Do the remainder of the cleanup,
2046 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2047 * adopting them. There can only be one CPU hotplug operation at a time,
2048 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2049 */
e5601400 2050static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2051{
2036d94a
PM
2052 unsigned long flags;
2053 unsigned long mask;
2054 int need_report = 0;
e5601400 2055 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2056 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2057
2036d94a 2058 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2059 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2060
b1420f1c 2061 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
2062
2063 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2064 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2065 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2066
b1420f1c
PM
2067 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2068 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2069 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2070
2036d94a
PM
2071 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2072 mask = rdp->grpmask; /* rnp->grplo is constant. */
2073 do {
2074 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 2075 smp_mb__after_unlock_lock();
2036d94a
PM
2076 rnp->qsmaskinit &= ~mask;
2077 if (rnp->qsmaskinit != 0) {
2078 if (rnp != rdp->mynode)
2079 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2080 break;
2081 }
2082 if (rnp == rdp->mynode)
2083 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2084 else
2085 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2086 mask = rnp->grpmask;
2087 rnp = rnp->parent;
2088 } while (rnp != NULL);
2089
2090 /*
2091 * We still hold the leaf rcu_node structure lock here, and
2092 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2093 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2094 * held leads to deadlock.
2095 */
7b2e6011 2096 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2097 rnp = rdp->mynode;
2098 if (need_report & RCU_OFL_TASKS_NORM_GP)
2099 rcu_report_unblock_qs_rnp(rnp, flags);
2100 else
2101 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2102 if (need_report & RCU_OFL_TASKS_EXP_GP)
2103 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2104 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2105 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2106 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2107 init_callback_list(rdp);
2108 /* Disallow further callbacks on this CPU. */
2109 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2110 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2111}
2112
2113#else /* #ifdef CONFIG_HOTPLUG_CPU */
2114
e5601400 2115static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2116{
2117}
2118
e5601400 2119static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2120{
2121}
2122
2123#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2124
2125/*
2126 * Invoke any RCU callbacks that have made it to the end of their grace
2127 * period. Thottle as specified by rdp->blimit.
2128 */
37c72e56 2129static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2130{
2131 unsigned long flags;
2132 struct rcu_head *next, *list, **tail;
878d7439
ED
2133 long bl, count, count_lazy;
2134 int i;
64db4cff 2135
dc35c893 2136 /* If no callbacks are ready, just return. */
29c00b4a 2137 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2138 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2139 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2140 need_resched(), is_idle_task(current),
2141 rcu_is_callbacks_kthread());
64db4cff 2142 return;
29c00b4a 2143 }
64db4cff
PM
2144
2145 /*
2146 * Extract the list of ready callbacks, disabling to prevent
2147 * races with call_rcu() from interrupt handlers.
2148 */
2149 local_irq_save(flags);
8146c4e2 2150 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2151 bl = rdp->blimit;
486e2593 2152 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2153 list = rdp->nxtlist;
2154 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2155 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2156 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2157 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2158 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2159 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2160 local_irq_restore(flags);
2161
2162 /* Invoke callbacks. */
486e2593 2163 count = count_lazy = 0;
64db4cff
PM
2164 while (list) {
2165 next = list->next;
2166 prefetch(next);
551d55a9 2167 debug_rcu_head_unqueue(list);
486e2593
PM
2168 if (__rcu_reclaim(rsp->name, list))
2169 count_lazy++;
64db4cff 2170 list = next;
dff1672d
PM
2171 /* Stop only if limit reached and CPU has something to do. */
2172 if (++count >= bl &&
2173 (need_resched() ||
2174 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2175 break;
2176 }
2177
2178 local_irq_save(flags);
4968c300
PM
2179 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2180 is_idle_task(current),
2181 rcu_is_callbacks_kthread());
64db4cff
PM
2182
2183 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2184 if (list != NULL) {
2185 *tail = rdp->nxtlist;
2186 rdp->nxtlist = list;
b41772ab
PM
2187 for (i = 0; i < RCU_NEXT_SIZE; i++)
2188 if (&rdp->nxtlist == rdp->nxttail[i])
2189 rdp->nxttail[i] = tail;
64db4cff
PM
2190 else
2191 break;
2192 }
b1420f1c
PM
2193 smp_mb(); /* List handling before counting for rcu_barrier(). */
2194 rdp->qlen_lazy -= count_lazy;
1d1fb395 2195 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2196 rdp->n_cbs_invoked += count;
64db4cff
PM
2197
2198 /* Reinstate batch limit if we have worked down the excess. */
2199 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2200 rdp->blimit = blimit;
2201
37c72e56
PM
2202 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2203 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2204 rdp->qlen_last_fqs_check = 0;
2205 rdp->n_force_qs_snap = rsp->n_force_qs;
2206 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2207 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2208 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2209
64db4cff
PM
2210 local_irq_restore(flags);
2211
e0f23060 2212 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2213 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2214 invoke_rcu_core();
64db4cff
PM
2215}
2216
2217/*
2218 * Check to see if this CPU is in a non-context-switch quiescent state
2219 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2220 * Also schedule RCU core processing.
64db4cff 2221 *
9b2e4f18 2222 * This function must be called from hardirq context. It is normally
64db4cff
PM
2223 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2224 * false, there is no point in invoking rcu_check_callbacks().
2225 */
2226void rcu_check_callbacks(int cpu, int user)
2227{
f7f7bac9 2228 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2229 increment_cpu_stall_ticks();
9b2e4f18 2230 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2231
2232 /*
2233 * Get here if this CPU took its interrupt from user
2234 * mode or from the idle loop, and if this is not a
2235 * nested interrupt. In this case, the CPU is in
d6714c22 2236 * a quiescent state, so note it.
64db4cff
PM
2237 *
2238 * No memory barrier is required here because both
d6714c22
PM
2239 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2240 * variables that other CPUs neither access nor modify,
2241 * at least not while the corresponding CPU is online.
64db4cff
PM
2242 */
2243
d6714c22
PM
2244 rcu_sched_qs(cpu);
2245 rcu_bh_qs(cpu);
64db4cff
PM
2246
2247 } else if (!in_softirq()) {
2248
2249 /*
2250 * Get here if this CPU did not take its interrupt from
2251 * softirq, in other words, if it is not interrupting
2252 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2253 * critical section, so note it.
64db4cff
PM
2254 */
2255
d6714c22 2256 rcu_bh_qs(cpu);
64db4cff 2257 }
f41d911f 2258 rcu_preempt_check_callbacks(cpu);
d21670ac 2259 if (rcu_pending(cpu))
a46e0899 2260 invoke_rcu_core();
f7f7bac9 2261 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2262}
2263
64db4cff
PM
2264/*
2265 * Scan the leaf rcu_node structures, processing dyntick state for any that
2266 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2267 * Also initiate boosting for any threads blocked on the root rcu_node.
2268 *
ee47eb9f 2269 * The caller must have suppressed start of new grace periods.
64db4cff 2270 */
217af2a2
PM
2271static void force_qs_rnp(struct rcu_state *rsp,
2272 int (*f)(struct rcu_data *rsp, bool *isidle,
2273 unsigned long *maxj),
2274 bool *isidle, unsigned long *maxj)
64db4cff
PM
2275{
2276 unsigned long bit;
2277 int cpu;
2278 unsigned long flags;
2279 unsigned long mask;
a0b6c9a7 2280 struct rcu_node *rnp;
64db4cff 2281
a0b6c9a7 2282 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2283 cond_resched();
64db4cff 2284 mask = 0;
1304afb2 2285 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2286 smp_mb__after_unlock_lock();
ee47eb9f 2287 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2288 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2289 return;
64db4cff 2290 }
a0b6c9a7 2291 if (rnp->qsmask == 0) {
1217ed1b 2292 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2293 continue;
2294 }
a0b6c9a7 2295 cpu = rnp->grplo;
64db4cff 2296 bit = 1;
a0b6c9a7 2297 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2298 if ((rnp->qsmask & bit) != 0) {
2299 if ((rnp->qsmaskinit & bit) != 0)
2300 *isidle = 0;
2301 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2302 mask |= bit;
2303 }
64db4cff 2304 }
45f014c5 2305 if (mask != 0) {
64db4cff 2306
d3f6bad3
PM
2307 /* rcu_report_qs_rnp() releases rnp->lock. */
2308 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2309 continue;
2310 }
1304afb2 2311 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2312 }
27f4d280 2313 rnp = rcu_get_root(rsp);
1217ed1b
PM
2314 if (rnp->qsmask == 0) {
2315 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2316 smp_mb__after_unlock_lock();
1217ed1b
PM
2317 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2318 }
64db4cff
PM
2319}
2320
2321/*
2322 * Force quiescent states on reluctant CPUs, and also detect which
2323 * CPUs are in dyntick-idle mode.
2324 */
4cdfc175 2325static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2326{
2327 unsigned long flags;
394f2769
PM
2328 bool ret;
2329 struct rcu_node *rnp;
2330 struct rcu_node *rnp_old = NULL;
2331
2332 /* Funnel through hierarchy to reduce memory contention. */
2333 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2334 for (; rnp != NULL; rnp = rnp->parent) {
2335 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2336 !raw_spin_trylock(&rnp->fqslock);
2337 if (rnp_old != NULL)
2338 raw_spin_unlock(&rnp_old->fqslock);
2339 if (ret) {
3660c281 2340 ACCESS_ONCE(rsp->n_force_qs_lh)++;
394f2769
PM
2341 return;
2342 }
2343 rnp_old = rnp;
2344 }
2345 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2346
394f2769
PM
2347 /* Reached the root of the rcu_node tree, acquire lock. */
2348 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2349 smp_mb__after_unlock_lock();
394f2769
PM
2350 raw_spin_unlock(&rnp_old->fqslock);
2351 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
3660c281 2352 ACCESS_ONCE(rsp->n_force_qs_lh)++;
394f2769 2353 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2354 return; /* Someone beat us to it. */
46a1e34e 2355 }
4cdfc175 2356 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2357 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2358 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2359}
2360
64db4cff 2361/*
e0f23060
PM
2362 * This does the RCU core processing work for the specified rcu_state
2363 * and rcu_data structures. This may be called only from the CPU to
2364 * whom the rdp belongs.
64db4cff
PM
2365 */
2366static void
1bca8cf1 2367__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2368{
2369 unsigned long flags;
1bca8cf1 2370 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2371
2e597558
PM
2372 WARN_ON_ONCE(rdp->beenonline == 0);
2373
64db4cff
PM
2374 /* Update RCU state based on any recent quiescent states. */
2375 rcu_check_quiescent_state(rsp, rdp);
2376
2377 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2378 local_irq_save(flags);
64db4cff 2379 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2380 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2381 rcu_start_gp(rsp);
2382 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2383 } else {
2384 local_irq_restore(flags);
64db4cff
PM
2385 }
2386
2387 /* If there are callbacks ready, invoke them. */
09223371 2388 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2389 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2390
2391 /* Do any needed deferred wakeups of rcuo kthreads. */
2392 do_nocb_deferred_wakeup(rdp);
09223371
SL
2393}
2394
64db4cff 2395/*
e0f23060 2396 * Do RCU core processing for the current CPU.
64db4cff 2397 */
09223371 2398static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2399{
6ce75a23
PM
2400 struct rcu_state *rsp;
2401
bfa00b4c
PM
2402 if (cpu_is_offline(smp_processor_id()))
2403 return;
f7f7bac9 2404 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2405 for_each_rcu_flavor(rsp)
2406 __rcu_process_callbacks(rsp);
f7f7bac9 2407 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2408}
2409
a26ac245 2410/*
e0f23060
PM
2411 * Schedule RCU callback invocation. If the specified type of RCU
2412 * does not support RCU priority boosting, just do a direct call,
2413 * otherwise wake up the per-CPU kernel kthread. Note that because we
2414 * are running on the current CPU with interrupts disabled, the
2415 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2416 */
a46e0899 2417static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2418{
b0d30417
PM
2419 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2420 return;
a46e0899
PM
2421 if (likely(!rsp->boost)) {
2422 rcu_do_batch(rsp, rdp);
a26ac245
PM
2423 return;
2424 }
a46e0899 2425 invoke_rcu_callbacks_kthread();
a26ac245
PM
2426}
2427
a46e0899 2428static void invoke_rcu_core(void)
09223371 2429{
b0f74036
PM
2430 if (cpu_online(smp_processor_id()))
2431 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2432}
2433
29154c57
PM
2434/*
2435 * Handle any core-RCU processing required by a call_rcu() invocation.
2436 */
2437static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2438 struct rcu_head *head, unsigned long flags)
64db4cff 2439{
62fde6ed
PM
2440 /*
2441 * If called from an extended quiescent state, invoke the RCU
2442 * core in order to force a re-evaluation of RCU's idleness.
2443 */
5c173eb8 2444 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2445 invoke_rcu_core();
2446
a16b7a69 2447 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2448 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2449 return;
64db4cff 2450
37c72e56
PM
2451 /*
2452 * Force the grace period if too many callbacks or too long waiting.
2453 * Enforce hysteresis, and don't invoke force_quiescent_state()
2454 * if some other CPU has recently done so. Also, don't bother
2455 * invoking force_quiescent_state() if the newly enqueued callback
2456 * is the only one waiting for a grace period to complete.
2457 */
2655d57e 2458 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2459
2460 /* Are we ignoring a completed grace period? */
470716fc 2461 note_gp_changes(rsp, rdp);
b52573d2
PM
2462
2463 /* Start a new grace period if one not already started. */
2464 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2465 struct rcu_node *rnp_root = rcu_get_root(rsp);
2466
b8462084 2467 raw_spin_lock(&rnp_root->lock);
6303b9c8 2468 smp_mb__after_unlock_lock();
b8462084
PM
2469 rcu_start_gp(rsp);
2470 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2471 } else {
2472 /* Give the grace period a kick. */
2473 rdp->blimit = LONG_MAX;
2474 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2475 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2476 force_quiescent_state(rsp);
b52573d2
PM
2477 rdp->n_force_qs_snap = rsp->n_force_qs;
2478 rdp->qlen_last_fqs_check = rdp->qlen;
2479 }
4cdfc175 2480 }
29154c57
PM
2481}
2482
ae150184
PM
2483/*
2484 * RCU callback function to leak a callback.
2485 */
2486static void rcu_leak_callback(struct rcu_head *rhp)
2487{
2488}
2489
3fbfbf7a
PM
2490/*
2491 * Helper function for call_rcu() and friends. The cpu argument will
2492 * normally be -1, indicating "currently running CPU". It may specify
2493 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2494 * is expected to specify a CPU.
2495 */
64db4cff
PM
2496static void
2497__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2498 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2499{
2500 unsigned long flags;
2501 struct rcu_data *rdp;
2502
0bb7b59d 2503 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
ae150184
PM
2504 if (debug_rcu_head_queue(head)) {
2505 /* Probable double call_rcu(), so leak the callback. */
2506 ACCESS_ONCE(head->func) = rcu_leak_callback;
2507 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2508 return;
2509 }
64db4cff
PM
2510 head->func = func;
2511 head->next = NULL;
2512
64db4cff
PM
2513 /*
2514 * Opportunistically note grace-period endings and beginnings.
2515 * Note that we might see a beginning right after we see an
2516 * end, but never vice versa, since this CPU has to pass through
2517 * a quiescent state betweentimes.
2518 */
2519 local_irq_save(flags);
394f99a9 2520 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2521
2522 /* Add the callback to our list. */
3fbfbf7a
PM
2523 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2524 int offline;
2525
2526 if (cpu != -1)
2527 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2528 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2529 WARN_ON_ONCE(offline);
0d8ee37e 2530 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2531 local_irq_restore(flags);
2532 return;
2533 }
29154c57 2534 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2535 if (lazy)
2536 rdp->qlen_lazy++;
c57afe80
PM
2537 else
2538 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2539 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2540 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2541 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2542
d4c08f2a
PM
2543 if (__is_kfree_rcu_offset((unsigned long)func))
2544 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2545 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2546 else
486e2593 2547 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2548
29154c57
PM
2549 /* Go handle any RCU core processing required. */
2550 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2551 local_irq_restore(flags);
2552}
2553
2554/*
d6714c22 2555 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2556 */
d6714c22 2557void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2558{
3fbfbf7a 2559 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2560}
d6714c22 2561EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2562
2563/*
486e2593 2564 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2565 */
2566void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2567{
3fbfbf7a 2568 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2569}
2570EXPORT_SYMBOL_GPL(call_rcu_bh);
2571
6d813391
PM
2572/*
2573 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2574 * any blocking grace-period wait automatically implies a grace period
2575 * if there is only one CPU online at any point time during execution
2576 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2577 * occasionally incorrectly indicate that there are multiple CPUs online
2578 * when there was in fact only one the whole time, as this just adds
2579 * some overhead: RCU still operates correctly.
6d813391
PM
2580 */
2581static inline int rcu_blocking_is_gp(void)
2582{
95f0c1de
PM
2583 int ret;
2584
6d813391 2585 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2586 preempt_disable();
2587 ret = num_online_cpus() <= 1;
2588 preempt_enable();
2589 return ret;
6d813391
PM
2590}
2591
6ebb237b
PM
2592/**
2593 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2594 *
2595 * Control will return to the caller some time after a full rcu-sched
2596 * grace period has elapsed, in other words after all currently executing
2597 * rcu-sched read-side critical sections have completed. These read-side
2598 * critical sections are delimited by rcu_read_lock_sched() and
2599 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2600 * local_irq_disable(), and so on may be used in place of
2601 * rcu_read_lock_sched().
2602 *
2603 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2604 * non-threaded hardware-interrupt handlers, in progress on entry will
2605 * have completed before this primitive returns. However, this does not
2606 * guarantee that softirq handlers will have completed, since in some
2607 * kernels, these handlers can run in process context, and can block.
2608 *
2609 * Note that this guarantee implies further memory-ordering guarantees.
2610 * On systems with more than one CPU, when synchronize_sched() returns,
2611 * each CPU is guaranteed to have executed a full memory barrier since the
2612 * end of its last RCU-sched read-side critical section whose beginning
2613 * preceded the call to synchronize_sched(). In addition, each CPU having
2614 * an RCU read-side critical section that extends beyond the return from
2615 * synchronize_sched() is guaranteed to have executed a full memory barrier
2616 * after the beginning of synchronize_sched() and before the beginning of
2617 * that RCU read-side critical section. Note that these guarantees include
2618 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2619 * that are executing in the kernel.
2620 *
2621 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2622 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2623 * to have executed a full memory barrier during the execution of
2624 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2625 * again only if the system has more than one CPU).
6ebb237b
PM
2626 *
2627 * This primitive provides the guarantees made by the (now removed)
2628 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2629 * guarantees that rcu_read_lock() sections will have completed.
2630 * In "classic RCU", these two guarantees happen to be one and
2631 * the same, but can differ in realtime RCU implementations.
2632 */
2633void synchronize_sched(void)
2634{
fe15d706
PM
2635 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2636 !lock_is_held(&rcu_lock_map) &&
2637 !lock_is_held(&rcu_sched_lock_map),
2638 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2639 if (rcu_blocking_is_gp())
2640 return;
3705b88d
AM
2641 if (rcu_expedited)
2642 synchronize_sched_expedited();
2643 else
2644 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2645}
2646EXPORT_SYMBOL_GPL(synchronize_sched);
2647
2648/**
2649 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2650 *
2651 * Control will return to the caller some time after a full rcu_bh grace
2652 * period has elapsed, in other words after all currently executing rcu_bh
2653 * read-side critical sections have completed. RCU read-side critical
2654 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2655 * and may be nested.
f0a0e6f2
PM
2656 *
2657 * See the description of synchronize_sched() for more detailed information
2658 * on memory ordering guarantees.
6ebb237b
PM
2659 */
2660void synchronize_rcu_bh(void)
2661{
fe15d706
PM
2662 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2663 !lock_is_held(&rcu_lock_map) &&
2664 !lock_is_held(&rcu_sched_lock_map),
2665 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2666 if (rcu_blocking_is_gp())
2667 return;
3705b88d
AM
2668 if (rcu_expedited)
2669 synchronize_rcu_bh_expedited();
2670 else
2671 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2672}
2673EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2674
765a3f4f
PM
2675/**
2676 * get_state_synchronize_rcu - Snapshot current RCU state
2677 *
2678 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2679 * to determine whether or not a full grace period has elapsed in the
2680 * meantime.
2681 */
2682unsigned long get_state_synchronize_rcu(void)
2683{
2684 /*
2685 * Any prior manipulation of RCU-protected data must happen
2686 * before the load from ->gpnum.
2687 */
2688 smp_mb(); /* ^^^ */
2689
2690 /*
2691 * Make sure this load happens before the purportedly
2692 * time-consuming work between get_state_synchronize_rcu()
2693 * and cond_synchronize_rcu().
2694 */
2695 return smp_load_acquire(&rcu_state->gpnum);
2696}
2697EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2698
2699/**
2700 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2701 *
2702 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2703 *
2704 * If a full RCU grace period has elapsed since the earlier call to
2705 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2706 * synchronize_rcu() to wait for a full grace period.
2707 *
2708 * Yes, this function does not take counter wrap into account. But
2709 * counter wrap is harmless. If the counter wraps, we have waited for
2710 * more than 2 billion grace periods (and way more on a 64-bit system!),
2711 * so waiting for one additional grace period should be just fine.
2712 */
2713void cond_synchronize_rcu(unsigned long oldstate)
2714{
2715 unsigned long newstate;
2716
2717 /*
2718 * Ensure that this load happens before any RCU-destructive
2719 * actions the caller might carry out after we return.
2720 */
2721 newstate = smp_load_acquire(&rcu_state->completed);
2722 if (ULONG_CMP_GE(oldstate, newstate))
2723 synchronize_rcu();
2724}
2725EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2726
3d3b7db0
PM
2727static int synchronize_sched_expedited_cpu_stop(void *data)
2728{
2729 /*
2730 * There must be a full memory barrier on each affected CPU
2731 * between the time that try_stop_cpus() is called and the
2732 * time that it returns.
2733 *
2734 * In the current initial implementation of cpu_stop, the
2735 * above condition is already met when the control reaches
2736 * this point and the following smp_mb() is not strictly
2737 * necessary. Do smp_mb() anyway for documentation and
2738 * robustness against future implementation changes.
2739 */
2740 smp_mb(); /* See above comment block. */
2741 return 0;
2742}
2743
236fefaf
PM
2744/**
2745 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2746 *
2747 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2748 * approach to force the grace period to end quickly. This consumes
2749 * significant time on all CPUs and is unfriendly to real-time workloads,
2750 * so is thus not recommended for any sort of common-case code. In fact,
2751 * if you are using synchronize_sched_expedited() in a loop, please
2752 * restructure your code to batch your updates, and then use a single
2753 * synchronize_sched() instead.
3d3b7db0 2754 *
236fefaf
PM
2755 * Note that it is illegal to call this function while holding any lock
2756 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2757 * to call this function from a CPU-hotplug notifier. Failing to observe
2758 * these restriction will result in deadlock.
3d3b7db0
PM
2759 *
2760 * This implementation can be thought of as an application of ticket
2761 * locking to RCU, with sync_sched_expedited_started and
2762 * sync_sched_expedited_done taking on the roles of the halves
2763 * of the ticket-lock word. Each task atomically increments
2764 * sync_sched_expedited_started upon entry, snapshotting the old value,
2765 * then attempts to stop all the CPUs. If this succeeds, then each
2766 * CPU will have executed a context switch, resulting in an RCU-sched
2767 * grace period. We are then done, so we use atomic_cmpxchg() to
2768 * update sync_sched_expedited_done to match our snapshot -- but
2769 * only if someone else has not already advanced past our snapshot.
2770 *
2771 * On the other hand, if try_stop_cpus() fails, we check the value
2772 * of sync_sched_expedited_done. If it has advanced past our
2773 * initial snapshot, then someone else must have forced a grace period
2774 * some time after we took our snapshot. In this case, our work is
2775 * done for us, and we can simply return. Otherwise, we try again,
2776 * but keep our initial snapshot for purposes of checking for someone
2777 * doing our work for us.
2778 *
2779 * If we fail too many times in a row, we fall back to synchronize_sched().
2780 */
2781void synchronize_sched_expedited(void)
2782{
1924bcb0
PM
2783 long firstsnap, s, snap;
2784 int trycount = 0;
40694d66 2785 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2786
1924bcb0
PM
2787 /*
2788 * If we are in danger of counter wrap, just do synchronize_sched().
2789 * By allowing sync_sched_expedited_started to advance no more than
2790 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2791 * that more than 3.5 billion CPUs would be required to force a
2792 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2793 * course be required on a 64-bit system.
2794 */
40694d66
PM
2795 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2796 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2797 ULONG_MAX / 8)) {
2798 synchronize_sched();
a30489c5 2799 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2800 return;
2801 }
3d3b7db0 2802
1924bcb0
PM
2803 /*
2804 * Take a ticket. Note that atomic_inc_return() implies a
2805 * full memory barrier.
2806 */
40694d66 2807 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2808 firstsnap = snap;
3d3b7db0 2809 get_online_cpus();
1cc85961 2810 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2811
2812 /*
2813 * Each pass through the following loop attempts to force a
2814 * context switch on each CPU.
2815 */
2816 while (try_stop_cpus(cpu_online_mask,
2817 synchronize_sched_expedited_cpu_stop,
2818 NULL) == -EAGAIN) {
2819 put_online_cpus();
a30489c5 2820 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2821
1924bcb0 2822 /* Check to see if someone else did our work for us. */
40694d66 2823 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2824 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2825 /* ensure test happens before caller kfree */
2826 smp_mb__before_atomic_inc(); /* ^^^ */
2827 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2828 return;
2829 }
3d3b7db0
PM
2830
2831 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2832 if (trycount++ < 10) {
3d3b7db0 2833 udelay(trycount * num_online_cpus());
c701d5d9 2834 } else {
3705b88d 2835 wait_rcu_gp(call_rcu_sched);
a30489c5 2836 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2837 return;
2838 }
2839
1924bcb0 2840 /* Recheck to see if someone else did our work for us. */
40694d66 2841 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2842 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2843 /* ensure test happens before caller kfree */
2844 smp_mb__before_atomic_inc(); /* ^^^ */
2845 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2846 return;
2847 }
2848
2849 /*
2850 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2851 * callers to piggyback on our grace period. We retry
2852 * after they started, so our grace period works for them,
2853 * and they started after our first try, so their grace
2854 * period works for us.
3d3b7db0
PM
2855 */
2856 get_online_cpus();
40694d66 2857 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2858 smp_mb(); /* ensure read is before try_stop_cpus(). */
2859 }
a30489c5 2860 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2861
2862 /*
2863 * Everyone up to our most recent fetch is covered by our grace
2864 * period. Update the counter, but only if our work is still
2865 * relevant -- which it won't be if someone who started later
1924bcb0 2866 * than we did already did their update.
3d3b7db0
PM
2867 */
2868 do {
a30489c5 2869 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2870 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2871 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2872 /* ensure test happens before caller kfree */
2873 smp_mb__before_atomic_inc(); /* ^^^ */
2874 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2875 break;
2876 }
40694d66 2877 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2878 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2879
2880 put_online_cpus();
2881}
2882EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2883
64db4cff
PM
2884/*
2885 * Check to see if there is any immediate RCU-related work to be done
2886 * by the current CPU, for the specified type of RCU, returning 1 if so.
2887 * The checks are in order of increasing expense: checks that can be
2888 * carried out against CPU-local state are performed first. However,
2889 * we must check for CPU stalls first, else we might not get a chance.
2890 */
2891static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2892{
2f51f988
PM
2893 struct rcu_node *rnp = rdp->mynode;
2894
64db4cff
PM
2895 rdp->n_rcu_pending++;
2896
2897 /* Check for CPU stalls, if enabled. */
2898 check_cpu_stall(rsp, rdp);
2899
a096932f
PM
2900 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2901 if (rcu_nohz_full_cpu(rsp))
2902 return 0;
2903
64db4cff 2904 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2905 if (rcu_scheduler_fully_active &&
2906 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2907 rdp->n_rp_qs_pending++;
e4cc1f22 2908 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2909 rdp->n_rp_report_qs++;
64db4cff 2910 return 1;
7ba5c840 2911 }
64db4cff
PM
2912
2913 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2914 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2915 rdp->n_rp_cb_ready++;
64db4cff 2916 return 1;
7ba5c840 2917 }
64db4cff
PM
2918
2919 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2920 if (cpu_needs_another_gp(rsp, rdp)) {
2921 rdp->n_rp_cpu_needs_gp++;
64db4cff 2922 return 1;
7ba5c840 2923 }
64db4cff
PM
2924
2925 /* Has another RCU grace period completed? */
2f51f988 2926 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2927 rdp->n_rp_gp_completed++;
64db4cff 2928 return 1;
7ba5c840 2929 }
64db4cff
PM
2930
2931 /* Has a new RCU grace period started? */
2f51f988 2932 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2933 rdp->n_rp_gp_started++;
64db4cff 2934 return 1;
7ba5c840 2935 }
64db4cff 2936
96d3fd0d
PM
2937 /* Does this CPU need a deferred NOCB wakeup? */
2938 if (rcu_nocb_need_deferred_wakeup(rdp)) {
2939 rdp->n_rp_nocb_defer_wakeup++;
2940 return 1;
2941 }
2942
64db4cff 2943 /* nothing to do */
7ba5c840 2944 rdp->n_rp_need_nothing++;
64db4cff
PM
2945 return 0;
2946}
2947
2948/*
2949 * Check to see if there is any immediate RCU-related work to be done
2950 * by the current CPU, returning 1 if so. This function is part of the
2951 * RCU implementation; it is -not- an exported member of the RCU API.
2952 */
a157229c 2953static int rcu_pending(int cpu)
64db4cff 2954{
6ce75a23
PM
2955 struct rcu_state *rsp;
2956
2957 for_each_rcu_flavor(rsp)
2958 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2959 return 1;
2960 return 0;
64db4cff
PM
2961}
2962
2963/*
c0f4dfd4
PM
2964 * Return true if the specified CPU has any callback. If all_lazy is
2965 * non-NULL, store an indication of whether all callbacks are lazy.
2966 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2967 */
ffa83fb5 2968static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2969{
c0f4dfd4
PM
2970 bool al = true;
2971 bool hc = false;
2972 struct rcu_data *rdp;
6ce75a23
PM
2973 struct rcu_state *rsp;
2974
c0f4dfd4
PM
2975 for_each_rcu_flavor(rsp) {
2976 rdp = per_cpu_ptr(rsp->rda, cpu);
69c8d28c
PM
2977 if (!rdp->nxtlist)
2978 continue;
2979 hc = true;
2980 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 2981 al = false;
69c8d28c
PM
2982 break;
2983 }
c0f4dfd4
PM
2984 }
2985 if (all_lazy)
2986 *all_lazy = al;
2987 return hc;
64db4cff
PM
2988}
2989
a83eff0a
PM
2990/*
2991 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2992 * the compiler is expected to optimize this away.
2993 */
e66c33d5 2994static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2995 int cpu, unsigned long done)
2996{
2997 trace_rcu_barrier(rsp->name, s, cpu,
2998 atomic_read(&rsp->barrier_cpu_count), done);
2999}
3000
b1420f1c
PM
3001/*
3002 * RCU callback function for _rcu_barrier(). If we are last, wake
3003 * up the task executing _rcu_barrier().
3004 */
24ebbca8 3005static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3006{
24ebbca8
PM
3007 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3008 struct rcu_state *rsp = rdp->rsp;
3009
a83eff0a
PM
3010 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3011 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3012 complete(&rsp->barrier_completion);
a83eff0a
PM
3013 } else {
3014 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3015 }
d0ec774c
PM
3016}
3017
3018/*
3019 * Called with preemption disabled, and from cross-cpu IRQ context.
3020 */
3021static void rcu_barrier_func(void *type)
3022{
037b64ed 3023 struct rcu_state *rsp = type;
06668efa 3024 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 3025
a83eff0a 3026 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3027 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3028 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3029}
3030
d0ec774c
PM
3031/*
3032 * Orchestrate the specified type of RCU barrier, waiting for all
3033 * RCU callbacks of the specified type to complete.
3034 */
037b64ed 3035static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3036{
b1420f1c 3037 int cpu;
b1420f1c 3038 struct rcu_data *rdp;
cf3a9c48
PM
3039 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3040 unsigned long snap_done;
b1420f1c 3041
a83eff0a 3042 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3043
e74f4c45 3044 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3045 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3046
cf3a9c48
PM
3047 /*
3048 * Ensure that all prior references, including to ->n_barrier_done,
3049 * are ordered before the _rcu_barrier() machinery.
3050 */
3051 smp_mb(); /* See above block comment. */
3052
3053 /*
3054 * Recheck ->n_barrier_done to see if others did our work for us.
3055 * This means checking ->n_barrier_done for an even-to-odd-to-even
3056 * transition. The "if" expression below therefore rounds the old
3057 * value up to the next even number and adds two before comparing.
3058 */
458fb381 3059 snap_done = rsp->n_barrier_done;
a83eff0a 3060 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3061
3062 /*
3063 * If the value in snap is odd, we needed to wait for the current
3064 * rcu_barrier() to complete, then wait for the next one, in other
3065 * words, we need the value of snap_done to be three larger than
3066 * the value of snap. On the other hand, if the value in snap is
3067 * even, we only had to wait for the next rcu_barrier() to complete,
3068 * in other words, we need the value of snap_done to be only two
3069 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3070 * this for us (thank you, Linus!).
3071 */
3072 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3073 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3074 smp_mb(); /* caller's subsequent code after above check. */
3075 mutex_unlock(&rsp->barrier_mutex);
3076 return;
3077 }
3078
3079 /*
3080 * Increment ->n_barrier_done to avoid duplicate work. Use
3081 * ACCESS_ONCE() to prevent the compiler from speculating
3082 * the increment to precede the early-exit check.
3083 */
3084 ACCESS_ONCE(rsp->n_barrier_done)++;
3085 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3086 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3087 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3088
d0ec774c 3089 /*
b1420f1c
PM
3090 * Initialize the count to one rather than to zero in order to
3091 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3092 * (or preemption of this task). Exclude CPU-hotplug operations
3093 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3094 */
7db74df8 3095 init_completion(&rsp->barrier_completion);
24ebbca8 3096 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3097 get_online_cpus();
b1420f1c
PM
3098
3099 /*
1331e7a1
PM
3100 * Force each CPU with callbacks to register a new callback.
3101 * When that callback is invoked, we will know that all of the
3102 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3103 */
3fbfbf7a 3104 for_each_possible_cpu(cpu) {
d1e43fa5 3105 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3106 continue;
b1420f1c 3107 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3108 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
3109 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3110 rsp->n_barrier_done);
3111 atomic_inc(&rsp->barrier_cpu_count);
3112 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3113 rsp, cpu, 0);
3114 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3115 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3116 rsp->n_barrier_done);
037b64ed 3117 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3118 } else {
a83eff0a
PM
3119 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3120 rsp->n_barrier_done);
b1420f1c
PM
3121 }
3122 }
1331e7a1 3123 put_online_cpus();
b1420f1c
PM
3124
3125 /*
3126 * Now that we have an rcu_barrier_callback() callback on each
3127 * CPU, and thus each counted, remove the initial count.
3128 */
24ebbca8 3129 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3130 complete(&rsp->barrier_completion);
b1420f1c 3131
cf3a9c48
PM
3132 /* Increment ->n_barrier_done to prevent duplicate work. */
3133 smp_mb(); /* Keep increment after above mechanism. */
3134 ACCESS_ONCE(rsp->n_barrier_done)++;
3135 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3136 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3137 smp_mb(); /* Keep increment before caller's subsequent code. */
3138
b1420f1c 3139 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3140 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3141
3142 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3143 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3144}
d0ec774c
PM
3145
3146/**
3147 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3148 */
3149void rcu_barrier_bh(void)
3150{
037b64ed 3151 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3152}
3153EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3154
3155/**
3156 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3157 */
3158void rcu_barrier_sched(void)
3159{
037b64ed 3160 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3161}
3162EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3163
64db4cff 3164/*
27569620 3165 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3166 */
27569620
PM
3167static void __init
3168rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3169{
3170 unsigned long flags;
394f99a9 3171 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3172 struct rcu_node *rnp = rcu_get_root(rsp);
3173
3174 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3175 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3176 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3177 init_callback_list(rdp);
486e2593 3178 rdp->qlen_lazy = 0;
1d1fb395 3179 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3180 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3181 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3182 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3183 rdp->cpu = cpu;
d4c08f2a 3184 rdp->rsp = rsp;
3fbfbf7a 3185 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3186 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3187}
3188
3189/*
3190 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3191 * offline event can be happening at a given time. Note also that we
3192 * can accept some slop in the rsp->completed access due to the fact
3193 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3194 */
49fb4c62 3195static void
6cc68793 3196rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
3197{
3198 unsigned long flags;
64db4cff 3199 unsigned long mask;
394f99a9 3200 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3201 struct rcu_node *rnp = rcu_get_root(rsp);
3202
a4fbe35a
PM
3203 /* Exclude new grace periods. */
3204 mutex_lock(&rsp->onoff_mutex);
3205
64db4cff 3206 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3207 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3208 rdp->beenonline = 1; /* We have now been online. */
6cc68793 3209 rdp->preemptible = preemptible;
37c72e56
PM
3210 rdp->qlen_last_fqs_check = 0;
3211 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3212 rdp->blimit = blimit;
0d8ee37e 3213 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3214 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3215 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3216 atomic_set(&rdp->dynticks->dynticks,
3217 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3218 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3219
64db4cff
PM
3220 /* Add CPU to rcu_node bitmasks. */
3221 rnp = rdp->mynode;
3222 mask = rdp->grpmask;
3223 do {
3224 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3225 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3226 rnp->qsmaskinit |= mask;
3227 mask = rnp->grpmask;
d09b62df 3228 if (rnp == rdp->mynode) {
06ae115a
PM
3229 /*
3230 * If there is a grace period in progress, we will
3231 * set up to wait for it next time we run the
3232 * RCU core code.
3233 */
3234 rdp->gpnum = rnp->completed;
d09b62df 3235 rdp->completed = rnp->completed;
06ae115a
PM
3236 rdp->passed_quiesce = 0;
3237 rdp->qs_pending = 0;
f7f7bac9 3238 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3239 }
1304afb2 3240 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3241 rnp = rnp->parent;
3242 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3243 local_irq_restore(flags);
64db4cff 3244
a4fbe35a 3245 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3246}
3247
49fb4c62 3248static void rcu_prepare_cpu(int cpu)
64db4cff 3249{
6ce75a23
PM
3250 struct rcu_state *rsp;
3251
3252 for_each_rcu_flavor(rsp)
3253 rcu_init_percpu_data(cpu, rsp,
3254 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
3255}
3256
3257/*
f41d911f 3258 * Handle CPU online/offline notification events.
64db4cff 3259 */
49fb4c62 3260static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3261 unsigned long action, void *hcpu)
64db4cff
PM
3262{
3263 long cpu = (long)hcpu;
27f4d280 3264 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 3265 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3266 struct rcu_state *rsp;
64db4cff 3267
f7f7bac9 3268 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3269 switch (action) {
3270 case CPU_UP_PREPARE:
3271 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3272 rcu_prepare_cpu(cpu);
3273 rcu_prepare_kthreads(cpu);
a26ac245
PM
3274 break;
3275 case CPU_ONLINE:
0f962a5e 3276 case CPU_DOWN_FAILED:
5d01bbd1 3277 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3278 break;
3279 case CPU_DOWN_PREPARE:
34ed6246 3280 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3281 break;
d0ec774c
PM
3282 case CPU_DYING:
3283 case CPU_DYING_FROZEN:
6ce75a23
PM
3284 for_each_rcu_flavor(rsp)
3285 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3286 break;
64db4cff
PM
3287 case CPU_DEAD:
3288 case CPU_DEAD_FROZEN:
3289 case CPU_UP_CANCELED:
3290 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3291 for_each_rcu_flavor(rsp)
3292 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3293 break;
3294 default:
3295 break;
3296 }
f7f7bac9 3297 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3298 return NOTIFY_OK;
64db4cff
PM
3299}
3300
d1d74d14
BP
3301static int rcu_pm_notify(struct notifier_block *self,
3302 unsigned long action, void *hcpu)
3303{
3304 switch (action) {
3305 case PM_HIBERNATION_PREPARE:
3306 case PM_SUSPEND_PREPARE:
3307 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3308 rcu_expedited = 1;
3309 break;
3310 case PM_POST_HIBERNATION:
3311 case PM_POST_SUSPEND:
3312 rcu_expedited = 0;
3313 break;
3314 default:
3315 break;
3316 }
3317 return NOTIFY_OK;
3318}
3319
b3dbec76
PM
3320/*
3321 * Spawn the kthread that handles this RCU flavor's grace periods.
3322 */
3323static int __init rcu_spawn_gp_kthread(void)
3324{
3325 unsigned long flags;
3326 struct rcu_node *rnp;
3327 struct rcu_state *rsp;
3328 struct task_struct *t;
3329
3330 for_each_rcu_flavor(rsp) {
f170168b 3331 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3332 BUG_ON(IS_ERR(t));
3333 rnp = rcu_get_root(rsp);
3334 raw_spin_lock_irqsave(&rnp->lock, flags);
3335 rsp->gp_kthread = t;
3336 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3337 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3338 }
3339 return 0;
3340}
3341early_initcall(rcu_spawn_gp_kthread);
3342
bbad9379
PM
3343/*
3344 * This function is invoked towards the end of the scheduler's initialization
3345 * process. Before this is called, the idle task might contain
3346 * RCU read-side critical sections (during which time, this idle
3347 * task is booting the system). After this function is called, the
3348 * idle tasks are prohibited from containing RCU read-side critical
3349 * sections. This function also enables RCU lockdep checking.
3350 */
3351void rcu_scheduler_starting(void)
3352{
3353 WARN_ON(num_online_cpus() != 1);
3354 WARN_ON(nr_context_switches() > 0);
3355 rcu_scheduler_active = 1;
3356}
3357
64db4cff
PM
3358/*
3359 * Compute the per-level fanout, either using the exact fanout specified
3360 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3361 */
3362#ifdef CONFIG_RCU_FANOUT_EXACT
3363static void __init rcu_init_levelspread(struct rcu_state *rsp)
3364{
3365 int i;
3366
04f34650
PM
3367 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3368 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3369 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3370}
3371#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3372static void __init rcu_init_levelspread(struct rcu_state *rsp)
3373{
3374 int ccur;
3375 int cprv;
3376 int i;
3377
4dbd6bb3 3378 cprv = nr_cpu_ids;
f885b7f2 3379 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3380 ccur = rsp->levelcnt[i];
3381 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3382 cprv = ccur;
3383 }
3384}
3385#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3386
3387/*
3388 * Helper function for rcu_init() that initializes one rcu_state structure.
3389 */
394f99a9
LJ
3390static void __init rcu_init_one(struct rcu_state *rsp,
3391 struct rcu_data __percpu *rda)
64db4cff 3392{
394f2769
PM
3393 static char *buf[] = { "rcu_node_0",
3394 "rcu_node_1",
3395 "rcu_node_2",
3396 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3397 static char *fqs[] = { "rcu_node_fqs_0",
3398 "rcu_node_fqs_1",
3399 "rcu_node_fqs_2",
3400 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3401 int cpustride = 1;
3402 int i;
3403 int j;
3404 struct rcu_node *rnp;
3405
b6407e86
PM
3406 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3407
4930521a
PM
3408 /* Silence gcc 4.8 warning about array index out of range. */
3409 if (rcu_num_lvls > RCU_NUM_LVLS)
3410 panic("rcu_init_one: rcu_num_lvls overflow");
3411
64db4cff
PM
3412 /* Initialize the level-tracking arrays. */
3413
f885b7f2
PM
3414 for (i = 0; i < rcu_num_lvls; i++)
3415 rsp->levelcnt[i] = num_rcu_lvl[i];
3416 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3417 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3418 rcu_init_levelspread(rsp);
3419
3420 /* Initialize the elements themselves, starting from the leaves. */
3421
f885b7f2 3422 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3423 cpustride *= rsp->levelspread[i];
3424 rnp = rsp->level[i];
3425 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3426 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3427 lockdep_set_class_and_name(&rnp->lock,
3428 &rcu_node_class[i], buf[i]);
394f2769
PM
3429 raw_spin_lock_init(&rnp->fqslock);
3430 lockdep_set_class_and_name(&rnp->fqslock,
3431 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3432 rnp->gpnum = rsp->gpnum;
3433 rnp->completed = rsp->completed;
64db4cff
PM
3434 rnp->qsmask = 0;
3435 rnp->qsmaskinit = 0;
3436 rnp->grplo = j * cpustride;
3437 rnp->grphi = (j + 1) * cpustride - 1;
3438 if (rnp->grphi >= NR_CPUS)
3439 rnp->grphi = NR_CPUS - 1;
3440 if (i == 0) {
3441 rnp->grpnum = 0;
3442 rnp->grpmask = 0;
3443 rnp->parent = NULL;
3444 } else {
3445 rnp->grpnum = j % rsp->levelspread[i - 1];
3446 rnp->grpmask = 1UL << rnp->grpnum;
3447 rnp->parent = rsp->level[i - 1] +
3448 j / rsp->levelspread[i - 1];
3449 }
3450 rnp->level = i;
12f5f524 3451 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3452 rcu_init_one_nocb(rnp);
64db4cff
PM
3453 }
3454 }
0c34029a 3455
394f99a9 3456 rsp->rda = rda;
b3dbec76 3457 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3458 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3459 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3460 for_each_possible_cpu(i) {
4a90a068 3461 while (i > rnp->grphi)
0c34029a 3462 rnp++;
394f99a9 3463 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3464 rcu_boot_init_percpu_data(i, rsp);
3465 }
6ce75a23 3466 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3467}
3468
f885b7f2
PM
3469/*
3470 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3471 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3472 * the ->node array in the rcu_state structure.
3473 */
3474static void __init rcu_init_geometry(void)
3475{
026ad283 3476 ulong d;
f885b7f2
PM
3477 int i;
3478 int j;
cca6f393 3479 int n = nr_cpu_ids;
f885b7f2
PM
3480 int rcu_capacity[MAX_RCU_LVLS + 1];
3481
026ad283
PM
3482 /*
3483 * Initialize any unspecified boot parameters.
3484 * The default values of jiffies_till_first_fqs and
3485 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3486 * value, which is a function of HZ, then adding one for each
3487 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3488 */
3489 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3490 if (jiffies_till_first_fqs == ULONG_MAX)
3491 jiffies_till_first_fqs = d;
3492 if (jiffies_till_next_fqs == ULONG_MAX)
3493 jiffies_till_next_fqs = d;
3494
f885b7f2 3495 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3496 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3497 nr_cpu_ids == NR_CPUS)
f885b7f2 3498 return;
39479098
PM
3499 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3500 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3501
3502 /*
3503 * Compute number of nodes that can be handled an rcu_node tree
3504 * with the given number of levels. Setting rcu_capacity[0] makes
3505 * some of the arithmetic easier.
3506 */
3507 rcu_capacity[0] = 1;
3508 rcu_capacity[1] = rcu_fanout_leaf;
3509 for (i = 2; i <= MAX_RCU_LVLS; i++)
3510 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3511
3512 /*
3513 * The boot-time rcu_fanout_leaf parameter is only permitted
3514 * to increase the leaf-level fanout, not decrease it. Of course,
3515 * the leaf-level fanout cannot exceed the number of bits in
3516 * the rcu_node masks. Finally, the tree must be able to accommodate
3517 * the configured number of CPUs. Complain and fall back to the
3518 * compile-time values if these limits are exceeded.
3519 */
3520 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3521 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3522 n > rcu_capacity[MAX_RCU_LVLS]) {
3523 WARN_ON(1);
3524 return;
3525 }
3526
3527 /* Calculate the number of rcu_nodes at each level of the tree. */
3528 for (i = 1; i <= MAX_RCU_LVLS; i++)
3529 if (n <= rcu_capacity[i]) {
3530 for (j = 0; j <= i; j++)
3531 num_rcu_lvl[j] =
3532 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3533 rcu_num_lvls = i;
3534 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3535 num_rcu_lvl[j] = 0;
3536 break;
3537 }
3538
3539 /* Calculate the total number of rcu_node structures. */
3540 rcu_num_nodes = 0;
3541 for (i = 0; i <= MAX_RCU_LVLS; i++)
3542 rcu_num_nodes += num_rcu_lvl[i];
3543 rcu_num_nodes -= n;
3544}
3545
9f680ab4 3546void __init rcu_init(void)
64db4cff 3547{
017c4261 3548 int cpu;
9f680ab4 3549
f41d911f 3550 rcu_bootup_announce();
f885b7f2 3551 rcu_init_geometry();
394f99a9 3552 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3553 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3554 __rcu_init_preempt();
b5b39360 3555 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3556
3557 /*
3558 * We don't need protection against CPU-hotplug here because
3559 * this is called early in boot, before either interrupts
3560 * or the scheduler are operational.
3561 */
3562 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3563 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3564 for_each_online_cpu(cpu)
3565 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3566}
3567
4102adab 3568#include "tree_plugin.h"
This page took 0.734561 seconds and 5 git commands to generate.