locktorture: Document boot/module parameters
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a8a29b3b
AB
82#ifdef CONFIG_TRACING
83# define DEFINE_RCU_TPS(sname) \
f7f7bac9 84static char sname##_varname[] = #sname; \
a8a29b3b
AB
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86# define RCU_STATE_NAME(sname) sname##_varname
87#else
88# define DEFINE_RCU_TPS(sname)
89# define RCU_STATE_NAME(sname) __stringify(sname)
90#endif
91
92#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93DEFINE_RCU_TPS(sname) \
a41bfeb2 94struct rcu_state sname##_state = { \
6c90cc7b 95 .level = { &sname##_state.node[0] }, \
037b64ed 96 .call = cr, \
af446b70 97 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7b2e6011 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
101 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
102 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 104 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
a8a29b3b 105 .name = RCU_STATE_NAME(sname), \
a4889858 106 .abbr = sabbr, \
a41bfeb2
SRRH
107}; \
108DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 109
a41bfeb2
SRRH
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 112
e534165b 113static struct rcu_state *rcu_state_p;
6ce75a23 114LIST_HEAD(rcu_struct_flavors);
27f4d280 115
f885b7f2
PM
116/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 118module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
119int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
121 NUM_RCU_LVL_0,
122 NUM_RCU_LVL_1,
123 NUM_RCU_LVL_2,
124 NUM_RCU_LVL_3,
125 NUM_RCU_LVL_4,
126};
127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
b0d30417
PM
129/*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 133 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
bbad9379
PM
138int rcu_scheduler_active __read_mostly;
139EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
b0d30417
PM
141/*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153static int rcu_scheduler_fully_active __read_mostly;
154
a46e0899
PM
155#ifdef CONFIG_RCU_BOOST
156
a26ac245
PM
157/*
158 * Control variables for per-CPU and per-rcu_node kthreads. These
159 * handle all flavors of RCU.
160 */
161static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 162DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 163DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 164DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 165
a46e0899
PM
166#endif /* #ifdef CONFIG_RCU_BOOST */
167
5d01bbd1 168static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
169static void invoke_rcu_core(void);
170static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 171
4a298656
PM
172/*
173 * Track the rcutorture test sequence number and the update version
174 * number within a given test. The rcutorture_testseq is incremented
175 * on every rcutorture module load and unload, so has an odd value
176 * when a test is running. The rcutorture_vernum is set to zero
177 * when rcutorture starts and is incremented on each rcutorture update.
178 * These variables enable correlating rcutorture output with the
179 * RCU tracing information.
180 */
181unsigned long rcutorture_testseq;
182unsigned long rcutorture_vernum;
183
fc2219d4
PM
184/*
185 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
186 * permit this function to be invoked without holding the root rcu_node
187 * structure's ->lock, but of course results can be subject to change.
188 */
189static int rcu_gp_in_progress(struct rcu_state *rsp)
190{
191 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
192}
193
b1f77b05 194/*
d6714c22 195 * Note a quiescent state. Because we do not need to know
b1f77b05 196 * how many quiescent states passed, just if there was at least
d6714c22 197 * one since the start of the grace period, this just sets a flag.
e4cc1f22 198 * The caller must have disabled preemption.
b1f77b05 199 */
284a8c93 200void rcu_sched_qs(void)
b1f77b05 201{
284a8c93
PM
202 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
203 trace_rcu_grace_period(TPS("rcu_sched"),
204 __this_cpu_read(rcu_sched_data.gpnum),
205 TPS("cpuqs"));
206 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
207 }
b1f77b05
IM
208}
209
284a8c93 210void rcu_bh_qs(void)
b1f77b05 211{
284a8c93
PM
212 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
213 trace_rcu_grace_period(TPS("rcu_bh"),
214 __this_cpu_read(rcu_bh_data.gpnum),
215 TPS("cpuqs"));
216 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
217 }
b1f77b05 218}
64db4cff 219
4a81e832
PM
220static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
221
222static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
223 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
224 .dynticks = ATOMIC_INIT(1),
225#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
226 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
227 .dynticks_idle = ATOMIC_INIT(1),
228#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
229};
230
231/*
232 * Let the RCU core know that this CPU has gone through the scheduler,
233 * which is a quiescent state. This is called when the need for a
234 * quiescent state is urgent, so we burn an atomic operation and full
235 * memory barriers to let the RCU core know about it, regardless of what
236 * this CPU might (or might not) do in the near future.
237 *
238 * We inform the RCU core by emulating a zero-duration dyntick-idle
239 * period, which we in turn do by incrementing the ->dynticks counter
240 * by two.
241 */
242static void rcu_momentary_dyntick_idle(void)
243{
244 unsigned long flags;
245 struct rcu_data *rdp;
246 struct rcu_dynticks *rdtp;
247 int resched_mask;
248 struct rcu_state *rsp;
249
250 local_irq_save(flags);
251
252 /*
253 * Yes, we can lose flag-setting operations. This is OK, because
254 * the flag will be set again after some delay.
255 */
256 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
257 raw_cpu_write(rcu_sched_qs_mask, 0);
258
259 /* Find the flavor that needs a quiescent state. */
260 for_each_rcu_flavor(rsp) {
261 rdp = raw_cpu_ptr(rsp->rda);
262 if (!(resched_mask & rsp->flavor_mask))
263 continue;
264 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
265 if (ACCESS_ONCE(rdp->mynode->completed) !=
266 ACCESS_ONCE(rdp->cond_resched_completed))
267 continue;
268
269 /*
270 * Pretend to be momentarily idle for the quiescent state.
271 * This allows the grace-period kthread to record the
272 * quiescent state, with no need for this CPU to do anything
273 * further.
274 */
275 rdtp = this_cpu_ptr(&rcu_dynticks);
276 smp_mb__before_atomic(); /* Earlier stuff before QS. */
277 atomic_add(2, &rdtp->dynticks); /* QS. */
278 smp_mb__after_atomic(); /* Later stuff after QS. */
279 break;
280 }
281 local_irq_restore(flags);
282}
283
25502a6c
PM
284/*
285 * Note a context switch. This is a quiescent state for RCU-sched,
286 * and requires special handling for preemptible RCU.
e4cc1f22 287 * The caller must have disabled preemption.
25502a6c
PM
288 */
289void rcu_note_context_switch(int cpu)
290{
f7f7bac9 291 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 292 rcu_sched_qs();
cba6d0d6 293 rcu_preempt_note_context_switch(cpu);
4a81e832
PM
294 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
295 rcu_momentary_dyntick_idle();
f7f7bac9 296 trace_rcu_utilization(TPS("End context switch"));
25502a6c 297}
29ce8310 298EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 299
878d7439
ED
300static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
301static long qhimark = 10000; /* If this many pending, ignore blimit. */
302static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 303
878d7439
ED
304module_param(blimit, long, 0444);
305module_param(qhimark, long, 0444);
306module_param(qlowmark, long, 0444);
3d76c082 307
026ad283
PM
308static ulong jiffies_till_first_fqs = ULONG_MAX;
309static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
310
311module_param(jiffies_till_first_fqs, ulong, 0644);
312module_param(jiffies_till_next_fqs, ulong, 0644);
313
4a81e832
PM
314/*
315 * How long the grace period must be before we start recruiting
316 * quiescent-state help from rcu_note_context_switch().
317 */
318static ulong jiffies_till_sched_qs = HZ / 20;
319module_param(jiffies_till_sched_qs, ulong, 0644);
320
48a7639c 321static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 322 struct rcu_data *rdp);
217af2a2
PM
323static void force_qs_rnp(struct rcu_state *rsp,
324 int (*f)(struct rcu_data *rsp, bool *isidle,
325 unsigned long *maxj),
326 bool *isidle, unsigned long *maxj);
4cdfc175 327static void force_quiescent_state(struct rcu_state *rsp);
a157229c 328static int rcu_pending(int cpu);
64db4cff
PM
329
330/*
d6714c22 331 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 332 */
d6714c22 333long rcu_batches_completed_sched(void)
64db4cff 334{
d6714c22 335 return rcu_sched_state.completed;
64db4cff 336}
d6714c22 337EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
338
339/*
340 * Return the number of RCU BH batches processed thus far for debug & stats.
341 */
342long rcu_batches_completed_bh(void)
343{
344 return rcu_bh_state.completed;
345}
346EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
347
a381d757
ACB
348/*
349 * Force a quiescent state.
350 */
351void rcu_force_quiescent_state(void)
352{
e534165b 353 force_quiescent_state(rcu_state_p);
a381d757
ACB
354}
355EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
356
bf66f18e
PM
357/*
358 * Force a quiescent state for RCU BH.
359 */
360void rcu_bh_force_quiescent_state(void)
361{
4cdfc175 362 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
363}
364EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
365
afea227f
PM
366/*
367 * Show the state of the grace-period kthreads.
368 */
369void show_rcu_gp_kthreads(void)
370{
371 struct rcu_state *rsp;
372
373 for_each_rcu_flavor(rsp) {
374 pr_info("%s: wait state: %d ->state: %#lx\n",
375 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
376 /* sched_show_task(rsp->gp_kthread); */
377 }
378}
379EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
380
4a298656
PM
381/*
382 * Record the number of times rcutorture tests have been initiated and
383 * terminated. This information allows the debugfs tracing stats to be
384 * correlated to the rcutorture messages, even when the rcutorture module
385 * is being repeatedly loaded and unloaded. In other words, we cannot
386 * store this state in rcutorture itself.
387 */
388void rcutorture_record_test_transition(void)
389{
390 rcutorture_testseq++;
391 rcutorture_vernum = 0;
392}
393EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
394
ad0dc7f9
PM
395/*
396 * Send along grace-period-related data for rcutorture diagnostics.
397 */
398void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
399 unsigned long *gpnum, unsigned long *completed)
400{
401 struct rcu_state *rsp = NULL;
402
403 switch (test_type) {
404 case RCU_FLAVOR:
e534165b 405 rsp = rcu_state_p;
ad0dc7f9
PM
406 break;
407 case RCU_BH_FLAVOR:
408 rsp = &rcu_bh_state;
409 break;
410 case RCU_SCHED_FLAVOR:
411 rsp = &rcu_sched_state;
412 break;
413 default:
414 break;
415 }
416 if (rsp != NULL) {
417 *flags = ACCESS_ONCE(rsp->gp_flags);
418 *gpnum = ACCESS_ONCE(rsp->gpnum);
419 *completed = ACCESS_ONCE(rsp->completed);
420 return;
421 }
422 *flags = 0;
423 *gpnum = 0;
424 *completed = 0;
425}
426EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
427
4a298656
PM
428/*
429 * Record the number of writer passes through the current rcutorture test.
430 * This is also used to correlate debugfs tracing stats with the rcutorture
431 * messages.
432 */
433void rcutorture_record_progress(unsigned long vernum)
434{
435 rcutorture_vernum++;
436}
437EXPORT_SYMBOL_GPL(rcutorture_record_progress);
438
bf66f18e
PM
439/*
440 * Force a quiescent state for RCU-sched.
441 */
442void rcu_sched_force_quiescent_state(void)
443{
4cdfc175 444 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
445}
446EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
447
64db4cff
PM
448/*
449 * Does the CPU have callbacks ready to be invoked?
450 */
451static int
452cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
453{
3fbfbf7a
PM
454 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
455 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
456}
457
365187fb
PM
458/*
459 * Return the root node of the specified rcu_state structure.
460 */
461static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
462{
463 return &rsp->node[0];
464}
465
466/*
467 * Is there any need for future grace periods?
468 * Interrupts must be disabled. If the caller does not hold the root
469 * rnp_node structure's ->lock, the results are advisory only.
470 */
471static int rcu_future_needs_gp(struct rcu_state *rsp)
472{
473 struct rcu_node *rnp = rcu_get_root(rsp);
474 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
475 int *fp = &rnp->need_future_gp[idx];
476
477 return ACCESS_ONCE(*fp);
478}
479
64db4cff 480/*
dc35c893
PM
481 * Does the current CPU require a not-yet-started grace period?
482 * The caller must have disabled interrupts to prevent races with
483 * normal callback registry.
64db4cff
PM
484 */
485static int
486cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
487{
dc35c893 488 int i;
3fbfbf7a 489
dc35c893
PM
490 if (rcu_gp_in_progress(rsp))
491 return 0; /* No, a grace period is already in progress. */
365187fb 492 if (rcu_future_needs_gp(rsp))
34ed6246 493 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
494 if (!rdp->nxttail[RCU_NEXT_TAIL])
495 return 0; /* No, this is a no-CBs (or offline) CPU. */
496 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
497 return 1; /* Yes, this CPU has newly registered callbacks. */
498 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
499 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
500 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
501 rdp->nxtcompleted[i]))
502 return 1; /* Yes, CBs for future grace period. */
503 return 0; /* No grace period needed. */
64db4cff
PM
504}
505
9b2e4f18 506/*
adf5091e 507 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
508 *
509 * If the new value of the ->dynticks_nesting counter now is zero,
510 * we really have entered idle, and must do the appropriate accounting.
511 * The caller must have disabled interrupts.
512 */
adf5091e
FW
513static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
514 bool user)
9b2e4f18 515{
96d3fd0d
PM
516 struct rcu_state *rsp;
517 struct rcu_data *rdp;
518
f7f7bac9 519 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 520 if (!user && !is_idle_task(current)) {
289828e6
PM
521 struct task_struct *idle __maybe_unused =
522 idle_task(smp_processor_id());
0989cb46 523
f7f7bac9 524 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 525 ftrace_dump(DUMP_ORIG);
0989cb46
PM
526 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
527 current->pid, current->comm,
528 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 529 }
96d3fd0d
PM
530 for_each_rcu_flavor(rsp) {
531 rdp = this_cpu_ptr(rsp->rda);
532 do_nocb_deferred_wakeup(rdp);
533 }
aea1b35e 534 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18 535 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 536 smp_mb__before_atomic(); /* See above. */
9b2e4f18 537 atomic_inc(&rdtp->dynticks);
4e857c58 538 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
9b2e4f18 539 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 540 rcu_dynticks_task_enter();
c44e2cdd
PM
541
542 /*
adf5091e 543 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
544 * in an RCU read-side critical section.
545 */
546 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
547 "Illegal idle entry in RCU read-side critical section.");
548 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
549 "Illegal idle entry in RCU-bh read-side critical section.");
550 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
551 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 552}
64db4cff 553
adf5091e
FW
554/*
555 * Enter an RCU extended quiescent state, which can be either the
556 * idle loop or adaptive-tickless usermode execution.
64db4cff 557 */
adf5091e 558static void rcu_eqs_enter(bool user)
64db4cff 559{
4145fa7f 560 long long oldval;
64db4cff
PM
561 struct rcu_dynticks *rdtp;
562
c9d4b0af 563 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 564 oldval = rdtp->dynticks_nesting;
29e37d81 565 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 566 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 567 rdtp->dynticks_nesting = 0;
3a592405
PM
568 rcu_eqs_enter_common(rdtp, oldval, user);
569 } else {
29e37d81 570 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 571 }
64db4cff 572}
adf5091e
FW
573
574/**
575 * rcu_idle_enter - inform RCU that current CPU is entering idle
576 *
577 * Enter idle mode, in other words, -leave- the mode in which RCU
578 * read-side critical sections can occur. (Though RCU read-side
579 * critical sections can occur in irq handlers in idle, a possibility
580 * handled by irq_enter() and irq_exit().)
581 *
582 * We crowbar the ->dynticks_nesting field to zero to allow for
583 * the possibility of usermode upcalls having messed up our count
584 * of interrupt nesting level during the prior busy period.
585 */
586void rcu_idle_enter(void)
587{
c5d900bf
FW
588 unsigned long flags;
589
590 local_irq_save(flags);
cb349ca9 591 rcu_eqs_enter(false);
c9d4b0af 592 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 593 local_irq_restore(flags);
adf5091e 594}
8a2ecf47 595EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 596
2b1d5024 597#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
598/**
599 * rcu_user_enter - inform RCU that we are resuming userspace.
600 *
601 * Enter RCU idle mode right before resuming userspace. No use of RCU
602 * is permitted between this call and rcu_user_exit(). This way the
603 * CPU doesn't need to maintain the tick for RCU maintenance purposes
604 * when the CPU runs in userspace.
605 */
606void rcu_user_enter(void)
607{
91d1aa43 608 rcu_eqs_enter(1);
adf5091e 609}
2b1d5024 610#endif /* CONFIG_RCU_USER_QS */
19dd1591 611
9b2e4f18
PM
612/**
613 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
614 *
615 * Exit from an interrupt handler, which might possibly result in entering
616 * idle mode, in other words, leaving the mode in which read-side critical
617 * sections can occur.
64db4cff 618 *
9b2e4f18
PM
619 * This code assumes that the idle loop never does anything that might
620 * result in unbalanced calls to irq_enter() and irq_exit(). If your
621 * architecture violates this assumption, RCU will give you what you
622 * deserve, good and hard. But very infrequently and irreproducibly.
623 *
624 * Use things like work queues to work around this limitation.
625 *
626 * You have been warned.
64db4cff 627 */
9b2e4f18 628void rcu_irq_exit(void)
64db4cff
PM
629{
630 unsigned long flags;
4145fa7f 631 long long oldval;
64db4cff
PM
632 struct rcu_dynticks *rdtp;
633
634 local_irq_save(flags);
c9d4b0af 635 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 636 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
637 rdtp->dynticks_nesting--;
638 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 639 if (rdtp->dynticks_nesting)
f7f7bac9 640 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 641 else
cb349ca9 642 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 643 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
644 local_irq_restore(flags);
645}
646
647/*
adf5091e 648 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
649 *
650 * If the new value of the ->dynticks_nesting counter was previously zero,
651 * we really have exited idle, and must do the appropriate accounting.
652 * The caller must have disabled interrupts.
653 */
adf5091e
FW
654static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
655 int user)
9b2e4f18 656{
176f8f7a 657 rcu_dynticks_task_exit();
4e857c58 658 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
659 atomic_inc(&rdtp->dynticks);
660 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 661 smp_mb__after_atomic(); /* See above. */
23b5c8fa 662 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 663 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 664 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 665 if (!user && !is_idle_task(current)) {
289828e6
PM
666 struct task_struct *idle __maybe_unused =
667 idle_task(smp_processor_id());
0989cb46 668
f7f7bac9 669 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 670 oldval, rdtp->dynticks_nesting);
bf1304e9 671 ftrace_dump(DUMP_ORIG);
0989cb46
PM
672 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
673 current->pid, current->comm,
674 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
675 }
676}
677
adf5091e
FW
678/*
679 * Exit an RCU extended quiescent state, which can be either the
680 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 681 */
adf5091e 682static void rcu_eqs_exit(bool user)
9b2e4f18 683{
9b2e4f18
PM
684 struct rcu_dynticks *rdtp;
685 long long oldval;
686
c9d4b0af 687 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 688 oldval = rdtp->dynticks_nesting;
29e37d81 689 WARN_ON_ONCE(oldval < 0);
3a592405 690 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 691 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 692 } else {
29e37d81 693 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3a592405
PM
694 rcu_eqs_exit_common(rdtp, oldval, user);
695 }
9b2e4f18 696}
adf5091e
FW
697
698/**
699 * rcu_idle_exit - inform RCU that current CPU is leaving idle
700 *
701 * Exit idle mode, in other words, -enter- the mode in which RCU
702 * read-side critical sections can occur.
703 *
704 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
705 * allow for the possibility of usermode upcalls messing up our count
706 * of interrupt nesting level during the busy period that is just
707 * now starting.
708 */
709void rcu_idle_exit(void)
710{
c5d900bf
FW
711 unsigned long flags;
712
713 local_irq_save(flags);
cb349ca9 714 rcu_eqs_exit(false);
c9d4b0af 715 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 716 local_irq_restore(flags);
adf5091e 717}
8a2ecf47 718EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 719
2b1d5024 720#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
721/**
722 * rcu_user_exit - inform RCU that we are exiting userspace.
723 *
724 * Exit RCU idle mode while entering the kernel because it can
725 * run a RCU read side critical section anytime.
726 */
727void rcu_user_exit(void)
728{
91d1aa43 729 rcu_eqs_exit(1);
adf5091e 730}
2b1d5024 731#endif /* CONFIG_RCU_USER_QS */
19dd1591 732
9b2e4f18
PM
733/**
734 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
735 *
736 * Enter an interrupt handler, which might possibly result in exiting
737 * idle mode, in other words, entering the mode in which read-side critical
738 * sections can occur.
739 *
740 * Note that the Linux kernel is fully capable of entering an interrupt
741 * handler that it never exits, for example when doing upcalls to
742 * user mode! This code assumes that the idle loop never does upcalls to
743 * user mode. If your architecture does do upcalls from the idle loop (or
744 * does anything else that results in unbalanced calls to the irq_enter()
745 * and irq_exit() functions), RCU will give you what you deserve, good
746 * and hard. But very infrequently and irreproducibly.
747 *
748 * Use things like work queues to work around this limitation.
749 *
750 * You have been warned.
751 */
752void rcu_irq_enter(void)
753{
754 unsigned long flags;
755 struct rcu_dynticks *rdtp;
756 long long oldval;
757
758 local_irq_save(flags);
c9d4b0af 759 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
760 oldval = rdtp->dynticks_nesting;
761 rdtp->dynticks_nesting++;
762 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 763 if (oldval)
f7f7bac9 764 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 765 else
cb349ca9 766 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 767 rcu_sysidle_exit(rdtp, 1);
64db4cff 768 local_irq_restore(flags);
64db4cff
PM
769}
770
771/**
772 * rcu_nmi_enter - inform RCU of entry to NMI context
773 *
774 * If the CPU was idle with dynamic ticks active, and there is no
775 * irq handler running, this updates rdtp->dynticks_nmi to let the
776 * RCU grace-period handling know that the CPU is active.
777 */
778void rcu_nmi_enter(void)
779{
c9d4b0af 780 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 781
23b5c8fa
PM
782 if (rdtp->dynticks_nmi_nesting == 0 &&
783 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 784 return;
23b5c8fa 785 rdtp->dynticks_nmi_nesting++;
4e857c58 786 smp_mb__before_atomic(); /* Force delay from prior write. */
23b5c8fa
PM
787 atomic_inc(&rdtp->dynticks);
788 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 789 smp_mb__after_atomic(); /* See above. */
23b5c8fa 790 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
791}
792
793/**
794 * rcu_nmi_exit - inform RCU of exit from NMI context
795 *
796 * If the CPU was idle with dynamic ticks active, and there is no
797 * irq handler running, this updates rdtp->dynticks_nmi to let the
798 * RCU grace-period handling know that the CPU is no longer active.
799 */
800void rcu_nmi_exit(void)
801{
c9d4b0af 802 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 803
23b5c8fa
PM
804 if (rdtp->dynticks_nmi_nesting == 0 ||
805 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 806 return;
23b5c8fa 807 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 808 smp_mb__before_atomic(); /* See above. */
23b5c8fa 809 atomic_inc(&rdtp->dynticks);
4e857c58 810 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 811 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
812}
813
814/**
5c173eb8
PM
815 * __rcu_is_watching - are RCU read-side critical sections safe?
816 *
817 * Return true if RCU is watching the running CPU, which means that
818 * this CPU can safely enter RCU read-side critical sections. Unlike
819 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
820 * least disabled preemption.
821 */
9418fb20 822bool notrace __rcu_is_watching(void)
5c173eb8
PM
823{
824 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
825}
826
827/**
828 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 829 *
9b2e4f18 830 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 831 * or NMI handler, return true.
64db4cff 832 */
9418fb20 833bool notrace rcu_is_watching(void)
64db4cff 834{
f534ed1f 835 bool ret;
34240697
PM
836
837 preempt_disable();
5c173eb8 838 ret = __rcu_is_watching();
34240697
PM
839 preempt_enable();
840 return ret;
64db4cff 841}
5c173eb8 842EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 843
62fde6ed 844#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
845
846/*
847 * Is the current CPU online? Disable preemption to avoid false positives
848 * that could otherwise happen due to the current CPU number being sampled,
849 * this task being preempted, its old CPU being taken offline, resuming
850 * on some other CPU, then determining that its old CPU is now offline.
851 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
852 * the check for rcu_scheduler_fully_active. Note also that it is OK
853 * for a CPU coming online to use RCU for one jiffy prior to marking itself
854 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
855 * offline to continue to use RCU for one jiffy after marking itself
856 * offline in the cpu_online_mask. This leniency is necessary given the
857 * non-atomic nature of the online and offline processing, for example,
858 * the fact that a CPU enters the scheduler after completing the CPU_DYING
859 * notifiers.
860 *
861 * This is also why RCU internally marks CPUs online during the
862 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
863 *
864 * Disable checking if in an NMI handler because we cannot safely report
865 * errors from NMI handlers anyway.
866 */
867bool rcu_lockdep_current_cpu_online(void)
868{
2036d94a
PM
869 struct rcu_data *rdp;
870 struct rcu_node *rnp;
c0d6d01b
PM
871 bool ret;
872
873 if (in_nmi())
f6f7ee9a 874 return true;
c0d6d01b 875 preempt_disable();
c9d4b0af 876 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
877 rnp = rdp->mynode;
878 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
879 !rcu_scheduler_fully_active;
880 preempt_enable();
881 return ret;
882}
883EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
884
62fde6ed 885#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 886
64db4cff 887/**
9b2e4f18 888 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 889 *
9b2e4f18
PM
890 * If the current CPU is idle or running at a first-level (not nested)
891 * interrupt from idle, return true. The caller must have at least
892 * disabled preemption.
64db4cff 893 */
62e3cb14 894static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 895{
c9d4b0af 896 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
897}
898
64db4cff
PM
899/*
900 * Snapshot the specified CPU's dynticks counter so that we can later
901 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 902 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 903 */
217af2a2
PM
904static int dyntick_save_progress_counter(struct rcu_data *rdp,
905 bool *isidle, unsigned long *maxj)
64db4cff 906{
23b5c8fa 907 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 908 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
909 if ((rdp->dynticks_snap & 0x1) == 0) {
910 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
911 return 1;
912 } else {
913 return 0;
914 }
64db4cff
PM
915}
916
6193c76a
PM
917/*
918 * This function really isn't for public consumption, but RCU is special in
919 * that context switches can allow the state machine to make progress.
920 */
921extern void resched_cpu(int cpu);
922
64db4cff
PM
923/*
924 * Return true if the specified CPU has passed through a quiescent
925 * state by virtue of being in or having passed through an dynticks
926 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 927 * for this same CPU, or by virtue of having been offline.
64db4cff 928 */
217af2a2
PM
929static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
930 bool *isidle, unsigned long *maxj)
64db4cff 931{
7eb4f455 932 unsigned int curr;
4a81e832 933 int *rcrmp;
7eb4f455 934 unsigned int snap;
64db4cff 935
7eb4f455
PM
936 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
937 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
938
939 /*
940 * If the CPU passed through or entered a dynticks idle phase with
941 * no active irq/NMI handlers, then we can safely pretend that the CPU
942 * already acknowledged the request to pass through a quiescent
943 * state. Either way, that CPU cannot possibly be in an RCU
944 * read-side critical section that started before the beginning
945 * of the current RCU grace period.
946 */
7eb4f455 947 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 948 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
949 rdp->dynticks_fqs++;
950 return 1;
951 }
952
a82dcc76
PM
953 /*
954 * Check for the CPU being offline, but only if the grace period
955 * is old enough. We don't need to worry about the CPU changing
956 * state: If we see it offline even once, it has been through a
957 * quiescent state.
958 *
959 * The reason for insisting that the grace period be at least
960 * one jiffy old is that CPUs that are not quite online and that
961 * have just gone offline can still execute RCU read-side critical
962 * sections.
963 */
964 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
965 return 0; /* Grace period is not old enough. */
966 barrier();
967 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 968 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
969 rdp->offline_fqs++;
970 return 1;
971 }
65d798f0
PM
972
973 /*
4a81e832
PM
974 * A CPU running for an extended time within the kernel can
975 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
976 * even context-switching back and forth between a pair of
977 * in-kernel CPU-bound tasks cannot advance grace periods.
978 * So if the grace period is old enough, make the CPU pay attention.
979 * Note that the unsynchronized assignments to the per-CPU
980 * rcu_sched_qs_mask variable are safe. Yes, setting of
981 * bits can be lost, but they will be set again on the next
982 * force-quiescent-state pass. So lost bit sets do not result
983 * in incorrect behavior, merely in a grace period lasting
984 * a few jiffies longer than it might otherwise. Because
985 * there are at most four threads involved, and because the
986 * updates are only once every few jiffies, the probability of
987 * lossage (and thus of slight grace-period extension) is
988 * quite low.
989 *
990 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
991 * is set too high, we override with half of the RCU CPU stall
992 * warning delay.
6193c76a 993 */
4a81e832
PM
994 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
995 if (ULONG_CMP_GE(jiffies,
996 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 997 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
4a81e832
PM
998 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
999 ACCESS_ONCE(rdp->cond_resched_completed) =
1000 ACCESS_ONCE(rdp->mynode->completed);
1001 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1002 ACCESS_ONCE(*rcrmp) =
1003 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1004 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1005 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1006 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1007 /* Time to beat on that CPU again! */
1008 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1009 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1010 }
6193c76a
PM
1011 }
1012
a82dcc76 1013 return 0;
64db4cff
PM
1014}
1015
64db4cff
PM
1016static void record_gp_stall_check_time(struct rcu_state *rsp)
1017{
cb1e78cf 1018 unsigned long j = jiffies;
6193c76a 1019 unsigned long j1;
26cdfedf
PM
1020
1021 rsp->gp_start = j;
1022 smp_wmb(); /* Record start time before stall time. */
6193c76a 1023 j1 = rcu_jiffies_till_stall_check();
4fc5b755 1024 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
6193c76a 1025 rsp->jiffies_resched = j + j1 / 2;
64db4cff
PM
1026}
1027
b637a328 1028/*
bc1dce51 1029 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1030 */
1031static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1032{
1033 int cpu;
1034 unsigned long flags;
1035 struct rcu_node *rnp;
1036
1037 rcu_for_each_leaf_node(rsp, rnp) {
1038 raw_spin_lock_irqsave(&rnp->lock, flags);
1039 if (rnp->qsmask != 0) {
1040 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1041 if (rnp->qsmask & (1UL << cpu))
1042 dump_cpu_task(rnp->grplo + cpu);
1043 }
1044 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1045 }
1046}
1047
64db4cff
PM
1048static void print_other_cpu_stall(struct rcu_state *rsp)
1049{
1050 int cpu;
1051 long delta;
1052 unsigned long flags;
285fe294 1053 int ndetected = 0;
64db4cff 1054 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1055 long totqlen = 0;
64db4cff
PM
1056
1057 /* Only let one CPU complain about others per time interval. */
1058
1304afb2 1059 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755 1060 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
fc2219d4 1061 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1062 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1063 return;
1064 }
4fc5b755 1065 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1066 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1067
8cdd32a9
PM
1068 /*
1069 * OK, time to rat on our buddy...
1070 * See Documentation/RCU/stallwarn.txt for info on how to debug
1071 * RCU CPU stall warnings.
1072 */
d7f3e207 1073 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1074 rsp->name);
a858af28 1075 print_cpu_stall_info_begin();
a0b6c9a7 1076 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1077 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1078 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1079 if (rnp->qsmask != 0) {
1080 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1081 if (rnp->qsmask & (1UL << cpu)) {
1082 print_cpu_stall_info(rsp,
1083 rnp->grplo + cpu);
1084 ndetected++;
1085 }
1086 }
3acd9eb3 1087 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1088 }
a858af28
PM
1089
1090 /*
1091 * Now rat on any tasks that got kicked up to the root rcu_node
1092 * due to CPU offlining.
1093 */
1094 rnp = rcu_get_root(rsp);
1095 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 1096 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
1097 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1098
1099 print_cpu_stall_info_end();
53bb857c
PM
1100 for_each_possible_cpu(cpu)
1101 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1102 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1103 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1104 (long)rsp->gpnum, (long)rsp->completed, totqlen);
9bc8b558 1105 if (ndetected == 0)
d7f3e207 1106 pr_err("INFO: Stall ended before state dump start\n");
bc1dce51 1107 else
b637a328 1108 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1109
4cdfc175 1110 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1111
1112 rcu_print_detail_task_stall(rsp);
1113
4cdfc175 1114 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1115}
1116
1117static void print_cpu_stall(struct rcu_state *rsp)
1118{
53bb857c 1119 int cpu;
64db4cff
PM
1120 unsigned long flags;
1121 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1122 long totqlen = 0;
64db4cff 1123
8cdd32a9
PM
1124 /*
1125 * OK, time to rat on ourselves...
1126 * See Documentation/RCU/stallwarn.txt for info on how to debug
1127 * RCU CPU stall warnings.
1128 */
d7f3e207 1129 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1130 print_cpu_stall_info_begin();
1131 print_cpu_stall_info(rsp, smp_processor_id());
1132 print_cpu_stall_info_end();
53bb857c
PM
1133 for_each_possible_cpu(cpu)
1134 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1135 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1136 jiffies - rsp->gp_start,
1137 (long)rsp->gpnum, (long)rsp->completed, totqlen);
bc1dce51 1138 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1139
1304afb2 1140 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755
IM
1141 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1142 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
6bfc09e2 1143 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1144 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1145
b021fe3e
PZ
1146 /*
1147 * Attempt to revive the RCU machinery by forcing a context switch.
1148 *
1149 * A context switch would normally allow the RCU state machine to make
1150 * progress and it could be we're stuck in kernel space without context
1151 * switches for an entirely unreasonable amount of time.
1152 */
1153 resched_cpu(smp_processor_id());
64db4cff
PM
1154}
1155
1156static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1157{
26cdfedf
PM
1158 unsigned long completed;
1159 unsigned long gpnum;
1160 unsigned long gps;
bad6e139
PM
1161 unsigned long j;
1162 unsigned long js;
64db4cff
PM
1163 struct rcu_node *rnp;
1164
26cdfedf 1165 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1166 return;
cb1e78cf 1167 j = jiffies;
26cdfedf
PM
1168
1169 /*
1170 * Lots of memory barriers to reject false positives.
1171 *
1172 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1173 * then rsp->gp_start, and finally rsp->completed. These values
1174 * are updated in the opposite order with memory barriers (or
1175 * equivalent) during grace-period initialization and cleanup.
1176 * Now, a false positive can occur if we get an new value of
1177 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1178 * the memory barriers, the only way that this can happen is if one
1179 * grace period ends and another starts between these two fetches.
1180 * Detect this by comparing rsp->completed with the previous fetch
1181 * from rsp->gpnum.
1182 *
1183 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1184 * and rsp->gp_start suffice to forestall false positives.
1185 */
1186 gpnum = ACCESS_ONCE(rsp->gpnum);
1187 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1188 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1189 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1190 gps = ACCESS_ONCE(rsp->gp_start);
1191 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1192 completed = ACCESS_ONCE(rsp->completed);
1193 if (ULONG_CMP_GE(completed, gpnum) ||
1194 ULONG_CMP_LT(j, js) ||
1195 ULONG_CMP_GE(gps, js))
1196 return; /* No stall or GP completed since entering function. */
64db4cff 1197 rnp = rdp->mynode;
c96ea7cf 1198 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1199 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1200
1201 /* We haven't checked in, so go dump stack. */
1202 print_cpu_stall(rsp);
1203
bad6e139
PM
1204 } else if (rcu_gp_in_progress(rsp) &&
1205 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1206
bad6e139 1207 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1208 print_other_cpu_stall(rsp);
1209 }
1210}
1211
53d84e00
PM
1212/**
1213 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1214 *
1215 * Set the stall-warning timeout way off into the future, thus preventing
1216 * any RCU CPU stall-warning messages from appearing in the current set of
1217 * RCU grace periods.
1218 *
1219 * The caller must disable hard irqs.
1220 */
1221void rcu_cpu_stall_reset(void)
1222{
6ce75a23
PM
1223 struct rcu_state *rsp;
1224
1225 for_each_rcu_flavor(rsp)
4fc5b755 1226 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
53d84e00
PM
1227}
1228
3f5d3ea6
PM
1229/*
1230 * Initialize the specified rcu_data structure's callback list to empty.
1231 */
1232static void init_callback_list(struct rcu_data *rdp)
1233{
1234 int i;
1235
34ed6246
PM
1236 if (init_nocb_callback_list(rdp))
1237 return;
3f5d3ea6
PM
1238 rdp->nxtlist = NULL;
1239 for (i = 0; i < RCU_NEXT_SIZE; i++)
1240 rdp->nxttail[i] = &rdp->nxtlist;
1241}
1242
dc35c893
PM
1243/*
1244 * Determine the value that ->completed will have at the end of the
1245 * next subsequent grace period. This is used to tag callbacks so that
1246 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1247 * been dyntick-idle for an extended period with callbacks under the
1248 * influence of RCU_FAST_NO_HZ.
1249 *
1250 * The caller must hold rnp->lock with interrupts disabled.
1251 */
1252static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1253 struct rcu_node *rnp)
1254{
1255 /*
1256 * If RCU is idle, we just wait for the next grace period.
1257 * But we can only be sure that RCU is idle if we are looking
1258 * at the root rcu_node structure -- otherwise, a new grace
1259 * period might have started, but just not yet gotten around
1260 * to initializing the current non-root rcu_node structure.
1261 */
1262 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1263 return rnp->completed + 1;
1264
1265 /*
1266 * Otherwise, wait for a possible partial grace period and
1267 * then the subsequent full grace period.
1268 */
1269 return rnp->completed + 2;
1270}
1271
0446be48
PM
1272/*
1273 * Trace-event helper function for rcu_start_future_gp() and
1274 * rcu_nocb_wait_gp().
1275 */
1276static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1277 unsigned long c, const char *s)
0446be48
PM
1278{
1279 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1280 rnp->completed, c, rnp->level,
1281 rnp->grplo, rnp->grphi, s);
1282}
1283
1284/*
1285 * Start some future grace period, as needed to handle newly arrived
1286 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1287 * rcu_node structure's ->need_future_gp field. Returns true if there
1288 * is reason to awaken the grace-period kthread.
0446be48
PM
1289 *
1290 * The caller must hold the specified rcu_node structure's ->lock.
1291 */
48a7639c
PM
1292static bool __maybe_unused
1293rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1294 unsigned long *c_out)
0446be48
PM
1295{
1296 unsigned long c;
1297 int i;
48a7639c 1298 bool ret = false;
0446be48
PM
1299 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1300
1301 /*
1302 * Pick up grace-period number for new callbacks. If this
1303 * grace period is already marked as needed, return to the caller.
1304 */
1305 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1306 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1307 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1308 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1309 goto out;
0446be48
PM
1310 }
1311
1312 /*
1313 * If either this rcu_node structure or the root rcu_node structure
1314 * believe that a grace period is in progress, then we must wait
1315 * for the one following, which is in "c". Because our request
1316 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1317 * need to explicitly start one. We only do the lockless check
1318 * of rnp_root's fields if the current rcu_node structure thinks
1319 * there is no grace period in flight, and because we hold rnp->lock,
1320 * the only possible change is when rnp_root's two fields are
1321 * equal, in which case rnp_root->gpnum might be concurrently
1322 * incremented. But that is OK, as it will just result in our
1323 * doing some extra useless work.
0446be48
PM
1324 */
1325 if (rnp->gpnum != rnp->completed ||
48bd8e9b 1326 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
0446be48 1327 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1328 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1329 goto out;
0446be48
PM
1330 }
1331
1332 /*
1333 * There might be no grace period in progress. If we don't already
1334 * hold it, acquire the root rcu_node structure's lock in order to
1335 * start one (if needed).
1336 */
6303b9c8 1337 if (rnp != rnp_root) {
0446be48 1338 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1339 smp_mb__after_unlock_lock();
1340 }
0446be48
PM
1341
1342 /*
1343 * Get a new grace-period number. If there really is no grace
1344 * period in progress, it will be smaller than the one we obtained
1345 * earlier. Adjust callbacks as needed. Note that even no-CBs
1346 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1347 */
1348 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1349 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1350 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1351 rdp->nxtcompleted[i] = c;
1352
1353 /*
1354 * If the needed for the required grace period is already
1355 * recorded, trace and leave.
1356 */
1357 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1358 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1359 goto unlock_out;
1360 }
1361
1362 /* Record the need for the future grace period. */
1363 rnp_root->need_future_gp[c & 0x1]++;
1364
1365 /* If a grace period is not already in progress, start one. */
1366 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1367 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1368 } else {
f7f7bac9 1369 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1370 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1371 }
1372unlock_out:
1373 if (rnp != rnp_root)
1374 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1375out:
1376 if (c_out != NULL)
1377 *c_out = c;
1378 return ret;
0446be48
PM
1379}
1380
1381/*
1382 * Clean up any old requests for the just-ended grace period. Also return
1383 * whether any additional grace periods have been requested. Also invoke
1384 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1385 * waiting for this grace period to complete.
1386 */
1387static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1388{
1389 int c = rnp->completed;
1390 int needmore;
1391 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1392
1393 rcu_nocb_gp_cleanup(rsp, rnp);
1394 rnp->need_future_gp[c & 0x1] = 0;
1395 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1396 trace_rcu_future_gp(rnp, rdp, c,
1397 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1398 return needmore;
1399}
1400
48a7639c
PM
1401/*
1402 * Awaken the grace-period kthread for the specified flavor of RCU.
1403 * Don't do a self-awaken, and don't bother awakening when there is
1404 * nothing for the grace-period kthread to do (as in several CPUs
1405 * raced to awaken, and we lost), and finally don't try to awaken
1406 * a kthread that has not yet been created.
1407 */
1408static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1409{
1410 if (current == rsp->gp_kthread ||
1411 !ACCESS_ONCE(rsp->gp_flags) ||
1412 !rsp->gp_kthread)
1413 return;
1414 wake_up(&rsp->gp_wq);
1415}
1416
dc35c893
PM
1417/*
1418 * If there is room, assign a ->completed number to any callbacks on
1419 * this CPU that have not already been assigned. Also accelerate any
1420 * callbacks that were previously assigned a ->completed number that has
1421 * since proven to be too conservative, which can happen if callbacks get
1422 * assigned a ->completed number while RCU is idle, but with reference to
1423 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1424 * not hurt to call it repeatedly. Returns an flag saying that we should
1425 * awaken the RCU grace-period kthread.
dc35c893
PM
1426 *
1427 * The caller must hold rnp->lock with interrupts disabled.
1428 */
48a7639c 1429static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1430 struct rcu_data *rdp)
1431{
1432 unsigned long c;
1433 int i;
48a7639c 1434 bool ret;
dc35c893
PM
1435
1436 /* If the CPU has no callbacks, nothing to do. */
1437 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1438 return false;
dc35c893
PM
1439
1440 /*
1441 * Starting from the sublist containing the callbacks most
1442 * recently assigned a ->completed number and working down, find the
1443 * first sublist that is not assignable to an upcoming grace period.
1444 * Such a sublist has something in it (first two tests) and has
1445 * a ->completed number assigned that will complete sooner than
1446 * the ->completed number for newly arrived callbacks (last test).
1447 *
1448 * The key point is that any later sublist can be assigned the
1449 * same ->completed number as the newly arrived callbacks, which
1450 * means that the callbacks in any of these later sublist can be
1451 * grouped into a single sublist, whether or not they have already
1452 * been assigned a ->completed number.
1453 */
1454 c = rcu_cbs_completed(rsp, rnp);
1455 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1456 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1457 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1458 break;
1459
1460 /*
1461 * If there are no sublist for unassigned callbacks, leave.
1462 * At the same time, advance "i" one sublist, so that "i" will
1463 * index into the sublist where all the remaining callbacks should
1464 * be grouped into.
1465 */
1466 if (++i >= RCU_NEXT_TAIL)
48a7639c 1467 return false;
dc35c893
PM
1468
1469 /*
1470 * Assign all subsequent callbacks' ->completed number to the next
1471 * full grace period and group them all in the sublist initially
1472 * indexed by "i".
1473 */
1474 for (; i <= RCU_NEXT_TAIL; i++) {
1475 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1476 rdp->nxtcompleted[i] = c;
1477 }
910ee45d 1478 /* Record any needed additional grace periods. */
48a7639c 1479 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1480
1481 /* Trace depending on how much we were able to accelerate. */
1482 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1483 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1484 else
f7f7bac9 1485 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1486 return ret;
dc35c893
PM
1487}
1488
1489/*
1490 * Move any callbacks whose grace period has completed to the
1491 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1492 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1493 * sublist. This function is idempotent, so it does not hurt to
1494 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1495 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1496 *
1497 * The caller must hold rnp->lock with interrupts disabled.
1498 */
48a7639c 1499static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1500 struct rcu_data *rdp)
1501{
1502 int i, j;
1503
1504 /* If the CPU has no callbacks, nothing to do. */
1505 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1506 return false;
dc35c893
PM
1507
1508 /*
1509 * Find all callbacks whose ->completed numbers indicate that they
1510 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1511 */
1512 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1513 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1514 break;
1515 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1516 }
1517 /* Clean up any sublist tail pointers that were misordered above. */
1518 for (j = RCU_WAIT_TAIL; j < i; j++)
1519 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1520
1521 /* Copy down callbacks to fill in empty sublists. */
1522 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1523 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1524 break;
1525 rdp->nxttail[j] = rdp->nxttail[i];
1526 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1527 }
1528
1529 /* Classify any remaining callbacks. */
48a7639c 1530 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1531}
1532
d09b62df 1533/*
ba9fbe95
PM
1534 * Update CPU-local rcu_data state to record the beginnings and ends of
1535 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1536 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1537 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1538 */
48a7639c
PM
1539static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1540 struct rcu_data *rdp)
d09b62df 1541{
48a7639c
PM
1542 bool ret;
1543
ba9fbe95 1544 /* Handle the ends of any preceding grace periods first. */
dc35c893 1545 if (rdp->completed == rnp->completed) {
d09b62df 1546
ba9fbe95 1547 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1548 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1549
dc35c893
PM
1550 } else {
1551
1552 /* Advance callbacks. */
48a7639c 1553 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1554
1555 /* Remember that we saw this grace-period completion. */
1556 rdp->completed = rnp->completed;
f7f7bac9 1557 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1558 }
398ebe60 1559
6eaef633
PM
1560 if (rdp->gpnum != rnp->gpnum) {
1561 /*
1562 * If the current grace period is waiting for this CPU,
1563 * set up to detect a quiescent state, otherwise don't
1564 * go looking for one.
1565 */
1566 rdp->gpnum = rnp->gpnum;
f7f7bac9 1567 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1568 rdp->passed_quiesce = 0;
1569 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1570 zero_cpu_stall_ticks(rdp);
1571 }
48a7639c 1572 return ret;
6eaef633
PM
1573}
1574
d34ea322 1575static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1576{
1577 unsigned long flags;
48a7639c 1578 bool needwake;
6eaef633
PM
1579 struct rcu_node *rnp;
1580
1581 local_irq_save(flags);
1582 rnp = rdp->mynode;
d34ea322
PM
1583 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1584 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1585 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1586 local_irq_restore(flags);
1587 return;
1588 }
6303b9c8 1589 smp_mb__after_unlock_lock();
48a7639c 1590 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1591 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1592 if (needwake)
1593 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1594}
1595
b3dbec76 1596/*
f7be8209 1597 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1598 */
7fdefc10 1599static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1600{
1601 struct rcu_data *rdp;
7fdefc10 1602 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1603
eb75767b 1604 rcu_bind_gp_kthread();
7fdefc10 1605 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1606 smp_mb__after_unlock_lock();
91dc9542 1607 if (!ACCESS_ONCE(rsp->gp_flags)) {
f7be8209
PM
1608 /* Spurious wakeup, tell caller to go back to sleep. */
1609 raw_spin_unlock_irq(&rnp->lock);
1610 return 0;
1611 }
91dc9542 1612 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
b3dbec76 1613
f7be8209
PM
1614 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1615 /*
1616 * Grace period already in progress, don't start another.
1617 * Not supposed to be able to happen.
1618 */
7fdefc10
PM
1619 raw_spin_unlock_irq(&rnp->lock);
1620 return 0;
1621 }
1622
7fdefc10 1623 /* Advance to a new grace period and initialize state. */
26cdfedf 1624 record_gp_stall_check_time(rsp);
765a3f4f
PM
1625 /* Record GP times before starting GP, hence smp_store_release(). */
1626 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1627 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1628 raw_spin_unlock_irq(&rnp->lock);
1629
1630 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1631 mutex_lock(&rsp->onoff_mutex);
765a3f4f 1632 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
7fdefc10
PM
1633
1634 /*
1635 * Set the quiescent-state-needed bits in all the rcu_node
1636 * structures for all currently online CPUs in breadth-first order,
1637 * starting from the root rcu_node structure, relying on the layout
1638 * of the tree within the rsp->node[] array. Note that other CPUs
1639 * will access only the leaves of the hierarchy, thus seeing that no
1640 * grace period is in progress, at least until the corresponding
1641 * leaf node has been initialized. In addition, we have excluded
1642 * CPU-hotplug operations.
1643 *
1644 * The grace period cannot complete until the initialization
1645 * process finishes, because this kthread handles both.
1646 */
1647 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1648 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1649 smp_mb__after_unlock_lock();
b3dbec76 1650 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1651 rcu_preempt_check_blocked_tasks(rnp);
1652 rnp->qsmask = rnp->qsmaskinit;
0446be48 1653 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1654 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1655 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1656 if (rnp == rdp->mynode)
48a7639c 1657 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1658 rcu_preempt_boost_start_gp(rnp);
1659 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1660 rnp->level, rnp->grplo,
1661 rnp->grphi, rnp->qsmask);
1662 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1663 cond_resched_rcu_qs();
7fdefc10 1664 }
b3dbec76 1665
a4fbe35a 1666 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1667 return 1;
1668}
b3dbec76 1669
4cdfc175
PM
1670/*
1671 * Do one round of quiescent-state forcing.
1672 */
01896f7e 1673static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1674{
1675 int fqs_state = fqs_state_in;
217af2a2
PM
1676 bool isidle = false;
1677 unsigned long maxj;
4cdfc175
PM
1678 struct rcu_node *rnp = rcu_get_root(rsp);
1679
1680 rsp->n_force_qs++;
1681 if (fqs_state == RCU_SAVE_DYNTICK) {
1682 /* Collect dyntick-idle snapshots. */
0edd1b17 1683 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1684 isidle = true;
0edd1b17
PM
1685 maxj = jiffies - ULONG_MAX / 4;
1686 }
217af2a2
PM
1687 force_qs_rnp(rsp, dyntick_save_progress_counter,
1688 &isidle, &maxj);
0edd1b17 1689 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1690 fqs_state = RCU_FORCE_QS;
1691 } else {
1692 /* Handle dyntick-idle and offline CPUs. */
e02b2edf 1693 isidle = false;
217af2a2 1694 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1695 }
1696 /* Clear flag to prevent immediate re-entry. */
1697 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1698 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1699 smp_mb__after_unlock_lock();
4de376a1
PK
1700 ACCESS_ONCE(rsp->gp_flags) =
1701 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
4cdfc175
PM
1702 raw_spin_unlock_irq(&rnp->lock);
1703 }
1704 return fqs_state;
1705}
1706
7fdefc10
PM
1707/*
1708 * Clean up after the old grace period.
1709 */
4cdfc175 1710static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1711{
1712 unsigned long gp_duration;
48a7639c 1713 bool needgp = false;
dae6e64d 1714 int nocb = 0;
7fdefc10
PM
1715 struct rcu_data *rdp;
1716 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1717
7fdefc10 1718 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1719 smp_mb__after_unlock_lock();
7fdefc10
PM
1720 gp_duration = jiffies - rsp->gp_start;
1721 if (gp_duration > rsp->gp_max)
1722 rsp->gp_max = gp_duration;
b3dbec76 1723
7fdefc10
PM
1724 /*
1725 * We know the grace period is complete, but to everyone else
1726 * it appears to still be ongoing. But it is also the case
1727 * that to everyone else it looks like there is nothing that
1728 * they can do to advance the grace period. It is therefore
1729 * safe for us to drop the lock in order to mark the grace
1730 * period as completed in all of the rcu_node structures.
7fdefc10 1731 */
5d4b8659 1732 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1733
5d4b8659
PM
1734 /*
1735 * Propagate new ->completed value to rcu_node structures so
1736 * that other CPUs don't have to wait until the start of the next
1737 * grace period to process their callbacks. This also avoids
1738 * some nasty RCU grace-period initialization races by forcing
1739 * the end of the current grace period to be completely recorded in
1740 * all of the rcu_node structures before the beginning of the next
1741 * grace period is recorded in any of the rcu_node structures.
1742 */
1743 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1744 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1745 smp_mb__after_unlock_lock();
0446be48 1746 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1747 rdp = this_cpu_ptr(rsp->rda);
1748 if (rnp == rdp->mynode)
48a7639c 1749 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 1750 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1751 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 1752 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1753 cond_resched_rcu_qs();
7fdefc10 1754 }
5d4b8659
PM
1755 rnp = rcu_get_root(rsp);
1756 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1757 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1758 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1759
765a3f4f
PM
1760 /* Declare grace period done. */
1761 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
f7f7bac9 1762 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1763 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1764 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
1765 /* Advance CBs to reduce false positives below. */
1766 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1767 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
91dc9542 1768 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1769 trace_rcu_grace_period(rsp->name,
1770 ACCESS_ONCE(rsp->gpnum),
1771 TPS("newreq"));
1772 }
7fdefc10 1773 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1774}
1775
1776/*
1777 * Body of kthread that handles grace periods.
1778 */
1779static int __noreturn rcu_gp_kthread(void *arg)
1780{
4cdfc175 1781 int fqs_state;
88d6df61 1782 int gf;
d40011f6 1783 unsigned long j;
4cdfc175 1784 int ret;
7fdefc10
PM
1785 struct rcu_state *rsp = arg;
1786 struct rcu_node *rnp = rcu_get_root(rsp);
1787
1788 for (;;) {
1789
1790 /* Handle grace-period start. */
1791 for (;;) {
63c4db78
PM
1792 trace_rcu_grace_period(rsp->name,
1793 ACCESS_ONCE(rsp->gpnum),
1794 TPS("reqwait"));
afea227f 1795 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1796 wait_event_interruptible(rsp->gp_wq,
591c6d17 1797 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1798 RCU_GP_FLAG_INIT);
78e4bc34 1799 /* Locking provides needed memory barrier. */
f7be8209 1800 if (rcu_gp_init(rsp))
7fdefc10 1801 break;
bde6c3aa 1802 cond_resched_rcu_qs();
73a860cd 1803 WARN_ON(signal_pending(current));
63c4db78
PM
1804 trace_rcu_grace_period(rsp->name,
1805 ACCESS_ONCE(rsp->gpnum),
1806 TPS("reqwaitsig"));
7fdefc10 1807 }
cabc49c1 1808
4cdfc175
PM
1809 /* Handle quiescent-state forcing. */
1810 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1811 j = jiffies_till_first_fqs;
1812 if (j > HZ) {
1813 j = HZ;
1814 jiffies_till_first_fqs = HZ;
1815 }
88d6df61 1816 ret = 0;
cabc49c1 1817 for (;;) {
88d6df61
PM
1818 if (!ret)
1819 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1820 trace_rcu_grace_period(rsp->name,
1821 ACCESS_ONCE(rsp->gpnum),
1822 TPS("fqswait"));
afea227f 1823 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 1824 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1825 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1826 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1827 (!ACCESS_ONCE(rnp->qsmask) &&
1828 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1829 j);
78e4bc34 1830 /* Locking provides needed memory barriers. */
4cdfc175 1831 /* If grace period done, leave loop. */
cabc49c1 1832 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1833 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1834 break;
4cdfc175 1835 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1836 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1837 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1838 trace_rcu_grace_period(rsp->name,
1839 ACCESS_ONCE(rsp->gpnum),
1840 TPS("fqsstart"));
4cdfc175 1841 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1842 trace_rcu_grace_period(rsp->name,
1843 ACCESS_ONCE(rsp->gpnum),
1844 TPS("fqsend"));
bde6c3aa 1845 cond_resched_rcu_qs();
4cdfc175
PM
1846 } else {
1847 /* Deal with stray signal. */
bde6c3aa 1848 cond_resched_rcu_qs();
73a860cd 1849 WARN_ON(signal_pending(current));
63c4db78
PM
1850 trace_rcu_grace_period(rsp->name,
1851 ACCESS_ONCE(rsp->gpnum),
1852 TPS("fqswaitsig"));
4cdfc175 1853 }
d40011f6
PM
1854 j = jiffies_till_next_fqs;
1855 if (j > HZ) {
1856 j = HZ;
1857 jiffies_till_next_fqs = HZ;
1858 } else if (j < 1) {
1859 j = 1;
1860 jiffies_till_next_fqs = 1;
1861 }
cabc49c1 1862 }
4cdfc175
PM
1863
1864 /* Handle grace-period end. */
1865 rcu_gp_cleanup(rsp);
b3dbec76 1866 }
b3dbec76
PM
1867}
1868
64db4cff
PM
1869/*
1870 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1871 * in preparation for detecting the next grace period. The caller must hold
b8462084 1872 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1873 *
1874 * Note that it is legal for a dying CPU (which is marked as offline) to
1875 * invoke this function. This can happen when the dying CPU reports its
1876 * quiescent state.
48a7639c
PM
1877 *
1878 * Returns true if the grace-period kthread must be awakened.
64db4cff 1879 */
48a7639c 1880static bool
910ee45d
PM
1881rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1882 struct rcu_data *rdp)
64db4cff 1883{
b8462084 1884 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1885 /*
b3dbec76 1886 * Either we have not yet spawned the grace-period
62da1921
PM
1887 * task, this CPU does not need another grace period,
1888 * or a grace period is already in progress.
b3dbec76 1889 * Either way, don't start a new grace period.
afe24b12 1890 */
48a7639c 1891 return false;
afe24b12 1892 }
91dc9542 1893 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1894 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1895 TPS("newreq"));
62da1921 1896
016a8d5b
SR
1897 /*
1898 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 1899 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 1900 * the wakeup to our caller.
016a8d5b 1901 */
48a7639c 1902 return true;
64db4cff
PM
1903}
1904
910ee45d
PM
1905/*
1906 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1907 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1908 * is invoked indirectly from rcu_advance_cbs(), which would result in
1909 * endless recursion -- or would do so if it wasn't for the self-deadlock
1910 * that is encountered beforehand.
48a7639c
PM
1911 *
1912 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 1913 */
48a7639c 1914static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
1915{
1916 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1917 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 1918 bool ret = false;
910ee45d
PM
1919
1920 /*
1921 * If there is no grace period in progress right now, any
1922 * callbacks we have up to this point will be satisfied by the
1923 * next grace period. Also, advancing the callbacks reduces the
1924 * probability of false positives from cpu_needs_another_gp()
1925 * resulting in pointless grace periods. So, advance callbacks
1926 * then start the grace period!
1927 */
48a7639c
PM
1928 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1929 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1930 return ret;
910ee45d
PM
1931}
1932
f41d911f 1933/*
d3f6bad3
PM
1934 * Report a full set of quiescent states to the specified rcu_state
1935 * data structure. This involves cleaning up after the prior grace
1936 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1937 * if one is needed. Note that the caller must hold rnp->lock, which
1938 * is released before return.
f41d911f 1939 */
d3f6bad3 1940static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1941 __releases(rcu_get_root(rsp)->lock)
f41d911f 1942{
fc2219d4 1943 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1 1944 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 1945 rcu_gp_kthread_wake(rsp);
f41d911f
PM
1946}
1947
64db4cff 1948/*
d3f6bad3
PM
1949 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1950 * Allows quiescent states for a group of CPUs to be reported at one go
1951 * to the specified rcu_node structure, though all the CPUs in the group
1952 * must be represented by the same rcu_node structure (which need not be
1953 * a leaf rcu_node structure, though it often will be). That structure's
1954 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1955 */
1956static void
d3f6bad3
PM
1957rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1958 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1959 __releases(rnp->lock)
1960{
28ecd580
PM
1961 struct rcu_node *rnp_c;
1962
64db4cff
PM
1963 /* Walk up the rcu_node hierarchy. */
1964 for (;;) {
1965 if (!(rnp->qsmask & mask)) {
1966
1967 /* Our bit has already been cleared, so done. */
1304afb2 1968 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1969 return;
1970 }
1971 rnp->qsmask &= ~mask;
d4c08f2a
PM
1972 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1973 mask, rnp->qsmask, rnp->level,
1974 rnp->grplo, rnp->grphi,
1975 !!rnp->gp_tasks);
27f4d280 1976 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1977
1978 /* Other bits still set at this level, so done. */
1304afb2 1979 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1980 return;
1981 }
1982 mask = rnp->grpmask;
1983 if (rnp->parent == NULL) {
1984
1985 /* No more levels. Exit loop holding root lock. */
1986
1987 break;
1988 }
1304afb2 1989 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1990 rnp_c = rnp;
64db4cff 1991 rnp = rnp->parent;
1304afb2 1992 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1993 smp_mb__after_unlock_lock();
28ecd580 1994 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1995 }
1996
1997 /*
1998 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1999 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2000 * to clean up and start the next grace period if one is needed.
64db4cff 2001 */
d3f6bad3 2002 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2003}
2004
2005/*
d3f6bad3
PM
2006 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2007 * structure. This must be either called from the specified CPU, or
2008 * called when the specified CPU is known to be offline (and when it is
2009 * also known that no other CPU is concurrently trying to help the offline
2010 * CPU). The lastcomp argument is used to make sure we are still in the
2011 * grace period of interest. We don't want to end the current grace period
2012 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2013 */
2014static void
d7d6a11e 2015rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2016{
2017 unsigned long flags;
2018 unsigned long mask;
48a7639c 2019 bool needwake;
64db4cff
PM
2020 struct rcu_node *rnp;
2021
2022 rnp = rdp->mynode;
1304afb2 2023 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2024 smp_mb__after_unlock_lock();
d7d6a11e
PM
2025 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
2026 rnp->completed == rnp->gpnum) {
64db4cff
PM
2027
2028 /*
e4cc1f22
PM
2029 * The grace period in which this quiescent state was
2030 * recorded has ended, so don't report it upwards.
2031 * We will instead need a new quiescent state that lies
2032 * within the current grace period.
64db4cff 2033 */
e4cc1f22 2034 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 2035 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2036 return;
2037 }
2038 mask = rdp->grpmask;
2039 if ((rnp->qsmask & mask) == 0) {
1304afb2 2040 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2041 } else {
2042 rdp->qs_pending = 0;
2043
2044 /*
2045 * This GP can't end until cpu checks in, so all of our
2046 * callbacks can be processed during the next GP.
2047 */
48a7639c 2048 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2049
d3f6bad3 2050 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
48a7639c
PM
2051 if (needwake)
2052 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2053 }
2054}
2055
2056/*
2057 * Check to see if there is a new grace period of which this CPU
2058 * is not yet aware, and if so, set up local rcu_data state for it.
2059 * Otherwise, see if this CPU has just passed through its first
2060 * quiescent state for this grace period, and record that fact if so.
2061 */
2062static void
2063rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2064{
05eb552b
PM
2065 /* Check for grace-period ends and beginnings. */
2066 note_gp_changes(rsp, rdp);
64db4cff
PM
2067
2068 /*
2069 * Does this CPU still need to do its part for current grace period?
2070 * If no, return and let the other CPUs do their part as well.
2071 */
2072 if (!rdp->qs_pending)
2073 return;
2074
2075 /*
2076 * Was there a quiescent state since the beginning of the grace
2077 * period? If no, then exit and wait for the next call.
2078 */
e4cc1f22 2079 if (!rdp->passed_quiesce)
64db4cff
PM
2080 return;
2081
d3f6bad3
PM
2082 /*
2083 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2084 * judge of that).
2085 */
d7d6a11e 2086 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2087}
2088
2089#ifdef CONFIG_HOTPLUG_CPU
2090
e74f4c45 2091/*
b1420f1c
PM
2092 * Send the specified CPU's RCU callbacks to the orphanage. The
2093 * specified CPU must be offline, and the caller must hold the
7b2e6011 2094 * ->orphan_lock.
e74f4c45 2095 */
b1420f1c
PM
2096static void
2097rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2098 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2099{
3fbfbf7a 2100 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 2101 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2102 return;
2103
b1420f1c
PM
2104 /*
2105 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2106 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2107 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2108 */
a50c3af9 2109 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2110 rsp->qlen_lazy += rdp->qlen_lazy;
2111 rsp->qlen += rdp->qlen;
2112 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2113 rdp->qlen_lazy = 0;
1d1fb395 2114 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
2115 }
2116
2117 /*
b1420f1c
PM
2118 * Next, move those callbacks still needing a grace period to
2119 * the orphanage, where some other CPU will pick them up.
2120 * Some of the callbacks might have gone partway through a grace
2121 * period, but that is too bad. They get to start over because we
2122 * cannot assume that grace periods are synchronized across CPUs.
2123 * We don't bother updating the ->nxttail[] array yet, instead
2124 * we just reset the whole thing later on.
a50c3af9 2125 */
b1420f1c
PM
2126 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2127 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2128 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2129 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2130 }
2131
2132 /*
b1420f1c
PM
2133 * Then move the ready-to-invoke callbacks to the orphanage,
2134 * where some other CPU will pick them up. These will not be
2135 * required to pass though another grace period: They are done.
a50c3af9 2136 */
e5601400 2137 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2138 *rsp->orphan_donetail = rdp->nxtlist;
2139 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2140 }
e74f4c45 2141
b1420f1c 2142 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 2143 init_callback_list(rdp);
b1420f1c
PM
2144}
2145
2146/*
2147 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2148 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2149 */
96d3fd0d 2150static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2151{
2152 int i;
fa07a58f 2153 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2154
3fbfbf7a 2155 /* No-CBs CPUs are handled specially. */
96d3fd0d 2156 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2157 return;
2158
b1420f1c
PM
2159 /* Do the accounting first. */
2160 rdp->qlen_lazy += rsp->qlen_lazy;
2161 rdp->qlen += rsp->qlen;
2162 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2163 if (rsp->qlen_lazy != rsp->qlen)
2164 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2165 rsp->qlen_lazy = 0;
2166 rsp->qlen = 0;
2167
2168 /*
2169 * We do not need a memory barrier here because the only way we
2170 * can get here if there is an rcu_barrier() in flight is if
2171 * we are the task doing the rcu_barrier().
2172 */
2173
2174 /* First adopt the ready-to-invoke callbacks. */
2175 if (rsp->orphan_donelist != NULL) {
2176 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2177 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2178 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2179 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2180 rdp->nxttail[i] = rsp->orphan_donetail;
2181 rsp->orphan_donelist = NULL;
2182 rsp->orphan_donetail = &rsp->orphan_donelist;
2183 }
2184
2185 /* And then adopt the callbacks that still need a grace period. */
2186 if (rsp->orphan_nxtlist != NULL) {
2187 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2188 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2189 rsp->orphan_nxtlist = NULL;
2190 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2191 }
2192}
2193
2194/*
2195 * Trace the fact that this CPU is going offline.
2196 */
2197static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2198{
2199 RCU_TRACE(unsigned long mask);
2200 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2201 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2202
2203 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2204 trace_rcu_grace_period(rsp->name,
2205 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2206 TPS("cpuofl"));
64db4cff
PM
2207}
2208
2209/*
e5601400 2210 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2211 * this fact from process context. Do the remainder of the cleanup,
2212 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2213 * adopting them. There can only be one CPU hotplug operation at a time,
2214 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2215 */
e5601400 2216static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2217{
2036d94a
PM
2218 unsigned long flags;
2219 unsigned long mask;
2220 int need_report = 0;
e5601400 2221 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2222 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2223
2036d94a 2224 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2225 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2226
2036d94a 2227 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2228 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2229 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2230
b1420f1c
PM
2231 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2232 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2233 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2234
2036d94a
PM
2235 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2236 mask = rdp->grpmask; /* rnp->grplo is constant. */
2237 do {
2238 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 2239 smp_mb__after_unlock_lock();
2036d94a
PM
2240 rnp->qsmaskinit &= ~mask;
2241 if (rnp->qsmaskinit != 0) {
2242 if (rnp != rdp->mynode)
2243 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2244 break;
2245 }
2246 if (rnp == rdp->mynode)
2247 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2248 else
2249 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2250 mask = rnp->grpmask;
2251 rnp = rnp->parent;
2252 } while (rnp != NULL);
2253
2254 /*
2255 * We still hold the leaf rcu_node structure lock here, and
2256 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2257 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2258 * held leads to deadlock.
2259 */
7b2e6011 2260 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2261 rnp = rdp->mynode;
2262 if (need_report & RCU_OFL_TASKS_NORM_GP)
2263 rcu_report_unblock_qs_rnp(rnp, flags);
2264 else
2265 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2266 if (need_report & RCU_OFL_TASKS_EXP_GP)
2267 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2268 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2269 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2270 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2271 init_callback_list(rdp);
2272 /* Disallow further callbacks on this CPU. */
2273 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2274 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2275}
2276
2277#else /* #ifdef CONFIG_HOTPLUG_CPU */
2278
e5601400 2279static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2280{
2281}
2282
e5601400 2283static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2284{
2285}
2286
2287#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2288
2289/*
2290 * Invoke any RCU callbacks that have made it to the end of their grace
2291 * period. Thottle as specified by rdp->blimit.
2292 */
37c72e56 2293static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2294{
2295 unsigned long flags;
2296 struct rcu_head *next, *list, **tail;
878d7439
ED
2297 long bl, count, count_lazy;
2298 int i;
64db4cff 2299
dc35c893 2300 /* If no callbacks are ready, just return. */
29c00b4a 2301 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2302 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2303 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2304 need_resched(), is_idle_task(current),
2305 rcu_is_callbacks_kthread());
64db4cff 2306 return;
29c00b4a 2307 }
64db4cff
PM
2308
2309 /*
2310 * Extract the list of ready callbacks, disabling to prevent
2311 * races with call_rcu() from interrupt handlers.
2312 */
2313 local_irq_save(flags);
8146c4e2 2314 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2315 bl = rdp->blimit;
486e2593 2316 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2317 list = rdp->nxtlist;
2318 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2319 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2320 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2321 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2322 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2323 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2324 local_irq_restore(flags);
2325
2326 /* Invoke callbacks. */
486e2593 2327 count = count_lazy = 0;
64db4cff
PM
2328 while (list) {
2329 next = list->next;
2330 prefetch(next);
551d55a9 2331 debug_rcu_head_unqueue(list);
486e2593
PM
2332 if (__rcu_reclaim(rsp->name, list))
2333 count_lazy++;
64db4cff 2334 list = next;
dff1672d
PM
2335 /* Stop only if limit reached and CPU has something to do. */
2336 if (++count >= bl &&
2337 (need_resched() ||
2338 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2339 break;
2340 }
2341
2342 local_irq_save(flags);
4968c300
PM
2343 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2344 is_idle_task(current),
2345 rcu_is_callbacks_kthread());
64db4cff
PM
2346
2347 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2348 if (list != NULL) {
2349 *tail = rdp->nxtlist;
2350 rdp->nxtlist = list;
b41772ab
PM
2351 for (i = 0; i < RCU_NEXT_SIZE; i++)
2352 if (&rdp->nxtlist == rdp->nxttail[i])
2353 rdp->nxttail[i] = tail;
64db4cff
PM
2354 else
2355 break;
2356 }
b1420f1c
PM
2357 smp_mb(); /* List handling before counting for rcu_barrier(). */
2358 rdp->qlen_lazy -= count_lazy;
a792563b 2359 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
b1420f1c 2360 rdp->n_cbs_invoked += count;
64db4cff
PM
2361
2362 /* Reinstate batch limit if we have worked down the excess. */
2363 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2364 rdp->blimit = blimit;
2365
37c72e56
PM
2366 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2367 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2368 rdp->qlen_last_fqs_check = 0;
2369 rdp->n_force_qs_snap = rsp->n_force_qs;
2370 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2371 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2372 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2373
64db4cff
PM
2374 local_irq_restore(flags);
2375
e0f23060 2376 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2377 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2378 invoke_rcu_core();
64db4cff
PM
2379}
2380
2381/*
2382 * Check to see if this CPU is in a non-context-switch quiescent state
2383 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2384 * Also schedule RCU core processing.
64db4cff 2385 *
9b2e4f18 2386 * This function must be called from hardirq context. It is normally
64db4cff
PM
2387 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2388 * false, there is no point in invoking rcu_check_callbacks().
2389 */
2390void rcu_check_callbacks(int cpu, int user)
2391{
f7f7bac9 2392 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2393 increment_cpu_stall_ticks();
9b2e4f18 2394 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2395
2396 /*
2397 * Get here if this CPU took its interrupt from user
2398 * mode or from the idle loop, and if this is not a
2399 * nested interrupt. In this case, the CPU is in
d6714c22 2400 * a quiescent state, so note it.
64db4cff
PM
2401 *
2402 * No memory barrier is required here because both
d6714c22
PM
2403 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2404 * variables that other CPUs neither access nor modify,
2405 * at least not while the corresponding CPU is online.
64db4cff
PM
2406 */
2407
284a8c93
PM
2408 rcu_sched_qs();
2409 rcu_bh_qs();
64db4cff
PM
2410
2411 } else if (!in_softirq()) {
2412
2413 /*
2414 * Get here if this CPU did not take its interrupt from
2415 * softirq, in other words, if it is not interrupting
2416 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2417 * critical section, so note it.
64db4cff
PM
2418 */
2419
284a8c93 2420 rcu_bh_qs();
64db4cff 2421 }
f41d911f 2422 rcu_preempt_check_callbacks(cpu);
d21670ac 2423 if (rcu_pending(cpu))
a46e0899 2424 invoke_rcu_core();
8315f422
PM
2425 if (user)
2426 rcu_note_voluntary_context_switch(current);
f7f7bac9 2427 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2428}
2429
64db4cff
PM
2430/*
2431 * Scan the leaf rcu_node structures, processing dyntick state for any that
2432 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2433 * Also initiate boosting for any threads blocked on the root rcu_node.
2434 *
ee47eb9f 2435 * The caller must have suppressed start of new grace periods.
64db4cff 2436 */
217af2a2
PM
2437static void force_qs_rnp(struct rcu_state *rsp,
2438 int (*f)(struct rcu_data *rsp, bool *isidle,
2439 unsigned long *maxj),
2440 bool *isidle, unsigned long *maxj)
64db4cff
PM
2441{
2442 unsigned long bit;
2443 int cpu;
2444 unsigned long flags;
2445 unsigned long mask;
a0b6c9a7 2446 struct rcu_node *rnp;
64db4cff 2447
a0b6c9a7 2448 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2449 cond_resched_rcu_qs();
64db4cff 2450 mask = 0;
1304afb2 2451 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2452 smp_mb__after_unlock_lock();
ee47eb9f 2453 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2454 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2455 return;
64db4cff 2456 }
a0b6c9a7 2457 if (rnp->qsmask == 0) {
1217ed1b 2458 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2459 continue;
2460 }
a0b6c9a7 2461 cpu = rnp->grplo;
64db4cff 2462 bit = 1;
a0b6c9a7 2463 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2464 if ((rnp->qsmask & bit) != 0) {
2465 if ((rnp->qsmaskinit & bit) != 0)
e02b2edf 2466 *isidle = false;
0edd1b17
PM
2467 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2468 mask |= bit;
2469 }
64db4cff 2470 }
45f014c5 2471 if (mask != 0) {
64db4cff 2472
d3f6bad3
PM
2473 /* rcu_report_qs_rnp() releases rnp->lock. */
2474 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2475 continue;
2476 }
1304afb2 2477 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2478 }
27f4d280 2479 rnp = rcu_get_root(rsp);
1217ed1b
PM
2480 if (rnp->qsmask == 0) {
2481 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2482 smp_mb__after_unlock_lock();
1217ed1b
PM
2483 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2484 }
64db4cff
PM
2485}
2486
2487/*
2488 * Force quiescent states on reluctant CPUs, and also detect which
2489 * CPUs are in dyntick-idle mode.
2490 */
4cdfc175 2491static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2492{
2493 unsigned long flags;
394f2769
PM
2494 bool ret;
2495 struct rcu_node *rnp;
2496 struct rcu_node *rnp_old = NULL;
2497
2498 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2499 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769
PM
2500 for (; rnp != NULL; rnp = rnp->parent) {
2501 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2502 !raw_spin_trylock(&rnp->fqslock);
2503 if (rnp_old != NULL)
2504 raw_spin_unlock(&rnp_old->fqslock);
2505 if (ret) {
a792563b 2506 rsp->n_force_qs_lh++;
394f2769
PM
2507 return;
2508 }
2509 rnp_old = rnp;
2510 }
2511 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2512
394f2769
PM
2513 /* Reached the root of the rcu_node tree, acquire lock. */
2514 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2515 smp_mb__after_unlock_lock();
394f2769
PM
2516 raw_spin_unlock(&rnp_old->fqslock);
2517 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2518 rsp->n_force_qs_lh++;
394f2769 2519 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2520 return; /* Someone beat us to it. */
46a1e34e 2521 }
4de376a1
PK
2522 ACCESS_ONCE(rsp->gp_flags) =
2523 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
394f2769 2524 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2525 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2526}
2527
64db4cff 2528/*
e0f23060
PM
2529 * This does the RCU core processing work for the specified rcu_state
2530 * and rcu_data structures. This may be called only from the CPU to
2531 * whom the rdp belongs.
64db4cff
PM
2532 */
2533static void
1bca8cf1 2534__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2535{
2536 unsigned long flags;
48a7639c 2537 bool needwake;
fa07a58f 2538 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2539
2e597558
PM
2540 WARN_ON_ONCE(rdp->beenonline == 0);
2541
64db4cff
PM
2542 /* Update RCU state based on any recent quiescent states. */
2543 rcu_check_quiescent_state(rsp, rdp);
2544
2545 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2546 local_irq_save(flags);
64db4cff 2547 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2548 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2549 needwake = rcu_start_gp(rsp);
b8462084 2550 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2551 if (needwake)
2552 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2553 } else {
2554 local_irq_restore(flags);
64db4cff
PM
2555 }
2556
2557 /* If there are callbacks ready, invoke them. */
09223371 2558 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2559 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2560
2561 /* Do any needed deferred wakeups of rcuo kthreads. */
2562 do_nocb_deferred_wakeup(rdp);
09223371
SL
2563}
2564
64db4cff 2565/*
e0f23060 2566 * Do RCU core processing for the current CPU.
64db4cff 2567 */
09223371 2568static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2569{
6ce75a23
PM
2570 struct rcu_state *rsp;
2571
bfa00b4c
PM
2572 if (cpu_is_offline(smp_processor_id()))
2573 return;
f7f7bac9 2574 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2575 for_each_rcu_flavor(rsp)
2576 __rcu_process_callbacks(rsp);
f7f7bac9 2577 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2578}
2579
a26ac245 2580/*
e0f23060
PM
2581 * Schedule RCU callback invocation. If the specified type of RCU
2582 * does not support RCU priority boosting, just do a direct call,
2583 * otherwise wake up the per-CPU kernel kthread. Note that because we
2584 * are running on the current CPU with interrupts disabled, the
2585 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2586 */
a46e0899 2587static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2588{
b0d30417
PM
2589 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2590 return;
a46e0899
PM
2591 if (likely(!rsp->boost)) {
2592 rcu_do_batch(rsp, rdp);
a26ac245
PM
2593 return;
2594 }
a46e0899 2595 invoke_rcu_callbacks_kthread();
a26ac245
PM
2596}
2597
a46e0899 2598static void invoke_rcu_core(void)
09223371 2599{
b0f74036
PM
2600 if (cpu_online(smp_processor_id()))
2601 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2602}
2603
29154c57
PM
2604/*
2605 * Handle any core-RCU processing required by a call_rcu() invocation.
2606 */
2607static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2608 struct rcu_head *head, unsigned long flags)
64db4cff 2609{
48a7639c
PM
2610 bool needwake;
2611
62fde6ed
PM
2612 /*
2613 * If called from an extended quiescent state, invoke the RCU
2614 * core in order to force a re-evaluation of RCU's idleness.
2615 */
5c173eb8 2616 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2617 invoke_rcu_core();
2618
a16b7a69 2619 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2620 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2621 return;
64db4cff 2622
37c72e56
PM
2623 /*
2624 * Force the grace period if too many callbacks or too long waiting.
2625 * Enforce hysteresis, and don't invoke force_quiescent_state()
2626 * if some other CPU has recently done so. Also, don't bother
2627 * invoking force_quiescent_state() if the newly enqueued callback
2628 * is the only one waiting for a grace period to complete.
2629 */
2655d57e 2630 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2631
2632 /* Are we ignoring a completed grace period? */
470716fc 2633 note_gp_changes(rsp, rdp);
b52573d2
PM
2634
2635 /* Start a new grace period if one not already started. */
2636 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2637 struct rcu_node *rnp_root = rcu_get_root(rsp);
2638
b8462084 2639 raw_spin_lock(&rnp_root->lock);
6303b9c8 2640 smp_mb__after_unlock_lock();
48a7639c 2641 needwake = rcu_start_gp(rsp);
b8462084 2642 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2643 if (needwake)
2644 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2645 } else {
2646 /* Give the grace period a kick. */
2647 rdp->blimit = LONG_MAX;
2648 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2649 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2650 force_quiescent_state(rsp);
b52573d2
PM
2651 rdp->n_force_qs_snap = rsp->n_force_qs;
2652 rdp->qlen_last_fqs_check = rdp->qlen;
2653 }
4cdfc175 2654 }
29154c57
PM
2655}
2656
ae150184
PM
2657/*
2658 * RCU callback function to leak a callback.
2659 */
2660static void rcu_leak_callback(struct rcu_head *rhp)
2661{
2662}
2663
3fbfbf7a
PM
2664/*
2665 * Helper function for call_rcu() and friends. The cpu argument will
2666 * normally be -1, indicating "currently running CPU". It may specify
2667 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2668 * is expected to specify a CPU.
2669 */
64db4cff
PM
2670static void
2671__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2672 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2673{
2674 unsigned long flags;
2675 struct rcu_data *rdp;
2676
1146edcb 2677 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
2678 if (debug_rcu_head_queue(head)) {
2679 /* Probable double call_rcu(), so leak the callback. */
2680 ACCESS_ONCE(head->func) = rcu_leak_callback;
2681 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2682 return;
2683 }
64db4cff
PM
2684 head->func = func;
2685 head->next = NULL;
2686
64db4cff
PM
2687 /*
2688 * Opportunistically note grace-period endings and beginnings.
2689 * Note that we might see a beginning right after we see an
2690 * end, but never vice versa, since this CPU has to pass through
2691 * a quiescent state betweentimes.
2692 */
2693 local_irq_save(flags);
394f99a9 2694 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2695
2696 /* Add the callback to our list. */
3fbfbf7a
PM
2697 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2698 int offline;
2699
2700 if (cpu != -1)
2701 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2702 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2703 WARN_ON_ONCE(offline);
0d8ee37e 2704 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2705 local_irq_restore(flags);
2706 return;
2707 }
a792563b 2708 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
486e2593
PM
2709 if (lazy)
2710 rdp->qlen_lazy++;
c57afe80
PM
2711 else
2712 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2713 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2714 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2715 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2716
d4c08f2a
PM
2717 if (__is_kfree_rcu_offset((unsigned long)func))
2718 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2719 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2720 else
486e2593 2721 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2722
29154c57
PM
2723 /* Go handle any RCU core processing required. */
2724 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2725 local_irq_restore(flags);
2726}
2727
2728/*
d6714c22 2729 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2730 */
d6714c22 2731void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2732{
3fbfbf7a 2733 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2734}
d6714c22 2735EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2736
2737/*
486e2593 2738 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2739 */
2740void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2741{
3fbfbf7a 2742 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2743}
2744EXPORT_SYMBOL_GPL(call_rcu_bh);
2745
495aa969
ACB
2746/*
2747 * Queue an RCU callback for lazy invocation after a grace period.
2748 * This will likely be later named something like "call_rcu_lazy()",
2749 * but this change will require some way of tagging the lazy RCU
2750 * callbacks in the list of pending callbacks. Until then, this
2751 * function may only be called from __kfree_rcu().
2752 */
2753void kfree_call_rcu(struct rcu_head *head,
2754 void (*func)(struct rcu_head *rcu))
2755{
e534165b 2756 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
2757}
2758EXPORT_SYMBOL_GPL(kfree_call_rcu);
2759
6d813391
PM
2760/*
2761 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2762 * any blocking grace-period wait automatically implies a grace period
2763 * if there is only one CPU online at any point time during execution
2764 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2765 * occasionally incorrectly indicate that there are multiple CPUs online
2766 * when there was in fact only one the whole time, as this just adds
2767 * some overhead: RCU still operates correctly.
6d813391
PM
2768 */
2769static inline int rcu_blocking_is_gp(void)
2770{
95f0c1de
PM
2771 int ret;
2772
6d813391 2773 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2774 preempt_disable();
2775 ret = num_online_cpus() <= 1;
2776 preempt_enable();
2777 return ret;
6d813391
PM
2778}
2779
6ebb237b
PM
2780/**
2781 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2782 *
2783 * Control will return to the caller some time after a full rcu-sched
2784 * grace period has elapsed, in other words after all currently executing
2785 * rcu-sched read-side critical sections have completed. These read-side
2786 * critical sections are delimited by rcu_read_lock_sched() and
2787 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2788 * local_irq_disable(), and so on may be used in place of
2789 * rcu_read_lock_sched().
2790 *
2791 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2792 * non-threaded hardware-interrupt handlers, in progress on entry will
2793 * have completed before this primitive returns. However, this does not
2794 * guarantee that softirq handlers will have completed, since in some
2795 * kernels, these handlers can run in process context, and can block.
2796 *
2797 * Note that this guarantee implies further memory-ordering guarantees.
2798 * On systems with more than one CPU, when synchronize_sched() returns,
2799 * each CPU is guaranteed to have executed a full memory barrier since the
2800 * end of its last RCU-sched read-side critical section whose beginning
2801 * preceded the call to synchronize_sched(). In addition, each CPU having
2802 * an RCU read-side critical section that extends beyond the return from
2803 * synchronize_sched() is guaranteed to have executed a full memory barrier
2804 * after the beginning of synchronize_sched() and before the beginning of
2805 * that RCU read-side critical section. Note that these guarantees include
2806 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2807 * that are executing in the kernel.
2808 *
2809 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2810 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2811 * to have executed a full memory barrier during the execution of
2812 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2813 * again only if the system has more than one CPU).
6ebb237b
PM
2814 *
2815 * This primitive provides the guarantees made by the (now removed)
2816 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2817 * guarantees that rcu_read_lock() sections will have completed.
2818 * In "classic RCU", these two guarantees happen to be one and
2819 * the same, but can differ in realtime RCU implementations.
2820 */
2821void synchronize_sched(void)
2822{
fe15d706
PM
2823 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2824 !lock_is_held(&rcu_lock_map) &&
2825 !lock_is_held(&rcu_sched_lock_map),
2826 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2827 if (rcu_blocking_is_gp())
2828 return;
3705b88d
AM
2829 if (rcu_expedited)
2830 synchronize_sched_expedited();
2831 else
2832 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2833}
2834EXPORT_SYMBOL_GPL(synchronize_sched);
2835
2836/**
2837 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2838 *
2839 * Control will return to the caller some time after a full rcu_bh grace
2840 * period has elapsed, in other words after all currently executing rcu_bh
2841 * read-side critical sections have completed. RCU read-side critical
2842 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2843 * and may be nested.
f0a0e6f2
PM
2844 *
2845 * See the description of synchronize_sched() for more detailed information
2846 * on memory ordering guarantees.
6ebb237b
PM
2847 */
2848void synchronize_rcu_bh(void)
2849{
fe15d706
PM
2850 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2851 !lock_is_held(&rcu_lock_map) &&
2852 !lock_is_held(&rcu_sched_lock_map),
2853 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2854 if (rcu_blocking_is_gp())
2855 return;
3705b88d
AM
2856 if (rcu_expedited)
2857 synchronize_rcu_bh_expedited();
2858 else
2859 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2860}
2861EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2862
765a3f4f
PM
2863/**
2864 * get_state_synchronize_rcu - Snapshot current RCU state
2865 *
2866 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2867 * to determine whether or not a full grace period has elapsed in the
2868 * meantime.
2869 */
2870unsigned long get_state_synchronize_rcu(void)
2871{
2872 /*
2873 * Any prior manipulation of RCU-protected data must happen
2874 * before the load from ->gpnum.
2875 */
2876 smp_mb(); /* ^^^ */
2877
2878 /*
2879 * Make sure this load happens before the purportedly
2880 * time-consuming work between get_state_synchronize_rcu()
2881 * and cond_synchronize_rcu().
2882 */
e534165b 2883 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
2884}
2885EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2886
2887/**
2888 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2889 *
2890 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2891 *
2892 * If a full RCU grace period has elapsed since the earlier call to
2893 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2894 * synchronize_rcu() to wait for a full grace period.
2895 *
2896 * Yes, this function does not take counter wrap into account. But
2897 * counter wrap is harmless. If the counter wraps, we have waited for
2898 * more than 2 billion grace periods (and way more on a 64-bit system!),
2899 * so waiting for one additional grace period should be just fine.
2900 */
2901void cond_synchronize_rcu(unsigned long oldstate)
2902{
2903 unsigned long newstate;
2904
2905 /*
2906 * Ensure that this load happens before any RCU-destructive
2907 * actions the caller might carry out after we return.
2908 */
e534165b 2909 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
2910 if (ULONG_CMP_GE(oldstate, newstate))
2911 synchronize_rcu();
2912}
2913EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2914
3d3b7db0
PM
2915static int synchronize_sched_expedited_cpu_stop(void *data)
2916{
2917 /*
2918 * There must be a full memory barrier on each affected CPU
2919 * between the time that try_stop_cpus() is called and the
2920 * time that it returns.
2921 *
2922 * In the current initial implementation of cpu_stop, the
2923 * above condition is already met when the control reaches
2924 * this point and the following smp_mb() is not strictly
2925 * necessary. Do smp_mb() anyway for documentation and
2926 * robustness against future implementation changes.
2927 */
2928 smp_mb(); /* See above comment block. */
2929 return 0;
2930}
2931
236fefaf
PM
2932/**
2933 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2934 *
2935 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2936 * approach to force the grace period to end quickly. This consumes
2937 * significant time on all CPUs and is unfriendly to real-time workloads,
2938 * so is thus not recommended for any sort of common-case code. In fact,
2939 * if you are using synchronize_sched_expedited() in a loop, please
2940 * restructure your code to batch your updates, and then use a single
2941 * synchronize_sched() instead.
3d3b7db0 2942 *
236fefaf
PM
2943 * Note that it is illegal to call this function while holding any lock
2944 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2945 * to call this function from a CPU-hotplug notifier. Failing to observe
2946 * these restriction will result in deadlock.
3d3b7db0
PM
2947 *
2948 * This implementation can be thought of as an application of ticket
2949 * locking to RCU, with sync_sched_expedited_started and
2950 * sync_sched_expedited_done taking on the roles of the halves
2951 * of the ticket-lock word. Each task atomically increments
2952 * sync_sched_expedited_started upon entry, snapshotting the old value,
2953 * then attempts to stop all the CPUs. If this succeeds, then each
2954 * CPU will have executed a context switch, resulting in an RCU-sched
2955 * grace period. We are then done, so we use atomic_cmpxchg() to
2956 * update sync_sched_expedited_done to match our snapshot -- but
2957 * only if someone else has not already advanced past our snapshot.
2958 *
2959 * On the other hand, if try_stop_cpus() fails, we check the value
2960 * of sync_sched_expedited_done. If it has advanced past our
2961 * initial snapshot, then someone else must have forced a grace period
2962 * some time after we took our snapshot. In this case, our work is
2963 * done for us, and we can simply return. Otherwise, we try again,
2964 * but keep our initial snapshot for purposes of checking for someone
2965 * doing our work for us.
2966 *
2967 * If we fail too many times in a row, we fall back to synchronize_sched().
2968 */
2969void synchronize_sched_expedited(void)
2970{
1924bcb0
PM
2971 long firstsnap, s, snap;
2972 int trycount = 0;
40694d66 2973 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2974
1924bcb0
PM
2975 /*
2976 * If we are in danger of counter wrap, just do synchronize_sched().
2977 * By allowing sync_sched_expedited_started to advance no more than
2978 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2979 * that more than 3.5 billion CPUs would be required to force a
2980 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2981 * course be required on a 64-bit system.
2982 */
40694d66
PM
2983 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2984 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2985 ULONG_MAX / 8)) {
2986 synchronize_sched();
a30489c5 2987 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2988 return;
2989 }
3d3b7db0 2990
1924bcb0
PM
2991 /*
2992 * Take a ticket. Note that atomic_inc_return() implies a
2993 * full memory barrier.
2994 */
40694d66 2995 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2996 firstsnap = snap;
3d3b7db0 2997 get_online_cpus();
1cc85961 2998 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2999
3000 /*
3001 * Each pass through the following loop attempts to force a
3002 * context switch on each CPU.
3003 */
3004 while (try_stop_cpus(cpu_online_mask,
3005 synchronize_sched_expedited_cpu_stop,
3006 NULL) == -EAGAIN) {
3007 put_online_cpus();
a30489c5 3008 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 3009
1924bcb0 3010 /* Check to see if someone else did our work for us. */
40694d66 3011 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3012 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3013 /* ensure test happens before caller kfree */
4e857c58 3014 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3015 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
3016 return;
3017 }
3d3b7db0
PM
3018
3019 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 3020 if (trycount++ < 10) {
3d3b7db0 3021 udelay(trycount * num_online_cpus());
c701d5d9 3022 } else {
3705b88d 3023 wait_rcu_gp(call_rcu_sched);
a30489c5 3024 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
3025 return;
3026 }
3027
1924bcb0 3028 /* Recheck to see if someone else did our work for us. */
40694d66 3029 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3030 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3031 /* ensure test happens before caller kfree */
4e857c58 3032 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3033 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
3034 return;
3035 }
3036
3037 /*
3038 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
3039 * callers to piggyback on our grace period. We retry
3040 * after they started, so our grace period works for them,
3041 * and they started after our first try, so their grace
3042 * period works for us.
3d3b7db0
PM
3043 */
3044 get_online_cpus();
40694d66 3045 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
3046 smp_mb(); /* ensure read is before try_stop_cpus(). */
3047 }
a30489c5 3048 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
3049
3050 /*
3051 * Everyone up to our most recent fetch is covered by our grace
3052 * period. Update the counter, but only if our work is still
3053 * relevant -- which it won't be if someone who started later
1924bcb0 3054 * than we did already did their update.
3d3b7db0
PM
3055 */
3056 do {
a30489c5 3057 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 3058 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3059 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5 3060 /* ensure test happens before caller kfree */
4e857c58 3061 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3062 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
3063 break;
3064 }
40694d66 3065 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 3066 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
3067
3068 put_online_cpus();
3069}
3070EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3071
64db4cff
PM
3072/*
3073 * Check to see if there is any immediate RCU-related work to be done
3074 * by the current CPU, for the specified type of RCU, returning 1 if so.
3075 * The checks are in order of increasing expense: checks that can be
3076 * carried out against CPU-local state are performed first. However,
3077 * we must check for CPU stalls first, else we might not get a chance.
3078 */
3079static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3080{
2f51f988
PM
3081 struct rcu_node *rnp = rdp->mynode;
3082
64db4cff
PM
3083 rdp->n_rcu_pending++;
3084
3085 /* Check for CPU stalls, if enabled. */
3086 check_cpu_stall(rsp, rdp);
3087
a096932f
PM
3088 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3089 if (rcu_nohz_full_cpu(rsp))
3090 return 0;
3091
64db4cff 3092 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
3093 if (rcu_scheduler_fully_active &&
3094 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 3095 rdp->n_rp_qs_pending++;
e4cc1f22 3096 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 3097 rdp->n_rp_report_qs++;
64db4cff 3098 return 1;
7ba5c840 3099 }
64db4cff
PM
3100
3101 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3102 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3103 rdp->n_rp_cb_ready++;
64db4cff 3104 return 1;
7ba5c840 3105 }
64db4cff
PM
3106
3107 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3108 if (cpu_needs_another_gp(rsp, rdp)) {
3109 rdp->n_rp_cpu_needs_gp++;
64db4cff 3110 return 1;
7ba5c840 3111 }
64db4cff
PM
3112
3113 /* Has another RCU grace period completed? */
2f51f988 3114 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3115 rdp->n_rp_gp_completed++;
64db4cff 3116 return 1;
7ba5c840 3117 }
64db4cff
PM
3118
3119 /* Has a new RCU grace period started? */
2f51f988 3120 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 3121 rdp->n_rp_gp_started++;
64db4cff 3122 return 1;
7ba5c840 3123 }
64db4cff 3124
96d3fd0d
PM
3125 /* Does this CPU need a deferred NOCB wakeup? */
3126 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3127 rdp->n_rp_nocb_defer_wakeup++;
3128 return 1;
3129 }
3130
64db4cff 3131 /* nothing to do */
7ba5c840 3132 rdp->n_rp_need_nothing++;
64db4cff
PM
3133 return 0;
3134}
3135
3136/*
3137 * Check to see if there is any immediate RCU-related work to be done
3138 * by the current CPU, returning 1 if so. This function is part of the
3139 * RCU implementation; it is -not- an exported member of the RCU API.
3140 */
a157229c 3141static int rcu_pending(int cpu)
64db4cff 3142{
6ce75a23
PM
3143 struct rcu_state *rsp;
3144
3145 for_each_rcu_flavor(rsp)
3146 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
3147 return 1;
3148 return 0;
64db4cff
PM
3149}
3150
3151/*
c0f4dfd4
PM
3152 * Return true if the specified CPU has any callback. If all_lazy is
3153 * non-NULL, store an indication of whether all callbacks are lazy.
3154 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3155 */
ffa83fb5 3156static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 3157{
c0f4dfd4
PM
3158 bool al = true;
3159 bool hc = false;
3160 struct rcu_data *rdp;
6ce75a23
PM
3161 struct rcu_state *rsp;
3162
c0f4dfd4
PM
3163 for_each_rcu_flavor(rsp) {
3164 rdp = per_cpu_ptr(rsp->rda, cpu);
69c8d28c
PM
3165 if (!rdp->nxtlist)
3166 continue;
3167 hc = true;
3168 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3169 al = false;
69c8d28c
PM
3170 break;
3171 }
c0f4dfd4
PM
3172 }
3173 if (all_lazy)
3174 *all_lazy = al;
3175 return hc;
64db4cff
PM
3176}
3177
a83eff0a
PM
3178/*
3179 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3180 * the compiler is expected to optimize this away.
3181 */
e66c33d5 3182static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3183 int cpu, unsigned long done)
3184{
3185 trace_rcu_barrier(rsp->name, s, cpu,
3186 atomic_read(&rsp->barrier_cpu_count), done);
3187}
3188
b1420f1c
PM
3189/*
3190 * RCU callback function for _rcu_barrier(). If we are last, wake
3191 * up the task executing _rcu_barrier().
3192 */
24ebbca8 3193static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3194{
24ebbca8
PM
3195 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3196 struct rcu_state *rsp = rdp->rsp;
3197
a83eff0a
PM
3198 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3199 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3200 complete(&rsp->barrier_completion);
a83eff0a
PM
3201 } else {
3202 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3203 }
d0ec774c
PM
3204}
3205
3206/*
3207 * Called with preemption disabled, and from cross-cpu IRQ context.
3208 */
3209static void rcu_barrier_func(void *type)
3210{
037b64ed 3211 struct rcu_state *rsp = type;
fa07a58f 3212 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3213
a83eff0a 3214 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3215 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3216 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3217}
3218
d0ec774c
PM
3219/*
3220 * Orchestrate the specified type of RCU barrier, waiting for all
3221 * RCU callbacks of the specified type to complete.
3222 */
037b64ed 3223static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3224{
b1420f1c 3225 int cpu;
b1420f1c 3226 struct rcu_data *rdp;
cf3a9c48
PM
3227 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3228 unsigned long snap_done;
b1420f1c 3229
a83eff0a 3230 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3231
e74f4c45 3232 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3233 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3234
cf3a9c48
PM
3235 /*
3236 * Ensure that all prior references, including to ->n_barrier_done,
3237 * are ordered before the _rcu_barrier() machinery.
3238 */
3239 smp_mb(); /* See above block comment. */
3240
3241 /*
3242 * Recheck ->n_barrier_done to see if others did our work for us.
3243 * This means checking ->n_barrier_done for an even-to-odd-to-even
3244 * transition. The "if" expression below therefore rounds the old
3245 * value up to the next even number and adds two before comparing.
3246 */
458fb381 3247 snap_done = rsp->n_barrier_done;
a83eff0a 3248 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3249
3250 /*
3251 * If the value in snap is odd, we needed to wait for the current
3252 * rcu_barrier() to complete, then wait for the next one, in other
3253 * words, we need the value of snap_done to be three larger than
3254 * the value of snap. On the other hand, if the value in snap is
3255 * even, we only had to wait for the next rcu_barrier() to complete,
3256 * in other words, we need the value of snap_done to be only two
3257 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3258 * this for us (thank you, Linus!).
3259 */
3260 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3261 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3262 smp_mb(); /* caller's subsequent code after above check. */
3263 mutex_unlock(&rsp->barrier_mutex);
3264 return;
3265 }
3266
3267 /*
3268 * Increment ->n_barrier_done to avoid duplicate work. Use
3269 * ACCESS_ONCE() to prevent the compiler from speculating
3270 * the increment to precede the early-exit check.
3271 */
a792563b 3272 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3273 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3274 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3275 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3276
d0ec774c 3277 /*
b1420f1c
PM
3278 * Initialize the count to one rather than to zero in order to
3279 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3280 * (or preemption of this task). Exclude CPU-hotplug operations
3281 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3282 */
7db74df8 3283 init_completion(&rsp->barrier_completion);
24ebbca8 3284 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3285 get_online_cpus();
b1420f1c
PM
3286
3287 /*
1331e7a1
PM
3288 * Force each CPU with callbacks to register a new callback.
3289 * When that callback is invoked, we will know that all of the
3290 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3291 */
3fbfbf7a 3292 for_each_possible_cpu(cpu) {
d1e43fa5 3293 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3294 continue;
b1420f1c 3295 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3296 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
3297 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3298 rsp->n_barrier_done);
3299 atomic_inc(&rsp->barrier_cpu_count);
3300 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3301 rsp, cpu, 0);
3302 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3303 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3304 rsp->n_barrier_done);
037b64ed 3305 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3306 } else {
a83eff0a
PM
3307 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3308 rsp->n_barrier_done);
b1420f1c
PM
3309 }
3310 }
1331e7a1 3311 put_online_cpus();
b1420f1c
PM
3312
3313 /*
3314 * Now that we have an rcu_barrier_callback() callback on each
3315 * CPU, and thus each counted, remove the initial count.
3316 */
24ebbca8 3317 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3318 complete(&rsp->barrier_completion);
b1420f1c 3319
cf3a9c48
PM
3320 /* Increment ->n_barrier_done to prevent duplicate work. */
3321 smp_mb(); /* Keep increment after above mechanism. */
a792563b 3322 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3323 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3324 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3325 smp_mb(); /* Keep increment before caller's subsequent code. */
3326
b1420f1c 3327 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3328 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3329
3330 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3331 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3332}
d0ec774c
PM
3333
3334/**
3335 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3336 */
3337void rcu_barrier_bh(void)
3338{
037b64ed 3339 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3340}
3341EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3342
3343/**
3344 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3345 */
3346void rcu_barrier_sched(void)
3347{
037b64ed 3348 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3349}
3350EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3351
64db4cff 3352/*
27569620 3353 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3354 */
27569620
PM
3355static void __init
3356rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3357{
3358 unsigned long flags;
394f99a9 3359 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3360 struct rcu_node *rnp = rcu_get_root(rsp);
3361
3362 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3363 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3364 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3365 init_callback_list(rdp);
486e2593 3366 rdp->qlen_lazy = 0;
1d1fb395 3367 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3368 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3369 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3370 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3371 rdp->cpu = cpu;
d4c08f2a 3372 rdp->rsp = rsp;
3fbfbf7a 3373 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3374 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3375}
3376
3377/*
3378 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3379 * offline event can be happening at a given time. Note also that we
3380 * can accept some slop in the rsp->completed access due to the fact
3381 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3382 */
49fb4c62 3383static void
9b67122a 3384rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3385{
3386 unsigned long flags;
64db4cff 3387 unsigned long mask;
394f99a9 3388 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3389 struct rcu_node *rnp = rcu_get_root(rsp);
3390
a4fbe35a
PM
3391 /* Exclude new grace periods. */
3392 mutex_lock(&rsp->onoff_mutex);
3393
64db4cff 3394 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3395 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3396 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3397 rdp->qlen_last_fqs_check = 0;
3398 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3399 rdp->blimit = blimit;
0d8ee37e 3400 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3401 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3402 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3403 atomic_set(&rdp->dynticks->dynticks,
3404 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3405 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3406
64db4cff
PM
3407 /* Add CPU to rcu_node bitmasks. */
3408 rnp = rdp->mynode;
3409 mask = rdp->grpmask;
3410 do {
3411 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3412 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3413 rnp->qsmaskinit |= mask;
3414 mask = rnp->grpmask;
d09b62df 3415 if (rnp == rdp->mynode) {
06ae115a
PM
3416 /*
3417 * If there is a grace period in progress, we will
3418 * set up to wait for it next time we run the
3419 * RCU core code.
3420 */
3421 rdp->gpnum = rnp->completed;
d09b62df 3422 rdp->completed = rnp->completed;
06ae115a
PM
3423 rdp->passed_quiesce = 0;
3424 rdp->qs_pending = 0;
f7f7bac9 3425 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3426 }
1304afb2 3427 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3428 rnp = rnp->parent;
3429 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3430 local_irq_restore(flags);
64db4cff 3431
a4fbe35a 3432 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3433}
3434
49fb4c62 3435static void rcu_prepare_cpu(int cpu)
64db4cff 3436{
6ce75a23
PM
3437 struct rcu_state *rsp;
3438
3439 for_each_rcu_flavor(rsp)
9b67122a 3440 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3441}
3442
3443/*
f41d911f 3444 * Handle CPU online/offline notification events.
64db4cff 3445 */
49fb4c62 3446static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3447 unsigned long action, void *hcpu)
64db4cff
PM
3448{
3449 long cpu = (long)hcpu;
e534165b 3450 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3451 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3452 struct rcu_state *rsp;
64db4cff 3453
f7f7bac9 3454 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3455 switch (action) {
3456 case CPU_UP_PREPARE:
3457 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3458 rcu_prepare_cpu(cpu);
3459 rcu_prepare_kthreads(cpu);
35ce7f29 3460 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
3461 break;
3462 case CPU_ONLINE:
0f962a5e 3463 case CPU_DOWN_FAILED:
5d01bbd1 3464 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3465 break;
3466 case CPU_DOWN_PREPARE:
34ed6246 3467 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3468 break;
d0ec774c
PM
3469 case CPU_DYING:
3470 case CPU_DYING_FROZEN:
6ce75a23
PM
3471 for_each_rcu_flavor(rsp)
3472 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3473 break;
64db4cff
PM
3474 case CPU_DEAD:
3475 case CPU_DEAD_FROZEN:
3476 case CPU_UP_CANCELED:
3477 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3478 for_each_rcu_flavor(rsp)
3479 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3480 break;
3481 default:
3482 break;
3483 }
f7f7bac9 3484 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3485 return NOTIFY_OK;
64db4cff
PM
3486}
3487
d1d74d14
BP
3488static int rcu_pm_notify(struct notifier_block *self,
3489 unsigned long action, void *hcpu)
3490{
3491 switch (action) {
3492 case PM_HIBERNATION_PREPARE:
3493 case PM_SUSPEND_PREPARE:
3494 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3495 rcu_expedited = 1;
3496 break;
3497 case PM_POST_HIBERNATION:
3498 case PM_POST_SUSPEND:
3499 rcu_expedited = 0;
3500 break;
3501 default:
3502 break;
3503 }
3504 return NOTIFY_OK;
3505}
3506
b3dbec76 3507/*
9386c0b7 3508 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3509 */
3510static int __init rcu_spawn_gp_kthread(void)
3511{
3512 unsigned long flags;
3513 struct rcu_node *rnp;
3514 struct rcu_state *rsp;
3515 struct task_struct *t;
3516
9386c0b7 3517 rcu_scheduler_fully_active = 1;
b3dbec76 3518 for_each_rcu_flavor(rsp) {
f170168b 3519 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3520 BUG_ON(IS_ERR(t));
3521 rnp = rcu_get_root(rsp);
3522 raw_spin_lock_irqsave(&rnp->lock, flags);
3523 rsp->gp_kthread = t;
3524 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3525 }
35ce7f29 3526 rcu_spawn_nocb_kthreads();
9386c0b7 3527 rcu_spawn_boost_kthreads();
b3dbec76
PM
3528 return 0;
3529}
3530early_initcall(rcu_spawn_gp_kthread);
3531
bbad9379
PM
3532/*
3533 * This function is invoked towards the end of the scheduler's initialization
3534 * process. Before this is called, the idle task might contain
3535 * RCU read-side critical sections (during which time, this idle
3536 * task is booting the system). After this function is called, the
3537 * idle tasks are prohibited from containing RCU read-side critical
3538 * sections. This function also enables RCU lockdep checking.
3539 */
3540void rcu_scheduler_starting(void)
3541{
3542 WARN_ON(num_online_cpus() != 1);
3543 WARN_ON(nr_context_switches() > 0);
3544 rcu_scheduler_active = 1;
3545}
3546
64db4cff
PM
3547/*
3548 * Compute the per-level fanout, either using the exact fanout specified
3549 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3550 */
3551#ifdef CONFIG_RCU_FANOUT_EXACT
3552static void __init rcu_init_levelspread(struct rcu_state *rsp)
3553{
3554 int i;
3555
04f34650
PM
3556 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3557 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3558 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3559}
3560#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3561static void __init rcu_init_levelspread(struct rcu_state *rsp)
3562{
3563 int ccur;
3564 int cprv;
3565 int i;
3566
4dbd6bb3 3567 cprv = nr_cpu_ids;
f885b7f2 3568 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3569 ccur = rsp->levelcnt[i];
3570 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3571 cprv = ccur;
3572 }
3573}
3574#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3575
3576/*
3577 * Helper function for rcu_init() that initializes one rcu_state structure.
3578 */
394f99a9
LJ
3579static void __init rcu_init_one(struct rcu_state *rsp,
3580 struct rcu_data __percpu *rda)
64db4cff 3581{
b4426b49
FF
3582 static const char * const buf[] = {
3583 "rcu_node_0",
3584 "rcu_node_1",
3585 "rcu_node_2",
3586 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3587 static const char * const fqs[] = {
3588 "rcu_node_fqs_0",
3589 "rcu_node_fqs_1",
3590 "rcu_node_fqs_2",
3591 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4a81e832 3592 static u8 fl_mask = 0x1;
64db4cff
PM
3593 int cpustride = 1;
3594 int i;
3595 int j;
3596 struct rcu_node *rnp;
3597
b6407e86
PM
3598 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3599
4930521a
PM
3600 /* Silence gcc 4.8 warning about array index out of range. */
3601 if (rcu_num_lvls > RCU_NUM_LVLS)
3602 panic("rcu_init_one: rcu_num_lvls overflow");
3603
64db4cff
PM
3604 /* Initialize the level-tracking arrays. */
3605
f885b7f2
PM
3606 for (i = 0; i < rcu_num_lvls; i++)
3607 rsp->levelcnt[i] = num_rcu_lvl[i];
3608 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3609 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3610 rcu_init_levelspread(rsp);
4a81e832
PM
3611 rsp->flavor_mask = fl_mask;
3612 fl_mask <<= 1;
64db4cff
PM
3613
3614 /* Initialize the elements themselves, starting from the leaves. */
3615
f885b7f2 3616 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3617 cpustride *= rsp->levelspread[i];
3618 rnp = rsp->level[i];
3619 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3620 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3621 lockdep_set_class_and_name(&rnp->lock,
3622 &rcu_node_class[i], buf[i]);
394f2769
PM
3623 raw_spin_lock_init(&rnp->fqslock);
3624 lockdep_set_class_and_name(&rnp->fqslock,
3625 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3626 rnp->gpnum = rsp->gpnum;
3627 rnp->completed = rsp->completed;
64db4cff
PM
3628 rnp->qsmask = 0;
3629 rnp->qsmaskinit = 0;
3630 rnp->grplo = j * cpustride;
3631 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3632 if (rnp->grphi >= nr_cpu_ids)
3633 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3634 if (i == 0) {
3635 rnp->grpnum = 0;
3636 rnp->grpmask = 0;
3637 rnp->parent = NULL;
3638 } else {
3639 rnp->grpnum = j % rsp->levelspread[i - 1];
3640 rnp->grpmask = 1UL << rnp->grpnum;
3641 rnp->parent = rsp->level[i - 1] +
3642 j / rsp->levelspread[i - 1];
3643 }
3644 rnp->level = i;
12f5f524 3645 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3646 rcu_init_one_nocb(rnp);
64db4cff
PM
3647 }
3648 }
0c34029a 3649
394f99a9 3650 rsp->rda = rda;
b3dbec76 3651 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 3652 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3653 for_each_possible_cpu(i) {
4a90a068 3654 while (i > rnp->grphi)
0c34029a 3655 rnp++;
394f99a9 3656 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3657 rcu_boot_init_percpu_data(i, rsp);
3658 }
6ce75a23 3659 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3660}
3661
f885b7f2
PM
3662/*
3663 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3664 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3665 * the ->node array in the rcu_state structure.
3666 */
3667static void __init rcu_init_geometry(void)
3668{
026ad283 3669 ulong d;
f885b7f2
PM
3670 int i;
3671 int j;
cca6f393 3672 int n = nr_cpu_ids;
f885b7f2
PM
3673 int rcu_capacity[MAX_RCU_LVLS + 1];
3674
026ad283
PM
3675 /*
3676 * Initialize any unspecified boot parameters.
3677 * The default values of jiffies_till_first_fqs and
3678 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3679 * value, which is a function of HZ, then adding one for each
3680 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3681 */
3682 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3683 if (jiffies_till_first_fqs == ULONG_MAX)
3684 jiffies_till_first_fqs = d;
3685 if (jiffies_till_next_fqs == ULONG_MAX)
3686 jiffies_till_next_fqs = d;
3687
f885b7f2 3688 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3689 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3690 nr_cpu_ids == NR_CPUS)
f885b7f2 3691 return;
39479098
PM
3692 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3693 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3694
3695 /*
3696 * Compute number of nodes that can be handled an rcu_node tree
3697 * with the given number of levels. Setting rcu_capacity[0] makes
3698 * some of the arithmetic easier.
3699 */
3700 rcu_capacity[0] = 1;
3701 rcu_capacity[1] = rcu_fanout_leaf;
3702 for (i = 2; i <= MAX_RCU_LVLS; i++)
3703 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3704
3705 /*
3706 * The boot-time rcu_fanout_leaf parameter is only permitted
3707 * to increase the leaf-level fanout, not decrease it. Of course,
3708 * the leaf-level fanout cannot exceed the number of bits in
3709 * the rcu_node masks. Finally, the tree must be able to accommodate
3710 * the configured number of CPUs. Complain and fall back to the
3711 * compile-time values if these limits are exceeded.
3712 */
3713 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3714 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3715 n > rcu_capacity[MAX_RCU_LVLS]) {
3716 WARN_ON(1);
3717 return;
3718 }
3719
3720 /* Calculate the number of rcu_nodes at each level of the tree. */
3721 for (i = 1; i <= MAX_RCU_LVLS; i++)
3722 if (n <= rcu_capacity[i]) {
3723 for (j = 0; j <= i; j++)
3724 num_rcu_lvl[j] =
3725 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3726 rcu_num_lvls = i;
3727 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3728 num_rcu_lvl[j] = 0;
3729 break;
3730 }
3731
3732 /* Calculate the total number of rcu_node structures. */
3733 rcu_num_nodes = 0;
3734 for (i = 0; i <= MAX_RCU_LVLS; i++)
3735 rcu_num_nodes += num_rcu_lvl[i];
3736 rcu_num_nodes -= n;
3737}
3738
9f680ab4 3739void __init rcu_init(void)
64db4cff 3740{
017c4261 3741 int cpu;
9f680ab4 3742
f41d911f 3743 rcu_bootup_announce();
f885b7f2 3744 rcu_init_geometry();
394f99a9 3745 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3746 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3747 __rcu_init_preempt();
b5b39360 3748 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3749
3750 /*
3751 * We don't need protection against CPU-hotplug here because
3752 * this is called early in boot, before either interrupts
3753 * or the scheduler are operational.
3754 */
3755 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3756 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3757 for_each_online_cpu(cpu)
3758 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3759}
3760
4102adab 3761#include "tree_plugin.h"
This page took 0.586181 seconds and 5 git commands to generate.