rcu: Remove unneeded __rcu_process_callbacks() argument
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
f885b7f2 63static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
88b91c7c 64
037b64ed 65#define RCU_STATE_INITIALIZER(sname, cr) { \
6c90cc7b 66 .level = { &sname##_state.node[0] }, \
037b64ed 67 .call = cr, \
af446b70 68 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
69 .gpnum = -300, \
70 .completed = -300, \
6c90cc7b
PM
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
72 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
73 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 74 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
6c90cc7b 75 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
6c90cc7b 76 .name = #sname, \
64db4cff
PM
77}
78
037b64ed
PM
79struct rcu_state rcu_sched_state =
80 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
d6714c22 81DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 82
037b64ed 83struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
6258c4fb 84DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 85
27f4d280
PM
86static struct rcu_state *rcu_state;
87
f885b7f2
PM
88/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
89static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
90module_param(rcu_fanout_leaf, int, 0);
91int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
92static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
93 NUM_RCU_LVL_0,
94 NUM_RCU_LVL_1,
95 NUM_RCU_LVL_2,
96 NUM_RCU_LVL_3,
97 NUM_RCU_LVL_4,
98};
99int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
100
b0d30417
PM
101/*
102 * The rcu_scheduler_active variable transitions from zero to one just
103 * before the first task is spawned. So when this variable is zero, RCU
104 * can assume that there is but one task, allowing RCU to (for example)
105 * optimized synchronize_sched() to a simple barrier(). When this variable
106 * is one, RCU must actually do all the hard work required to detect real
107 * grace periods. This variable is also used to suppress boot-time false
108 * positives from lockdep-RCU error checking.
109 */
bbad9379
PM
110int rcu_scheduler_active __read_mostly;
111EXPORT_SYMBOL_GPL(rcu_scheduler_active);
112
b0d30417
PM
113/*
114 * The rcu_scheduler_fully_active variable transitions from zero to one
115 * during the early_initcall() processing, which is after the scheduler
116 * is capable of creating new tasks. So RCU processing (for example,
117 * creating tasks for RCU priority boosting) must be delayed until after
118 * rcu_scheduler_fully_active transitions from zero to one. We also
119 * currently delay invocation of any RCU callbacks until after this point.
120 *
121 * It might later prove better for people registering RCU callbacks during
122 * early boot to take responsibility for these callbacks, but one step at
123 * a time.
124 */
125static int rcu_scheduler_fully_active __read_mostly;
126
a46e0899
PM
127#ifdef CONFIG_RCU_BOOST
128
a26ac245
PM
129/*
130 * Control variables for per-CPU and per-rcu_node kthreads. These
131 * handle all flavors of RCU.
132 */
133static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 134DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 135DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 136DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 137DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 138
a46e0899
PM
139#endif /* #ifdef CONFIG_RCU_BOOST */
140
0f962a5e 141static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
142static void invoke_rcu_core(void);
143static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 144
4a298656
PM
145/*
146 * Track the rcutorture test sequence number and the update version
147 * number within a given test. The rcutorture_testseq is incremented
148 * on every rcutorture module load and unload, so has an odd value
149 * when a test is running. The rcutorture_vernum is set to zero
150 * when rcutorture starts and is incremented on each rcutorture update.
151 * These variables enable correlating rcutorture output with the
152 * RCU tracing information.
153 */
154unsigned long rcutorture_testseq;
155unsigned long rcutorture_vernum;
156
fc2219d4
PM
157/*
158 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
159 * permit this function to be invoked without holding the root rcu_node
160 * structure's ->lock, but of course results can be subject to change.
161 */
162static int rcu_gp_in_progress(struct rcu_state *rsp)
163{
164 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
165}
166
b1f77b05 167/*
d6714c22 168 * Note a quiescent state. Because we do not need to know
b1f77b05 169 * how many quiescent states passed, just if there was at least
d6714c22 170 * one since the start of the grace period, this just sets a flag.
e4cc1f22 171 * The caller must have disabled preemption.
b1f77b05 172 */
d6714c22 173void rcu_sched_qs(int cpu)
b1f77b05 174{
25502a6c 175 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 176
e4cc1f22 177 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 178 barrier();
e4cc1f22 179 if (rdp->passed_quiesce == 0)
d4c08f2a 180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 181 rdp->passed_quiesce = 1;
b1f77b05
IM
182}
183
d6714c22 184void rcu_bh_qs(int cpu)
b1f77b05 185{
25502a6c 186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 187
e4cc1f22 188 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 189 barrier();
e4cc1f22 190 if (rdp->passed_quiesce == 0)
d4c08f2a 191 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 192 rdp->passed_quiesce = 1;
b1f77b05 193}
64db4cff 194
25502a6c
PM
195/*
196 * Note a context switch. This is a quiescent state for RCU-sched,
197 * and requires special handling for preemptible RCU.
e4cc1f22 198 * The caller must have disabled preemption.
25502a6c
PM
199 */
200void rcu_note_context_switch(int cpu)
201{
300df91c 202 trace_rcu_utilization("Start context switch");
25502a6c 203 rcu_sched_qs(cpu);
cba6d0d6 204 rcu_preempt_note_context_switch(cpu);
300df91c 205 trace_rcu_utilization("End context switch");
25502a6c 206}
29ce8310 207EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 208
90a4d2c0 209DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 210 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 211 .dynticks = ATOMIC_INIT(1),
90a4d2c0 212};
64db4cff 213
e0f23060 214static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
215static int qhimark = 10000; /* If this many pending, ignore blimit. */
216static int qlowmark = 100; /* Once only this many pending, use blimit. */
217
3d76c082
PM
218module_param(blimit, int, 0);
219module_param(qhimark, int, 0);
220module_param(qlowmark, int, 0);
221
13cfcca0
PM
222int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
223int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
224
f2e0dd70 225module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 226module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 227
64db4cff 228static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 229static int rcu_pending(int cpu);
64db4cff
PM
230
231/*
d6714c22 232 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 233 */
d6714c22 234long rcu_batches_completed_sched(void)
64db4cff 235{
d6714c22 236 return rcu_sched_state.completed;
64db4cff 237}
d6714c22 238EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
239
240/*
241 * Return the number of RCU BH batches processed thus far for debug & stats.
242 */
243long rcu_batches_completed_bh(void)
244{
245 return rcu_bh_state.completed;
246}
247EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
248
bf66f18e
PM
249/*
250 * Force a quiescent state for RCU BH.
251 */
252void rcu_bh_force_quiescent_state(void)
253{
254 force_quiescent_state(&rcu_bh_state, 0);
255}
256EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
257
4a298656
PM
258/*
259 * Record the number of times rcutorture tests have been initiated and
260 * terminated. This information allows the debugfs tracing stats to be
261 * correlated to the rcutorture messages, even when the rcutorture module
262 * is being repeatedly loaded and unloaded. In other words, we cannot
263 * store this state in rcutorture itself.
264 */
265void rcutorture_record_test_transition(void)
266{
267 rcutorture_testseq++;
268 rcutorture_vernum = 0;
269}
270EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
271
272/*
273 * Record the number of writer passes through the current rcutorture test.
274 * This is also used to correlate debugfs tracing stats with the rcutorture
275 * messages.
276 */
277void rcutorture_record_progress(unsigned long vernum)
278{
279 rcutorture_vernum++;
280}
281EXPORT_SYMBOL_GPL(rcutorture_record_progress);
282
bf66f18e
PM
283/*
284 * Force a quiescent state for RCU-sched.
285 */
286void rcu_sched_force_quiescent_state(void)
287{
288 force_quiescent_state(&rcu_sched_state, 0);
289}
290EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
291
64db4cff
PM
292/*
293 * Does the CPU have callbacks ready to be invoked?
294 */
295static int
296cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
297{
298 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
299}
300
301/*
302 * Does the current CPU require a yet-as-unscheduled grace period?
303 */
304static int
305cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
306{
fc2219d4 307 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
308}
309
310/*
311 * Return the root node of the specified rcu_state structure.
312 */
313static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
314{
315 return &rsp->node[0];
316}
317
64db4cff
PM
318/*
319 * If the specified CPU is offline, tell the caller that it is in
320 * a quiescent state. Otherwise, whack it with a reschedule IPI.
321 * Grace periods can end up waiting on an offline CPU when that
322 * CPU is in the process of coming online -- it will be added to the
323 * rcu_node bitmasks before it actually makes it online. The same thing
324 * can happen while a CPU is in the process of coming online. Because this
325 * race is quite rare, we check for it after detecting that the grace
326 * period has been delayed rather than checking each and every CPU
327 * each and every time we start a new grace period.
328 */
329static int rcu_implicit_offline_qs(struct rcu_data *rdp)
330{
331 /*
2036d94a
PM
332 * If the CPU is offline for more than a jiffy, it is in a quiescent
333 * state. We can trust its state not to change because interrupts
334 * are disabled. The reason for the jiffy's worth of slack is to
335 * handle CPUs initializing on the way up and finding their way
336 * to the idle loop on the way down.
64db4cff 337 */
2036d94a
PM
338 if (cpu_is_offline(rdp->cpu) &&
339 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 340 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
341 rdp->offline_fqs++;
342 return 1;
343 }
64db4cff
PM
344 return 0;
345}
346
9b2e4f18
PM
347/*
348 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
349 *
350 * If the new value of the ->dynticks_nesting counter now is zero,
351 * we really have entered idle, and must do the appropriate accounting.
352 * The caller must have disabled interrupts.
353 */
4145fa7f 354static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 355{
facc4e15 356 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 357 if (!is_idle_task(current)) {
0989cb46
PM
358 struct task_struct *idle = idle_task(smp_processor_id());
359
facc4e15 360 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
9b2e4f18 361 ftrace_dump(DUMP_ALL);
0989cb46
PM
362 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
363 current->pid, current->comm,
364 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 365 }
aea1b35e 366 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
367 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
368 smp_mb__before_atomic_inc(); /* See above. */
369 atomic_inc(&rdtp->dynticks);
370 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
371 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
372
373 /*
374 * The idle task is not permitted to enter the idle loop while
375 * in an RCU read-side critical section.
376 */
377 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
378 "Illegal idle entry in RCU read-side critical section.");
379 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
380 "Illegal idle entry in RCU-bh read-side critical section.");
381 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
382 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 383}
64db4cff
PM
384
385/**
9b2e4f18 386 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 387 *
9b2e4f18 388 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 389 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
390 * critical sections can occur in irq handlers in idle, a possibility
391 * handled by irq_enter() and irq_exit().)
392 *
393 * We crowbar the ->dynticks_nesting field to zero to allow for
394 * the possibility of usermode upcalls having messed up our count
395 * of interrupt nesting level during the prior busy period.
64db4cff 396 */
9b2e4f18 397void rcu_idle_enter(void)
64db4cff
PM
398{
399 unsigned long flags;
4145fa7f 400 long long oldval;
64db4cff
PM
401 struct rcu_dynticks *rdtp;
402
64db4cff
PM
403 local_irq_save(flags);
404 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 405 oldval = rdtp->dynticks_nesting;
29e37d81
PM
406 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
407 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
408 rdtp->dynticks_nesting = 0;
409 else
410 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 411 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
412 local_irq_restore(flags);
413}
8a2ecf47 414EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 415
9b2e4f18
PM
416/**
417 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
418 *
419 * Exit from an interrupt handler, which might possibly result in entering
420 * idle mode, in other words, leaving the mode in which read-side critical
421 * sections can occur.
64db4cff 422 *
9b2e4f18
PM
423 * This code assumes that the idle loop never does anything that might
424 * result in unbalanced calls to irq_enter() and irq_exit(). If your
425 * architecture violates this assumption, RCU will give you what you
426 * deserve, good and hard. But very infrequently and irreproducibly.
427 *
428 * Use things like work queues to work around this limitation.
429 *
430 * You have been warned.
64db4cff 431 */
9b2e4f18 432void rcu_irq_exit(void)
64db4cff
PM
433{
434 unsigned long flags;
4145fa7f 435 long long oldval;
64db4cff
PM
436 struct rcu_dynticks *rdtp;
437
438 local_irq_save(flags);
439 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 440 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
441 rdtp->dynticks_nesting--;
442 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
443 if (rdtp->dynticks_nesting)
444 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
445 else
446 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
447 local_irq_restore(flags);
448}
449
450/*
451 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
452 *
453 * If the new value of the ->dynticks_nesting counter was previously zero,
454 * we really have exited idle, and must do the appropriate accounting.
455 * The caller must have disabled interrupts.
456 */
457static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
458{
23b5c8fa
PM
459 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
460 atomic_inc(&rdtp->dynticks);
461 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
462 smp_mb__after_atomic_inc(); /* See above. */
463 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 464 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 465 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 466 if (!is_idle_task(current)) {
0989cb46
PM
467 struct task_struct *idle = idle_task(smp_processor_id());
468
4145fa7f
PM
469 trace_rcu_dyntick("Error on exit: not idle task",
470 oldval, rdtp->dynticks_nesting);
9b2e4f18 471 ftrace_dump(DUMP_ALL);
0989cb46
PM
472 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
473 current->pid, current->comm,
474 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
475 }
476}
477
478/**
479 * rcu_idle_exit - inform RCU that current CPU is leaving idle
480 *
481 * Exit idle mode, in other words, -enter- the mode in which RCU
482 * read-side critical sections can occur.
483 *
29e37d81 484 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 485 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
486 * of interrupt nesting level during the busy period that is just
487 * now starting.
488 */
489void rcu_idle_exit(void)
490{
491 unsigned long flags;
492 struct rcu_dynticks *rdtp;
493 long long oldval;
494
495 local_irq_save(flags);
496 rdtp = &__get_cpu_var(rcu_dynticks);
497 oldval = rdtp->dynticks_nesting;
29e37d81
PM
498 WARN_ON_ONCE(oldval < 0);
499 if (oldval & DYNTICK_TASK_NEST_MASK)
500 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
501 else
502 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
503 rcu_idle_exit_common(rdtp, oldval);
504 local_irq_restore(flags);
505}
8a2ecf47 506EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18
PM
507
508/**
509 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
510 *
511 * Enter an interrupt handler, which might possibly result in exiting
512 * idle mode, in other words, entering the mode in which read-side critical
513 * sections can occur.
514 *
515 * Note that the Linux kernel is fully capable of entering an interrupt
516 * handler that it never exits, for example when doing upcalls to
517 * user mode! This code assumes that the idle loop never does upcalls to
518 * user mode. If your architecture does do upcalls from the idle loop (or
519 * does anything else that results in unbalanced calls to the irq_enter()
520 * and irq_exit() functions), RCU will give you what you deserve, good
521 * and hard. But very infrequently and irreproducibly.
522 *
523 * Use things like work queues to work around this limitation.
524 *
525 * You have been warned.
526 */
527void rcu_irq_enter(void)
528{
529 unsigned long flags;
530 struct rcu_dynticks *rdtp;
531 long long oldval;
532
533 local_irq_save(flags);
534 rdtp = &__get_cpu_var(rcu_dynticks);
535 oldval = rdtp->dynticks_nesting;
536 rdtp->dynticks_nesting++;
537 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
538 if (oldval)
539 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
540 else
541 rcu_idle_exit_common(rdtp, oldval);
64db4cff 542 local_irq_restore(flags);
64db4cff
PM
543}
544
545/**
546 * rcu_nmi_enter - inform RCU of entry to NMI context
547 *
548 * If the CPU was idle with dynamic ticks active, and there is no
549 * irq handler running, this updates rdtp->dynticks_nmi to let the
550 * RCU grace-period handling know that the CPU is active.
551 */
552void rcu_nmi_enter(void)
553{
554 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
555
23b5c8fa
PM
556 if (rdtp->dynticks_nmi_nesting == 0 &&
557 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 558 return;
23b5c8fa
PM
559 rdtp->dynticks_nmi_nesting++;
560 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
561 atomic_inc(&rdtp->dynticks);
562 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
563 smp_mb__after_atomic_inc(); /* See above. */
564 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
565}
566
567/**
568 * rcu_nmi_exit - inform RCU of exit from NMI context
569 *
570 * If the CPU was idle with dynamic ticks active, and there is no
571 * irq handler running, this updates rdtp->dynticks_nmi to let the
572 * RCU grace-period handling know that the CPU is no longer active.
573 */
574void rcu_nmi_exit(void)
575{
576 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
577
23b5c8fa
PM
578 if (rdtp->dynticks_nmi_nesting == 0 ||
579 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 580 return;
23b5c8fa
PM
581 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
582 smp_mb__before_atomic_inc(); /* See above. */
583 atomic_inc(&rdtp->dynticks);
584 smp_mb__after_atomic_inc(); /* Force delay to next write. */
585 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
586}
587
9b2e4f18
PM
588#ifdef CONFIG_PROVE_RCU
589
64db4cff 590/**
9b2e4f18 591 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 592 *
9b2e4f18 593 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 594 * or NMI handler, return true.
64db4cff 595 */
9b2e4f18 596int rcu_is_cpu_idle(void)
64db4cff 597{
34240697
PM
598 int ret;
599
600 preempt_disable();
601 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
602 preempt_enable();
603 return ret;
64db4cff 604}
e6b80a3b 605EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 606
c0d6d01b
PM
607#ifdef CONFIG_HOTPLUG_CPU
608
609/*
610 * Is the current CPU online? Disable preemption to avoid false positives
611 * that could otherwise happen due to the current CPU number being sampled,
612 * this task being preempted, its old CPU being taken offline, resuming
613 * on some other CPU, then determining that its old CPU is now offline.
614 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
615 * the check for rcu_scheduler_fully_active. Note also that it is OK
616 * for a CPU coming online to use RCU for one jiffy prior to marking itself
617 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
618 * offline to continue to use RCU for one jiffy after marking itself
619 * offline in the cpu_online_mask. This leniency is necessary given the
620 * non-atomic nature of the online and offline processing, for example,
621 * the fact that a CPU enters the scheduler after completing the CPU_DYING
622 * notifiers.
623 *
624 * This is also why RCU internally marks CPUs online during the
625 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
626 *
627 * Disable checking if in an NMI handler because we cannot safely report
628 * errors from NMI handlers anyway.
629 */
630bool rcu_lockdep_current_cpu_online(void)
631{
2036d94a
PM
632 struct rcu_data *rdp;
633 struct rcu_node *rnp;
c0d6d01b
PM
634 bool ret;
635
636 if (in_nmi())
637 return 1;
638 preempt_disable();
2036d94a
PM
639 rdp = &__get_cpu_var(rcu_sched_data);
640 rnp = rdp->mynode;
641 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
642 !rcu_scheduler_fully_active;
643 preempt_enable();
644 return ret;
645}
646EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
647
648#endif /* #ifdef CONFIG_HOTPLUG_CPU */
649
9b2e4f18
PM
650#endif /* #ifdef CONFIG_PROVE_RCU */
651
64db4cff 652/**
9b2e4f18 653 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 654 *
9b2e4f18
PM
655 * If the current CPU is idle or running at a first-level (not nested)
656 * interrupt from idle, return true. The caller must have at least
657 * disabled preemption.
64db4cff 658 */
9b2e4f18 659int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 660{
9b2e4f18 661 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
662}
663
64db4cff
PM
664/*
665 * Snapshot the specified CPU's dynticks counter so that we can later
666 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 667 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
668 */
669static int dyntick_save_progress_counter(struct rcu_data *rdp)
670{
23b5c8fa 671 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 672 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
673}
674
675/*
676 * Return true if the specified CPU has passed through a quiescent
677 * state by virtue of being in or having passed through an dynticks
678 * idle state since the last call to dyntick_save_progress_counter()
679 * for this same CPU.
680 */
681static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
682{
7eb4f455
PM
683 unsigned int curr;
684 unsigned int snap;
64db4cff 685
7eb4f455
PM
686 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
687 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
688
689 /*
690 * If the CPU passed through or entered a dynticks idle phase with
691 * no active irq/NMI handlers, then we can safely pretend that the CPU
692 * already acknowledged the request to pass through a quiescent
693 * state. Either way, that CPU cannot possibly be in an RCU
694 * read-side critical section that started before the beginning
695 * of the current RCU grace period.
696 */
7eb4f455 697 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 698 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
699 rdp->dynticks_fqs++;
700 return 1;
701 }
702
703 /* Go check for the CPU being offline. */
704 return rcu_implicit_offline_qs(rdp);
705}
706
13cfcca0
PM
707static int jiffies_till_stall_check(void)
708{
709 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
710
711 /*
712 * Limit check must be consistent with the Kconfig limits
713 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
714 */
715 if (till_stall_check < 3) {
716 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
717 till_stall_check = 3;
718 } else if (till_stall_check > 300) {
719 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
720 till_stall_check = 300;
721 }
722 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
723}
724
64db4cff
PM
725static void record_gp_stall_check_time(struct rcu_state *rsp)
726{
727 rsp->gp_start = jiffies;
13cfcca0 728 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
729}
730
731static void print_other_cpu_stall(struct rcu_state *rsp)
732{
733 int cpu;
734 long delta;
735 unsigned long flags;
9bc8b558 736 int ndetected;
64db4cff 737 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
738
739 /* Only let one CPU complain about others per time interval. */
740
1304afb2 741 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 742 delta = jiffies - rsp->jiffies_stall;
fc2219d4 743 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 744 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
745 return;
746 }
13cfcca0 747 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 748 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 749
8cdd32a9
PM
750 /*
751 * OK, time to rat on our buddy...
752 * See Documentation/RCU/stallwarn.txt for info on how to debug
753 * RCU CPU stall warnings.
754 */
a858af28 755 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 756 rsp->name);
a858af28 757 print_cpu_stall_info_begin();
a0b6c9a7 758 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 759 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 760 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 761 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 762 if (rnp->qsmask == 0)
64db4cff 763 continue;
a0b6c9a7 764 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 765 if (rnp->qsmask & (1UL << cpu)) {
a858af28 766 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
767 ndetected++;
768 }
64db4cff 769 }
a858af28
PM
770
771 /*
772 * Now rat on any tasks that got kicked up to the root rcu_node
773 * due to CPU offlining.
774 */
775 rnp = rcu_get_root(rsp);
776 raw_spin_lock_irqsave(&rnp->lock, flags);
777 ndetected = rcu_print_task_stall(rnp);
778 raw_spin_unlock_irqrestore(&rnp->lock, flags);
779
780 print_cpu_stall_info_end();
781 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 782 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
783 if (ndetected == 0)
784 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
785 else if (!trigger_all_cpu_backtrace())
4627e240 786 dump_stack();
c1dc0b9c 787
1ed509a2
PM
788 /* If so configured, complain about tasks blocking the grace period. */
789
790 rcu_print_detail_task_stall(rsp);
791
64db4cff
PM
792 force_quiescent_state(rsp, 0); /* Kick them all. */
793}
794
795static void print_cpu_stall(struct rcu_state *rsp)
796{
797 unsigned long flags;
798 struct rcu_node *rnp = rcu_get_root(rsp);
799
8cdd32a9
PM
800 /*
801 * OK, time to rat on ourselves...
802 * See Documentation/RCU/stallwarn.txt for info on how to debug
803 * RCU CPU stall warnings.
804 */
a858af28
PM
805 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
806 print_cpu_stall_info_begin();
807 print_cpu_stall_info(rsp, smp_processor_id());
808 print_cpu_stall_info_end();
809 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
810 if (!trigger_all_cpu_backtrace())
811 dump_stack();
c1dc0b9c 812
1304afb2 813 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 814 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
815 rsp->jiffies_stall = jiffies +
816 3 * jiffies_till_stall_check() + 3;
1304afb2 817 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 818
64db4cff
PM
819 set_need_resched(); /* kick ourselves to get things going. */
820}
821
822static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
823{
bad6e139
PM
824 unsigned long j;
825 unsigned long js;
64db4cff
PM
826 struct rcu_node *rnp;
827
742734ee 828 if (rcu_cpu_stall_suppress)
c68de209 829 return;
bad6e139
PM
830 j = ACCESS_ONCE(jiffies);
831 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 832 rnp = rdp->mynode;
bad6e139 833 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
834
835 /* We haven't checked in, so go dump stack. */
836 print_cpu_stall(rsp);
837
bad6e139
PM
838 } else if (rcu_gp_in_progress(rsp) &&
839 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 840
bad6e139 841 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
842 print_other_cpu_stall(rsp);
843 }
844}
845
c68de209
PM
846static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
847{
742734ee 848 rcu_cpu_stall_suppress = 1;
c68de209
PM
849 return NOTIFY_DONE;
850}
851
53d84e00
PM
852/**
853 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
854 *
855 * Set the stall-warning timeout way off into the future, thus preventing
856 * any RCU CPU stall-warning messages from appearing in the current set of
857 * RCU grace periods.
858 *
859 * The caller must disable hard irqs.
860 */
861void rcu_cpu_stall_reset(void)
862{
863 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
864 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
865 rcu_preempt_stall_reset();
866}
867
c68de209
PM
868static struct notifier_block rcu_panic_block = {
869 .notifier_call = rcu_panic,
870};
871
872static void __init check_cpu_stall_init(void)
873{
874 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
875}
876
64db4cff
PM
877/*
878 * Update CPU-local rcu_data state to record the newly noticed grace period.
879 * This is used both when we started the grace period and when we notice
9160306e
PM
880 * that someone else started the grace period. The caller must hold the
881 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
882 * and must have irqs disabled.
64db4cff 883 */
9160306e
PM
884static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
885{
886 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
887 /*
888 * If the current grace period is waiting for this CPU,
889 * set up to detect a quiescent state, otherwise don't
890 * go looking for one.
891 */
9160306e 892 rdp->gpnum = rnp->gpnum;
d4c08f2a 893 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
894 if (rnp->qsmask & rdp->grpmask) {
895 rdp->qs_pending = 1;
e4cc1f22 896 rdp->passed_quiesce = 0;
121dfc4b
PM
897 } else
898 rdp->qs_pending = 0;
a858af28 899 zero_cpu_stall_ticks(rdp);
9160306e
PM
900 }
901}
902
64db4cff
PM
903static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
904{
9160306e
PM
905 unsigned long flags;
906 struct rcu_node *rnp;
907
908 local_irq_save(flags);
909 rnp = rdp->mynode;
910 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 911 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
912 local_irq_restore(flags);
913 return;
914 }
915 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 916 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
917}
918
919/*
920 * Did someone else start a new RCU grace period start since we last
921 * checked? Update local state appropriately if so. Must be called
922 * on the CPU corresponding to rdp.
923 */
924static int
925check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
926{
927 unsigned long flags;
928 int ret = 0;
929
930 local_irq_save(flags);
931 if (rdp->gpnum != rsp->gpnum) {
932 note_new_gpnum(rsp, rdp);
933 ret = 1;
934 }
935 local_irq_restore(flags);
936 return ret;
937}
938
d09b62df
PM
939/*
940 * Advance this CPU's callbacks, but only if the current grace period
941 * has ended. This may be called only from the CPU to whom the rdp
942 * belongs. In addition, the corresponding leaf rcu_node structure's
943 * ->lock must be held by the caller, with irqs disabled.
944 */
945static void
946__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
947{
948 /* Did another grace period end? */
949 if (rdp->completed != rnp->completed) {
950
951 /* Advance callbacks. No harm if list empty. */
952 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
953 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
954 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
955
956 /* Remember that we saw this grace-period completion. */
957 rdp->completed = rnp->completed;
d4c08f2a 958 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 959
5ff8e6f0
FW
960 /*
961 * If we were in an extended quiescent state, we may have
121dfc4b 962 * missed some grace periods that others CPUs handled on
5ff8e6f0 963 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
964 * spurious new grace periods. If another grace period
965 * has started, then rnp->gpnum will have advanced, so
966 * we will detect this later on.
5ff8e6f0 967 */
121dfc4b 968 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
969 rdp->gpnum = rdp->completed;
970
20377f32 971 /*
121dfc4b
PM
972 * If RCU does not need a quiescent state from this CPU,
973 * then make sure that this CPU doesn't go looking for one.
20377f32 974 */
121dfc4b 975 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 976 rdp->qs_pending = 0;
d09b62df
PM
977 }
978}
979
980/*
981 * Advance this CPU's callbacks, but only if the current grace period
982 * has ended. This may be called only from the CPU to whom the rdp
983 * belongs.
984 */
985static void
986rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
987{
988 unsigned long flags;
989 struct rcu_node *rnp;
990
991 local_irq_save(flags);
992 rnp = rdp->mynode;
993 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 994 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
995 local_irq_restore(flags);
996 return;
997 }
998 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 999 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1000}
1001
1002/*
1003 * Do per-CPU grace-period initialization for running CPU. The caller
1004 * must hold the lock of the leaf rcu_node structure corresponding to
1005 * this CPU.
1006 */
1007static void
1008rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1009{
1010 /* Prior grace period ended, so advance callbacks for current CPU. */
1011 __rcu_process_gp_end(rsp, rnp, rdp);
1012
1013 /*
1014 * Because this CPU just now started the new grace period, we know
1015 * that all of its callbacks will be covered by this upcoming grace
1016 * period, even the ones that were registered arbitrarily recently.
1017 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1018 *
1019 * Other CPUs cannot be sure exactly when the grace period started.
1020 * Therefore, their recently registered callbacks must pass through
1021 * an additional RCU_NEXT_READY stage, so that they will be handled
1022 * by the next RCU grace period.
1023 */
1024 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1025 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
1026
1027 /* Set state so that this CPU will detect the next quiescent state. */
1028 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1029}
1030
64db4cff
PM
1031/*
1032 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1033 * in preparation for detecting the next grace period. The caller must hold
1034 * the root node's ->lock, which is released before return. Hard irqs must
1035 * be disabled.
e5601400
PM
1036 *
1037 * Note that it is legal for a dying CPU (which is marked as offline) to
1038 * invoke this function. This can happen when the dying CPU reports its
1039 * quiescent state.
64db4cff
PM
1040 */
1041static void
1042rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1043 __releases(rcu_get_root(rsp)->lock)
1044{
394f99a9 1045 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1046 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1047
037067a1 1048 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1049 !cpu_needs_another_gp(rsp, rdp)) {
1050 /*
1051 * Either the scheduler hasn't yet spawned the first
1052 * non-idle task or this CPU does not need another
1053 * grace period. Either way, don't start a new grace
1054 * period.
1055 */
1056 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1057 return;
1058 }
b32e9eb6 1059
afe24b12 1060 if (rsp->fqs_active) {
b32e9eb6 1061 /*
afe24b12
PM
1062 * This CPU needs a grace period, but force_quiescent_state()
1063 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1064 */
afe24b12
PM
1065 rsp->fqs_need_gp = 1;
1066 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1067 return;
1068 }
1069
1070 /* Advance to a new grace period and initialize state. */
1071 rsp->gpnum++;
d4c08f2a 1072 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1073 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1074 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1075 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1076 record_gp_stall_check_time(rsp);
1304afb2 1077 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1078
64db4cff 1079 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1080 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1081
1082 /*
b835db1f
PM
1083 * Set the quiescent-state-needed bits in all the rcu_node
1084 * structures for all currently online CPUs in breadth-first
1085 * order, starting from the root rcu_node structure. This
1086 * operation relies on the layout of the hierarchy within the
1087 * rsp->node[] array. Note that other CPUs will access only
1088 * the leaves of the hierarchy, which still indicate that no
1089 * grace period is in progress, at least until the corresponding
1090 * leaf node has been initialized. In addition, we have excluded
1091 * CPU-hotplug operations.
64db4cff
PM
1092 *
1093 * Note that the grace period cannot complete until we finish
1094 * the initialization process, as there will be at least one
1095 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1096 * one corresponding to this CPU, due to the fact that we have
1097 * irqs disabled.
64db4cff 1098 */
a0b6c9a7 1099 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1100 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1101 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1102 rnp->qsmask = rnp->qsmaskinit;
de078d87 1103 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1104 rnp->completed = rsp->completed;
1105 if (rnp == rdp->mynode)
1106 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1107 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1108 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1109 rnp->level, rnp->grplo,
1110 rnp->grphi, rnp->qsmask);
1304afb2 1111 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1112 }
1113
83f5b01f 1114 rnp = rcu_get_root(rsp);
1304afb2 1115 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1116 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1117 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1118 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1119}
1120
f41d911f 1121/*
d3f6bad3
PM
1122 * Report a full set of quiescent states to the specified rcu_state
1123 * data structure. This involves cleaning up after the prior grace
1124 * period and letting rcu_start_gp() start up the next grace period
1125 * if one is needed. Note that the caller must hold rnp->lock, as
1126 * required by rcu_start_gp(), which will release it.
f41d911f 1127 */
d3f6bad3 1128static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1129 __releases(rcu_get_root(rsp)->lock)
f41d911f 1130{
15ba0ba8 1131 unsigned long gp_duration;
afe24b12
PM
1132 struct rcu_node *rnp = rcu_get_root(rsp);
1133 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1134
fc2219d4 1135 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1136
1137 /*
1138 * Ensure that all grace-period and pre-grace-period activity
1139 * is seen before the assignment to rsp->completed.
1140 */
1141 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1142 gp_duration = jiffies - rsp->gp_start;
1143 if (gp_duration > rsp->gp_max)
1144 rsp->gp_max = gp_duration;
afe24b12
PM
1145
1146 /*
1147 * We know the grace period is complete, but to everyone else
1148 * it appears to still be ongoing. But it is also the case
1149 * that to everyone else it looks like there is nothing that
1150 * they can do to advance the grace period. It is therefore
1151 * safe for us to drop the lock in order to mark the grace
1152 * period as completed in all of the rcu_node structures.
1153 *
1154 * But if this CPU needs another grace period, it will take
1155 * care of this while initializing the next grace period.
1156 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1157 * because the callbacks have not yet been advanced: Those
1158 * callbacks are waiting on the grace period that just now
1159 * completed.
1160 */
1161 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1162 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1163
1164 /*
1165 * Propagate new ->completed value to rcu_node structures
1166 * so that other CPUs don't have to wait until the start
1167 * of the next grace period to process their callbacks.
1168 */
1169 rcu_for_each_node_breadth_first(rsp, rnp) {
1170 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1171 rnp->completed = rsp->gpnum;
1172 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1173 }
1174 rnp = rcu_get_root(rsp);
1175 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1176 }
1177
1178 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1179 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1180 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1181 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1182}
1183
64db4cff 1184/*
d3f6bad3
PM
1185 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1186 * Allows quiescent states for a group of CPUs to be reported at one go
1187 * to the specified rcu_node structure, though all the CPUs in the group
1188 * must be represented by the same rcu_node structure (which need not be
1189 * a leaf rcu_node structure, though it often will be). That structure's
1190 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1191 */
1192static void
d3f6bad3
PM
1193rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1194 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1195 __releases(rnp->lock)
1196{
28ecd580
PM
1197 struct rcu_node *rnp_c;
1198
64db4cff
PM
1199 /* Walk up the rcu_node hierarchy. */
1200 for (;;) {
1201 if (!(rnp->qsmask & mask)) {
1202
1203 /* Our bit has already been cleared, so done. */
1304afb2 1204 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1205 return;
1206 }
1207 rnp->qsmask &= ~mask;
d4c08f2a
PM
1208 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1209 mask, rnp->qsmask, rnp->level,
1210 rnp->grplo, rnp->grphi,
1211 !!rnp->gp_tasks);
27f4d280 1212 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1213
1214 /* Other bits still set at this level, so done. */
1304afb2 1215 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1216 return;
1217 }
1218 mask = rnp->grpmask;
1219 if (rnp->parent == NULL) {
1220
1221 /* No more levels. Exit loop holding root lock. */
1222
1223 break;
1224 }
1304afb2 1225 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1226 rnp_c = rnp;
64db4cff 1227 rnp = rnp->parent;
1304afb2 1228 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1229 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1230 }
1231
1232 /*
1233 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1234 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1235 * to clean up and start the next grace period if one is needed.
64db4cff 1236 */
d3f6bad3 1237 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1238}
1239
1240/*
d3f6bad3
PM
1241 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1242 * structure. This must be either called from the specified CPU, or
1243 * called when the specified CPU is known to be offline (and when it is
1244 * also known that no other CPU is concurrently trying to help the offline
1245 * CPU). The lastcomp argument is used to make sure we are still in the
1246 * grace period of interest. We don't want to end the current grace period
1247 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1248 */
1249static void
e4cc1f22 1250rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1251{
1252 unsigned long flags;
1253 unsigned long mask;
1254 struct rcu_node *rnp;
1255
1256 rnp = rdp->mynode;
1304afb2 1257 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1258 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1259
1260 /*
e4cc1f22
PM
1261 * The grace period in which this quiescent state was
1262 * recorded has ended, so don't report it upwards.
1263 * We will instead need a new quiescent state that lies
1264 * within the current grace period.
64db4cff 1265 */
e4cc1f22 1266 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1267 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1268 return;
1269 }
1270 mask = rdp->grpmask;
1271 if ((rnp->qsmask & mask) == 0) {
1304afb2 1272 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1273 } else {
1274 rdp->qs_pending = 0;
1275
1276 /*
1277 * This GP can't end until cpu checks in, so all of our
1278 * callbacks can be processed during the next GP.
1279 */
64db4cff
PM
1280 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1281
d3f6bad3 1282 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1283 }
1284}
1285
1286/*
1287 * Check to see if there is a new grace period of which this CPU
1288 * is not yet aware, and if so, set up local rcu_data state for it.
1289 * Otherwise, see if this CPU has just passed through its first
1290 * quiescent state for this grace period, and record that fact if so.
1291 */
1292static void
1293rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1294{
1295 /* If there is now a new grace period, record and return. */
1296 if (check_for_new_grace_period(rsp, rdp))
1297 return;
1298
1299 /*
1300 * Does this CPU still need to do its part for current grace period?
1301 * If no, return and let the other CPUs do their part as well.
1302 */
1303 if (!rdp->qs_pending)
1304 return;
1305
1306 /*
1307 * Was there a quiescent state since the beginning of the grace
1308 * period? If no, then exit and wait for the next call.
1309 */
e4cc1f22 1310 if (!rdp->passed_quiesce)
64db4cff
PM
1311 return;
1312
d3f6bad3
PM
1313 /*
1314 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1315 * judge of that).
1316 */
e4cc1f22 1317 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1318}
1319
1320#ifdef CONFIG_HOTPLUG_CPU
1321
e74f4c45 1322/*
b1420f1c
PM
1323 * Send the specified CPU's RCU callbacks to the orphanage. The
1324 * specified CPU must be offline, and the caller must hold the
1325 * ->onofflock.
e74f4c45 1326 */
b1420f1c
PM
1327static void
1328rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1329 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45
PM
1330{
1331 int i;
e5601400 1332
b1420f1c
PM
1333 /*
1334 * Orphan the callbacks. First adjust the counts. This is safe
1335 * because ->onofflock excludes _rcu_barrier()'s adoption of
1336 * the callbacks, thus no memory barrier is required.
1337 */
a50c3af9 1338 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1339 rsp->qlen_lazy += rdp->qlen_lazy;
1340 rsp->qlen += rdp->qlen;
1341 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9
PM
1342 rdp->qlen_lazy = 0;
1343 rdp->qlen = 0;
1344 }
1345
1346 /*
b1420f1c
PM
1347 * Next, move those callbacks still needing a grace period to
1348 * the orphanage, where some other CPU will pick them up.
1349 * Some of the callbacks might have gone partway through a grace
1350 * period, but that is too bad. They get to start over because we
1351 * cannot assume that grace periods are synchronized across CPUs.
1352 * We don't bother updating the ->nxttail[] array yet, instead
1353 * we just reset the whole thing later on.
a50c3af9 1354 */
b1420f1c
PM
1355 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1356 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1357 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1358 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1359 }
1360
1361 /*
b1420f1c
PM
1362 * Then move the ready-to-invoke callbacks to the orphanage,
1363 * where some other CPU will pick them up. These will not be
1364 * required to pass though another grace period: They are done.
a50c3af9 1365 */
e5601400 1366 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1367 *rsp->orphan_donetail = rdp->nxtlist;
1368 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1369 }
e74f4c45 1370
b1420f1c
PM
1371 /* Finally, initialize the rcu_data structure's list to empty. */
1372 rdp->nxtlist = NULL;
1373 for (i = 0; i < RCU_NEXT_SIZE; i++)
1374 rdp->nxttail[i] = &rdp->nxtlist;
1375}
1376
1377/*
1378 * Adopt the RCU callbacks from the specified rcu_state structure's
1379 * orphanage. The caller must hold the ->onofflock.
1380 */
1381static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1382{
1383 int i;
1384 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1385
a50c3af9 1386 /*
b1420f1c
PM
1387 * If there is an rcu_barrier() operation in progress, then
1388 * only the task doing that operation is permitted to adopt
1389 * callbacks. To do otherwise breaks rcu_barrier() and friends
1390 * by causing them to fail to wait for the callbacks in the
1391 * orphanage.
a50c3af9 1392 */
b1420f1c
PM
1393 if (rsp->rcu_barrier_in_progress &&
1394 rsp->rcu_barrier_in_progress != current)
1395 return;
1396
1397 /* Do the accounting first. */
1398 rdp->qlen_lazy += rsp->qlen_lazy;
1399 rdp->qlen += rsp->qlen;
1400 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1401 if (rsp->qlen_lazy != rsp->qlen)
1402 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1403 rsp->qlen_lazy = 0;
1404 rsp->qlen = 0;
1405
1406 /*
1407 * We do not need a memory barrier here because the only way we
1408 * can get here if there is an rcu_barrier() in flight is if
1409 * we are the task doing the rcu_barrier().
1410 */
1411
1412 /* First adopt the ready-to-invoke callbacks. */
1413 if (rsp->orphan_donelist != NULL) {
1414 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1415 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1416 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1417 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1418 rdp->nxttail[i] = rsp->orphan_donetail;
1419 rsp->orphan_donelist = NULL;
1420 rsp->orphan_donetail = &rsp->orphan_donelist;
1421 }
1422
1423 /* And then adopt the callbacks that still need a grace period. */
1424 if (rsp->orphan_nxtlist != NULL) {
1425 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1426 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1427 rsp->orphan_nxtlist = NULL;
1428 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1429 }
1430}
1431
1432/*
1433 * Trace the fact that this CPU is going offline.
1434 */
1435static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1436{
1437 RCU_TRACE(unsigned long mask);
1438 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1439 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1440
1441 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1442 trace_rcu_grace_period(rsp->name,
1443 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1444 "cpuofl");
64db4cff
PM
1445}
1446
1447/*
e5601400 1448 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1449 * this fact from process context. Do the remainder of the cleanup,
1450 * including orphaning the outgoing CPU's RCU callbacks, and also
1451 * adopting them, if there is no _rcu_barrier() instance running.
e5601400
PM
1452 * There can only be one CPU hotplug operation at a time, so no other
1453 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1454 */
e5601400 1455static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1456{
2036d94a
PM
1457 unsigned long flags;
1458 unsigned long mask;
1459 int need_report = 0;
e5601400 1460 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1461 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1462
2036d94a 1463 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1464 rcu_stop_cpu_kthread(cpu);
1465 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a 1466
b1420f1c 1467 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1468
1469 /* Exclude any attempts to start a new grace period. */
1470 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1471
b1420f1c
PM
1472 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1473 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1474 rcu_adopt_orphan_cbs(rsp);
1475
2036d94a
PM
1476 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1477 mask = rdp->grpmask; /* rnp->grplo is constant. */
1478 do {
1479 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1480 rnp->qsmaskinit &= ~mask;
1481 if (rnp->qsmaskinit != 0) {
1482 if (rnp != rdp->mynode)
1483 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1484 break;
1485 }
1486 if (rnp == rdp->mynode)
1487 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1488 else
1489 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1490 mask = rnp->grpmask;
1491 rnp = rnp->parent;
1492 } while (rnp != NULL);
1493
1494 /*
1495 * We still hold the leaf rcu_node structure lock here, and
1496 * irqs are still disabled. The reason for this subterfuge is
1497 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1498 * held leads to deadlock.
1499 */
1500 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1501 rnp = rdp->mynode;
1502 if (need_report & RCU_OFL_TASKS_NORM_GP)
1503 rcu_report_unblock_qs_rnp(rnp, flags);
1504 else
1505 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1506 if (need_report & RCU_OFL_TASKS_EXP_GP)
1507 rcu_report_exp_rnp(rsp, rnp, true);
64db4cff
PM
1508}
1509
1510#else /* #ifdef CONFIG_HOTPLUG_CPU */
1511
b1420f1c
PM
1512static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1513{
1514}
1515
e5601400 1516static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1517{
1518}
1519
e5601400 1520static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1521{
1522}
1523
1524#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1525
1526/*
1527 * Invoke any RCU callbacks that have made it to the end of their grace
1528 * period. Thottle as specified by rdp->blimit.
1529 */
37c72e56 1530static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1531{
1532 unsigned long flags;
1533 struct rcu_head *next, *list, **tail;
b41772ab 1534 int bl, count, count_lazy, i;
64db4cff
PM
1535
1536 /* If no callbacks are ready, just return.*/
29c00b4a 1537 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1538 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1539 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1540 need_resched(), is_idle_task(current),
1541 rcu_is_callbacks_kthread());
64db4cff 1542 return;
29c00b4a 1543 }
64db4cff
PM
1544
1545 /*
1546 * Extract the list of ready callbacks, disabling to prevent
1547 * races with call_rcu() from interrupt handlers.
1548 */
1549 local_irq_save(flags);
8146c4e2 1550 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1551 bl = rdp->blimit;
486e2593 1552 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1553 list = rdp->nxtlist;
1554 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1555 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1556 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1557 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1558 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1559 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1560 local_irq_restore(flags);
1561
1562 /* Invoke callbacks. */
486e2593 1563 count = count_lazy = 0;
64db4cff
PM
1564 while (list) {
1565 next = list->next;
1566 prefetch(next);
551d55a9 1567 debug_rcu_head_unqueue(list);
486e2593
PM
1568 if (__rcu_reclaim(rsp->name, list))
1569 count_lazy++;
64db4cff 1570 list = next;
dff1672d
PM
1571 /* Stop only if limit reached and CPU has something to do. */
1572 if (++count >= bl &&
1573 (need_resched() ||
1574 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1575 break;
1576 }
1577
1578 local_irq_save(flags);
4968c300
PM
1579 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1580 is_idle_task(current),
1581 rcu_is_callbacks_kthread());
64db4cff
PM
1582
1583 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1584 if (list != NULL) {
1585 *tail = rdp->nxtlist;
1586 rdp->nxtlist = list;
b41772ab
PM
1587 for (i = 0; i < RCU_NEXT_SIZE; i++)
1588 if (&rdp->nxtlist == rdp->nxttail[i])
1589 rdp->nxttail[i] = tail;
64db4cff
PM
1590 else
1591 break;
1592 }
b1420f1c
PM
1593 smp_mb(); /* List handling before counting for rcu_barrier(). */
1594 rdp->qlen_lazy -= count_lazy;
1595 rdp->qlen -= count;
1596 rdp->n_cbs_invoked += count;
64db4cff
PM
1597
1598 /* Reinstate batch limit if we have worked down the excess. */
1599 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1600 rdp->blimit = blimit;
1601
37c72e56
PM
1602 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1603 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1604 rdp->qlen_last_fqs_check = 0;
1605 rdp->n_force_qs_snap = rsp->n_force_qs;
1606 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1607 rdp->qlen_last_fqs_check = rdp->qlen;
1608
64db4cff
PM
1609 local_irq_restore(flags);
1610
e0f23060 1611 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1612 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1613 invoke_rcu_core();
64db4cff
PM
1614}
1615
1616/*
1617 * Check to see if this CPU is in a non-context-switch quiescent state
1618 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1619 * Also schedule RCU core processing.
64db4cff 1620 *
9b2e4f18 1621 * This function must be called from hardirq context. It is normally
64db4cff
PM
1622 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1623 * false, there is no point in invoking rcu_check_callbacks().
1624 */
1625void rcu_check_callbacks(int cpu, int user)
1626{
300df91c 1627 trace_rcu_utilization("Start scheduler-tick");
a858af28 1628 increment_cpu_stall_ticks();
9b2e4f18 1629 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1630
1631 /*
1632 * Get here if this CPU took its interrupt from user
1633 * mode or from the idle loop, and if this is not a
1634 * nested interrupt. In this case, the CPU is in
d6714c22 1635 * a quiescent state, so note it.
64db4cff
PM
1636 *
1637 * No memory barrier is required here because both
d6714c22
PM
1638 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1639 * variables that other CPUs neither access nor modify,
1640 * at least not while the corresponding CPU is online.
64db4cff
PM
1641 */
1642
d6714c22
PM
1643 rcu_sched_qs(cpu);
1644 rcu_bh_qs(cpu);
64db4cff
PM
1645
1646 } else if (!in_softirq()) {
1647
1648 /*
1649 * Get here if this CPU did not take its interrupt from
1650 * softirq, in other words, if it is not interrupting
1651 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1652 * critical section, so note it.
64db4cff
PM
1653 */
1654
d6714c22 1655 rcu_bh_qs(cpu);
64db4cff 1656 }
f41d911f 1657 rcu_preempt_check_callbacks(cpu);
d21670ac 1658 if (rcu_pending(cpu))
a46e0899 1659 invoke_rcu_core();
300df91c 1660 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1661}
1662
64db4cff
PM
1663/*
1664 * Scan the leaf rcu_node structures, processing dyntick state for any that
1665 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1666 * Also initiate boosting for any threads blocked on the root rcu_node.
1667 *
ee47eb9f 1668 * The caller must have suppressed start of new grace periods.
64db4cff 1669 */
45f014c5 1670static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1671{
1672 unsigned long bit;
1673 int cpu;
1674 unsigned long flags;
1675 unsigned long mask;
a0b6c9a7 1676 struct rcu_node *rnp;
64db4cff 1677
a0b6c9a7 1678 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1679 mask = 0;
1304afb2 1680 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1681 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1682 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1683 return;
64db4cff 1684 }
a0b6c9a7 1685 if (rnp->qsmask == 0) {
1217ed1b 1686 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1687 continue;
1688 }
a0b6c9a7 1689 cpu = rnp->grplo;
64db4cff 1690 bit = 1;
a0b6c9a7 1691 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1692 if ((rnp->qsmask & bit) != 0 &&
1693 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1694 mask |= bit;
1695 }
45f014c5 1696 if (mask != 0) {
64db4cff 1697
d3f6bad3
PM
1698 /* rcu_report_qs_rnp() releases rnp->lock. */
1699 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1700 continue;
1701 }
1304afb2 1702 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1703 }
27f4d280 1704 rnp = rcu_get_root(rsp);
1217ed1b
PM
1705 if (rnp->qsmask == 0) {
1706 raw_spin_lock_irqsave(&rnp->lock, flags);
1707 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1708 }
64db4cff
PM
1709}
1710
1711/*
1712 * Force quiescent states on reluctant CPUs, and also detect which
1713 * CPUs are in dyntick-idle mode.
1714 */
1715static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1716{
1717 unsigned long flags;
64db4cff 1718 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1719
300df91c
PM
1720 trace_rcu_utilization("Start fqs");
1721 if (!rcu_gp_in_progress(rsp)) {
1722 trace_rcu_utilization("End fqs");
64db4cff 1723 return; /* No grace period in progress, nothing to force. */
300df91c 1724 }
1304afb2 1725 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1726 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1727 trace_rcu_utilization("End fqs");
64db4cff
PM
1728 return; /* Someone else is already on the job. */
1729 }
20133cfc 1730 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1731 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1732 rsp->n_force_qs++;
1304afb2 1733 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1734 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1735 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1736 rsp->n_force_qs_ngp++;
1304afb2 1737 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1738 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1739 }
07079d53 1740 rsp->fqs_active = 1;
af446b70 1741 switch (rsp->fqs_state) {
83f5b01f 1742 case RCU_GP_IDLE:
64db4cff
PM
1743 case RCU_GP_INIT:
1744
83f5b01f 1745 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1746
1747 case RCU_SAVE_DYNTICK:
64db4cff
PM
1748 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1749 break; /* So gcc recognizes the dead code. */
1750
f261414f
LJ
1751 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1752
64db4cff 1753 /* Record dyntick-idle state. */
45f014c5 1754 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1755 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1756 if (rcu_gp_in_progress(rsp))
af446b70 1757 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1758 break;
64db4cff
PM
1759
1760 case RCU_FORCE_QS:
1761
1762 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1763 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1764 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1765
1766 /* Leave state in case more forcing is required. */
1767
1304afb2 1768 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1769 break;
64db4cff 1770 }
07079d53 1771 rsp->fqs_active = 0;
46a1e34e 1772 if (rsp->fqs_need_gp) {
1304afb2 1773 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1774 rsp->fqs_need_gp = 0;
1775 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1776 trace_rcu_utilization("End fqs");
46a1e34e
PM
1777 return;
1778 }
1304afb2 1779 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1780unlock_fqs_ret:
1304afb2 1781 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1782 trace_rcu_utilization("End fqs");
64db4cff
PM
1783}
1784
64db4cff 1785/*
e0f23060
PM
1786 * This does the RCU core processing work for the specified rcu_state
1787 * and rcu_data structures. This may be called only from the CPU to
1788 * whom the rdp belongs.
64db4cff
PM
1789 */
1790static void
1bca8cf1 1791__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
1792{
1793 unsigned long flags;
1bca8cf1 1794 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 1795
2e597558
PM
1796 WARN_ON_ONCE(rdp->beenonline == 0);
1797
64db4cff
PM
1798 /*
1799 * If an RCU GP has gone long enough, go check for dyntick
1800 * idle CPUs and, if needed, send resched IPIs.
1801 */
20133cfc 1802 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1803 force_quiescent_state(rsp, 1);
1804
1805 /*
1806 * Advance callbacks in response to end of earlier grace
1807 * period that some other CPU ended.
1808 */
1809 rcu_process_gp_end(rsp, rdp);
1810
1811 /* Update RCU state based on any recent quiescent states. */
1812 rcu_check_quiescent_state(rsp, rdp);
1813
1814 /* Does this CPU require a not-yet-started grace period? */
1815 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1816 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1817 rcu_start_gp(rsp, flags); /* releases above lock */
1818 }
1819
1820 /* If there are callbacks ready, invoke them. */
09223371 1821 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1822 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1823}
1824
64db4cff 1825/*
e0f23060 1826 * Do RCU core processing for the current CPU.
64db4cff 1827 */
09223371 1828static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1829{
300df91c 1830 trace_rcu_utilization("Start RCU core");
1bca8cf1
PM
1831 __rcu_process_callbacks(&rcu_sched_state);
1832 __rcu_process_callbacks(&rcu_bh_state);
f41d911f 1833 rcu_preempt_process_callbacks();
300df91c 1834 trace_rcu_utilization("End RCU core");
64db4cff
PM
1835}
1836
a26ac245 1837/*
e0f23060
PM
1838 * Schedule RCU callback invocation. If the specified type of RCU
1839 * does not support RCU priority boosting, just do a direct call,
1840 * otherwise wake up the per-CPU kernel kthread. Note that because we
1841 * are running on the current CPU with interrupts disabled, the
1842 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1843 */
a46e0899 1844static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1845{
b0d30417
PM
1846 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1847 return;
a46e0899
PM
1848 if (likely(!rsp->boost)) {
1849 rcu_do_batch(rsp, rdp);
a26ac245
PM
1850 return;
1851 }
a46e0899 1852 invoke_rcu_callbacks_kthread();
a26ac245
PM
1853}
1854
a46e0899 1855static void invoke_rcu_core(void)
09223371
SL
1856{
1857 raise_softirq(RCU_SOFTIRQ);
1858}
1859
64db4cff
PM
1860static void
1861__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1862 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1863{
1864 unsigned long flags;
1865 struct rcu_data *rdp;
1866
0bb7b59d 1867 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1868 debug_rcu_head_queue(head);
64db4cff
PM
1869 head->func = func;
1870 head->next = NULL;
1871
1872 smp_mb(); /* Ensure RCU update seen before callback registry. */
1873
1874 /*
1875 * Opportunistically note grace-period endings and beginnings.
1876 * Note that we might see a beginning right after we see an
1877 * end, but never vice versa, since this CPU has to pass through
1878 * a quiescent state betweentimes.
1879 */
1880 local_irq_save(flags);
394f99a9 1881 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1882
1883 /* Add the callback to our list. */
2655d57e 1884 rdp->qlen++;
486e2593
PM
1885 if (lazy)
1886 rdp->qlen_lazy++;
c57afe80
PM
1887 else
1888 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1889 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1890 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1891 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1892
d4c08f2a
PM
1893 if (__is_kfree_rcu_offset((unsigned long)func))
1894 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1895 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1896 else
486e2593 1897 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1898
2655d57e
PM
1899 /* If interrupts were disabled, don't dive into RCU core. */
1900 if (irqs_disabled_flags(flags)) {
1901 local_irq_restore(flags);
1902 return;
1903 }
64db4cff 1904
37c72e56
PM
1905 /*
1906 * Force the grace period if too many callbacks or too long waiting.
1907 * Enforce hysteresis, and don't invoke force_quiescent_state()
1908 * if some other CPU has recently done so. Also, don't bother
1909 * invoking force_quiescent_state() if the newly enqueued callback
1910 * is the only one waiting for a grace period to complete.
1911 */
2655d57e 1912 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1913
1914 /* Are we ignoring a completed grace period? */
1915 rcu_process_gp_end(rsp, rdp);
1916 check_for_new_grace_period(rsp, rdp);
1917
1918 /* Start a new grace period if one not already started. */
1919 if (!rcu_gp_in_progress(rsp)) {
1920 unsigned long nestflag;
1921 struct rcu_node *rnp_root = rcu_get_root(rsp);
1922
1923 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1924 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1925 } else {
1926 /* Give the grace period a kick. */
1927 rdp->blimit = LONG_MAX;
1928 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1929 *rdp->nxttail[RCU_DONE_TAIL] != head)
1930 force_quiescent_state(rsp, 0);
1931 rdp->n_force_qs_snap = rsp->n_force_qs;
1932 rdp->qlen_last_fqs_check = rdp->qlen;
1933 }
20133cfc 1934 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1935 force_quiescent_state(rsp, 1);
1936 local_irq_restore(flags);
1937}
1938
1939/*
d6714c22 1940 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1941 */
d6714c22 1942void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1943{
486e2593 1944 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1945}
d6714c22 1946EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1947
1948/*
486e2593 1949 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1950 */
1951void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1952{
486e2593 1953 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1954}
1955EXPORT_SYMBOL_GPL(call_rcu_bh);
1956
6d813391
PM
1957/*
1958 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1959 * any blocking grace-period wait automatically implies a grace period
1960 * if there is only one CPU online at any point time during execution
1961 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1962 * occasionally incorrectly indicate that there are multiple CPUs online
1963 * when there was in fact only one the whole time, as this just adds
1964 * some overhead: RCU still operates correctly.
1965 *
1966 * Of course, sampling num_online_cpus() with preemption enabled can
1967 * give erroneous results if there are concurrent CPU-hotplug operations.
1968 * For example, given a demonic sequence of preemptions in num_online_cpus()
1969 * and CPU-hotplug operations, there could be two or more CPUs online at
1970 * all times, but num_online_cpus() might well return one (or even zero).
1971 *
1972 * However, all such demonic sequences require at least one CPU-offline
1973 * operation. Furthermore, rcu_blocking_is_gp() giving the wrong answer
1974 * is only a problem if there is an RCU read-side critical section executing
1975 * throughout. But RCU-sched and RCU-bh read-side critical sections
1976 * disable either preemption or bh, which prevents a CPU from going offline.
1977 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
1978 * that there is only one CPU when in fact there was more than one throughout
1979 * is when there were no RCU readers in the system. If there are no
1980 * RCU readers, the grace period by definition can be of zero length,
1981 * regardless of the number of online CPUs.
1982 */
1983static inline int rcu_blocking_is_gp(void)
1984{
1985 might_sleep(); /* Check for RCU read-side critical section. */
1986 return num_online_cpus() <= 1;
1987}
1988
6ebb237b
PM
1989/**
1990 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1991 *
1992 * Control will return to the caller some time after a full rcu-sched
1993 * grace period has elapsed, in other words after all currently executing
1994 * rcu-sched read-side critical sections have completed. These read-side
1995 * critical sections are delimited by rcu_read_lock_sched() and
1996 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1997 * local_irq_disable(), and so on may be used in place of
1998 * rcu_read_lock_sched().
1999 *
2000 * This means that all preempt_disable code sequences, including NMI and
2001 * hardware-interrupt handlers, in progress on entry will have completed
2002 * before this primitive returns. However, this does not guarantee that
2003 * softirq handlers will have completed, since in some kernels, these
2004 * handlers can run in process context, and can block.
2005 *
2006 * This primitive provides the guarantees made by the (now removed)
2007 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2008 * guarantees that rcu_read_lock() sections will have completed.
2009 * In "classic RCU", these two guarantees happen to be one and
2010 * the same, but can differ in realtime RCU implementations.
2011 */
2012void synchronize_sched(void)
2013{
fe15d706
PM
2014 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2015 !lock_is_held(&rcu_lock_map) &&
2016 !lock_is_held(&rcu_sched_lock_map),
2017 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2018 if (rcu_blocking_is_gp())
2019 return;
2c42818e 2020 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2021}
2022EXPORT_SYMBOL_GPL(synchronize_sched);
2023
2024/**
2025 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2026 *
2027 * Control will return to the caller some time after a full rcu_bh grace
2028 * period has elapsed, in other words after all currently executing rcu_bh
2029 * read-side critical sections have completed. RCU read-side critical
2030 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2031 * and may be nested.
2032 */
2033void synchronize_rcu_bh(void)
2034{
fe15d706
PM
2035 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2036 !lock_is_held(&rcu_lock_map) &&
2037 !lock_is_held(&rcu_sched_lock_map),
2038 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2039 if (rcu_blocking_is_gp())
2040 return;
2c42818e 2041 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2042}
2043EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2044
3d3b7db0
PM
2045static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2046static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2047
2048static int synchronize_sched_expedited_cpu_stop(void *data)
2049{
2050 /*
2051 * There must be a full memory barrier on each affected CPU
2052 * between the time that try_stop_cpus() is called and the
2053 * time that it returns.
2054 *
2055 * In the current initial implementation of cpu_stop, the
2056 * above condition is already met when the control reaches
2057 * this point and the following smp_mb() is not strictly
2058 * necessary. Do smp_mb() anyway for documentation and
2059 * robustness against future implementation changes.
2060 */
2061 smp_mb(); /* See above comment block. */
2062 return 0;
2063}
2064
236fefaf
PM
2065/**
2066 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2067 *
2068 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2069 * approach to force the grace period to end quickly. This consumes
2070 * significant time on all CPUs and is unfriendly to real-time workloads,
2071 * so is thus not recommended for any sort of common-case code. In fact,
2072 * if you are using synchronize_sched_expedited() in a loop, please
2073 * restructure your code to batch your updates, and then use a single
2074 * synchronize_sched() instead.
3d3b7db0 2075 *
236fefaf
PM
2076 * Note that it is illegal to call this function while holding any lock
2077 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2078 * to call this function from a CPU-hotplug notifier. Failing to observe
2079 * these restriction will result in deadlock.
3d3b7db0
PM
2080 *
2081 * This implementation can be thought of as an application of ticket
2082 * locking to RCU, with sync_sched_expedited_started and
2083 * sync_sched_expedited_done taking on the roles of the halves
2084 * of the ticket-lock word. Each task atomically increments
2085 * sync_sched_expedited_started upon entry, snapshotting the old value,
2086 * then attempts to stop all the CPUs. If this succeeds, then each
2087 * CPU will have executed a context switch, resulting in an RCU-sched
2088 * grace period. We are then done, so we use atomic_cmpxchg() to
2089 * update sync_sched_expedited_done to match our snapshot -- but
2090 * only if someone else has not already advanced past our snapshot.
2091 *
2092 * On the other hand, if try_stop_cpus() fails, we check the value
2093 * of sync_sched_expedited_done. If it has advanced past our
2094 * initial snapshot, then someone else must have forced a grace period
2095 * some time after we took our snapshot. In this case, our work is
2096 * done for us, and we can simply return. Otherwise, we try again,
2097 * but keep our initial snapshot for purposes of checking for someone
2098 * doing our work for us.
2099 *
2100 * If we fail too many times in a row, we fall back to synchronize_sched().
2101 */
2102void synchronize_sched_expedited(void)
2103{
2104 int firstsnap, s, snap, trycount = 0;
2105
2106 /* Note that atomic_inc_return() implies full memory barrier. */
2107 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2108 get_online_cpus();
1cc85961 2109 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2110
2111 /*
2112 * Each pass through the following loop attempts to force a
2113 * context switch on each CPU.
2114 */
2115 while (try_stop_cpus(cpu_online_mask,
2116 synchronize_sched_expedited_cpu_stop,
2117 NULL) == -EAGAIN) {
2118 put_online_cpus();
2119
2120 /* No joy, try again later. Or just synchronize_sched(). */
2121 if (trycount++ < 10)
2122 udelay(trycount * num_online_cpus());
2123 else {
2124 synchronize_sched();
2125 return;
2126 }
2127
2128 /* Check to see if someone else did our work for us. */
2129 s = atomic_read(&sync_sched_expedited_done);
2130 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2131 smp_mb(); /* ensure test happens before caller kfree */
2132 return;
2133 }
2134
2135 /*
2136 * Refetching sync_sched_expedited_started allows later
2137 * callers to piggyback on our grace period. We subtract
2138 * 1 to get the same token that the last incrementer got.
2139 * We retry after they started, so our grace period works
2140 * for them, and they started after our first try, so their
2141 * grace period works for us.
2142 */
2143 get_online_cpus();
2144 snap = atomic_read(&sync_sched_expedited_started);
2145 smp_mb(); /* ensure read is before try_stop_cpus(). */
2146 }
2147
2148 /*
2149 * Everyone up to our most recent fetch is covered by our grace
2150 * period. Update the counter, but only if our work is still
2151 * relevant -- which it won't be if someone who started later
2152 * than we did beat us to the punch.
2153 */
2154 do {
2155 s = atomic_read(&sync_sched_expedited_done);
2156 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2157 smp_mb(); /* ensure test happens before caller kfree */
2158 break;
2159 }
2160 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2161
2162 put_online_cpus();
2163}
2164EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2165
64db4cff
PM
2166/*
2167 * Check to see if there is any immediate RCU-related work to be done
2168 * by the current CPU, for the specified type of RCU, returning 1 if so.
2169 * The checks are in order of increasing expense: checks that can be
2170 * carried out against CPU-local state are performed first. However,
2171 * we must check for CPU stalls first, else we might not get a chance.
2172 */
2173static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2174{
2f51f988
PM
2175 struct rcu_node *rnp = rdp->mynode;
2176
64db4cff
PM
2177 rdp->n_rcu_pending++;
2178
2179 /* Check for CPU stalls, if enabled. */
2180 check_cpu_stall(rsp, rdp);
2181
2182 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2183 if (rcu_scheduler_fully_active &&
2184 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2185
2186 /*
2187 * If force_quiescent_state() coming soon and this CPU
2188 * needs a quiescent state, and this is either RCU-sched
2189 * or RCU-bh, force a local reschedule.
2190 */
d21670ac 2191 rdp->n_rp_qs_pending++;
6cc68793 2192 if (!rdp->preemptible &&
d25eb944
PM
2193 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2194 jiffies))
2195 set_need_resched();
e4cc1f22 2196 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2197 rdp->n_rp_report_qs++;
64db4cff 2198 return 1;
7ba5c840 2199 }
64db4cff
PM
2200
2201 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2202 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2203 rdp->n_rp_cb_ready++;
64db4cff 2204 return 1;
7ba5c840 2205 }
64db4cff
PM
2206
2207 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2208 if (cpu_needs_another_gp(rsp, rdp)) {
2209 rdp->n_rp_cpu_needs_gp++;
64db4cff 2210 return 1;
7ba5c840 2211 }
64db4cff
PM
2212
2213 /* Has another RCU grace period completed? */
2f51f988 2214 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2215 rdp->n_rp_gp_completed++;
64db4cff 2216 return 1;
7ba5c840 2217 }
64db4cff
PM
2218
2219 /* Has a new RCU grace period started? */
2f51f988 2220 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2221 rdp->n_rp_gp_started++;
64db4cff 2222 return 1;
7ba5c840 2223 }
64db4cff
PM
2224
2225 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2226 if (rcu_gp_in_progress(rsp) &&
20133cfc 2227 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2228 rdp->n_rp_need_fqs++;
64db4cff 2229 return 1;
7ba5c840 2230 }
64db4cff
PM
2231
2232 /* nothing to do */
7ba5c840 2233 rdp->n_rp_need_nothing++;
64db4cff
PM
2234 return 0;
2235}
2236
2237/*
2238 * Check to see if there is any immediate RCU-related work to be done
2239 * by the current CPU, returning 1 if so. This function is part of the
2240 * RCU implementation; it is -not- an exported member of the RCU API.
2241 */
a157229c 2242static int rcu_pending(int cpu)
64db4cff 2243{
d6714c22 2244 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
2245 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2246 rcu_preempt_pending(cpu);
64db4cff
PM
2247}
2248
2249/*
2250 * Check to see if any future RCU-related work will need to be done
2251 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2252 * 1 if so.
64db4cff 2253 */
aea1b35e 2254static int rcu_cpu_has_callbacks(int cpu)
64db4cff
PM
2255{
2256 /* RCU callbacks either ready or pending? */
d6714c22 2257 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f 2258 per_cpu(rcu_bh_data, cpu).nxtlist ||
30fbcc90 2259 rcu_preempt_cpu_has_callbacks(cpu);
64db4cff
PM
2260}
2261
a83eff0a
PM
2262/*
2263 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2264 * the compiler is expected to optimize this away.
2265 */
2266static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2267 int cpu, unsigned long done)
2268{
2269 trace_rcu_barrier(rsp->name, s, cpu,
2270 atomic_read(&rsp->barrier_cpu_count), done);
2271}
2272
b1420f1c
PM
2273/*
2274 * RCU callback function for _rcu_barrier(). If we are last, wake
2275 * up the task executing _rcu_barrier().
2276 */
24ebbca8 2277static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2278{
24ebbca8
PM
2279 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2280 struct rcu_state *rsp = rdp->rsp;
2281
a83eff0a
PM
2282 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2283 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2284 complete(&rsp->barrier_completion);
a83eff0a
PM
2285 } else {
2286 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2287 }
d0ec774c
PM
2288}
2289
2290/*
2291 * Called with preemption disabled, and from cross-cpu IRQ context.
2292 */
2293static void rcu_barrier_func(void *type)
2294{
037b64ed 2295 struct rcu_state *rsp = type;
06668efa 2296 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2297
a83eff0a 2298 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2299 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2300 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2301}
2302
d0ec774c
PM
2303/*
2304 * Orchestrate the specified type of RCU barrier, waiting for all
2305 * RCU callbacks of the specified type to complete.
2306 */
037b64ed 2307static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2308{
b1420f1c
PM
2309 int cpu;
2310 unsigned long flags;
2311 struct rcu_data *rdp;
24ebbca8 2312 struct rcu_data rd;
cf3a9c48
PM
2313 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2314 unsigned long snap_done;
b1420f1c 2315
24ebbca8 2316 init_rcu_head_on_stack(&rd.barrier_head);
a83eff0a 2317 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2318
e74f4c45 2319 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2320 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2321
cf3a9c48
PM
2322 /*
2323 * Ensure that all prior references, including to ->n_barrier_done,
2324 * are ordered before the _rcu_barrier() machinery.
2325 */
2326 smp_mb(); /* See above block comment. */
2327
2328 /*
2329 * Recheck ->n_barrier_done to see if others did our work for us.
2330 * This means checking ->n_barrier_done for an even-to-odd-to-even
2331 * transition. The "if" expression below therefore rounds the old
2332 * value up to the next even number and adds two before comparing.
2333 */
2334 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2335 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2336 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2337 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2338 smp_mb(); /* caller's subsequent code after above check. */
2339 mutex_unlock(&rsp->barrier_mutex);
2340 return;
2341 }
2342
2343 /*
2344 * Increment ->n_barrier_done to avoid duplicate work. Use
2345 * ACCESS_ONCE() to prevent the compiler from speculating
2346 * the increment to precede the early-exit check.
2347 */
2348 ACCESS_ONCE(rsp->n_barrier_done)++;
2349 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2350 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2351 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2352
d0ec774c 2353 /*
b1420f1c
PM
2354 * Initialize the count to one rather than to zero in order to
2355 * avoid a too-soon return to zero in case of a short grace period
2356 * (or preemption of this task). Also flag this task as doing
2357 * an rcu_barrier(). This will prevent anyone else from adopting
2358 * orphaned callbacks, which could cause otherwise failure if a
2359 * CPU went offline and quickly came back online. To see this,
2360 * consider the following sequence of events:
2361 *
2362 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2363 * 2. CPU 1 goes offline, orphaning its callbacks.
2364 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2365 * 4. CPU 1 comes back online.
2366 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2367 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2368 * us -- but before CPU 1's orphaned callbacks are invoked!!!
d0ec774c 2369 */
7db74df8 2370 init_completion(&rsp->barrier_completion);
24ebbca8 2371 atomic_set(&rsp->barrier_cpu_count, 1);
b1420f1c
PM
2372 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2373 rsp->rcu_barrier_in_progress = current;
2374 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2375
2376 /*
2377 * Force every CPU with callbacks to register a new callback
2378 * that will tell us when all the preceding callbacks have
2379 * been invoked. If an offline CPU has callbacks, wait for
2380 * it to either come back online or to finish orphaning those
2381 * callbacks.
2382 */
2383 for_each_possible_cpu(cpu) {
2384 preempt_disable();
2385 rdp = per_cpu_ptr(rsp->rda, cpu);
2386 if (cpu_is_offline(cpu)) {
a83eff0a
PM
2387 _rcu_barrier_trace(rsp, "Offline", cpu,
2388 rsp->n_barrier_done);
b1420f1c
PM
2389 preempt_enable();
2390 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2391 schedule_timeout_interruptible(1);
2392 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2393 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2394 rsp->n_barrier_done);
037b64ed 2395 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c
PM
2396 preempt_enable();
2397 } else {
a83eff0a
PM
2398 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2399 rsp->n_barrier_done);
b1420f1c
PM
2400 preempt_enable();
2401 }
2402 }
2403
2404 /*
2405 * Now that all online CPUs have rcu_barrier_callback() callbacks
2406 * posted, we can adopt all of the orphaned callbacks and place
2407 * an rcu_barrier_callback() callback after them. When that is done,
2408 * we are guaranteed to have an rcu_barrier_callback() callback
2409 * following every callback that could possibly have been
2410 * registered before _rcu_barrier() was called.
2411 */
2412 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2413 rcu_adopt_orphan_cbs(rsp);
2414 rsp->rcu_barrier_in_progress = NULL;
2415 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
24ebbca8 2416 atomic_inc(&rsp->barrier_cpu_count);
b1420f1c 2417 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
24ebbca8
PM
2418 rd.rsp = rsp;
2419 rsp->call(&rd.barrier_head, rcu_barrier_callback);
b1420f1c
PM
2420
2421 /*
2422 * Now that we have an rcu_barrier_callback() callback on each
2423 * CPU, and thus each counted, remove the initial count.
2424 */
24ebbca8 2425 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2426 complete(&rsp->barrier_completion);
b1420f1c 2427
cf3a9c48
PM
2428 /* Increment ->n_barrier_done to prevent duplicate work. */
2429 smp_mb(); /* Keep increment after above mechanism. */
2430 ACCESS_ONCE(rsp->n_barrier_done)++;
2431 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2432 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2433 smp_mb(); /* Keep increment before caller's subsequent code. */
2434
b1420f1c 2435 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2436 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2437
2438 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2439 mutex_unlock(&rsp->barrier_mutex);
b1420f1c 2440
24ebbca8 2441 destroy_rcu_head_on_stack(&rd.barrier_head);
d0ec774c 2442}
d0ec774c
PM
2443
2444/**
2445 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2446 */
2447void rcu_barrier_bh(void)
2448{
037b64ed 2449 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2450}
2451EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2452
2453/**
2454 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2455 */
2456void rcu_barrier_sched(void)
2457{
037b64ed 2458 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2459}
2460EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2461
64db4cff 2462/*
27569620 2463 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2464 */
27569620
PM
2465static void __init
2466rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2467{
2468 unsigned long flags;
2469 int i;
394f99a9 2470 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2471 struct rcu_node *rnp = rcu_get_root(rsp);
2472
2473 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2474 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
2475 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2476 rdp->nxtlist = NULL;
2477 for (i = 0; i < RCU_NEXT_SIZE; i++)
2478 rdp->nxttail[i] = &rdp->nxtlist;
486e2593 2479 rdp->qlen_lazy = 0;
27569620 2480 rdp->qlen = 0;
27569620 2481 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2482 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2483 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2484 rdp->cpu = cpu;
d4c08f2a 2485 rdp->rsp = rsp;
1304afb2 2486 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2487}
2488
2489/*
2490 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2491 * offline event can be happening at a given time. Note also that we
2492 * can accept some slop in the rsp->completed access due to the fact
2493 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2494 */
e4fa4c97 2495static void __cpuinit
6cc68793 2496rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2497{
2498 unsigned long flags;
64db4cff 2499 unsigned long mask;
394f99a9 2500 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2501 struct rcu_node *rnp = rcu_get_root(rsp);
2502
2503 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2504 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2505 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2506 rdp->preemptible = preemptible;
37c72e56
PM
2507 rdp->qlen_last_fqs_check = 0;
2508 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2509 rdp->blimit = blimit;
29e37d81 2510 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2511 atomic_set(&rdp->dynticks->dynticks,
2512 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2513 rcu_prepare_for_idle_init(cpu);
1304afb2 2514 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2515
2516 /*
2517 * A new grace period might start here. If so, we won't be part
2518 * of it, but that is OK, as we are currently in a quiescent state.
2519 */
2520
2521 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2522 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2523
2524 /* Add CPU to rcu_node bitmasks. */
2525 rnp = rdp->mynode;
2526 mask = rdp->grpmask;
2527 do {
2528 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2529 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2530 rnp->qsmaskinit |= mask;
2531 mask = rnp->grpmask;
d09b62df 2532 if (rnp == rdp->mynode) {
06ae115a
PM
2533 /*
2534 * If there is a grace period in progress, we will
2535 * set up to wait for it next time we run the
2536 * RCU core code.
2537 */
2538 rdp->gpnum = rnp->completed;
d09b62df 2539 rdp->completed = rnp->completed;
06ae115a
PM
2540 rdp->passed_quiesce = 0;
2541 rdp->qs_pending = 0;
e4cc1f22 2542 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2543 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2544 }
1304afb2 2545 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2546 rnp = rnp->parent;
2547 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2548
1304afb2 2549 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2550}
2551
d72bce0e 2552static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2553{
f41d911f
PM
2554 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2555 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2556 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2557}
2558
2559/*
f41d911f 2560 * Handle CPU online/offline notification events.
64db4cff 2561 */
9f680ab4
PM
2562static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2563 unsigned long action, void *hcpu)
64db4cff
PM
2564{
2565 long cpu = (long)hcpu;
27f4d280 2566 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2567 struct rcu_node *rnp = rdp->mynode;
64db4cff 2568
300df91c 2569 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2570 switch (action) {
2571 case CPU_UP_PREPARE:
2572 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2573 rcu_prepare_cpu(cpu);
2574 rcu_prepare_kthreads(cpu);
a26ac245
PM
2575 break;
2576 case CPU_ONLINE:
0f962a5e
PM
2577 case CPU_DOWN_FAILED:
2578 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2579 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2580 break;
2581 case CPU_DOWN_PREPARE:
2582 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2583 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2584 break;
d0ec774c
PM
2585 case CPU_DYING:
2586 case CPU_DYING_FROZEN:
2587 /*
2d999e03
PM
2588 * The whole machine is "stopped" except this CPU, so we can
2589 * touch any data without introducing corruption. We send the
2590 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2591 */
e5601400
PM
2592 rcu_cleanup_dying_cpu(&rcu_bh_state);
2593 rcu_cleanup_dying_cpu(&rcu_sched_state);
2594 rcu_preempt_cleanup_dying_cpu();
7cb92499 2595 rcu_cleanup_after_idle(cpu);
d0ec774c 2596 break;
64db4cff
PM
2597 case CPU_DEAD:
2598 case CPU_DEAD_FROZEN:
2599 case CPU_UP_CANCELED:
2600 case CPU_UP_CANCELED_FROZEN:
e5601400
PM
2601 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2602 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2603 rcu_preempt_cleanup_dead_cpu(cpu);
64db4cff
PM
2604 break;
2605 default:
2606 break;
2607 }
300df91c 2608 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2609 return NOTIFY_OK;
2610}
2611
bbad9379
PM
2612/*
2613 * This function is invoked towards the end of the scheduler's initialization
2614 * process. Before this is called, the idle task might contain
2615 * RCU read-side critical sections (during which time, this idle
2616 * task is booting the system). After this function is called, the
2617 * idle tasks are prohibited from containing RCU read-side critical
2618 * sections. This function also enables RCU lockdep checking.
2619 */
2620void rcu_scheduler_starting(void)
2621{
2622 WARN_ON(num_online_cpus() != 1);
2623 WARN_ON(nr_context_switches() > 0);
2624 rcu_scheduler_active = 1;
2625}
2626
64db4cff
PM
2627/*
2628 * Compute the per-level fanout, either using the exact fanout specified
2629 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2630 */
2631#ifdef CONFIG_RCU_FANOUT_EXACT
2632static void __init rcu_init_levelspread(struct rcu_state *rsp)
2633{
2634 int i;
2635
f885b7f2 2636 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2637 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2638 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2639}
2640#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2641static void __init rcu_init_levelspread(struct rcu_state *rsp)
2642{
2643 int ccur;
2644 int cprv;
2645 int i;
2646
2647 cprv = NR_CPUS;
f885b7f2 2648 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2649 ccur = rsp->levelcnt[i];
2650 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2651 cprv = ccur;
2652 }
2653}
2654#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2655
2656/*
2657 * Helper function for rcu_init() that initializes one rcu_state structure.
2658 */
394f99a9
LJ
2659static void __init rcu_init_one(struct rcu_state *rsp,
2660 struct rcu_data __percpu *rda)
64db4cff 2661{
b6407e86
PM
2662 static char *buf[] = { "rcu_node_level_0",
2663 "rcu_node_level_1",
2664 "rcu_node_level_2",
2665 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2666 int cpustride = 1;
2667 int i;
2668 int j;
2669 struct rcu_node *rnp;
2670
b6407e86
PM
2671 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2672
64db4cff
PM
2673 /* Initialize the level-tracking arrays. */
2674
f885b7f2
PM
2675 for (i = 0; i < rcu_num_lvls; i++)
2676 rsp->levelcnt[i] = num_rcu_lvl[i];
2677 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2678 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2679 rcu_init_levelspread(rsp);
2680
2681 /* Initialize the elements themselves, starting from the leaves. */
2682
f885b7f2 2683 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2684 cpustride *= rsp->levelspread[i];
2685 rnp = rsp->level[i];
2686 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2687 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2688 lockdep_set_class_and_name(&rnp->lock,
2689 &rcu_node_class[i], buf[i]);
f41d911f 2690 rnp->gpnum = 0;
64db4cff
PM
2691 rnp->qsmask = 0;
2692 rnp->qsmaskinit = 0;
2693 rnp->grplo = j * cpustride;
2694 rnp->grphi = (j + 1) * cpustride - 1;
2695 if (rnp->grphi >= NR_CPUS)
2696 rnp->grphi = NR_CPUS - 1;
2697 if (i == 0) {
2698 rnp->grpnum = 0;
2699 rnp->grpmask = 0;
2700 rnp->parent = NULL;
2701 } else {
2702 rnp->grpnum = j % rsp->levelspread[i - 1];
2703 rnp->grpmask = 1UL << rnp->grpnum;
2704 rnp->parent = rsp->level[i - 1] +
2705 j / rsp->levelspread[i - 1];
2706 }
2707 rnp->level = i;
12f5f524 2708 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2709 }
2710 }
0c34029a 2711
394f99a9 2712 rsp->rda = rda;
f885b7f2 2713 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2714 for_each_possible_cpu(i) {
4a90a068 2715 while (i > rnp->grphi)
0c34029a 2716 rnp++;
394f99a9 2717 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2718 rcu_boot_init_percpu_data(i, rsp);
2719 }
64db4cff
PM
2720}
2721
f885b7f2
PM
2722/*
2723 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2724 * replace the definitions in rcutree.h because those are needed to size
2725 * the ->node array in the rcu_state structure.
2726 */
2727static void __init rcu_init_geometry(void)
2728{
2729 int i;
2730 int j;
cca6f393 2731 int n = nr_cpu_ids;
f885b7f2
PM
2732 int rcu_capacity[MAX_RCU_LVLS + 1];
2733
2734 /* If the compile-time values are accurate, just leave. */
2735 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2736 return;
2737
2738 /*
2739 * Compute number of nodes that can be handled an rcu_node tree
2740 * with the given number of levels. Setting rcu_capacity[0] makes
2741 * some of the arithmetic easier.
2742 */
2743 rcu_capacity[0] = 1;
2744 rcu_capacity[1] = rcu_fanout_leaf;
2745 for (i = 2; i <= MAX_RCU_LVLS; i++)
2746 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2747
2748 /*
2749 * The boot-time rcu_fanout_leaf parameter is only permitted
2750 * to increase the leaf-level fanout, not decrease it. Of course,
2751 * the leaf-level fanout cannot exceed the number of bits in
2752 * the rcu_node masks. Finally, the tree must be able to accommodate
2753 * the configured number of CPUs. Complain and fall back to the
2754 * compile-time values if these limits are exceeded.
2755 */
2756 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2757 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2758 n > rcu_capacity[MAX_RCU_LVLS]) {
2759 WARN_ON(1);
2760 return;
2761 }
2762
2763 /* Calculate the number of rcu_nodes at each level of the tree. */
2764 for (i = 1; i <= MAX_RCU_LVLS; i++)
2765 if (n <= rcu_capacity[i]) {
2766 for (j = 0; j <= i; j++)
2767 num_rcu_lvl[j] =
2768 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2769 rcu_num_lvls = i;
2770 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2771 num_rcu_lvl[j] = 0;
2772 break;
2773 }
2774
2775 /* Calculate the total number of rcu_node structures. */
2776 rcu_num_nodes = 0;
2777 for (i = 0; i <= MAX_RCU_LVLS; i++)
2778 rcu_num_nodes += num_rcu_lvl[i];
2779 rcu_num_nodes -= n;
2780}
2781
9f680ab4 2782void __init rcu_init(void)
64db4cff 2783{
017c4261 2784 int cpu;
9f680ab4 2785
f41d911f 2786 rcu_bootup_announce();
f885b7f2 2787 rcu_init_geometry();
394f99a9
LJ
2788 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2789 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2790 __rcu_init_preempt();
09223371 2791 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2792
2793 /*
2794 * We don't need protection against CPU-hotplug here because
2795 * this is called early in boot, before either interrupts
2796 * or the scheduler are operational.
2797 */
2798 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2799 for_each_online_cpu(cpu)
2800 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2801 check_cpu_stall_init();
64db4cff
PM
2802}
2803
1eba8f84 2804#include "rcutree_plugin.h"
This page took 0.364853 seconds and 5 git commands to generate.