rcu: Prevent excessive line length in RCU_STATE_INITIALIZER()
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
f885b7f2 63static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
88b91c7c 64
6c90cc7b
PM
65#define RCU_STATE_INITIALIZER(sname) { \
66 .level = { &sname##_state.node[0] }, \
af446b70 67 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
68 .gpnum = -300, \
69 .completed = -300, \
6c90cc7b
PM
70 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
71 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
72 .orphan_donetail = &sname##_state.orphan_donelist, \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
64db4cff
PM
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
6c90cc7b 76 .name = #sname, \
64db4cff
PM
77}
78
e99033c5 79struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
d6714c22 80DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 81
e99033c5 82struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
6258c4fb 83DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 84
27f4d280
PM
85static struct rcu_state *rcu_state;
86
f885b7f2
PM
87/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
88static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
89module_param(rcu_fanout_leaf, int, 0);
90int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
91static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
92 NUM_RCU_LVL_0,
93 NUM_RCU_LVL_1,
94 NUM_RCU_LVL_2,
95 NUM_RCU_LVL_3,
96 NUM_RCU_LVL_4,
97};
98int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
99
b0d30417
PM
100/*
101 * The rcu_scheduler_active variable transitions from zero to one just
102 * before the first task is spawned. So when this variable is zero, RCU
103 * can assume that there is but one task, allowing RCU to (for example)
104 * optimized synchronize_sched() to a simple barrier(). When this variable
105 * is one, RCU must actually do all the hard work required to detect real
106 * grace periods. This variable is also used to suppress boot-time false
107 * positives from lockdep-RCU error checking.
108 */
bbad9379
PM
109int rcu_scheduler_active __read_mostly;
110EXPORT_SYMBOL_GPL(rcu_scheduler_active);
111
b0d30417
PM
112/*
113 * The rcu_scheduler_fully_active variable transitions from zero to one
114 * during the early_initcall() processing, which is after the scheduler
115 * is capable of creating new tasks. So RCU processing (for example,
116 * creating tasks for RCU priority boosting) must be delayed until after
117 * rcu_scheduler_fully_active transitions from zero to one. We also
118 * currently delay invocation of any RCU callbacks until after this point.
119 *
120 * It might later prove better for people registering RCU callbacks during
121 * early boot to take responsibility for these callbacks, but one step at
122 * a time.
123 */
124static int rcu_scheduler_fully_active __read_mostly;
125
a46e0899
PM
126#ifdef CONFIG_RCU_BOOST
127
a26ac245
PM
128/*
129 * Control variables for per-CPU and per-rcu_node kthreads. These
130 * handle all flavors of RCU.
131 */
132static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 133DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 134DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 135DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 136DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 137
a46e0899
PM
138#endif /* #ifdef CONFIG_RCU_BOOST */
139
0f962a5e 140static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
141static void invoke_rcu_core(void);
142static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 143
4a298656
PM
144/*
145 * Track the rcutorture test sequence number and the update version
146 * number within a given test. The rcutorture_testseq is incremented
147 * on every rcutorture module load and unload, so has an odd value
148 * when a test is running. The rcutorture_vernum is set to zero
149 * when rcutorture starts and is incremented on each rcutorture update.
150 * These variables enable correlating rcutorture output with the
151 * RCU tracing information.
152 */
153unsigned long rcutorture_testseq;
154unsigned long rcutorture_vernum;
155
b1420f1c
PM
156/* State information for rcu_barrier() and friends. */
157
158static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
159static atomic_t rcu_barrier_cpu_count;
160static DEFINE_MUTEX(rcu_barrier_mutex);
161static struct completion rcu_barrier_completion;
162
fc2219d4
PM
163/*
164 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
165 * permit this function to be invoked without holding the root rcu_node
166 * structure's ->lock, but of course results can be subject to change.
167 */
168static int rcu_gp_in_progress(struct rcu_state *rsp)
169{
170 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
171}
172
b1f77b05 173/*
d6714c22 174 * Note a quiescent state. Because we do not need to know
b1f77b05 175 * how many quiescent states passed, just if there was at least
d6714c22 176 * one since the start of the grace period, this just sets a flag.
e4cc1f22 177 * The caller must have disabled preemption.
b1f77b05 178 */
d6714c22 179void rcu_sched_qs(int cpu)
b1f77b05 180{
25502a6c 181 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 182
e4cc1f22 183 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 184 barrier();
e4cc1f22 185 if (rdp->passed_quiesce == 0)
d4c08f2a 186 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 187 rdp->passed_quiesce = 1;
b1f77b05
IM
188}
189
d6714c22 190void rcu_bh_qs(int cpu)
b1f77b05 191{
25502a6c 192 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 193
e4cc1f22 194 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 195 barrier();
e4cc1f22 196 if (rdp->passed_quiesce == 0)
d4c08f2a 197 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 198 rdp->passed_quiesce = 1;
b1f77b05 199}
64db4cff 200
25502a6c
PM
201/*
202 * Note a context switch. This is a quiescent state for RCU-sched,
203 * and requires special handling for preemptible RCU.
e4cc1f22 204 * The caller must have disabled preemption.
25502a6c
PM
205 */
206void rcu_note_context_switch(int cpu)
207{
300df91c 208 trace_rcu_utilization("Start context switch");
25502a6c 209 rcu_sched_qs(cpu);
cba6d0d6 210 rcu_preempt_note_context_switch(cpu);
300df91c 211 trace_rcu_utilization("End context switch");
25502a6c 212}
29ce8310 213EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 214
90a4d2c0 215DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 216 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 217 .dynticks = ATOMIC_INIT(1),
90a4d2c0 218};
64db4cff 219
e0f23060 220static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
221static int qhimark = 10000; /* If this many pending, ignore blimit. */
222static int qlowmark = 100; /* Once only this many pending, use blimit. */
223
3d76c082
PM
224module_param(blimit, int, 0);
225module_param(qhimark, int, 0);
226module_param(qlowmark, int, 0);
227
13cfcca0
PM
228int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
229int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
230
f2e0dd70 231module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 232module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 233
64db4cff 234static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 235static int rcu_pending(int cpu);
64db4cff
PM
236
237/*
d6714c22 238 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 239 */
d6714c22 240long rcu_batches_completed_sched(void)
64db4cff 241{
d6714c22 242 return rcu_sched_state.completed;
64db4cff 243}
d6714c22 244EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
245
246/*
247 * Return the number of RCU BH batches processed thus far for debug & stats.
248 */
249long rcu_batches_completed_bh(void)
250{
251 return rcu_bh_state.completed;
252}
253EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
254
bf66f18e
PM
255/*
256 * Force a quiescent state for RCU BH.
257 */
258void rcu_bh_force_quiescent_state(void)
259{
260 force_quiescent_state(&rcu_bh_state, 0);
261}
262EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
263
4a298656
PM
264/*
265 * Record the number of times rcutorture tests have been initiated and
266 * terminated. This information allows the debugfs tracing stats to be
267 * correlated to the rcutorture messages, even when the rcutorture module
268 * is being repeatedly loaded and unloaded. In other words, we cannot
269 * store this state in rcutorture itself.
270 */
271void rcutorture_record_test_transition(void)
272{
273 rcutorture_testseq++;
274 rcutorture_vernum = 0;
275}
276EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
277
278/*
279 * Record the number of writer passes through the current rcutorture test.
280 * This is also used to correlate debugfs tracing stats with the rcutorture
281 * messages.
282 */
283void rcutorture_record_progress(unsigned long vernum)
284{
285 rcutorture_vernum++;
286}
287EXPORT_SYMBOL_GPL(rcutorture_record_progress);
288
bf66f18e
PM
289/*
290 * Force a quiescent state for RCU-sched.
291 */
292void rcu_sched_force_quiescent_state(void)
293{
294 force_quiescent_state(&rcu_sched_state, 0);
295}
296EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
297
64db4cff
PM
298/*
299 * Does the CPU have callbacks ready to be invoked?
300 */
301static int
302cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
303{
304 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
305}
306
307/*
308 * Does the current CPU require a yet-as-unscheduled grace period?
309 */
310static int
311cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
312{
fc2219d4 313 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
314}
315
316/*
317 * Return the root node of the specified rcu_state structure.
318 */
319static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
320{
321 return &rsp->node[0];
322}
323
64db4cff
PM
324/*
325 * If the specified CPU is offline, tell the caller that it is in
326 * a quiescent state. Otherwise, whack it with a reschedule IPI.
327 * Grace periods can end up waiting on an offline CPU when that
328 * CPU is in the process of coming online -- it will be added to the
329 * rcu_node bitmasks before it actually makes it online. The same thing
330 * can happen while a CPU is in the process of coming online. Because this
331 * race is quite rare, we check for it after detecting that the grace
332 * period has been delayed rather than checking each and every CPU
333 * each and every time we start a new grace period.
334 */
335static int rcu_implicit_offline_qs(struct rcu_data *rdp)
336{
337 /*
2036d94a
PM
338 * If the CPU is offline for more than a jiffy, it is in a quiescent
339 * state. We can trust its state not to change because interrupts
340 * are disabled. The reason for the jiffy's worth of slack is to
341 * handle CPUs initializing on the way up and finding their way
342 * to the idle loop on the way down.
64db4cff 343 */
2036d94a
PM
344 if (cpu_is_offline(rdp->cpu) &&
345 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 346 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
347 rdp->offline_fqs++;
348 return 1;
349 }
64db4cff
PM
350 return 0;
351}
352
9b2e4f18
PM
353/*
354 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
355 *
356 * If the new value of the ->dynticks_nesting counter now is zero,
357 * we really have entered idle, and must do the appropriate accounting.
358 * The caller must have disabled interrupts.
359 */
4145fa7f 360static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 361{
facc4e15 362 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 363 if (!is_idle_task(current)) {
0989cb46
PM
364 struct task_struct *idle = idle_task(smp_processor_id());
365
facc4e15 366 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
9b2e4f18 367 ftrace_dump(DUMP_ALL);
0989cb46
PM
368 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
369 current->pid, current->comm,
370 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 371 }
aea1b35e 372 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
373 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
374 smp_mb__before_atomic_inc(); /* See above. */
375 atomic_inc(&rdtp->dynticks);
376 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
377 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
378
379 /*
380 * The idle task is not permitted to enter the idle loop while
381 * in an RCU read-side critical section.
382 */
383 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
384 "Illegal idle entry in RCU read-side critical section.");
385 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
386 "Illegal idle entry in RCU-bh read-side critical section.");
387 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
388 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 389}
64db4cff
PM
390
391/**
9b2e4f18 392 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 393 *
9b2e4f18 394 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 395 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
396 * critical sections can occur in irq handlers in idle, a possibility
397 * handled by irq_enter() and irq_exit().)
398 *
399 * We crowbar the ->dynticks_nesting field to zero to allow for
400 * the possibility of usermode upcalls having messed up our count
401 * of interrupt nesting level during the prior busy period.
64db4cff 402 */
9b2e4f18 403void rcu_idle_enter(void)
64db4cff
PM
404{
405 unsigned long flags;
4145fa7f 406 long long oldval;
64db4cff
PM
407 struct rcu_dynticks *rdtp;
408
64db4cff
PM
409 local_irq_save(flags);
410 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 411 oldval = rdtp->dynticks_nesting;
29e37d81
PM
412 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
413 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
414 rdtp->dynticks_nesting = 0;
415 else
416 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 417 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
418 local_irq_restore(flags);
419}
8a2ecf47 420EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 421
9b2e4f18
PM
422/**
423 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
424 *
425 * Exit from an interrupt handler, which might possibly result in entering
426 * idle mode, in other words, leaving the mode in which read-side critical
427 * sections can occur.
64db4cff 428 *
9b2e4f18
PM
429 * This code assumes that the idle loop never does anything that might
430 * result in unbalanced calls to irq_enter() and irq_exit(). If your
431 * architecture violates this assumption, RCU will give you what you
432 * deserve, good and hard. But very infrequently and irreproducibly.
433 *
434 * Use things like work queues to work around this limitation.
435 *
436 * You have been warned.
64db4cff 437 */
9b2e4f18 438void rcu_irq_exit(void)
64db4cff
PM
439{
440 unsigned long flags;
4145fa7f 441 long long oldval;
64db4cff
PM
442 struct rcu_dynticks *rdtp;
443
444 local_irq_save(flags);
445 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 446 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
447 rdtp->dynticks_nesting--;
448 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
449 if (rdtp->dynticks_nesting)
450 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
451 else
452 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
453 local_irq_restore(flags);
454}
455
456/*
457 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
458 *
459 * If the new value of the ->dynticks_nesting counter was previously zero,
460 * we really have exited idle, and must do the appropriate accounting.
461 * The caller must have disabled interrupts.
462 */
463static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
464{
23b5c8fa
PM
465 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
466 atomic_inc(&rdtp->dynticks);
467 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
468 smp_mb__after_atomic_inc(); /* See above. */
469 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 470 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 471 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 472 if (!is_idle_task(current)) {
0989cb46
PM
473 struct task_struct *idle = idle_task(smp_processor_id());
474
4145fa7f
PM
475 trace_rcu_dyntick("Error on exit: not idle task",
476 oldval, rdtp->dynticks_nesting);
9b2e4f18 477 ftrace_dump(DUMP_ALL);
0989cb46
PM
478 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
479 current->pid, current->comm,
480 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
481 }
482}
483
484/**
485 * rcu_idle_exit - inform RCU that current CPU is leaving idle
486 *
487 * Exit idle mode, in other words, -enter- the mode in which RCU
488 * read-side critical sections can occur.
489 *
29e37d81 490 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 491 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
492 * of interrupt nesting level during the busy period that is just
493 * now starting.
494 */
495void rcu_idle_exit(void)
496{
497 unsigned long flags;
498 struct rcu_dynticks *rdtp;
499 long long oldval;
500
501 local_irq_save(flags);
502 rdtp = &__get_cpu_var(rcu_dynticks);
503 oldval = rdtp->dynticks_nesting;
29e37d81
PM
504 WARN_ON_ONCE(oldval < 0);
505 if (oldval & DYNTICK_TASK_NEST_MASK)
506 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
507 else
508 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
509 rcu_idle_exit_common(rdtp, oldval);
510 local_irq_restore(flags);
511}
8a2ecf47 512EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18
PM
513
514/**
515 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
516 *
517 * Enter an interrupt handler, which might possibly result in exiting
518 * idle mode, in other words, entering the mode in which read-side critical
519 * sections can occur.
520 *
521 * Note that the Linux kernel is fully capable of entering an interrupt
522 * handler that it never exits, for example when doing upcalls to
523 * user mode! This code assumes that the idle loop never does upcalls to
524 * user mode. If your architecture does do upcalls from the idle loop (or
525 * does anything else that results in unbalanced calls to the irq_enter()
526 * and irq_exit() functions), RCU will give you what you deserve, good
527 * and hard. But very infrequently and irreproducibly.
528 *
529 * Use things like work queues to work around this limitation.
530 *
531 * You have been warned.
532 */
533void rcu_irq_enter(void)
534{
535 unsigned long flags;
536 struct rcu_dynticks *rdtp;
537 long long oldval;
538
539 local_irq_save(flags);
540 rdtp = &__get_cpu_var(rcu_dynticks);
541 oldval = rdtp->dynticks_nesting;
542 rdtp->dynticks_nesting++;
543 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
544 if (oldval)
545 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
546 else
547 rcu_idle_exit_common(rdtp, oldval);
64db4cff 548 local_irq_restore(flags);
64db4cff
PM
549}
550
551/**
552 * rcu_nmi_enter - inform RCU of entry to NMI context
553 *
554 * If the CPU was idle with dynamic ticks active, and there is no
555 * irq handler running, this updates rdtp->dynticks_nmi to let the
556 * RCU grace-period handling know that the CPU is active.
557 */
558void rcu_nmi_enter(void)
559{
560 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
561
23b5c8fa
PM
562 if (rdtp->dynticks_nmi_nesting == 0 &&
563 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 564 return;
23b5c8fa
PM
565 rdtp->dynticks_nmi_nesting++;
566 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
567 atomic_inc(&rdtp->dynticks);
568 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
569 smp_mb__after_atomic_inc(); /* See above. */
570 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
571}
572
573/**
574 * rcu_nmi_exit - inform RCU of exit from NMI context
575 *
576 * If the CPU was idle with dynamic ticks active, and there is no
577 * irq handler running, this updates rdtp->dynticks_nmi to let the
578 * RCU grace-period handling know that the CPU is no longer active.
579 */
580void rcu_nmi_exit(void)
581{
582 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
583
23b5c8fa
PM
584 if (rdtp->dynticks_nmi_nesting == 0 ||
585 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 586 return;
23b5c8fa
PM
587 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
588 smp_mb__before_atomic_inc(); /* See above. */
589 atomic_inc(&rdtp->dynticks);
590 smp_mb__after_atomic_inc(); /* Force delay to next write. */
591 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
592}
593
9b2e4f18
PM
594#ifdef CONFIG_PROVE_RCU
595
64db4cff 596/**
9b2e4f18 597 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 598 *
9b2e4f18 599 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 600 * or NMI handler, return true.
64db4cff 601 */
9b2e4f18 602int rcu_is_cpu_idle(void)
64db4cff 603{
34240697
PM
604 int ret;
605
606 preempt_disable();
607 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
608 preempt_enable();
609 return ret;
64db4cff 610}
e6b80a3b 611EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 612
c0d6d01b
PM
613#ifdef CONFIG_HOTPLUG_CPU
614
615/*
616 * Is the current CPU online? Disable preemption to avoid false positives
617 * that could otherwise happen due to the current CPU number being sampled,
618 * this task being preempted, its old CPU being taken offline, resuming
619 * on some other CPU, then determining that its old CPU is now offline.
620 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
621 * the check for rcu_scheduler_fully_active. Note also that it is OK
622 * for a CPU coming online to use RCU for one jiffy prior to marking itself
623 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
624 * offline to continue to use RCU for one jiffy after marking itself
625 * offline in the cpu_online_mask. This leniency is necessary given the
626 * non-atomic nature of the online and offline processing, for example,
627 * the fact that a CPU enters the scheduler after completing the CPU_DYING
628 * notifiers.
629 *
630 * This is also why RCU internally marks CPUs online during the
631 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
632 *
633 * Disable checking if in an NMI handler because we cannot safely report
634 * errors from NMI handlers anyway.
635 */
636bool rcu_lockdep_current_cpu_online(void)
637{
2036d94a
PM
638 struct rcu_data *rdp;
639 struct rcu_node *rnp;
c0d6d01b
PM
640 bool ret;
641
642 if (in_nmi())
643 return 1;
644 preempt_disable();
2036d94a
PM
645 rdp = &__get_cpu_var(rcu_sched_data);
646 rnp = rdp->mynode;
647 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
648 !rcu_scheduler_fully_active;
649 preempt_enable();
650 return ret;
651}
652EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
653
654#endif /* #ifdef CONFIG_HOTPLUG_CPU */
655
9b2e4f18
PM
656#endif /* #ifdef CONFIG_PROVE_RCU */
657
64db4cff 658/**
9b2e4f18 659 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 660 *
9b2e4f18
PM
661 * If the current CPU is idle or running at a first-level (not nested)
662 * interrupt from idle, return true. The caller must have at least
663 * disabled preemption.
64db4cff 664 */
9b2e4f18 665int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 666{
9b2e4f18 667 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
668}
669
64db4cff
PM
670/*
671 * Snapshot the specified CPU's dynticks counter so that we can later
672 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 673 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
674 */
675static int dyntick_save_progress_counter(struct rcu_data *rdp)
676{
23b5c8fa 677 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 678 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
679}
680
681/*
682 * Return true if the specified CPU has passed through a quiescent
683 * state by virtue of being in or having passed through an dynticks
684 * idle state since the last call to dyntick_save_progress_counter()
685 * for this same CPU.
686 */
687static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
688{
7eb4f455
PM
689 unsigned int curr;
690 unsigned int snap;
64db4cff 691
7eb4f455
PM
692 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
693 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
694
695 /*
696 * If the CPU passed through or entered a dynticks idle phase with
697 * no active irq/NMI handlers, then we can safely pretend that the CPU
698 * already acknowledged the request to pass through a quiescent
699 * state. Either way, that CPU cannot possibly be in an RCU
700 * read-side critical section that started before the beginning
701 * of the current RCU grace period.
702 */
7eb4f455 703 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 704 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
705 rdp->dynticks_fqs++;
706 return 1;
707 }
708
709 /* Go check for the CPU being offline. */
710 return rcu_implicit_offline_qs(rdp);
711}
712
13cfcca0
PM
713static int jiffies_till_stall_check(void)
714{
715 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
716
717 /*
718 * Limit check must be consistent with the Kconfig limits
719 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
720 */
721 if (till_stall_check < 3) {
722 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
723 till_stall_check = 3;
724 } else if (till_stall_check > 300) {
725 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
726 till_stall_check = 300;
727 }
728 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
729}
730
64db4cff
PM
731static void record_gp_stall_check_time(struct rcu_state *rsp)
732{
733 rsp->gp_start = jiffies;
13cfcca0 734 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
735}
736
737static void print_other_cpu_stall(struct rcu_state *rsp)
738{
739 int cpu;
740 long delta;
741 unsigned long flags;
9bc8b558 742 int ndetected;
64db4cff 743 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
744
745 /* Only let one CPU complain about others per time interval. */
746
1304afb2 747 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 748 delta = jiffies - rsp->jiffies_stall;
fc2219d4 749 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 750 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
751 return;
752 }
13cfcca0 753 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 754 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 755
8cdd32a9
PM
756 /*
757 * OK, time to rat on our buddy...
758 * See Documentation/RCU/stallwarn.txt for info on how to debug
759 * RCU CPU stall warnings.
760 */
a858af28 761 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 762 rsp->name);
a858af28 763 print_cpu_stall_info_begin();
a0b6c9a7 764 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 765 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 766 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 767 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 768 if (rnp->qsmask == 0)
64db4cff 769 continue;
a0b6c9a7 770 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 771 if (rnp->qsmask & (1UL << cpu)) {
a858af28 772 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
773 ndetected++;
774 }
64db4cff 775 }
a858af28
PM
776
777 /*
778 * Now rat on any tasks that got kicked up to the root rcu_node
779 * due to CPU offlining.
780 */
781 rnp = rcu_get_root(rsp);
782 raw_spin_lock_irqsave(&rnp->lock, flags);
783 ndetected = rcu_print_task_stall(rnp);
784 raw_spin_unlock_irqrestore(&rnp->lock, flags);
785
786 print_cpu_stall_info_end();
787 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 788 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
789 if (ndetected == 0)
790 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
791 else if (!trigger_all_cpu_backtrace())
4627e240 792 dump_stack();
c1dc0b9c 793
1ed509a2
PM
794 /* If so configured, complain about tasks blocking the grace period. */
795
796 rcu_print_detail_task_stall(rsp);
797
64db4cff
PM
798 force_quiescent_state(rsp, 0); /* Kick them all. */
799}
800
801static void print_cpu_stall(struct rcu_state *rsp)
802{
803 unsigned long flags;
804 struct rcu_node *rnp = rcu_get_root(rsp);
805
8cdd32a9
PM
806 /*
807 * OK, time to rat on ourselves...
808 * See Documentation/RCU/stallwarn.txt for info on how to debug
809 * RCU CPU stall warnings.
810 */
a858af28
PM
811 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
812 print_cpu_stall_info_begin();
813 print_cpu_stall_info(rsp, smp_processor_id());
814 print_cpu_stall_info_end();
815 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
816 if (!trigger_all_cpu_backtrace())
817 dump_stack();
c1dc0b9c 818
1304afb2 819 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 820 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
821 rsp->jiffies_stall = jiffies +
822 3 * jiffies_till_stall_check() + 3;
1304afb2 823 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 824
64db4cff
PM
825 set_need_resched(); /* kick ourselves to get things going. */
826}
827
828static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
829{
bad6e139
PM
830 unsigned long j;
831 unsigned long js;
64db4cff
PM
832 struct rcu_node *rnp;
833
742734ee 834 if (rcu_cpu_stall_suppress)
c68de209 835 return;
bad6e139
PM
836 j = ACCESS_ONCE(jiffies);
837 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 838 rnp = rdp->mynode;
bad6e139 839 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
840
841 /* We haven't checked in, so go dump stack. */
842 print_cpu_stall(rsp);
843
bad6e139
PM
844 } else if (rcu_gp_in_progress(rsp) &&
845 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 846
bad6e139 847 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
848 print_other_cpu_stall(rsp);
849 }
850}
851
c68de209
PM
852static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
853{
742734ee 854 rcu_cpu_stall_suppress = 1;
c68de209
PM
855 return NOTIFY_DONE;
856}
857
53d84e00
PM
858/**
859 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
860 *
861 * Set the stall-warning timeout way off into the future, thus preventing
862 * any RCU CPU stall-warning messages from appearing in the current set of
863 * RCU grace periods.
864 *
865 * The caller must disable hard irqs.
866 */
867void rcu_cpu_stall_reset(void)
868{
869 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
870 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
871 rcu_preempt_stall_reset();
872}
873
c68de209
PM
874static struct notifier_block rcu_panic_block = {
875 .notifier_call = rcu_panic,
876};
877
878static void __init check_cpu_stall_init(void)
879{
880 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
881}
882
64db4cff
PM
883/*
884 * Update CPU-local rcu_data state to record the newly noticed grace period.
885 * This is used both when we started the grace period and when we notice
9160306e
PM
886 * that someone else started the grace period. The caller must hold the
887 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
888 * and must have irqs disabled.
64db4cff 889 */
9160306e
PM
890static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
891{
892 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
893 /*
894 * If the current grace period is waiting for this CPU,
895 * set up to detect a quiescent state, otherwise don't
896 * go looking for one.
897 */
9160306e 898 rdp->gpnum = rnp->gpnum;
d4c08f2a 899 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
900 if (rnp->qsmask & rdp->grpmask) {
901 rdp->qs_pending = 1;
e4cc1f22 902 rdp->passed_quiesce = 0;
121dfc4b
PM
903 } else
904 rdp->qs_pending = 0;
a858af28 905 zero_cpu_stall_ticks(rdp);
9160306e
PM
906 }
907}
908
64db4cff
PM
909static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
910{
9160306e
PM
911 unsigned long flags;
912 struct rcu_node *rnp;
913
914 local_irq_save(flags);
915 rnp = rdp->mynode;
916 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 917 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
918 local_irq_restore(flags);
919 return;
920 }
921 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 922 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
923}
924
925/*
926 * Did someone else start a new RCU grace period start since we last
927 * checked? Update local state appropriately if so. Must be called
928 * on the CPU corresponding to rdp.
929 */
930static int
931check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
932{
933 unsigned long flags;
934 int ret = 0;
935
936 local_irq_save(flags);
937 if (rdp->gpnum != rsp->gpnum) {
938 note_new_gpnum(rsp, rdp);
939 ret = 1;
940 }
941 local_irq_restore(flags);
942 return ret;
943}
944
d09b62df
PM
945/*
946 * Advance this CPU's callbacks, but only if the current grace period
947 * has ended. This may be called only from the CPU to whom the rdp
948 * belongs. In addition, the corresponding leaf rcu_node structure's
949 * ->lock must be held by the caller, with irqs disabled.
950 */
951static void
952__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
953{
954 /* Did another grace period end? */
955 if (rdp->completed != rnp->completed) {
956
957 /* Advance callbacks. No harm if list empty. */
958 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
959 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
960 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
961
962 /* Remember that we saw this grace-period completion. */
963 rdp->completed = rnp->completed;
d4c08f2a 964 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 965
5ff8e6f0
FW
966 /*
967 * If we were in an extended quiescent state, we may have
121dfc4b 968 * missed some grace periods that others CPUs handled on
5ff8e6f0 969 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
970 * spurious new grace periods. If another grace period
971 * has started, then rnp->gpnum will have advanced, so
972 * we will detect this later on.
5ff8e6f0 973 */
121dfc4b 974 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
975 rdp->gpnum = rdp->completed;
976
20377f32 977 /*
121dfc4b
PM
978 * If RCU does not need a quiescent state from this CPU,
979 * then make sure that this CPU doesn't go looking for one.
20377f32 980 */
121dfc4b 981 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 982 rdp->qs_pending = 0;
d09b62df
PM
983 }
984}
985
986/*
987 * Advance this CPU's callbacks, but only if the current grace period
988 * has ended. This may be called only from the CPU to whom the rdp
989 * belongs.
990 */
991static void
992rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
993{
994 unsigned long flags;
995 struct rcu_node *rnp;
996
997 local_irq_save(flags);
998 rnp = rdp->mynode;
999 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1000 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1001 local_irq_restore(flags);
1002 return;
1003 }
1004 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1005 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1006}
1007
1008/*
1009 * Do per-CPU grace-period initialization for running CPU. The caller
1010 * must hold the lock of the leaf rcu_node structure corresponding to
1011 * this CPU.
1012 */
1013static void
1014rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1015{
1016 /* Prior grace period ended, so advance callbacks for current CPU. */
1017 __rcu_process_gp_end(rsp, rnp, rdp);
1018
1019 /*
1020 * Because this CPU just now started the new grace period, we know
1021 * that all of its callbacks will be covered by this upcoming grace
1022 * period, even the ones that were registered arbitrarily recently.
1023 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1024 *
1025 * Other CPUs cannot be sure exactly when the grace period started.
1026 * Therefore, their recently registered callbacks must pass through
1027 * an additional RCU_NEXT_READY stage, so that they will be handled
1028 * by the next RCU grace period.
1029 */
1030 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1031 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
1032
1033 /* Set state so that this CPU will detect the next quiescent state. */
1034 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1035}
1036
64db4cff
PM
1037/*
1038 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1039 * in preparation for detecting the next grace period. The caller must hold
1040 * the root node's ->lock, which is released before return. Hard irqs must
1041 * be disabled.
e5601400
PM
1042 *
1043 * Note that it is legal for a dying CPU (which is marked as offline) to
1044 * invoke this function. This can happen when the dying CPU reports its
1045 * quiescent state.
64db4cff
PM
1046 */
1047static void
1048rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1049 __releases(rcu_get_root(rsp)->lock)
1050{
394f99a9 1051 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1052 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1053
037067a1 1054 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1055 !cpu_needs_another_gp(rsp, rdp)) {
1056 /*
1057 * Either the scheduler hasn't yet spawned the first
1058 * non-idle task or this CPU does not need another
1059 * grace period. Either way, don't start a new grace
1060 * period.
1061 */
1062 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1063 return;
1064 }
b32e9eb6 1065
afe24b12 1066 if (rsp->fqs_active) {
b32e9eb6 1067 /*
afe24b12
PM
1068 * This CPU needs a grace period, but force_quiescent_state()
1069 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1070 */
afe24b12
PM
1071 rsp->fqs_need_gp = 1;
1072 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1073 return;
1074 }
1075
1076 /* Advance to a new grace period and initialize state. */
1077 rsp->gpnum++;
d4c08f2a 1078 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1079 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1080 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1081 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1082 record_gp_stall_check_time(rsp);
1304afb2 1083 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1084
64db4cff 1085 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1086 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1087
1088 /*
b835db1f
PM
1089 * Set the quiescent-state-needed bits in all the rcu_node
1090 * structures for all currently online CPUs in breadth-first
1091 * order, starting from the root rcu_node structure. This
1092 * operation relies on the layout of the hierarchy within the
1093 * rsp->node[] array. Note that other CPUs will access only
1094 * the leaves of the hierarchy, which still indicate that no
1095 * grace period is in progress, at least until the corresponding
1096 * leaf node has been initialized. In addition, we have excluded
1097 * CPU-hotplug operations.
64db4cff
PM
1098 *
1099 * Note that the grace period cannot complete until we finish
1100 * the initialization process, as there will be at least one
1101 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1102 * one corresponding to this CPU, due to the fact that we have
1103 * irqs disabled.
64db4cff 1104 */
a0b6c9a7 1105 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1106 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1107 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1108 rnp->qsmask = rnp->qsmaskinit;
de078d87 1109 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1110 rnp->completed = rsp->completed;
1111 if (rnp == rdp->mynode)
1112 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1113 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1114 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1115 rnp->level, rnp->grplo,
1116 rnp->grphi, rnp->qsmask);
1304afb2 1117 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1118 }
1119
83f5b01f 1120 rnp = rcu_get_root(rsp);
1304afb2 1121 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1122 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1123 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1124 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1125}
1126
f41d911f 1127/*
d3f6bad3
PM
1128 * Report a full set of quiescent states to the specified rcu_state
1129 * data structure. This involves cleaning up after the prior grace
1130 * period and letting rcu_start_gp() start up the next grace period
1131 * if one is needed. Note that the caller must hold rnp->lock, as
1132 * required by rcu_start_gp(), which will release it.
f41d911f 1133 */
d3f6bad3 1134static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1135 __releases(rcu_get_root(rsp)->lock)
f41d911f 1136{
15ba0ba8 1137 unsigned long gp_duration;
afe24b12
PM
1138 struct rcu_node *rnp = rcu_get_root(rsp);
1139 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1140
fc2219d4 1141 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1142
1143 /*
1144 * Ensure that all grace-period and pre-grace-period activity
1145 * is seen before the assignment to rsp->completed.
1146 */
1147 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1148 gp_duration = jiffies - rsp->gp_start;
1149 if (gp_duration > rsp->gp_max)
1150 rsp->gp_max = gp_duration;
afe24b12
PM
1151
1152 /*
1153 * We know the grace period is complete, but to everyone else
1154 * it appears to still be ongoing. But it is also the case
1155 * that to everyone else it looks like there is nothing that
1156 * they can do to advance the grace period. It is therefore
1157 * safe for us to drop the lock in order to mark the grace
1158 * period as completed in all of the rcu_node structures.
1159 *
1160 * But if this CPU needs another grace period, it will take
1161 * care of this while initializing the next grace period.
1162 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1163 * because the callbacks have not yet been advanced: Those
1164 * callbacks are waiting on the grace period that just now
1165 * completed.
1166 */
1167 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1168 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1169
1170 /*
1171 * Propagate new ->completed value to rcu_node structures
1172 * so that other CPUs don't have to wait until the start
1173 * of the next grace period to process their callbacks.
1174 */
1175 rcu_for_each_node_breadth_first(rsp, rnp) {
1176 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1177 rnp->completed = rsp->gpnum;
1178 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1179 }
1180 rnp = rcu_get_root(rsp);
1181 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1182 }
1183
1184 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1185 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1186 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1187 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1188}
1189
64db4cff 1190/*
d3f6bad3
PM
1191 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1192 * Allows quiescent states for a group of CPUs to be reported at one go
1193 * to the specified rcu_node structure, though all the CPUs in the group
1194 * must be represented by the same rcu_node structure (which need not be
1195 * a leaf rcu_node structure, though it often will be). That structure's
1196 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1197 */
1198static void
d3f6bad3
PM
1199rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1200 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1201 __releases(rnp->lock)
1202{
28ecd580
PM
1203 struct rcu_node *rnp_c;
1204
64db4cff
PM
1205 /* Walk up the rcu_node hierarchy. */
1206 for (;;) {
1207 if (!(rnp->qsmask & mask)) {
1208
1209 /* Our bit has already been cleared, so done. */
1304afb2 1210 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1211 return;
1212 }
1213 rnp->qsmask &= ~mask;
d4c08f2a
PM
1214 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1215 mask, rnp->qsmask, rnp->level,
1216 rnp->grplo, rnp->grphi,
1217 !!rnp->gp_tasks);
27f4d280 1218 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1219
1220 /* Other bits still set at this level, so done. */
1304afb2 1221 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1222 return;
1223 }
1224 mask = rnp->grpmask;
1225 if (rnp->parent == NULL) {
1226
1227 /* No more levels. Exit loop holding root lock. */
1228
1229 break;
1230 }
1304afb2 1231 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1232 rnp_c = rnp;
64db4cff 1233 rnp = rnp->parent;
1304afb2 1234 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1235 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1236 }
1237
1238 /*
1239 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1240 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1241 * to clean up and start the next grace period if one is needed.
64db4cff 1242 */
d3f6bad3 1243 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1244}
1245
1246/*
d3f6bad3
PM
1247 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1248 * structure. This must be either called from the specified CPU, or
1249 * called when the specified CPU is known to be offline (and when it is
1250 * also known that no other CPU is concurrently trying to help the offline
1251 * CPU). The lastcomp argument is used to make sure we are still in the
1252 * grace period of interest. We don't want to end the current grace period
1253 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1254 */
1255static void
e4cc1f22 1256rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1257{
1258 unsigned long flags;
1259 unsigned long mask;
1260 struct rcu_node *rnp;
1261
1262 rnp = rdp->mynode;
1304afb2 1263 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1264 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1265
1266 /*
e4cc1f22
PM
1267 * The grace period in which this quiescent state was
1268 * recorded has ended, so don't report it upwards.
1269 * We will instead need a new quiescent state that lies
1270 * within the current grace period.
64db4cff 1271 */
e4cc1f22 1272 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1273 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1274 return;
1275 }
1276 mask = rdp->grpmask;
1277 if ((rnp->qsmask & mask) == 0) {
1304afb2 1278 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1279 } else {
1280 rdp->qs_pending = 0;
1281
1282 /*
1283 * This GP can't end until cpu checks in, so all of our
1284 * callbacks can be processed during the next GP.
1285 */
64db4cff
PM
1286 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1287
d3f6bad3 1288 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1289 }
1290}
1291
1292/*
1293 * Check to see if there is a new grace period of which this CPU
1294 * is not yet aware, and if so, set up local rcu_data state for it.
1295 * Otherwise, see if this CPU has just passed through its first
1296 * quiescent state for this grace period, and record that fact if so.
1297 */
1298static void
1299rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1300{
1301 /* If there is now a new grace period, record and return. */
1302 if (check_for_new_grace_period(rsp, rdp))
1303 return;
1304
1305 /*
1306 * Does this CPU still need to do its part for current grace period?
1307 * If no, return and let the other CPUs do their part as well.
1308 */
1309 if (!rdp->qs_pending)
1310 return;
1311
1312 /*
1313 * Was there a quiescent state since the beginning of the grace
1314 * period? If no, then exit and wait for the next call.
1315 */
e4cc1f22 1316 if (!rdp->passed_quiesce)
64db4cff
PM
1317 return;
1318
d3f6bad3
PM
1319 /*
1320 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1321 * judge of that).
1322 */
e4cc1f22 1323 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1324}
1325
1326#ifdef CONFIG_HOTPLUG_CPU
1327
e74f4c45 1328/*
b1420f1c
PM
1329 * Send the specified CPU's RCU callbacks to the orphanage. The
1330 * specified CPU must be offline, and the caller must hold the
1331 * ->onofflock.
e74f4c45 1332 */
b1420f1c
PM
1333static void
1334rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1335 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45
PM
1336{
1337 int i;
e5601400 1338
b1420f1c
PM
1339 /*
1340 * Orphan the callbacks. First adjust the counts. This is safe
1341 * because ->onofflock excludes _rcu_barrier()'s adoption of
1342 * the callbacks, thus no memory barrier is required.
1343 */
a50c3af9 1344 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1345 rsp->qlen_lazy += rdp->qlen_lazy;
1346 rsp->qlen += rdp->qlen;
1347 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9
PM
1348 rdp->qlen_lazy = 0;
1349 rdp->qlen = 0;
1350 }
1351
1352 /*
b1420f1c
PM
1353 * Next, move those callbacks still needing a grace period to
1354 * the orphanage, where some other CPU will pick them up.
1355 * Some of the callbacks might have gone partway through a grace
1356 * period, but that is too bad. They get to start over because we
1357 * cannot assume that grace periods are synchronized across CPUs.
1358 * We don't bother updating the ->nxttail[] array yet, instead
1359 * we just reset the whole thing later on.
a50c3af9 1360 */
b1420f1c
PM
1361 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1362 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1363 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1364 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1365 }
1366
1367 /*
b1420f1c
PM
1368 * Then move the ready-to-invoke callbacks to the orphanage,
1369 * where some other CPU will pick them up. These will not be
1370 * required to pass though another grace period: They are done.
a50c3af9 1371 */
e5601400 1372 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1373 *rsp->orphan_donetail = rdp->nxtlist;
1374 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1375 }
e74f4c45 1376
b1420f1c
PM
1377 /* Finally, initialize the rcu_data structure's list to empty. */
1378 rdp->nxtlist = NULL;
1379 for (i = 0; i < RCU_NEXT_SIZE; i++)
1380 rdp->nxttail[i] = &rdp->nxtlist;
1381}
1382
1383/*
1384 * Adopt the RCU callbacks from the specified rcu_state structure's
1385 * orphanage. The caller must hold the ->onofflock.
1386 */
1387static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1388{
1389 int i;
1390 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1391
a50c3af9 1392 /*
b1420f1c
PM
1393 * If there is an rcu_barrier() operation in progress, then
1394 * only the task doing that operation is permitted to adopt
1395 * callbacks. To do otherwise breaks rcu_barrier() and friends
1396 * by causing them to fail to wait for the callbacks in the
1397 * orphanage.
a50c3af9 1398 */
b1420f1c
PM
1399 if (rsp->rcu_barrier_in_progress &&
1400 rsp->rcu_barrier_in_progress != current)
1401 return;
1402
1403 /* Do the accounting first. */
1404 rdp->qlen_lazy += rsp->qlen_lazy;
1405 rdp->qlen += rsp->qlen;
1406 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1407 if (rsp->qlen_lazy != rsp->qlen)
1408 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1409 rsp->qlen_lazy = 0;
1410 rsp->qlen = 0;
1411
1412 /*
1413 * We do not need a memory barrier here because the only way we
1414 * can get here if there is an rcu_barrier() in flight is if
1415 * we are the task doing the rcu_barrier().
1416 */
1417
1418 /* First adopt the ready-to-invoke callbacks. */
1419 if (rsp->orphan_donelist != NULL) {
1420 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1421 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1422 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1423 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1424 rdp->nxttail[i] = rsp->orphan_donetail;
1425 rsp->orphan_donelist = NULL;
1426 rsp->orphan_donetail = &rsp->orphan_donelist;
1427 }
1428
1429 /* And then adopt the callbacks that still need a grace period. */
1430 if (rsp->orphan_nxtlist != NULL) {
1431 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1432 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1433 rsp->orphan_nxtlist = NULL;
1434 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1435 }
1436}
1437
1438/*
1439 * Trace the fact that this CPU is going offline.
1440 */
1441static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1442{
1443 RCU_TRACE(unsigned long mask);
1444 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1445 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1446
1447 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1448 trace_rcu_grace_period(rsp->name,
1449 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1450 "cpuofl");
64db4cff
PM
1451}
1452
1453/*
e5601400 1454 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1455 * this fact from process context. Do the remainder of the cleanup,
1456 * including orphaning the outgoing CPU's RCU callbacks, and also
1457 * adopting them, if there is no _rcu_barrier() instance running.
e5601400
PM
1458 * There can only be one CPU hotplug operation at a time, so no other
1459 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1460 */
e5601400 1461static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1462{
2036d94a
PM
1463 unsigned long flags;
1464 unsigned long mask;
1465 int need_report = 0;
e5601400 1466 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1467 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1468
2036d94a 1469 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1470 rcu_stop_cpu_kthread(cpu);
1471 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a 1472
b1420f1c 1473 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1474
1475 /* Exclude any attempts to start a new grace period. */
1476 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1477
b1420f1c
PM
1478 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1479 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1480 rcu_adopt_orphan_cbs(rsp);
1481
2036d94a
PM
1482 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1483 mask = rdp->grpmask; /* rnp->grplo is constant. */
1484 do {
1485 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1486 rnp->qsmaskinit &= ~mask;
1487 if (rnp->qsmaskinit != 0) {
1488 if (rnp != rdp->mynode)
1489 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1490 break;
1491 }
1492 if (rnp == rdp->mynode)
1493 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1494 else
1495 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1496 mask = rnp->grpmask;
1497 rnp = rnp->parent;
1498 } while (rnp != NULL);
1499
1500 /*
1501 * We still hold the leaf rcu_node structure lock here, and
1502 * irqs are still disabled. The reason for this subterfuge is
1503 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1504 * held leads to deadlock.
1505 */
1506 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1507 rnp = rdp->mynode;
1508 if (need_report & RCU_OFL_TASKS_NORM_GP)
1509 rcu_report_unblock_qs_rnp(rnp, flags);
1510 else
1511 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1512 if (need_report & RCU_OFL_TASKS_EXP_GP)
1513 rcu_report_exp_rnp(rsp, rnp, true);
64db4cff
PM
1514}
1515
1516#else /* #ifdef CONFIG_HOTPLUG_CPU */
1517
b1420f1c
PM
1518static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1519{
1520}
1521
e5601400 1522static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1523{
1524}
1525
e5601400 1526static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1527{
1528}
1529
1530#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1531
1532/*
1533 * Invoke any RCU callbacks that have made it to the end of their grace
1534 * period. Thottle as specified by rdp->blimit.
1535 */
37c72e56 1536static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1537{
1538 unsigned long flags;
1539 struct rcu_head *next, *list, **tail;
b41772ab 1540 int bl, count, count_lazy, i;
64db4cff
PM
1541
1542 /* If no callbacks are ready, just return.*/
29c00b4a 1543 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1544 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1545 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1546 need_resched(), is_idle_task(current),
1547 rcu_is_callbacks_kthread());
64db4cff 1548 return;
29c00b4a 1549 }
64db4cff
PM
1550
1551 /*
1552 * Extract the list of ready callbacks, disabling to prevent
1553 * races with call_rcu() from interrupt handlers.
1554 */
1555 local_irq_save(flags);
8146c4e2 1556 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1557 bl = rdp->blimit;
486e2593 1558 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1559 list = rdp->nxtlist;
1560 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1561 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1562 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1563 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1564 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1565 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1566 local_irq_restore(flags);
1567
1568 /* Invoke callbacks. */
486e2593 1569 count = count_lazy = 0;
64db4cff
PM
1570 while (list) {
1571 next = list->next;
1572 prefetch(next);
551d55a9 1573 debug_rcu_head_unqueue(list);
486e2593
PM
1574 if (__rcu_reclaim(rsp->name, list))
1575 count_lazy++;
64db4cff 1576 list = next;
dff1672d
PM
1577 /* Stop only if limit reached and CPU has something to do. */
1578 if (++count >= bl &&
1579 (need_resched() ||
1580 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1581 break;
1582 }
1583
1584 local_irq_save(flags);
4968c300
PM
1585 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1586 is_idle_task(current),
1587 rcu_is_callbacks_kthread());
64db4cff
PM
1588
1589 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1590 if (list != NULL) {
1591 *tail = rdp->nxtlist;
1592 rdp->nxtlist = list;
b41772ab
PM
1593 for (i = 0; i < RCU_NEXT_SIZE; i++)
1594 if (&rdp->nxtlist == rdp->nxttail[i])
1595 rdp->nxttail[i] = tail;
64db4cff
PM
1596 else
1597 break;
1598 }
b1420f1c
PM
1599 smp_mb(); /* List handling before counting for rcu_barrier(). */
1600 rdp->qlen_lazy -= count_lazy;
1601 rdp->qlen -= count;
1602 rdp->n_cbs_invoked += count;
64db4cff
PM
1603
1604 /* Reinstate batch limit if we have worked down the excess. */
1605 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1606 rdp->blimit = blimit;
1607
37c72e56
PM
1608 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1609 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1610 rdp->qlen_last_fqs_check = 0;
1611 rdp->n_force_qs_snap = rsp->n_force_qs;
1612 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1613 rdp->qlen_last_fqs_check = rdp->qlen;
1614
64db4cff
PM
1615 local_irq_restore(flags);
1616
e0f23060 1617 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1618 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1619 invoke_rcu_core();
64db4cff
PM
1620}
1621
1622/*
1623 * Check to see if this CPU is in a non-context-switch quiescent state
1624 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1625 * Also schedule RCU core processing.
64db4cff 1626 *
9b2e4f18 1627 * This function must be called from hardirq context. It is normally
64db4cff
PM
1628 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1629 * false, there is no point in invoking rcu_check_callbacks().
1630 */
1631void rcu_check_callbacks(int cpu, int user)
1632{
300df91c 1633 trace_rcu_utilization("Start scheduler-tick");
a858af28 1634 increment_cpu_stall_ticks();
9b2e4f18 1635 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1636
1637 /*
1638 * Get here if this CPU took its interrupt from user
1639 * mode or from the idle loop, and if this is not a
1640 * nested interrupt. In this case, the CPU is in
d6714c22 1641 * a quiescent state, so note it.
64db4cff
PM
1642 *
1643 * No memory barrier is required here because both
d6714c22
PM
1644 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1645 * variables that other CPUs neither access nor modify,
1646 * at least not while the corresponding CPU is online.
64db4cff
PM
1647 */
1648
d6714c22
PM
1649 rcu_sched_qs(cpu);
1650 rcu_bh_qs(cpu);
64db4cff
PM
1651
1652 } else if (!in_softirq()) {
1653
1654 /*
1655 * Get here if this CPU did not take its interrupt from
1656 * softirq, in other words, if it is not interrupting
1657 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1658 * critical section, so note it.
64db4cff
PM
1659 */
1660
d6714c22 1661 rcu_bh_qs(cpu);
64db4cff 1662 }
f41d911f 1663 rcu_preempt_check_callbacks(cpu);
d21670ac 1664 if (rcu_pending(cpu))
a46e0899 1665 invoke_rcu_core();
300df91c 1666 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1667}
1668
64db4cff
PM
1669/*
1670 * Scan the leaf rcu_node structures, processing dyntick state for any that
1671 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1672 * Also initiate boosting for any threads blocked on the root rcu_node.
1673 *
ee47eb9f 1674 * The caller must have suppressed start of new grace periods.
64db4cff 1675 */
45f014c5 1676static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1677{
1678 unsigned long bit;
1679 int cpu;
1680 unsigned long flags;
1681 unsigned long mask;
a0b6c9a7 1682 struct rcu_node *rnp;
64db4cff 1683
a0b6c9a7 1684 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1685 mask = 0;
1304afb2 1686 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1687 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1688 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1689 return;
64db4cff 1690 }
a0b6c9a7 1691 if (rnp->qsmask == 0) {
1217ed1b 1692 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1693 continue;
1694 }
a0b6c9a7 1695 cpu = rnp->grplo;
64db4cff 1696 bit = 1;
a0b6c9a7 1697 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1698 if ((rnp->qsmask & bit) != 0 &&
1699 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1700 mask |= bit;
1701 }
45f014c5 1702 if (mask != 0) {
64db4cff 1703
d3f6bad3
PM
1704 /* rcu_report_qs_rnp() releases rnp->lock. */
1705 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1706 continue;
1707 }
1304afb2 1708 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1709 }
27f4d280 1710 rnp = rcu_get_root(rsp);
1217ed1b
PM
1711 if (rnp->qsmask == 0) {
1712 raw_spin_lock_irqsave(&rnp->lock, flags);
1713 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1714 }
64db4cff
PM
1715}
1716
1717/*
1718 * Force quiescent states on reluctant CPUs, and also detect which
1719 * CPUs are in dyntick-idle mode.
1720 */
1721static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1722{
1723 unsigned long flags;
64db4cff 1724 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1725
300df91c
PM
1726 trace_rcu_utilization("Start fqs");
1727 if (!rcu_gp_in_progress(rsp)) {
1728 trace_rcu_utilization("End fqs");
64db4cff 1729 return; /* No grace period in progress, nothing to force. */
300df91c 1730 }
1304afb2 1731 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1732 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1733 trace_rcu_utilization("End fqs");
64db4cff
PM
1734 return; /* Someone else is already on the job. */
1735 }
20133cfc 1736 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1737 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1738 rsp->n_force_qs++;
1304afb2 1739 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1740 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1741 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1742 rsp->n_force_qs_ngp++;
1304afb2 1743 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1744 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1745 }
07079d53 1746 rsp->fqs_active = 1;
af446b70 1747 switch (rsp->fqs_state) {
83f5b01f 1748 case RCU_GP_IDLE:
64db4cff
PM
1749 case RCU_GP_INIT:
1750
83f5b01f 1751 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1752
1753 case RCU_SAVE_DYNTICK:
64db4cff
PM
1754 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1755 break; /* So gcc recognizes the dead code. */
1756
f261414f
LJ
1757 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1758
64db4cff 1759 /* Record dyntick-idle state. */
45f014c5 1760 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1761 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1762 if (rcu_gp_in_progress(rsp))
af446b70 1763 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1764 break;
64db4cff
PM
1765
1766 case RCU_FORCE_QS:
1767
1768 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1769 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1770 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1771
1772 /* Leave state in case more forcing is required. */
1773
1304afb2 1774 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1775 break;
64db4cff 1776 }
07079d53 1777 rsp->fqs_active = 0;
46a1e34e 1778 if (rsp->fqs_need_gp) {
1304afb2 1779 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1780 rsp->fqs_need_gp = 0;
1781 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1782 trace_rcu_utilization("End fqs");
46a1e34e
PM
1783 return;
1784 }
1304afb2 1785 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1786unlock_fqs_ret:
1304afb2 1787 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1788 trace_rcu_utilization("End fqs");
64db4cff
PM
1789}
1790
64db4cff 1791/*
e0f23060
PM
1792 * This does the RCU core processing work for the specified rcu_state
1793 * and rcu_data structures. This may be called only from the CPU to
1794 * whom the rdp belongs.
64db4cff
PM
1795 */
1796static void
1797__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1798{
1799 unsigned long flags;
1800
2e597558
PM
1801 WARN_ON_ONCE(rdp->beenonline == 0);
1802
64db4cff
PM
1803 /*
1804 * If an RCU GP has gone long enough, go check for dyntick
1805 * idle CPUs and, if needed, send resched IPIs.
1806 */
20133cfc 1807 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1808 force_quiescent_state(rsp, 1);
1809
1810 /*
1811 * Advance callbacks in response to end of earlier grace
1812 * period that some other CPU ended.
1813 */
1814 rcu_process_gp_end(rsp, rdp);
1815
1816 /* Update RCU state based on any recent quiescent states. */
1817 rcu_check_quiescent_state(rsp, rdp);
1818
1819 /* Does this CPU require a not-yet-started grace period? */
1820 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1821 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1822 rcu_start_gp(rsp, flags); /* releases above lock */
1823 }
1824
1825 /* If there are callbacks ready, invoke them. */
09223371 1826 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1827 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1828}
1829
64db4cff 1830/*
e0f23060 1831 * Do RCU core processing for the current CPU.
64db4cff 1832 */
09223371 1833static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1834{
300df91c 1835 trace_rcu_utilization("Start RCU core");
d6714c22
PM
1836 __rcu_process_callbacks(&rcu_sched_state,
1837 &__get_cpu_var(rcu_sched_data));
64db4cff 1838 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1839 rcu_preempt_process_callbacks();
300df91c 1840 trace_rcu_utilization("End RCU core");
64db4cff
PM
1841}
1842
a26ac245 1843/*
e0f23060
PM
1844 * Schedule RCU callback invocation. If the specified type of RCU
1845 * does not support RCU priority boosting, just do a direct call,
1846 * otherwise wake up the per-CPU kernel kthread. Note that because we
1847 * are running on the current CPU with interrupts disabled, the
1848 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1849 */
a46e0899 1850static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1851{
b0d30417
PM
1852 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1853 return;
a46e0899
PM
1854 if (likely(!rsp->boost)) {
1855 rcu_do_batch(rsp, rdp);
a26ac245
PM
1856 return;
1857 }
a46e0899 1858 invoke_rcu_callbacks_kthread();
a26ac245
PM
1859}
1860
a46e0899 1861static void invoke_rcu_core(void)
09223371
SL
1862{
1863 raise_softirq(RCU_SOFTIRQ);
1864}
1865
64db4cff
PM
1866static void
1867__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1868 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1869{
1870 unsigned long flags;
1871 struct rcu_data *rdp;
1872
0bb7b59d 1873 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1874 debug_rcu_head_queue(head);
64db4cff
PM
1875 head->func = func;
1876 head->next = NULL;
1877
1878 smp_mb(); /* Ensure RCU update seen before callback registry. */
1879
1880 /*
1881 * Opportunistically note grace-period endings and beginnings.
1882 * Note that we might see a beginning right after we see an
1883 * end, but never vice versa, since this CPU has to pass through
1884 * a quiescent state betweentimes.
1885 */
1886 local_irq_save(flags);
394f99a9 1887 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1888
1889 /* Add the callback to our list. */
2655d57e 1890 rdp->qlen++;
486e2593
PM
1891 if (lazy)
1892 rdp->qlen_lazy++;
c57afe80
PM
1893 else
1894 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1895 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1896 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1897 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1898
d4c08f2a
PM
1899 if (__is_kfree_rcu_offset((unsigned long)func))
1900 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1901 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1902 else
486e2593 1903 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1904
2655d57e
PM
1905 /* If interrupts were disabled, don't dive into RCU core. */
1906 if (irqs_disabled_flags(flags)) {
1907 local_irq_restore(flags);
1908 return;
1909 }
64db4cff 1910
37c72e56
PM
1911 /*
1912 * Force the grace period if too many callbacks or too long waiting.
1913 * Enforce hysteresis, and don't invoke force_quiescent_state()
1914 * if some other CPU has recently done so. Also, don't bother
1915 * invoking force_quiescent_state() if the newly enqueued callback
1916 * is the only one waiting for a grace period to complete.
1917 */
2655d57e 1918 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1919
1920 /* Are we ignoring a completed grace period? */
1921 rcu_process_gp_end(rsp, rdp);
1922 check_for_new_grace_period(rsp, rdp);
1923
1924 /* Start a new grace period if one not already started. */
1925 if (!rcu_gp_in_progress(rsp)) {
1926 unsigned long nestflag;
1927 struct rcu_node *rnp_root = rcu_get_root(rsp);
1928
1929 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1930 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1931 } else {
1932 /* Give the grace period a kick. */
1933 rdp->blimit = LONG_MAX;
1934 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1935 *rdp->nxttail[RCU_DONE_TAIL] != head)
1936 force_quiescent_state(rsp, 0);
1937 rdp->n_force_qs_snap = rsp->n_force_qs;
1938 rdp->qlen_last_fqs_check = rdp->qlen;
1939 }
20133cfc 1940 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1941 force_quiescent_state(rsp, 1);
1942 local_irq_restore(flags);
1943}
1944
1945/*
d6714c22 1946 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1947 */
d6714c22 1948void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1949{
486e2593 1950 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1951}
d6714c22 1952EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1953
1954/*
486e2593 1955 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1956 */
1957void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1958{
486e2593 1959 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1960}
1961EXPORT_SYMBOL_GPL(call_rcu_bh);
1962
6d813391
PM
1963/*
1964 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1965 * any blocking grace-period wait automatically implies a grace period
1966 * if there is only one CPU online at any point time during execution
1967 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1968 * occasionally incorrectly indicate that there are multiple CPUs online
1969 * when there was in fact only one the whole time, as this just adds
1970 * some overhead: RCU still operates correctly.
1971 *
1972 * Of course, sampling num_online_cpus() with preemption enabled can
1973 * give erroneous results if there are concurrent CPU-hotplug operations.
1974 * For example, given a demonic sequence of preemptions in num_online_cpus()
1975 * and CPU-hotplug operations, there could be two or more CPUs online at
1976 * all times, but num_online_cpus() might well return one (or even zero).
1977 *
1978 * However, all such demonic sequences require at least one CPU-offline
1979 * operation. Furthermore, rcu_blocking_is_gp() giving the wrong answer
1980 * is only a problem if there is an RCU read-side critical section executing
1981 * throughout. But RCU-sched and RCU-bh read-side critical sections
1982 * disable either preemption or bh, which prevents a CPU from going offline.
1983 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
1984 * that there is only one CPU when in fact there was more than one throughout
1985 * is when there were no RCU readers in the system. If there are no
1986 * RCU readers, the grace period by definition can be of zero length,
1987 * regardless of the number of online CPUs.
1988 */
1989static inline int rcu_blocking_is_gp(void)
1990{
1991 might_sleep(); /* Check for RCU read-side critical section. */
1992 return num_online_cpus() <= 1;
1993}
1994
6ebb237b
PM
1995/**
1996 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1997 *
1998 * Control will return to the caller some time after a full rcu-sched
1999 * grace period has elapsed, in other words after all currently executing
2000 * rcu-sched read-side critical sections have completed. These read-side
2001 * critical sections are delimited by rcu_read_lock_sched() and
2002 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2003 * local_irq_disable(), and so on may be used in place of
2004 * rcu_read_lock_sched().
2005 *
2006 * This means that all preempt_disable code sequences, including NMI and
2007 * hardware-interrupt handlers, in progress on entry will have completed
2008 * before this primitive returns. However, this does not guarantee that
2009 * softirq handlers will have completed, since in some kernels, these
2010 * handlers can run in process context, and can block.
2011 *
2012 * This primitive provides the guarantees made by the (now removed)
2013 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2014 * guarantees that rcu_read_lock() sections will have completed.
2015 * In "classic RCU", these two guarantees happen to be one and
2016 * the same, but can differ in realtime RCU implementations.
2017 */
2018void synchronize_sched(void)
2019{
fe15d706
PM
2020 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2021 !lock_is_held(&rcu_lock_map) &&
2022 !lock_is_held(&rcu_sched_lock_map),
2023 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2024 if (rcu_blocking_is_gp())
2025 return;
2c42818e 2026 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2027}
2028EXPORT_SYMBOL_GPL(synchronize_sched);
2029
2030/**
2031 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2032 *
2033 * Control will return to the caller some time after a full rcu_bh grace
2034 * period has elapsed, in other words after all currently executing rcu_bh
2035 * read-side critical sections have completed. RCU read-side critical
2036 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2037 * and may be nested.
2038 */
2039void synchronize_rcu_bh(void)
2040{
fe15d706
PM
2041 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2042 !lock_is_held(&rcu_lock_map) &&
2043 !lock_is_held(&rcu_sched_lock_map),
2044 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2045 if (rcu_blocking_is_gp())
2046 return;
2c42818e 2047 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2048}
2049EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2050
3d3b7db0
PM
2051static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2052static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2053
2054static int synchronize_sched_expedited_cpu_stop(void *data)
2055{
2056 /*
2057 * There must be a full memory barrier on each affected CPU
2058 * between the time that try_stop_cpus() is called and the
2059 * time that it returns.
2060 *
2061 * In the current initial implementation of cpu_stop, the
2062 * above condition is already met when the control reaches
2063 * this point and the following smp_mb() is not strictly
2064 * necessary. Do smp_mb() anyway for documentation and
2065 * robustness against future implementation changes.
2066 */
2067 smp_mb(); /* See above comment block. */
2068 return 0;
2069}
2070
236fefaf
PM
2071/**
2072 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2073 *
2074 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2075 * approach to force the grace period to end quickly. This consumes
2076 * significant time on all CPUs and is unfriendly to real-time workloads,
2077 * so is thus not recommended for any sort of common-case code. In fact,
2078 * if you are using synchronize_sched_expedited() in a loop, please
2079 * restructure your code to batch your updates, and then use a single
2080 * synchronize_sched() instead.
3d3b7db0 2081 *
236fefaf
PM
2082 * Note that it is illegal to call this function while holding any lock
2083 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2084 * to call this function from a CPU-hotplug notifier. Failing to observe
2085 * these restriction will result in deadlock.
3d3b7db0
PM
2086 *
2087 * This implementation can be thought of as an application of ticket
2088 * locking to RCU, with sync_sched_expedited_started and
2089 * sync_sched_expedited_done taking on the roles of the halves
2090 * of the ticket-lock word. Each task atomically increments
2091 * sync_sched_expedited_started upon entry, snapshotting the old value,
2092 * then attempts to stop all the CPUs. If this succeeds, then each
2093 * CPU will have executed a context switch, resulting in an RCU-sched
2094 * grace period. We are then done, so we use atomic_cmpxchg() to
2095 * update sync_sched_expedited_done to match our snapshot -- but
2096 * only if someone else has not already advanced past our snapshot.
2097 *
2098 * On the other hand, if try_stop_cpus() fails, we check the value
2099 * of sync_sched_expedited_done. If it has advanced past our
2100 * initial snapshot, then someone else must have forced a grace period
2101 * some time after we took our snapshot. In this case, our work is
2102 * done for us, and we can simply return. Otherwise, we try again,
2103 * but keep our initial snapshot for purposes of checking for someone
2104 * doing our work for us.
2105 *
2106 * If we fail too many times in a row, we fall back to synchronize_sched().
2107 */
2108void synchronize_sched_expedited(void)
2109{
2110 int firstsnap, s, snap, trycount = 0;
2111
2112 /* Note that atomic_inc_return() implies full memory barrier. */
2113 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2114 get_online_cpus();
1cc85961 2115 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2116
2117 /*
2118 * Each pass through the following loop attempts to force a
2119 * context switch on each CPU.
2120 */
2121 while (try_stop_cpus(cpu_online_mask,
2122 synchronize_sched_expedited_cpu_stop,
2123 NULL) == -EAGAIN) {
2124 put_online_cpus();
2125
2126 /* No joy, try again later. Or just synchronize_sched(). */
2127 if (trycount++ < 10)
2128 udelay(trycount * num_online_cpus());
2129 else {
2130 synchronize_sched();
2131 return;
2132 }
2133
2134 /* Check to see if someone else did our work for us. */
2135 s = atomic_read(&sync_sched_expedited_done);
2136 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2137 smp_mb(); /* ensure test happens before caller kfree */
2138 return;
2139 }
2140
2141 /*
2142 * Refetching sync_sched_expedited_started allows later
2143 * callers to piggyback on our grace period. We subtract
2144 * 1 to get the same token that the last incrementer got.
2145 * We retry after they started, so our grace period works
2146 * for them, and they started after our first try, so their
2147 * grace period works for us.
2148 */
2149 get_online_cpus();
2150 snap = atomic_read(&sync_sched_expedited_started);
2151 smp_mb(); /* ensure read is before try_stop_cpus(). */
2152 }
2153
2154 /*
2155 * Everyone up to our most recent fetch is covered by our grace
2156 * period. Update the counter, but only if our work is still
2157 * relevant -- which it won't be if someone who started later
2158 * than we did beat us to the punch.
2159 */
2160 do {
2161 s = atomic_read(&sync_sched_expedited_done);
2162 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2163 smp_mb(); /* ensure test happens before caller kfree */
2164 break;
2165 }
2166 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2167
2168 put_online_cpus();
2169}
2170EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2171
64db4cff
PM
2172/*
2173 * Check to see if there is any immediate RCU-related work to be done
2174 * by the current CPU, for the specified type of RCU, returning 1 if so.
2175 * The checks are in order of increasing expense: checks that can be
2176 * carried out against CPU-local state are performed first. However,
2177 * we must check for CPU stalls first, else we might not get a chance.
2178 */
2179static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2180{
2f51f988
PM
2181 struct rcu_node *rnp = rdp->mynode;
2182
64db4cff
PM
2183 rdp->n_rcu_pending++;
2184
2185 /* Check for CPU stalls, if enabled. */
2186 check_cpu_stall(rsp, rdp);
2187
2188 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2189 if (rcu_scheduler_fully_active &&
2190 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2191
2192 /*
2193 * If force_quiescent_state() coming soon and this CPU
2194 * needs a quiescent state, and this is either RCU-sched
2195 * or RCU-bh, force a local reschedule.
2196 */
d21670ac 2197 rdp->n_rp_qs_pending++;
6cc68793 2198 if (!rdp->preemptible &&
d25eb944
PM
2199 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2200 jiffies))
2201 set_need_resched();
e4cc1f22 2202 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2203 rdp->n_rp_report_qs++;
64db4cff 2204 return 1;
7ba5c840 2205 }
64db4cff
PM
2206
2207 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2208 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2209 rdp->n_rp_cb_ready++;
64db4cff 2210 return 1;
7ba5c840 2211 }
64db4cff
PM
2212
2213 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2214 if (cpu_needs_another_gp(rsp, rdp)) {
2215 rdp->n_rp_cpu_needs_gp++;
64db4cff 2216 return 1;
7ba5c840 2217 }
64db4cff
PM
2218
2219 /* Has another RCU grace period completed? */
2f51f988 2220 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2221 rdp->n_rp_gp_completed++;
64db4cff 2222 return 1;
7ba5c840 2223 }
64db4cff
PM
2224
2225 /* Has a new RCU grace period started? */
2f51f988 2226 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2227 rdp->n_rp_gp_started++;
64db4cff 2228 return 1;
7ba5c840 2229 }
64db4cff
PM
2230
2231 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2232 if (rcu_gp_in_progress(rsp) &&
20133cfc 2233 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2234 rdp->n_rp_need_fqs++;
64db4cff 2235 return 1;
7ba5c840 2236 }
64db4cff
PM
2237
2238 /* nothing to do */
7ba5c840 2239 rdp->n_rp_need_nothing++;
64db4cff
PM
2240 return 0;
2241}
2242
2243/*
2244 * Check to see if there is any immediate RCU-related work to be done
2245 * by the current CPU, returning 1 if so. This function is part of the
2246 * RCU implementation; it is -not- an exported member of the RCU API.
2247 */
a157229c 2248static int rcu_pending(int cpu)
64db4cff 2249{
d6714c22 2250 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
2251 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2252 rcu_preempt_pending(cpu);
64db4cff
PM
2253}
2254
2255/*
2256 * Check to see if any future RCU-related work will need to be done
2257 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2258 * 1 if so.
64db4cff 2259 */
aea1b35e 2260static int rcu_cpu_has_callbacks(int cpu)
64db4cff
PM
2261{
2262 /* RCU callbacks either ready or pending? */
d6714c22 2263 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f 2264 per_cpu(rcu_bh_data, cpu).nxtlist ||
30fbcc90 2265 rcu_preempt_cpu_has_callbacks(cpu);
64db4cff
PM
2266}
2267
b1420f1c
PM
2268/*
2269 * RCU callback function for _rcu_barrier(). If we are last, wake
2270 * up the task executing _rcu_barrier().
2271 */
d0ec774c
PM
2272static void rcu_barrier_callback(struct rcu_head *notused)
2273{
2274 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2275 complete(&rcu_barrier_completion);
2276}
2277
2278/*
2279 * Called with preemption disabled, and from cross-cpu IRQ context.
2280 */
2281static void rcu_barrier_func(void *type)
2282{
2283 int cpu = smp_processor_id();
2284 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2285 void (*call_rcu_func)(struct rcu_head *head,
2286 void (*func)(struct rcu_head *head));
2287
2288 atomic_inc(&rcu_barrier_cpu_count);
2289 call_rcu_func = type;
2290 call_rcu_func(head, rcu_barrier_callback);
2291}
2292
d0ec774c
PM
2293/*
2294 * Orchestrate the specified type of RCU barrier, waiting for all
2295 * RCU callbacks of the specified type to complete.
2296 */
e74f4c45
PM
2297static void _rcu_barrier(struct rcu_state *rsp,
2298 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
2299 void (*func)(struct rcu_head *head)))
2300{
b1420f1c
PM
2301 int cpu;
2302 unsigned long flags;
2303 struct rcu_data *rdp;
2304 struct rcu_head rh;
2305
2306 init_rcu_head_on_stack(&rh);
2307
e74f4c45 2308 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c 2309 mutex_lock(&rcu_barrier_mutex);
b1420f1c
PM
2310
2311 smp_mb(); /* Prevent any prior operations from leaking in. */
2312
d0ec774c 2313 /*
b1420f1c
PM
2314 * Initialize the count to one rather than to zero in order to
2315 * avoid a too-soon return to zero in case of a short grace period
2316 * (or preemption of this task). Also flag this task as doing
2317 * an rcu_barrier(). This will prevent anyone else from adopting
2318 * orphaned callbacks, which could cause otherwise failure if a
2319 * CPU went offline and quickly came back online. To see this,
2320 * consider the following sequence of events:
2321 *
2322 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2323 * 2. CPU 1 goes offline, orphaning its callbacks.
2324 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2325 * 4. CPU 1 comes back online.
2326 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2327 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2328 * us -- but before CPU 1's orphaned callbacks are invoked!!!
d0ec774c 2329 */
b1420f1c 2330 init_completion(&rcu_barrier_completion);
d0ec774c 2331 atomic_set(&rcu_barrier_cpu_count, 1);
b1420f1c
PM
2332 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2333 rsp->rcu_barrier_in_progress = current;
2334 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2335
2336 /*
2337 * Force every CPU with callbacks to register a new callback
2338 * that will tell us when all the preceding callbacks have
2339 * been invoked. If an offline CPU has callbacks, wait for
2340 * it to either come back online or to finish orphaning those
2341 * callbacks.
2342 */
2343 for_each_possible_cpu(cpu) {
2344 preempt_disable();
2345 rdp = per_cpu_ptr(rsp->rda, cpu);
2346 if (cpu_is_offline(cpu)) {
2347 preempt_enable();
2348 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2349 schedule_timeout_interruptible(1);
2350 } else if (ACCESS_ONCE(rdp->qlen)) {
2351 smp_call_function_single(cpu, rcu_barrier_func,
2352 (void *)call_rcu_func, 1);
2353 preempt_enable();
2354 } else {
2355 preempt_enable();
2356 }
2357 }
2358
2359 /*
2360 * Now that all online CPUs have rcu_barrier_callback() callbacks
2361 * posted, we can adopt all of the orphaned callbacks and place
2362 * an rcu_barrier_callback() callback after them. When that is done,
2363 * we are guaranteed to have an rcu_barrier_callback() callback
2364 * following every callback that could possibly have been
2365 * registered before _rcu_barrier() was called.
2366 */
2367 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2368 rcu_adopt_orphan_cbs(rsp);
2369 rsp->rcu_barrier_in_progress = NULL;
2370 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2371 atomic_inc(&rcu_barrier_cpu_count);
2372 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2373 call_rcu_func(&rh, rcu_barrier_callback);
2374
2375 /*
2376 * Now that we have an rcu_barrier_callback() callback on each
2377 * CPU, and thus each counted, remove the initial count.
2378 */
d0ec774c
PM
2379 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2380 complete(&rcu_barrier_completion);
b1420f1c
PM
2381
2382 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
d0ec774c 2383 wait_for_completion(&rcu_barrier_completion);
b1420f1c
PM
2384
2385 /* Other rcu_barrier() invocations can now safely proceed. */
d0ec774c 2386 mutex_unlock(&rcu_barrier_mutex);
b1420f1c
PM
2387
2388 destroy_rcu_head_on_stack(&rh);
d0ec774c 2389}
d0ec774c
PM
2390
2391/**
2392 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2393 */
2394void rcu_barrier_bh(void)
2395{
e74f4c45 2396 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
2397}
2398EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2399
2400/**
2401 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2402 */
2403void rcu_barrier_sched(void)
2404{
e74f4c45 2405 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
2406}
2407EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2408
64db4cff 2409/*
27569620 2410 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2411 */
27569620
PM
2412static void __init
2413rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2414{
2415 unsigned long flags;
2416 int i;
394f99a9 2417 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2418 struct rcu_node *rnp = rcu_get_root(rsp);
2419
2420 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2421 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
2422 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2423 rdp->nxtlist = NULL;
2424 for (i = 0; i < RCU_NEXT_SIZE; i++)
2425 rdp->nxttail[i] = &rdp->nxtlist;
486e2593 2426 rdp->qlen_lazy = 0;
27569620 2427 rdp->qlen = 0;
27569620 2428 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2429 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2430 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2431 rdp->cpu = cpu;
d4c08f2a 2432 rdp->rsp = rsp;
1304afb2 2433 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2434}
2435
2436/*
2437 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2438 * offline event can be happening at a given time. Note also that we
2439 * can accept some slop in the rsp->completed access due to the fact
2440 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2441 */
e4fa4c97 2442static void __cpuinit
6cc68793 2443rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2444{
2445 unsigned long flags;
64db4cff 2446 unsigned long mask;
394f99a9 2447 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2448 struct rcu_node *rnp = rcu_get_root(rsp);
2449
2450 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2451 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2452 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2453 rdp->preemptible = preemptible;
37c72e56
PM
2454 rdp->qlen_last_fqs_check = 0;
2455 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2456 rdp->blimit = blimit;
29e37d81 2457 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2458 atomic_set(&rdp->dynticks->dynticks,
2459 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2460 rcu_prepare_for_idle_init(cpu);
1304afb2 2461 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2462
2463 /*
2464 * A new grace period might start here. If so, we won't be part
2465 * of it, but that is OK, as we are currently in a quiescent state.
2466 */
2467
2468 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2469 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2470
2471 /* Add CPU to rcu_node bitmasks. */
2472 rnp = rdp->mynode;
2473 mask = rdp->grpmask;
2474 do {
2475 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2476 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2477 rnp->qsmaskinit |= mask;
2478 mask = rnp->grpmask;
d09b62df 2479 if (rnp == rdp->mynode) {
06ae115a
PM
2480 /*
2481 * If there is a grace period in progress, we will
2482 * set up to wait for it next time we run the
2483 * RCU core code.
2484 */
2485 rdp->gpnum = rnp->completed;
d09b62df 2486 rdp->completed = rnp->completed;
06ae115a
PM
2487 rdp->passed_quiesce = 0;
2488 rdp->qs_pending = 0;
e4cc1f22 2489 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2490 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2491 }
1304afb2 2492 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2493 rnp = rnp->parent;
2494 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2495
1304afb2 2496 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2497}
2498
d72bce0e 2499static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2500{
f41d911f
PM
2501 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2502 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2503 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2504}
2505
2506/*
f41d911f 2507 * Handle CPU online/offline notification events.
64db4cff 2508 */
9f680ab4
PM
2509static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2510 unsigned long action, void *hcpu)
64db4cff
PM
2511{
2512 long cpu = (long)hcpu;
27f4d280 2513 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2514 struct rcu_node *rnp = rdp->mynode;
64db4cff 2515
300df91c 2516 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2517 switch (action) {
2518 case CPU_UP_PREPARE:
2519 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2520 rcu_prepare_cpu(cpu);
2521 rcu_prepare_kthreads(cpu);
a26ac245
PM
2522 break;
2523 case CPU_ONLINE:
0f962a5e
PM
2524 case CPU_DOWN_FAILED:
2525 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2526 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2527 break;
2528 case CPU_DOWN_PREPARE:
2529 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2530 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2531 break;
d0ec774c
PM
2532 case CPU_DYING:
2533 case CPU_DYING_FROZEN:
2534 /*
2d999e03
PM
2535 * The whole machine is "stopped" except this CPU, so we can
2536 * touch any data without introducing corruption. We send the
2537 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2538 */
e5601400
PM
2539 rcu_cleanup_dying_cpu(&rcu_bh_state);
2540 rcu_cleanup_dying_cpu(&rcu_sched_state);
2541 rcu_preempt_cleanup_dying_cpu();
7cb92499 2542 rcu_cleanup_after_idle(cpu);
d0ec774c 2543 break;
64db4cff
PM
2544 case CPU_DEAD:
2545 case CPU_DEAD_FROZEN:
2546 case CPU_UP_CANCELED:
2547 case CPU_UP_CANCELED_FROZEN:
e5601400
PM
2548 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2549 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2550 rcu_preempt_cleanup_dead_cpu(cpu);
64db4cff
PM
2551 break;
2552 default:
2553 break;
2554 }
300df91c 2555 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2556 return NOTIFY_OK;
2557}
2558
bbad9379
PM
2559/*
2560 * This function is invoked towards the end of the scheduler's initialization
2561 * process. Before this is called, the idle task might contain
2562 * RCU read-side critical sections (during which time, this idle
2563 * task is booting the system). After this function is called, the
2564 * idle tasks are prohibited from containing RCU read-side critical
2565 * sections. This function also enables RCU lockdep checking.
2566 */
2567void rcu_scheduler_starting(void)
2568{
2569 WARN_ON(num_online_cpus() != 1);
2570 WARN_ON(nr_context_switches() > 0);
2571 rcu_scheduler_active = 1;
2572}
2573
64db4cff
PM
2574/*
2575 * Compute the per-level fanout, either using the exact fanout specified
2576 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2577 */
2578#ifdef CONFIG_RCU_FANOUT_EXACT
2579static void __init rcu_init_levelspread(struct rcu_state *rsp)
2580{
2581 int i;
2582
f885b7f2 2583 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2584 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2585 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2586}
2587#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2588static void __init rcu_init_levelspread(struct rcu_state *rsp)
2589{
2590 int ccur;
2591 int cprv;
2592 int i;
2593
2594 cprv = NR_CPUS;
f885b7f2 2595 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2596 ccur = rsp->levelcnt[i];
2597 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2598 cprv = ccur;
2599 }
2600}
2601#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2602
2603/*
2604 * Helper function for rcu_init() that initializes one rcu_state structure.
2605 */
394f99a9
LJ
2606static void __init rcu_init_one(struct rcu_state *rsp,
2607 struct rcu_data __percpu *rda)
64db4cff 2608{
b6407e86
PM
2609 static char *buf[] = { "rcu_node_level_0",
2610 "rcu_node_level_1",
2611 "rcu_node_level_2",
2612 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2613 int cpustride = 1;
2614 int i;
2615 int j;
2616 struct rcu_node *rnp;
2617
b6407e86
PM
2618 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2619
64db4cff
PM
2620 /* Initialize the level-tracking arrays. */
2621
f885b7f2
PM
2622 for (i = 0; i < rcu_num_lvls; i++)
2623 rsp->levelcnt[i] = num_rcu_lvl[i];
2624 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2625 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2626 rcu_init_levelspread(rsp);
2627
2628 /* Initialize the elements themselves, starting from the leaves. */
2629
f885b7f2 2630 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2631 cpustride *= rsp->levelspread[i];
2632 rnp = rsp->level[i];
2633 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2634 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2635 lockdep_set_class_and_name(&rnp->lock,
2636 &rcu_node_class[i], buf[i]);
f41d911f 2637 rnp->gpnum = 0;
64db4cff
PM
2638 rnp->qsmask = 0;
2639 rnp->qsmaskinit = 0;
2640 rnp->grplo = j * cpustride;
2641 rnp->grphi = (j + 1) * cpustride - 1;
2642 if (rnp->grphi >= NR_CPUS)
2643 rnp->grphi = NR_CPUS - 1;
2644 if (i == 0) {
2645 rnp->grpnum = 0;
2646 rnp->grpmask = 0;
2647 rnp->parent = NULL;
2648 } else {
2649 rnp->grpnum = j % rsp->levelspread[i - 1];
2650 rnp->grpmask = 1UL << rnp->grpnum;
2651 rnp->parent = rsp->level[i - 1] +
2652 j / rsp->levelspread[i - 1];
2653 }
2654 rnp->level = i;
12f5f524 2655 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2656 }
2657 }
0c34029a 2658
394f99a9 2659 rsp->rda = rda;
f885b7f2 2660 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2661 for_each_possible_cpu(i) {
4a90a068 2662 while (i > rnp->grphi)
0c34029a 2663 rnp++;
394f99a9 2664 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2665 rcu_boot_init_percpu_data(i, rsp);
2666 }
64db4cff
PM
2667}
2668
f885b7f2
PM
2669/*
2670 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2671 * replace the definitions in rcutree.h because those are needed to size
2672 * the ->node array in the rcu_state structure.
2673 */
2674static void __init rcu_init_geometry(void)
2675{
2676 int i;
2677 int j;
cca6f393 2678 int n = nr_cpu_ids;
f885b7f2
PM
2679 int rcu_capacity[MAX_RCU_LVLS + 1];
2680
2681 /* If the compile-time values are accurate, just leave. */
2682 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2683 return;
2684
2685 /*
2686 * Compute number of nodes that can be handled an rcu_node tree
2687 * with the given number of levels. Setting rcu_capacity[0] makes
2688 * some of the arithmetic easier.
2689 */
2690 rcu_capacity[0] = 1;
2691 rcu_capacity[1] = rcu_fanout_leaf;
2692 for (i = 2; i <= MAX_RCU_LVLS; i++)
2693 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2694
2695 /*
2696 * The boot-time rcu_fanout_leaf parameter is only permitted
2697 * to increase the leaf-level fanout, not decrease it. Of course,
2698 * the leaf-level fanout cannot exceed the number of bits in
2699 * the rcu_node masks. Finally, the tree must be able to accommodate
2700 * the configured number of CPUs. Complain and fall back to the
2701 * compile-time values if these limits are exceeded.
2702 */
2703 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2704 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2705 n > rcu_capacity[MAX_RCU_LVLS]) {
2706 WARN_ON(1);
2707 return;
2708 }
2709
2710 /* Calculate the number of rcu_nodes at each level of the tree. */
2711 for (i = 1; i <= MAX_RCU_LVLS; i++)
2712 if (n <= rcu_capacity[i]) {
2713 for (j = 0; j <= i; j++)
2714 num_rcu_lvl[j] =
2715 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2716 rcu_num_lvls = i;
2717 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2718 num_rcu_lvl[j] = 0;
2719 break;
2720 }
2721
2722 /* Calculate the total number of rcu_node structures. */
2723 rcu_num_nodes = 0;
2724 for (i = 0; i <= MAX_RCU_LVLS; i++)
2725 rcu_num_nodes += num_rcu_lvl[i];
2726 rcu_num_nodes -= n;
2727}
2728
9f680ab4 2729void __init rcu_init(void)
64db4cff 2730{
017c4261 2731 int cpu;
9f680ab4 2732
f41d911f 2733 rcu_bootup_announce();
f885b7f2 2734 rcu_init_geometry();
394f99a9
LJ
2735 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2736 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2737 __rcu_init_preempt();
09223371 2738 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2739
2740 /*
2741 * We don't need protection against CPU-hotplug here because
2742 * this is called early in boot, before either interrupts
2743 * or the scheduler are operational.
2744 */
2745 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2746 for_each_online_cpu(cpu)
2747 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2748 check_cpu_stall_init();
64db4cff
PM
2749}
2750
1eba8f84 2751#include "rcutree_plugin.h"
This page took 0.367841 seconds and 5 git commands to generate.