Merge tag 'dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
e6e6685a
GC
77#ifdef CONFIG_PARAVIRT
78#include <asm/paravirt.h>
79#endif
1da177e4 80
029632fb 81#include "sched.h"
391e43da 82#include "../workqueue_sched.h"
6e0534f2 83
a8d154b0 84#define CREATE_TRACE_POINTS
ad8d75ff 85#include <trace/events/sched.h>
a8d154b0 86
029632fb 87void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 88{
58088ad0
PT
89 unsigned long delta;
90 ktime_t soft, hard, now;
d0b27fa7 91
58088ad0
PT
92 for (;;) {
93 if (hrtimer_active(period_timer))
94 break;
95
96 now = hrtimer_cb_get_time(period_timer);
97 hrtimer_forward(period_timer, now, period);
d0b27fa7 98
58088ad0
PT
99 soft = hrtimer_get_softexpires(period_timer);
100 hard = hrtimer_get_expires(period_timer);
101 delta = ktime_to_ns(ktime_sub(hard, soft));
102 __hrtimer_start_range_ns(period_timer, soft, delta,
103 HRTIMER_MODE_ABS_PINNED, 0);
104 }
105}
106
029632fb
PZ
107DEFINE_MUTEX(sched_domains_mutex);
108DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 109
fe44d621 110static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 111
029632fb 112void update_rq_clock(struct rq *rq)
3e51f33f 113{
fe44d621 114 s64 delta;
305e6835 115
61eadef6 116 if (rq->skip_clock_update > 0)
f26f9aff 117 return;
aa483808 118
fe44d621
PZ
119 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
120 rq->clock += delta;
121 update_rq_clock_task(rq, delta);
3e51f33f
PZ
122}
123
bf5c91ba
IM
124/*
125 * Debugging: various feature bits
126 */
f00b45c1 127
f00b45c1
PZ
128#define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
130
bf5c91ba 131const_debug unsigned int sysctl_sched_features =
391e43da 132#include "features.h"
f00b45c1
PZ
133 0;
134
135#undef SCHED_FEAT
136
137#ifdef CONFIG_SCHED_DEBUG
138#define SCHED_FEAT(name, enabled) \
139 #name ,
140
983ed7a6 141static __read_mostly char *sched_feat_names[] = {
391e43da 142#include "features.h"
f00b45c1
PZ
143 NULL
144};
145
146#undef SCHED_FEAT
147
34f3a814 148static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 149{
f00b45c1
PZ
150 int i;
151
f8b6d1cc 152 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
153 if (!(sysctl_sched_features & (1UL << i)))
154 seq_puts(m, "NO_");
155 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 156 }
34f3a814 157 seq_puts(m, "\n");
f00b45c1 158
34f3a814 159 return 0;
f00b45c1
PZ
160}
161
f8b6d1cc
PZ
162#ifdef HAVE_JUMP_LABEL
163
164#define jump_label_key__true jump_label_key_enabled
165#define jump_label_key__false jump_label_key_disabled
166
167#define SCHED_FEAT(name, enabled) \
168 jump_label_key__##enabled ,
169
170struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
171#include "features.h"
172};
173
174#undef SCHED_FEAT
175
176static void sched_feat_disable(int i)
177{
178 if (jump_label_enabled(&sched_feat_keys[i]))
179 jump_label_dec(&sched_feat_keys[i]);
180}
181
182static void sched_feat_enable(int i)
183{
184 if (!jump_label_enabled(&sched_feat_keys[i]))
185 jump_label_inc(&sched_feat_keys[i]);
186}
187#else
188static void sched_feat_disable(int i) { };
189static void sched_feat_enable(int i) { };
190#endif /* HAVE_JUMP_LABEL */
191
f00b45c1
PZ
192static ssize_t
193sched_feat_write(struct file *filp, const char __user *ubuf,
194 size_t cnt, loff_t *ppos)
195{
196 char buf[64];
7740191c 197 char *cmp;
f00b45c1
PZ
198 int neg = 0;
199 int i;
200
201 if (cnt > 63)
202 cnt = 63;
203
204 if (copy_from_user(&buf, ubuf, cnt))
205 return -EFAULT;
206
207 buf[cnt] = 0;
7740191c 208 cmp = strstrip(buf);
f00b45c1 209
524429c3 210 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
211 neg = 1;
212 cmp += 3;
213 }
214
f8b6d1cc 215 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 216 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 217 if (neg) {
f00b45c1 218 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
219 sched_feat_disable(i);
220 } else {
f00b45c1 221 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
222 sched_feat_enable(i);
223 }
f00b45c1
PZ
224 break;
225 }
226 }
227
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
fa85ae24 287
1da177e4 288
0970d299 289/*
0122ec5b 290 * __task_rq_lock - lock the rq @p resides on.
b29739f9 291 */
70b97a7f 292static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
293 __acquires(rq->lock)
294{
0970d299
PZ
295 struct rq *rq;
296
0122ec5b
PZ
297 lockdep_assert_held(&p->pi_lock);
298
3a5c359a 299 for (;;) {
0970d299 300 rq = task_rq(p);
05fa785c 301 raw_spin_lock(&rq->lock);
65cc8e48 302 if (likely(rq == task_rq(p)))
3a5c359a 303 return rq;
05fa785c 304 raw_spin_unlock(&rq->lock);
b29739f9 305 }
b29739f9
IM
306}
307
1da177e4 308/*
0122ec5b 309 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 310 */
70b97a7f 311static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 312 __acquires(p->pi_lock)
1da177e4
LT
313 __acquires(rq->lock)
314{
70b97a7f 315 struct rq *rq;
1da177e4 316
3a5c359a 317 for (;;) {
0122ec5b 318 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 319 rq = task_rq(p);
05fa785c 320 raw_spin_lock(&rq->lock);
65cc8e48 321 if (likely(rq == task_rq(p)))
3a5c359a 322 return rq;
0122ec5b
PZ
323 raw_spin_unlock(&rq->lock);
324 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 325 }
1da177e4
LT
326}
327
a9957449 328static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
329 __releases(rq->lock)
330{
05fa785c 331 raw_spin_unlock(&rq->lock);
b29739f9
IM
332}
333
0122ec5b
PZ
334static inline void
335task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 336 __releases(rq->lock)
0122ec5b 337 __releases(p->pi_lock)
1da177e4 338{
0122ec5b
PZ
339 raw_spin_unlock(&rq->lock);
340 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
341}
342
1da177e4 343/*
cc2a73b5 344 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 345 */
a9957449 346static struct rq *this_rq_lock(void)
1da177e4
LT
347 __acquires(rq->lock)
348{
70b97a7f 349 struct rq *rq;
1da177e4
LT
350
351 local_irq_disable();
352 rq = this_rq();
05fa785c 353 raw_spin_lock(&rq->lock);
1da177e4
LT
354
355 return rq;
356}
357
8f4d37ec
PZ
358#ifdef CONFIG_SCHED_HRTICK
359/*
360 * Use HR-timers to deliver accurate preemption points.
361 *
362 * Its all a bit involved since we cannot program an hrt while holding the
363 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
364 * reschedule event.
365 *
366 * When we get rescheduled we reprogram the hrtick_timer outside of the
367 * rq->lock.
368 */
8f4d37ec 369
8f4d37ec
PZ
370static void hrtick_clear(struct rq *rq)
371{
372 if (hrtimer_active(&rq->hrtick_timer))
373 hrtimer_cancel(&rq->hrtick_timer);
374}
375
8f4d37ec
PZ
376/*
377 * High-resolution timer tick.
378 * Runs from hardirq context with interrupts disabled.
379 */
380static enum hrtimer_restart hrtick(struct hrtimer *timer)
381{
382 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
383
384 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
385
05fa785c 386 raw_spin_lock(&rq->lock);
3e51f33f 387 update_rq_clock(rq);
8f4d37ec 388 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 389 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
390
391 return HRTIMER_NORESTART;
392}
393
95e904c7 394#ifdef CONFIG_SMP
31656519
PZ
395/*
396 * called from hardirq (IPI) context
397 */
398static void __hrtick_start(void *arg)
b328ca18 399{
31656519 400 struct rq *rq = arg;
b328ca18 401
05fa785c 402 raw_spin_lock(&rq->lock);
31656519
PZ
403 hrtimer_restart(&rq->hrtick_timer);
404 rq->hrtick_csd_pending = 0;
05fa785c 405 raw_spin_unlock(&rq->lock);
b328ca18
PZ
406}
407
31656519
PZ
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
b328ca18 414{
31656519
PZ
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 417
cc584b21 418 hrtimer_set_expires(timer, time);
31656519
PZ
419
420 if (rq == this_rq()) {
421 hrtimer_restart(timer);
422 } else if (!rq->hrtick_csd_pending) {
6e275637 423 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
424 rq->hrtick_csd_pending = 1;
425 }
b328ca18
PZ
426}
427
428static int
429hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
430{
431 int cpu = (int)(long)hcpu;
432
433 switch (action) {
434 case CPU_UP_CANCELED:
435 case CPU_UP_CANCELED_FROZEN:
436 case CPU_DOWN_PREPARE:
437 case CPU_DOWN_PREPARE_FROZEN:
438 case CPU_DEAD:
439 case CPU_DEAD_FROZEN:
31656519 440 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
441 return NOTIFY_OK;
442 }
443
444 return NOTIFY_DONE;
445}
446
fa748203 447static __init void init_hrtick(void)
b328ca18
PZ
448{
449 hotcpu_notifier(hotplug_hrtick, 0);
450}
31656519
PZ
451#else
452/*
453 * Called to set the hrtick timer state.
454 *
455 * called with rq->lock held and irqs disabled
456 */
029632fb 457void hrtick_start(struct rq *rq, u64 delay)
31656519 458{
7f1e2ca9 459 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 460 HRTIMER_MODE_REL_PINNED, 0);
31656519 461}
b328ca18 462
006c75f1 463static inline void init_hrtick(void)
8f4d37ec 464{
8f4d37ec 465}
31656519 466#endif /* CONFIG_SMP */
8f4d37ec 467
31656519 468static void init_rq_hrtick(struct rq *rq)
8f4d37ec 469{
31656519
PZ
470#ifdef CONFIG_SMP
471 rq->hrtick_csd_pending = 0;
8f4d37ec 472
31656519
PZ
473 rq->hrtick_csd.flags = 0;
474 rq->hrtick_csd.func = __hrtick_start;
475 rq->hrtick_csd.info = rq;
476#endif
8f4d37ec 477
31656519
PZ
478 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
479 rq->hrtick_timer.function = hrtick;
8f4d37ec 480}
006c75f1 481#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
482static inline void hrtick_clear(struct rq *rq)
483{
484}
485
8f4d37ec
PZ
486static inline void init_rq_hrtick(struct rq *rq)
487{
488}
489
b328ca18
PZ
490static inline void init_hrtick(void)
491{
492}
006c75f1 493#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 494
c24d20db
IM
495/*
496 * resched_task - mark a task 'to be rescheduled now'.
497 *
498 * On UP this means the setting of the need_resched flag, on SMP it
499 * might also involve a cross-CPU call to trigger the scheduler on
500 * the target CPU.
501 */
502#ifdef CONFIG_SMP
503
504#ifndef tsk_is_polling
505#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
506#endif
507
029632fb 508void resched_task(struct task_struct *p)
c24d20db
IM
509{
510 int cpu;
511
05fa785c 512 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 513
5ed0cec0 514 if (test_tsk_need_resched(p))
c24d20db
IM
515 return;
516
5ed0cec0 517 set_tsk_need_resched(p);
c24d20db
IM
518
519 cpu = task_cpu(p);
520 if (cpu == smp_processor_id())
521 return;
522
523 /* NEED_RESCHED must be visible before we test polling */
524 smp_mb();
525 if (!tsk_is_polling(p))
526 smp_send_reschedule(cpu);
527}
528
029632fb 529void resched_cpu(int cpu)
c24d20db
IM
530{
531 struct rq *rq = cpu_rq(cpu);
532 unsigned long flags;
533
05fa785c 534 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
535 return;
536 resched_task(cpu_curr(cpu));
05fa785c 537 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 538}
06d8308c
TG
539
540#ifdef CONFIG_NO_HZ
83cd4fe2
VP
541/*
542 * In the semi idle case, use the nearest busy cpu for migrating timers
543 * from an idle cpu. This is good for power-savings.
544 *
545 * We don't do similar optimization for completely idle system, as
546 * selecting an idle cpu will add more delays to the timers than intended
547 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
548 */
549int get_nohz_timer_target(void)
550{
551 int cpu = smp_processor_id();
552 int i;
553 struct sched_domain *sd;
554
057f3fad 555 rcu_read_lock();
83cd4fe2 556 for_each_domain(cpu, sd) {
057f3fad
PZ
557 for_each_cpu(i, sched_domain_span(sd)) {
558 if (!idle_cpu(i)) {
559 cpu = i;
560 goto unlock;
561 }
562 }
83cd4fe2 563 }
057f3fad
PZ
564unlock:
565 rcu_read_unlock();
83cd4fe2
VP
566 return cpu;
567}
06d8308c
TG
568/*
569 * When add_timer_on() enqueues a timer into the timer wheel of an
570 * idle CPU then this timer might expire before the next timer event
571 * which is scheduled to wake up that CPU. In case of a completely
572 * idle system the next event might even be infinite time into the
573 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
574 * leaves the inner idle loop so the newly added timer is taken into
575 * account when the CPU goes back to idle and evaluates the timer
576 * wheel for the next timer event.
577 */
578void wake_up_idle_cpu(int cpu)
579{
580 struct rq *rq = cpu_rq(cpu);
581
582 if (cpu == smp_processor_id())
583 return;
584
585 /*
586 * This is safe, as this function is called with the timer
587 * wheel base lock of (cpu) held. When the CPU is on the way
588 * to idle and has not yet set rq->curr to idle then it will
589 * be serialized on the timer wheel base lock and take the new
590 * timer into account automatically.
591 */
592 if (rq->curr != rq->idle)
593 return;
45bf76df 594
45bf76df 595 /*
06d8308c
TG
596 * We can set TIF_RESCHED on the idle task of the other CPU
597 * lockless. The worst case is that the other CPU runs the
598 * idle task through an additional NOOP schedule()
45bf76df 599 */
5ed0cec0 600 set_tsk_need_resched(rq->idle);
45bf76df 601
06d8308c
TG
602 /* NEED_RESCHED must be visible before we test polling */
603 smp_mb();
604 if (!tsk_is_polling(rq->idle))
605 smp_send_reschedule(cpu);
45bf76df
IM
606}
607
ca38062e 608static inline bool got_nohz_idle_kick(void)
45bf76df 609{
1c792db7
SS
610 int cpu = smp_processor_id();
611 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
612}
613
ca38062e 614#else /* CONFIG_NO_HZ */
45bf76df 615
ca38062e 616static inline bool got_nohz_idle_kick(void)
2069dd75 617{
ca38062e 618 return false;
2069dd75
PZ
619}
620
6d6bc0ad 621#endif /* CONFIG_NO_HZ */
d842de87 622
029632fb 623void sched_avg_update(struct rq *rq)
18d95a28 624{
e9e9250b
PZ
625 s64 period = sched_avg_period();
626
627 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
628 /*
629 * Inline assembly required to prevent the compiler
630 * optimising this loop into a divmod call.
631 * See __iter_div_u64_rem() for another example of this.
632 */
633 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
634 rq->age_stamp += period;
635 rq->rt_avg /= 2;
636 }
18d95a28
PZ
637}
638
6d6bc0ad 639#else /* !CONFIG_SMP */
029632fb 640void resched_task(struct task_struct *p)
18d95a28 641{
05fa785c 642 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 643 set_tsk_need_resched(p);
18d95a28 644}
6d6bc0ad 645#endif /* CONFIG_SMP */
18d95a28 646
a790de99
PT
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 649/*
8277434e
PT
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 654 */
029632fb 655int walk_tg_tree_from(struct task_group *from,
8277434e 656 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
657{
658 struct task_group *parent, *child;
eb755805 659 int ret;
c09595f6 660
8277434e
PT
661 parent = from;
662
c09595f6 663down:
eb755805
PZ
664 ret = (*down)(parent, data);
665 if (ret)
8277434e 666 goto out;
c09595f6
PZ
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671up:
672 continue;
673 }
eb755805 674 ret = (*up)(parent, data);
8277434e
PT
675 if (ret || parent == from)
676 goto out;
c09595f6
PZ
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
8277434e 682out:
eb755805 683 return ret;
c09595f6
PZ
684}
685
029632fb 686int tg_nop(struct task_group *tg, void *data)
eb755805 687{
e2b245f8 688 return 0;
eb755805 689}
18d95a28
PZ
690#endif
691
029632fb 692void update_cpu_load(struct rq *this_rq);
9c217245 693
45bf76df
IM
694static void set_load_weight(struct task_struct *p)
695{
f05998d4
NR
696 int prio = p->static_prio - MAX_RT_PRIO;
697 struct load_weight *load = &p->se.load;
698
dd41f596
IM
699 /*
700 * SCHED_IDLE tasks get minimal weight:
701 */
702 if (p->policy == SCHED_IDLE) {
c8b28116 703 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 704 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
705 return;
706 }
71f8bd46 707
c8b28116 708 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 709 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
710}
711
371fd7e7 712static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 713{
a64692a3 714 update_rq_clock(rq);
dd41f596 715 sched_info_queued(p);
371fd7e7 716 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
717}
718
371fd7e7 719static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 720{
a64692a3 721 update_rq_clock(rq);
46ac22ba 722 sched_info_dequeued(p);
371fd7e7 723 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
724}
725
1e3c88bd
PZ
726/*
727 * activate_task - move a task to the runqueue.
728 */
029632fb 729void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
730{
731 if (task_contributes_to_load(p))
732 rq->nr_uninterruptible--;
733
371fd7e7 734 enqueue_task(rq, p, flags);
1e3c88bd
PZ
735}
736
737/*
738 * deactivate_task - remove a task from the runqueue.
739 */
029632fb 740void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
741{
742 if (task_contributes_to_load(p))
743 rq->nr_uninterruptible++;
744
371fd7e7 745 dequeue_task(rq, p, flags);
1e3c88bd
PZ
746}
747
b52bfee4
VP
748#ifdef CONFIG_IRQ_TIME_ACCOUNTING
749
305e6835
VP
750/*
751 * There are no locks covering percpu hardirq/softirq time.
752 * They are only modified in account_system_vtime, on corresponding CPU
753 * with interrupts disabled. So, writes are safe.
754 * They are read and saved off onto struct rq in update_rq_clock().
755 * This may result in other CPU reading this CPU's irq time and can
756 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
757 * or new value with a side effect of accounting a slice of irq time to wrong
758 * task when irq is in progress while we read rq->clock. That is a worthy
759 * compromise in place of having locks on each irq in account_system_time.
305e6835 760 */
b52bfee4
VP
761static DEFINE_PER_CPU(u64, cpu_hardirq_time);
762static DEFINE_PER_CPU(u64, cpu_softirq_time);
763
764static DEFINE_PER_CPU(u64, irq_start_time);
765static int sched_clock_irqtime;
766
767void enable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 1;
770}
771
772void disable_sched_clock_irqtime(void)
773{
774 sched_clock_irqtime = 0;
775}
776
8e92c201
PZ
777#ifndef CONFIG_64BIT
778static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
779
780static inline void irq_time_write_begin(void)
781{
782 __this_cpu_inc(irq_time_seq.sequence);
783 smp_wmb();
784}
785
786static inline void irq_time_write_end(void)
787{
788 smp_wmb();
789 __this_cpu_inc(irq_time_seq.sequence);
790}
791
792static inline u64 irq_time_read(int cpu)
793{
794 u64 irq_time;
795 unsigned seq;
796
797 do {
798 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
799 irq_time = per_cpu(cpu_softirq_time, cpu) +
800 per_cpu(cpu_hardirq_time, cpu);
801 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
802
803 return irq_time;
804}
805#else /* CONFIG_64BIT */
806static inline void irq_time_write_begin(void)
807{
808}
809
810static inline void irq_time_write_end(void)
811{
812}
813
814static inline u64 irq_time_read(int cpu)
305e6835 815{
305e6835
VP
816 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
817}
8e92c201 818#endif /* CONFIG_64BIT */
305e6835 819
fe44d621
PZ
820/*
821 * Called before incrementing preempt_count on {soft,}irq_enter
822 * and before decrementing preempt_count on {soft,}irq_exit.
823 */
b52bfee4
VP
824void account_system_vtime(struct task_struct *curr)
825{
826 unsigned long flags;
fe44d621 827 s64 delta;
b52bfee4 828 int cpu;
b52bfee4
VP
829
830 if (!sched_clock_irqtime)
831 return;
832
833 local_irq_save(flags);
834
b52bfee4 835 cpu = smp_processor_id();
fe44d621
PZ
836 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
837 __this_cpu_add(irq_start_time, delta);
838
8e92c201 839 irq_time_write_begin();
b52bfee4
VP
840 /*
841 * We do not account for softirq time from ksoftirqd here.
842 * We want to continue accounting softirq time to ksoftirqd thread
843 * in that case, so as not to confuse scheduler with a special task
844 * that do not consume any time, but still wants to run.
845 */
846 if (hardirq_count())
fe44d621 847 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 848 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 849 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 850
8e92c201 851 irq_time_write_end();
b52bfee4
VP
852 local_irq_restore(flags);
853}
b7dadc38 854EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 855
e6e6685a
GC
856#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
857
858#ifdef CONFIG_PARAVIRT
859static inline u64 steal_ticks(u64 steal)
aa483808 860{
e6e6685a
GC
861 if (unlikely(steal > NSEC_PER_SEC))
862 return div_u64(steal, TICK_NSEC);
fe44d621 863
e6e6685a
GC
864 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
865}
866#endif
867
fe44d621 868static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 869{
095c0aa8
GC
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
095c0aa8
GC
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 if (static_branch((&paravirt_steal_rq_enabled))) {
903 u64 st;
904
905 steal = paravirt_steal_clock(cpu_of(rq));
906 steal -= rq->prev_steal_time_rq;
907
908 if (unlikely(steal > delta))
909 steal = delta;
910
911 st = steal_ticks(steal);
912 steal = st * TICK_NSEC;
913
914 rq->prev_steal_time_rq += steal;
915
916 delta -= steal;
917 }
918#endif
919
fe44d621
PZ
920 rq->clock_task += delta;
921
095c0aa8
GC
922#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
923 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
924 sched_rt_avg_update(rq, irq_delta + steal);
925#endif
aa483808
VP
926}
927
095c0aa8 928#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
929static int irqtime_account_hi_update(void)
930{
3292beb3 931 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
932 unsigned long flags;
933 u64 latest_ns;
934 int ret = 0;
935
936 local_irq_save(flags);
937 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 938 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
939 ret = 1;
940 local_irq_restore(flags);
941 return ret;
942}
943
944static int irqtime_account_si_update(void)
945{
3292beb3 946 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
947 unsigned long flags;
948 u64 latest_ns;
949 int ret = 0;
950
951 local_irq_save(flags);
952 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 953 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
954 ret = 1;
955 local_irq_restore(flags);
956 return ret;
957}
958
fe44d621 959#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 960
abb74cef
VP
961#define sched_clock_irqtime (0)
962
095c0aa8 963#endif
b52bfee4 964
34f971f6
PZ
965void sched_set_stop_task(int cpu, struct task_struct *stop)
966{
967 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
968 struct task_struct *old_stop = cpu_rq(cpu)->stop;
969
970 if (stop) {
971 /*
972 * Make it appear like a SCHED_FIFO task, its something
973 * userspace knows about and won't get confused about.
974 *
975 * Also, it will make PI more or less work without too
976 * much confusion -- but then, stop work should not
977 * rely on PI working anyway.
978 */
979 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
980
981 stop->sched_class = &stop_sched_class;
982 }
983
984 cpu_rq(cpu)->stop = stop;
985
986 if (old_stop) {
987 /*
988 * Reset it back to a normal scheduling class so that
989 * it can die in pieces.
990 */
991 old_stop->sched_class = &rt_sched_class;
992 }
993}
994
14531189 995/*
dd41f596 996 * __normal_prio - return the priority that is based on the static prio
14531189 997 */
14531189
IM
998static inline int __normal_prio(struct task_struct *p)
999{
dd41f596 1000 return p->static_prio;
14531189
IM
1001}
1002
b29739f9
IM
1003/*
1004 * Calculate the expected normal priority: i.e. priority
1005 * without taking RT-inheritance into account. Might be
1006 * boosted by interactivity modifiers. Changes upon fork,
1007 * setprio syscalls, and whenever the interactivity
1008 * estimator recalculates.
1009 */
36c8b586 1010static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1011{
1012 int prio;
1013
e05606d3 1014 if (task_has_rt_policy(p))
b29739f9
IM
1015 prio = MAX_RT_PRIO-1 - p->rt_priority;
1016 else
1017 prio = __normal_prio(p);
1018 return prio;
1019}
1020
1021/*
1022 * Calculate the current priority, i.e. the priority
1023 * taken into account by the scheduler. This value might
1024 * be boosted by RT tasks, or might be boosted by
1025 * interactivity modifiers. Will be RT if the task got
1026 * RT-boosted. If not then it returns p->normal_prio.
1027 */
36c8b586 1028static int effective_prio(struct task_struct *p)
b29739f9
IM
1029{
1030 p->normal_prio = normal_prio(p);
1031 /*
1032 * If we are RT tasks or we were boosted to RT priority,
1033 * keep the priority unchanged. Otherwise, update priority
1034 * to the normal priority:
1035 */
1036 if (!rt_prio(p->prio))
1037 return p->normal_prio;
1038 return p->prio;
1039}
1040
1da177e4
LT
1041/**
1042 * task_curr - is this task currently executing on a CPU?
1043 * @p: the task in question.
1044 */
36c8b586 1045inline int task_curr(const struct task_struct *p)
1da177e4
LT
1046{
1047 return cpu_curr(task_cpu(p)) == p;
1048}
1049
cb469845
SR
1050static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1051 const struct sched_class *prev_class,
da7a735e 1052 int oldprio)
cb469845
SR
1053{
1054 if (prev_class != p->sched_class) {
1055 if (prev_class->switched_from)
da7a735e
PZ
1056 prev_class->switched_from(rq, p);
1057 p->sched_class->switched_to(rq, p);
1058 } else if (oldprio != p->prio)
1059 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1060}
1061
029632fb 1062void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1063{
1064 const struct sched_class *class;
1065
1066 if (p->sched_class == rq->curr->sched_class) {
1067 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1068 } else {
1069 for_each_class(class) {
1070 if (class == rq->curr->sched_class)
1071 break;
1072 if (class == p->sched_class) {
1073 resched_task(rq->curr);
1074 break;
1075 }
1076 }
1077 }
1078
1079 /*
1080 * A queue event has occurred, and we're going to schedule. In
1081 * this case, we can save a useless back to back clock update.
1082 */
fd2f4419 1083 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1084 rq->skip_clock_update = 1;
1085}
1086
1da177e4 1087#ifdef CONFIG_SMP
dd41f596 1088void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1089{
e2912009
PZ
1090#ifdef CONFIG_SCHED_DEBUG
1091 /*
1092 * We should never call set_task_cpu() on a blocked task,
1093 * ttwu() will sort out the placement.
1094 */
077614ee
PZ
1095 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1096 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1097
1098#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1099 /*
1100 * The caller should hold either p->pi_lock or rq->lock, when changing
1101 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1102 *
1103 * sched_move_task() holds both and thus holding either pins the cgroup,
1104 * see set_task_rq().
1105 *
1106 * Furthermore, all task_rq users should acquire both locks, see
1107 * task_rq_lock().
1108 */
0122ec5b
PZ
1109 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1110 lockdep_is_held(&task_rq(p)->lock)));
1111#endif
e2912009
PZ
1112#endif
1113
de1d7286 1114 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1115
0c69774e
PZ
1116 if (task_cpu(p) != new_cpu) {
1117 p->se.nr_migrations++;
a8b0ca17 1118 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1119 }
dd41f596
IM
1120
1121 __set_task_cpu(p, new_cpu);
c65cc870
IM
1122}
1123
969c7921 1124struct migration_arg {
36c8b586 1125 struct task_struct *task;
1da177e4 1126 int dest_cpu;
70b97a7f 1127};
1da177e4 1128
969c7921
TH
1129static int migration_cpu_stop(void *data);
1130
1da177e4
LT
1131/*
1132 * wait_task_inactive - wait for a thread to unschedule.
1133 *
85ba2d86
RM
1134 * If @match_state is nonzero, it's the @p->state value just checked and
1135 * not expected to change. If it changes, i.e. @p might have woken up,
1136 * then return zero. When we succeed in waiting for @p to be off its CPU,
1137 * we return a positive number (its total switch count). If a second call
1138 * a short while later returns the same number, the caller can be sure that
1139 * @p has remained unscheduled the whole time.
1140 *
1da177e4
LT
1141 * The caller must ensure that the task *will* unschedule sometime soon,
1142 * else this function might spin for a *long* time. This function can't
1143 * be called with interrupts off, or it may introduce deadlock with
1144 * smp_call_function() if an IPI is sent by the same process we are
1145 * waiting to become inactive.
1146 */
85ba2d86 1147unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1148{
1149 unsigned long flags;
dd41f596 1150 int running, on_rq;
85ba2d86 1151 unsigned long ncsw;
70b97a7f 1152 struct rq *rq;
1da177e4 1153
3a5c359a
AK
1154 for (;;) {
1155 /*
1156 * We do the initial early heuristics without holding
1157 * any task-queue locks at all. We'll only try to get
1158 * the runqueue lock when things look like they will
1159 * work out!
1160 */
1161 rq = task_rq(p);
fa490cfd 1162
3a5c359a
AK
1163 /*
1164 * If the task is actively running on another CPU
1165 * still, just relax and busy-wait without holding
1166 * any locks.
1167 *
1168 * NOTE! Since we don't hold any locks, it's not
1169 * even sure that "rq" stays as the right runqueue!
1170 * But we don't care, since "task_running()" will
1171 * return false if the runqueue has changed and p
1172 * is actually now running somewhere else!
1173 */
85ba2d86
RM
1174 while (task_running(rq, p)) {
1175 if (match_state && unlikely(p->state != match_state))
1176 return 0;
3a5c359a 1177 cpu_relax();
85ba2d86 1178 }
fa490cfd 1179
3a5c359a
AK
1180 /*
1181 * Ok, time to look more closely! We need the rq
1182 * lock now, to be *sure*. If we're wrong, we'll
1183 * just go back and repeat.
1184 */
1185 rq = task_rq_lock(p, &flags);
27a9da65 1186 trace_sched_wait_task(p);
3a5c359a 1187 running = task_running(rq, p);
fd2f4419 1188 on_rq = p->on_rq;
85ba2d86 1189 ncsw = 0;
f31e11d8 1190 if (!match_state || p->state == match_state)
93dcf55f 1191 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1192 task_rq_unlock(rq, p, &flags);
fa490cfd 1193
85ba2d86
RM
1194 /*
1195 * If it changed from the expected state, bail out now.
1196 */
1197 if (unlikely(!ncsw))
1198 break;
1199
3a5c359a
AK
1200 /*
1201 * Was it really running after all now that we
1202 * checked with the proper locks actually held?
1203 *
1204 * Oops. Go back and try again..
1205 */
1206 if (unlikely(running)) {
1207 cpu_relax();
1208 continue;
1209 }
fa490cfd 1210
3a5c359a
AK
1211 /*
1212 * It's not enough that it's not actively running,
1213 * it must be off the runqueue _entirely_, and not
1214 * preempted!
1215 *
80dd99b3 1216 * So if it was still runnable (but just not actively
3a5c359a
AK
1217 * running right now), it's preempted, and we should
1218 * yield - it could be a while.
1219 */
1220 if (unlikely(on_rq)) {
8eb90c30
TG
1221 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1222
1223 set_current_state(TASK_UNINTERRUPTIBLE);
1224 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1225 continue;
1226 }
fa490cfd 1227
3a5c359a
AK
1228 /*
1229 * Ahh, all good. It wasn't running, and it wasn't
1230 * runnable, which means that it will never become
1231 * running in the future either. We're all done!
1232 */
1233 break;
1234 }
85ba2d86
RM
1235
1236 return ncsw;
1da177e4
LT
1237}
1238
1239/***
1240 * kick_process - kick a running thread to enter/exit the kernel
1241 * @p: the to-be-kicked thread
1242 *
1243 * Cause a process which is running on another CPU to enter
1244 * kernel-mode, without any delay. (to get signals handled.)
1245 *
25985edc 1246 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1247 * because all it wants to ensure is that the remote task enters
1248 * the kernel. If the IPI races and the task has been migrated
1249 * to another CPU then no harm is done and the purpose has been
1250 * achieved as well.
1251 */
36c8b586 1252void kick_process(struct task_struct *p)
1da177e4
LT
1253{
1254 int cpu;
1255
1256 preempt_disable();
1257 cpu = task_cpu(p);
1258 if ((cpu != smp_processor_id()) && task_curr(p))
1259 smp_send_reschedule(cpu);
1260 preempt_enable();
1261}
b43e3521 1262EXPORT_SYMBOL_GPL(kick_process);
476d139c 1263#endif /* CONFIG_SMP */
1da177e4 1264
970b13ba 1265#ifdef CONFIG_SMP
30da688e 1266/*
013fdb80 1267 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1268 */
5da9a0fb
PZ
1269static int select_fallback_rq(int cpu, struct task_struct *p)
1270{
1271 int dest_cpu;
1272 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1273
1274 /* Look for allowed, online CPU in same node. */
1275 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
fa17b507 1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb
PZ
1277 return dest_cpu;
1278
1279 /* Any allowed, online CPU? */
fa17b507 1280 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
5da9a0fb
PZ
1281 if (dest_cpu < nr_cpu_ids)
1282 return dest_cpu;
1283
1284 /* No more Mr. Nice Guy. */
48c5ccae
PZ
1285 dest_cpu = cpuset_cpus_allowed_fallback(p);
1286 /*
1287 * Don't tell them about moving exiting tasks or
1288 * kernel threads (both mm NULL), since they never
1289 * leave kernel.
1290 */
1291 if (p->mm && printk_ratelimit()) {
1292 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1293 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
1294 }
1295
1296 return dest_cpu;
1297}
1298
e2912009 1299/*
013fdb80 1300 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1301 */
970b13ba 1302static inline
7608dec2 1303int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1304{
7608dec2 1305 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1306
1307 /*
1308 * In order not to call set_task_cpu() on a blocking task we need
1309 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1310 * cpu.
1311 *
1312 * Since this is common to all placement strategies, this lives here.
1313 *
1314 * [ this allows ->select_task() to simply return task_cpu(p) and
1315 * not worry about this generic constraint ]
1316 */
fa17b507 1317 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1318 !cpu_online(cpu)))
5da9a0fb 1319 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1320
1321 return cpu;
970b13ba 1322}
09a40af5
MG
1323
1324static void update_avg(u64 *avg, u64 sample)
1325{
1326 s64 diff = sample - *avg;
1327 *avg += diff >> 3;
1328}
970b13ba
PZ
1329#endif
1330
d7c01d27 1331static void
b84cb5df 1332ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1333{
d7c01d27 1334#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1335 struct rq *rq = this_rq();
1336
d7c01d27
PZ
1337#ifdef CONFIG_SMP
1338 int this_cpu = smp_processor_id();
1339
1340 if (cpu == this_cpu) {
1341 schedstat_inc(rq, ttwu_local);
1342 schedstat_inc(p, se.statistics.nr_wakeups_local);
1343 } else {
1344 struct sched_domain *sd;
1345
1346 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1347 rcu_read_lock();
d7c01d27
PZ
1348 for_each_domain(this_cpu, sd) {
1349 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1350 schedstat_inc(sd, ttwu_wake_remote);
1351 break;
1352 }
1353 }
057f3fad 1354 rcu_read_unlock();
d7c01d27 1355 }
f339b9dc
PZ
1356
1357 if (wake_flags & WF_MIGRATED)
1358 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1359
d7c01d27
PZ
1360#endif /* CONFIG_SMP */
1361
1362 schedstat_inc(rq, ttwu_count);
9ed3811a 1363 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1364
1365 if (wake_flags & WF_SYNC)
9ed3811a 1366 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1367
d7c01d27
PZ
1368#endif /* CONFIG_SCHEDSTATS */
1369}
1370
1371static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1372{
9ed3811a 1373 activate_task(rq, p, en_flags);
fd2f4419 1374 p->on_rq = 1;
c2f7115e
PZ
1375
1376 /* if a worker is waking up, notify workqueue */
1377 if (p->flags & PF_WQ_WORKER)
1378 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1379}
1380
23f41eeb
PZ
1381/*
1382 * Mark the task runnable and perform wakeup-preemption.
1383 */
89363381 1384static void
23f41eeb 1385ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1386{
89363381 1387 trace_sched_wakeup(p, true);
9ed3811a
TH
1388 check_preempt_curr(rq, p, wake_flags);
1389
1390 p->state = TASK_RUNNING;
1391#ifdef CONFIG_SMP
1392 if (p->sched_class->task_woken)
1393 p->sched_class->task_woken(rq, p);
1394
e69c6341 1395 if (rq->idle_stamp) {
9ed3811a
TH
1396 u64 delta = rq->clock - rq->idle_stamp;
1397 u64 max = 2*sysctl_sched_migration_cost;
1398
1399 if (delta > max)
1400 rq->avg_idle = max;
1401 else
1402 update_avg(&rq->avg_idle, delta);
1403 rq->idle_stamp = 0;
1404 }
1405#endif
1406}
1407
c05fbafb
PZ
1408static void
1409ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1410{
1411#ifdef CONFIG_SMP
1412 if (p->sched_contributes_to_load)
1413 rq->nr_uninterruptible--;
1414#endif
1415
1416 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1417 ttwu_do_wakeup(rq, p, wake_flags);
1418}
1419
1420/*
1421 * Called in case the task @p isn't fully descheduled from its runqueue,
1422 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1423 * since all we need to do is flip p->state to TASK_RUNNING, since
1424 * the task is still ->on_rq.
1425 */
1426static int ttwu_remote(struct task_struct *p, int wake_flags)
1427{
1428 struct rq *rq;
1429 int ret = 0;
1430
1431 rq = __task_rq_lock(p);
1432 if (p->on_rq) {
1433 ttwu_do_wakeup(rq, p, wake_flags);
1434 ret = 1;
1435 }
1436 __task_rq_unlock(rq);
1437
1438 return ret;
1439}
1440
317f3941 1441#ifdef CONFIG_SMP
fa14ff4a 1442static void sched_ttwu_pending(void)
317f3941
PZ
1443{
1444 struct rq *rq = this_rq();
fa14ff4a
PZ
1445 struct llist_node *llist = llist_del_all(&rq->wake_list);
1446 struct task_struct *p;
317f3941
PZ
1447
1448 raw_spin_lock(&rq->lock);
1449
fa14ff4a
PZ
1450 while (llist) {
1451 p = llist_entry(llist, struct task_struct, wake_entry);
1452 llist = llist_next(llist);
317f3941
PZ
1453 ttwu_do_activate(rq, p, 0);
1454 }
1455
1456 raw_spin_unlock(&rq->lock);
1457}
1458
1459void scheduler_ipi(void)
1460{
ca38062e 1461 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1462 return;
1463
1464 /*
1465 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1466 * traditionally all their work was done from the interrupt return
1467 * path. Now that we actually do some work, we need to make sure
1468 * we do call them.
1469 *
1470 * Some archs already do call them, luckily irq_enter/exit nest
1471 * properly.
1472 *
1473 * Arguably we should visit all archs and update all handlers,
1474 * however a fair share of IPIs are still resched only so this would
1475 * somewhat pessimize the simple resched case.
1476 */
1477 irq_enter();
fa14ff4a 1478 sched_ttwu_pending();
ca38062e
SS
1479
1480 /*
1481 * Check if someone kicked us for doing the nohz idle load balance.
1482 */
6eb57e0d
SS
1483 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1484 this_rq()->idle_balance = 1;
ca38062e 1485 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1486 }
c5d753a5 1487 irq_exit();
317f3941
PZ
1488}
1489
1490static void ttwu_queue_remote(struct task_struct *p, int cpu)
1491{
fa14ff4a 1492 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1493 smp_send_reschedule(cpu);
1494}
d6aa8f85
PZ
1495
1496#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1497static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1498{
1499 struct rq *rq;
1500 int ret = 0;
1501
1502 rq = __task_rq_lock(p);
1503 if (p->on_cpu) {
1504 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1505 ttwu_do_wakeup(rq, p, wake_flags);
1506 ret = 1;
1507 }
1508 __task_rq_unlock(rq);
1509
1510 return ret;
1511
1512}
1513#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623
PZ
1514
1515static inline int ttwu_share_cache(int this_cpu, int that_cpu)
1516{
1517 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1518}
d6aa8f85 1519#endif /* CONFIG_SMP */
317f3941 1520
c05fbafb
PZ
1521static void ttwu_queue(struct task_struct *p, int cpu)
1522{
1523 struct rq *rq = cpu_rq(cpu);
1524
17d9f311 1525#if defined(CONFIG_SMP)
518cd623 1526 if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
f01114cb 1527 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1528 ttwu_queue_remote(p, cpu);
1529 return;
1530 }
1531#endif
1532
c05fbafb
PZ
1533 raw_spin_lock(&rq->lock);
1534 ttwu_do_activate(rq, p, 0);
1535 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1536}
1537
1538/**
1da177e4 1539 * try_to_wake_up - wake up a thread
9ed3811a 1540 * @p: the thread to be awakened
1da177e4 1541 * @state: the mask of task states that can be woken
9ed3811a 1542 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1543 *
1544 * Put it on the run-queue if it's not already there. The "current"
1545 * thread is always on the run-queue (except when the actual
1546 * re-schedule is in progress), and as such you're allowed to do
1547 * the simpler "current->state = TASK_RUNNING" to mark yourself
1548 * runnable without the overhead of this.
1549 *
9ed3811a
TH
1550 * Returns %true if @p was woken up, %false if it was already running
1551 * or @state didn't match @p's state.
1da177e4 1552 */
e4a52bcb
PZ
1553static int
1554try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1555{
1da177e4 1556 unsigned long flags;
c05fbafb 1557 int cpu, success = 0;
2398f2c6 1558
04e2f174 1559 smp_wmb();
013fdb80 1560 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1561 if (!(p->state & state))
1da177e4
LT
1562 goto out;
1563
c05fbafb 1564 success = 1; /* we're going to change ->state */
1da177e4 1565 cpu = task_cpu(p);
1da177e4 1566
c05fbafb
PZ
1567 if (p->on_rq && ttwu_remote(p, wake_flags))
1568 goto stat;
1da177e4 1569
1da177e4 1570#ifdef CONFIG_SMP
e9c84311 1571 /*
c05fbafb
PZ
1572 * If the owning (remote) cpu is still in the middle of schedule() with
1573 * this task as prev, wait until its done referencing the task.
e9c84311 1574 */
e4a52bcb
PZ
1575 while (p->on_cpu) {
1576#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1577 /*
d6aa8f85
PZ
1578 * In case the architecture enables interrupts in
1579 * context_switch(), we cannot busy wait, since that
1580 * would lead to deadlocks when an interrupt hits and
1581 * tries to wake up @prev. So bail and do a complete
1582 * remote wakeup.
e4a52bcb 1583 */
d6aa8f85 1584 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1585 goto stat;
d6aa8f85 1586#else
e4a52bcb 1587 cpu_relax();
d6aa8f85 1588#endif
371fd7e7 1589 }
0970d299 1590 /*
e4a52bcb 1591 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1592 */
e4a52bcb 1593 smp_rmb();
1da177e4 1594
a8e4f2ea 1595 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1596 p->state = TASK_WAKING;
e7693a36 1597
e4a52bcb 1598 if (p->sched_class->task_waking)
74f8e4b2 1599 p->sched_class->task_waking(p);
efbbd05a 1600
7608dec2 1601 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1602 if (task_cpu(p) != cpu) {
1603 wake_flags |= WF_MIGRATED;
e4a52bcb 1604 set_task_cpu(p, cpu);
f339b9dc 1605 }
1da177e4 1606#endif /* CONFIG_SMP */
1da177e4 1607
c05fbafb
PZ
1608 ttwu_queue(p, cpu);
1609stat:
b84cb5df 1610 ttwu_stat(p, cpu, wake_flags);
1da177e4 1611out:
013fdb80 1612 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1613
1614 return success;
1615}
1616
21aa9af0
TH
1617/**
1618 * try_to_wake_up_local - try to wake up a local task with rq lock held
1619 * @p: the thread to be awakened
1620 *
2acca55e 1621 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1622 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1623 * the current task.
21aa9af0
TH
1624 */
1625static void try_to_wake_up_local(struct task_struct *p)
1626{
1627 struct rq *rq = task_rq(p);
21aa9af0
TH
1628
1629 BUG_ON(rq != this_rq());
1630 BUG_ON(p == current);
1631 lockdep_assert_held(&rq->lock);
1632
2acca55e
PZ
1633 if (!raw_spin_trylock(&p->pi_lock)) {
1634 raw_spin_unlock(&rq->lock);
1635 raw_spin_lock(&p->pi_lock);
1636 raw_spin_lock(&rq->lock);
1637 }
1638
21aa9af0 1639 if (!(p->state & TASK_NORMAL))
2acca55e 1640 goto out;
21aa9af0 1641
fd2f4419 1642 if (!p->on_rq)
d7c01d27
PZ
1643 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1644
23f41eeb 1645 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1646 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1647out:
1648 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1649}
1650
50fa610a
DH
1651/**
1652 * wake_up_process - Wake up a specific process
1653 * @p: The process to be woken up.
1654 *
1655 * Attempt to wake up the nominated process and move it to the set of runnable
1656 * processes. Returns 1 if the process was woken up, 0 if it was already
1657 * running.
1658 *
1659 * It may be assumed that this function implies a write memory barrier before
1660 * changing the task state if and only if any tasks are woken up.
1661 */
7ad5b3a5 1662int wake_up_process(struct task_struct *p)
1da177e4 1663{
d9514f6c 1664 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1665}
1da177e4
LT
1666EXPORT_SYMBOL(wake_up_process);
1667
7ad5b3a5 1668int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1669{
1670 return try_to_wake_up(p, state, 0);
1671}
1672
1da177e4
LT
1673/*
1674 * Perform scheduler related setup for a newly forked process p.
1675 * p is forked by current.
dd41f596
IM
1676 *
1677 * __sched_fork() is basic setup used by init_idle() too:
1678 */
1679static void __sched_fork(struct task_struct *p)
1680{
fd2f4419
PZ
1681 p->on_rq = 0;
1682
1683 p->se.on_rq = 0;
dd41f596
IM
1684 p->se.exec_start = 0;
1685 p->se.sum_exec_runtime = 0;
f6cf891c 1686 p->se.prev_sum_exec_runtime = 0;
6c594c21 1687 p->se.nr_migrations = 0;
da7a735e 1688 p->se.vruntime = 0;
fd2f4419 1689 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1690
1691#ifdef CONFIG_SCHEDSTATS
41acab88 1692 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1693#endif
476d139c 1694
fa717060 1695 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1696
e107be36
AK
1697#ifdef CONFIG_PREEMPT_NOTIFIERS
1698 INIT_HLIST_HEAD(&p->preempt_notifiers);
1699#endif
dd41f596
IM
1700}
1701
1702/*
1703 * fork()/clone()-time setup:
1704 */
3e51e3ed 1705void sched_fork(struct task_struct *p)
dd41f596 1706{
0122ec5b 1707 unsigned long flags;
dd41f596
IM
1708 int cpu = get_cpu();
1709
1710 __sched_fork(p);
06b83b5f 1711 /*
0017d735 1712 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1713 * nobody will actually run it, and a signal or other external
1714 * event cannot wake it up and insert it on the runqueue either.
1715 */
0017d735 1716 p->state = TASK_RUNNING;
dd41f596 1717
c350a04e
MG
1718 /*
1719 * Make sure we do not leak PI boosting priority to the child.
1720 */
1721 p->prio = current->normal_prio;
1722
b9dc29e7
MG
1723 /*
1724 * Revert to default priority/policy on fork if requested.
1725 */
1726 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1727 if (task_has_rt_policy(p)) {
b9dc29e7 1728 p->policy = SCHED_NORMAL;
6c697bdf 1729 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1730 p->rt_priority = 0;
1731 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1732 p->static_prio = NICE_TO_PRIO(0);
1733
1734 p->prio = p->normal_prio = __normal_prio(p);
1735 set_load_weight(p);
6c697bdf 1736
b9dc29e7
MG
1737 /*
1738 * We don't need the reset flag anymore after the fork. It has
1739 * fulfilled its duty:
1740 */
1741 p->sched_reset_on_fork = 0;
1742 }
ca94c442 1743
2ddbf952
HS
1744 if (!rt_prio(p->prio))
1745 p->sched_class = &fair_sched_class;
b29739f9 1746
cd29fe6f
PZ
1747 if (p->sched_class->task_fork)
1748 p->sched_class->task_fork(p);
1749
86951599
PZ
1750 /*
1751 * The child is not yet in the pid-hash so no cgroup attach races,
1752 * and the cgroup is pinned to this child due to cgroup_fork()
1753 * is ran before sched_fork().
1754 *
1755 * Silence PROVE_RCU.
1756 */
0122ec5b 1757 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1758 set_task_cpu(p, cpu);
0122ec5b 1759 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1760
52f17b6c 1761#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1762 if (likely(sched_info_on()))
52f17b6c 1763 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1764#endif
3ca7a440
PZ
1765#if defined(CONFIG_SMP)
1766 p->on_cpu = 0;
4866cde0 1767#endif
bdd4e85d 1768#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1769 /* Want to start with kernel preemption disabled. */
a1261f54 1770 task_thread_info(p)->preempt_count = 1;
1da177e4 1771#endif
806c09a7 1772#ifdef CONFIG_SMP
917b627d 1773 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1774#endif
917b627d 1775
476d139c 1776 put_cpu();
1da177e4
LT
1777}
1778
1779/*
1780 * wake_up_new_task - wake up a newly created task for the first time.
1781 *
1782 * This function will do some initial scheduler statistics housekeeping
1783 * that must be done for every newly created context, then puts the task
1784 * on the runqueue and wakes it.
1785 */
3e51e3ed 1786void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1787{
1788 unsigned long flags;
dd41f596 1789 struct rq *rq;
fabf318e 1790
ab2515c4 1791 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1792#ifdef CONFIG_SMP
1793 /*
1794 * Fork balancing, do it here and not earlier because:
1795 * - cpus_allowed can change in the fork path
1796 * - any previously selected cpu might disappear through hotplug
fabf318e 1797 */
ab2515c4 1798 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1799#endif
1800
ab2515c4 1801 rq = __task_rq_lock(p);
cd29fe6f 1802 activate_task(rq, p, 0);
fd2f4419 1803 p->on_rq = 1;
89363381 1804 trace_sched_wakeup_new(p, true);
a7558e01 1805 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1806#ifdef CONFIG_SMP
efbbd05a
PZ
1807 if (p->sched_class->task_woken)
1808 p->sched_class->task_woken(rq, p);
9a897c5a 1809#endif
0122ec5b 1810 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1811}
1812
e107be36
AK
1813#ifdef CONFIG_PREEMPT_NOTIFIERS
1814
1815/**
80dd99b3 1816 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1817 * @notifier: notifier struct to register
e107be36
AK
1818 */
1819void preempt_notifier_register(struct preempt_notifier *notifier)
1820{
1821 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1822}
1823EXPORT_SYMBOL_GPL(preempt_notifier_register);
1824
1825/**
1826 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1827 * @notifier: notifier struct to unregister
e107be36
AK
1828 *
1829 * This is safe to call from within a preemption notifier.
1830 */
1831void preempt_notifier_unregister(struct preempt_notifier *notifier)
1832{
1833 hlist_del(&notifier->link);
1834}
1835EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1836
1837static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1838{
1839 struct preempt_notifier *notifier;
1840 struct hlist_node *node;
1841
1842 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1843 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1844}
1845
1846static void
1847fire_sched_out_preempt_notifiers(struct task_struct *curr,
1848 struct task_struct *next)
1849{
1850 struct preempt_notifier *notifier;
1851 struct hlist_node *node;
1852
1853 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1854 notifier->ops->sched_out(notifier, next);
1855}
1856
6d6bc0ad 1857#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1858
1859static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1860{
1861}
1862
1863static void
1864fire_sched_out_preempt_notifiers(struct task_struct *curr,
1865 struct task_struct *next)
1866{
1867}
1868
6d6bc0ad 1869#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1870
4866cde0
NP
1871/**
1872 * prepare_task_switch - prepare to switch tasks
1873 * @rq: the runqueue preparing to switch
421cee29 1874 * @prev: the current task that is being switched out
4866cde0
NP
1875 * @next: the task we are going to switch to.
1876 *
1877 * This is called with the rq lock held and interrupts off. It must
1878 * be paired with a subsequent finish_task_switch after the context
1879 * switch.
1880 *
1881 * prepare_task_switch sets up locking and calls architecture specific
1882 * hooks.
1883 */
e107be36
AK
1884static inline void
1885prepare_task_switch(struct rq *rq, struct task_struct *prev,
1886 struct task_struct *next)
4866cde0 1887{
fe4b04fa
PZ
1888 sched_info_switch(prev, next);
1889 perf_event_task_sched_out(prev, next);
e107be36 1890 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1891 prepare_lock_switch(rq, next);
1892 prepare_arch_switch(next);
fe4b04fa 1893 trace_sched_switch(prev, next);
4866cde0
NP
1894}
1895
1da177e4
LT
1896/**
1897 * finish_task_switch - clean up after a task-switch
344babaa 1898 * @rq: runqueue associated with task-switch
1da177e4
LT
1899 * @prev: the thread we just switched away from.
1900 *
4866cde0
NP
1901 * finish_task_switch must be called after the context switch, paired
1902 * with a prepare_task_switch call before the context switch.
1903 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1904 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1905 *
1906 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1907 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1908 * with the lock held can cause deadlocks; see schedule() for
1909 * details.)
1910 */
a9957449 1911static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1912 __releases(rq->lock)
1913{
1da177e4 1914 struct mm_struct *mm = rq->prev_mm;
55a101f8 1915 long prev_state;
1da177e4
LT
1916
1917 rq->prev_mm = NULL;
1918
1919 /*
1920 * A task struct has one reference for the use as "current".
c394cc9f 1921 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1922 * schedule one last time. The schedule call will never return, and
1923 * the scheduled task must drop that reference.
c394cc9f 1924 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1925 * still held, otherwise prev could be scheduled on another cpu, die
1926 * there before we look at prev->state, and then the reference would
1927 * be dropped twice.
1928 * Manfred Spraul <manfred@colorfullife.com>
1929 */
55a101f8 1930 prev_state = prev->state;
4866cde0 1931 finish_arch_switch(prev);
8381f65d
JI
1932#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1933 local_irq_disable();
1934#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1935 perf_event_task_sched_in(prev, current);
8381f65d
JI
1936#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1937 local_irq_enable();
1938#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1939 finish_lock_switch(rq, prev);
1ac9bc69 1940 trace_sched_stat_sleeptime(current, rq->clock);
e8fa1362 1941
e107be36 1942 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1943 if (mm)
1944 mmdrop(mm);
c394cc9f 1945 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1946 /*
1947 * Remove function-return probe instances associated with this
1948 * task and put them back on the free list.
9761eea8 1949 */
c6fd91f0 1950 kprobe_flush_task(prev);
1da177e4 1951 put_task_struct(prev);
c6fd91f0 1952 }
1da177e4
LT
1953}
1954
3f029d3c
GH
1955#ifdef CONFIG_SMP
1956
1957/* assumes rq->lock is held */
1958static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1959{
1960 if (prev->sched_class->pre_schedule)
1961 prev->sched_class->pre_schedule(rq, prev);
1962}
1963
1964/* rq->lock is NOT held, but preemption is disabled */
1965static inline void post_schedule(struct rq *rq)
1966{
1967 if (rq->post_schedule) {
1968 unsigned long flags;
1969
05fa785c 1970 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1971 if (rq->curr->sched_class->post_schedule)
1972 rq->curr->sched_class->post_schedule(rq);
05fa785c 1973 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1974
1975 rq->post_schedule = 0;
1976 }
1977}
1978
1979#else
da19ab51 1980
3f029d3c
GH
1981static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1982{
1983}
1984
1985static inline void post_schedule(struct rq *rq)
1986{
1da177e4
LT
1987}
1988
3f029d3c
GH
1989#endif
1990
1da177e4
LT
1991/**
1992 * schedule_tail - first thing a freshly forked thread must call.
1993 * @prev: the thread we just switched away from.
1994 */
36c8b586 1995asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1996 __releases(rq->lock)
1997{
70b97a7f
IM
1998 struct rq *rq = this_rq();
1999
4866cde0 2000 finish_task_switch(rq, prev);
da19ab51 2001
3f029d3c
GH
2002 /*
2003 * FIXME: do we need to worry about rq being invalidated by the
2004 * task_switch?
2005 */
2006 post_schedule(rq);
70b97a7f 2007
4866cde0
NP
2008#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2009 /* In this case, finish_task_switch does not reenable preemption */
2010 preempt_enable();
2011#endif
1da177e4 2012 if (current->set_child_tid)
b488893a 2013 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2014}
2015
2016/*
2017 * context_switch - switch to the new MM and the new
2018 * thread's register state.
2019 */
dd41f596 2020static inline void
70b97a7f 2021context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2022 struct task_struct *next)
1da177e4 2023{
dd41f596 2024 struct mm_struct *mm, *oldmm;
1da177e4 2025
e107be36 2026 prepare_task_switch(rq, prev, next);
fe4b04fa 2027
dd41f596
IM
2028 mm = next->mm;
2029 oldmm = prev->active_mm;
9226d125
ZA
2030 /*
2031 * For paravirt, this is coupled with an exit in switch_to to
2032 * combine the page table reload and the switch backend into
2033 * one hypercall.
2034 */
224101ed 2035 arch_start_context_switch(prev);
9226d125 2036
31915ab4 2037 if (!mm) {
1da177e4
LT
2038 next->active_mm = oldmm;
2039 atomic_inc(&oldmm->mm_count);
2040 enter_lazy_tlb(oldmm, next);
2041 } else
2042 switch_mm(oldmm, mm, next);
2043
31915ab4 2044 if (!prev->mm) {
1da177e4 2045 prev->active_mm = NULL;
1da177e4
LT
2046 rq->prev_mm = oldmm;
2047 }
3a5f5e48
IM
2048 /*
2049 * Since the runqueue lock will be released by the next
2050 * task (which is an invalid locking op but in the case
2051 * of the scheduler it's an obvious special-case), so we
2052 * do an early lockdep release here:
2053 */
2054#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2055 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2056#endif
1da177e4
LT
2057
2058 /* Here we just switch the register state and the stack. */
2059 switch_to(prev, next, prev);
2060
dd41f596
IM
2061 barrier();
2062 /*
2063 * this_rq must be evaluated again because prev may have moved
2064 * CPUs since it called schedule(), thus the 'rq' on its stack
2065 * frame will be invalid.
2066 */
2067 finish_task_switch(this_rq(), prev);
1da177e4
LT
2068}
2069
2070/*
2071 * nr_running, nr_uninterruptible and nr_context_switches:
2072 *
2073 * externally visible scheduler statistics: current number of runnable
2074 * threads, current number of uninterruptible-sleeping threads, total
2075 * number of context switches performed since bootup.
2076 */
2077unsigned long nr_running(void)
2078{
2079 unsigned long i, sum = 0;
2080
2081 for_each_online_cpu(i)
2082 sum += cpu_rq(i)->nr_running;
2083
2084 return sum;
f711f609 2085}
1da177e4
LT
2086
2087unsigned long nr_uninterruptible(void)
f711f609 2088{
1da177e4 2089 unsigned long i, sum = 0;
f711f609 2090
0a945022 2091 for_each_possible_cpu(i)
1da177e4 2092 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2093
2094 /*
1da177e4
LT
2095 * Since we read the counters lockless, it might be slightly
2096 * inaccurate. Do not allow it to go below zero though:
f711f609 2097 */
1da177e4
LT
2098 if (unlikely((long)sum < 0))
2099 sum = 0;
f711f609 2100
1da177e4 2101 return sum;
f711f609 2102}
f711f609 2103
1da177e4 2104unsigned long long nr_context_switches(void)
46cb4b7c 2105{
cc94abfc
SR
2106 int i;
2107 unsigned long long sum = 0;
46cb4b7c 2108
0a945022 2109 for_each_possible_cpu(i)
1da177e4 2110 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2111
1da177e4
LT
2112 return sum;
2113}
483b4ee6 2114
1da177e4
LT
2115unsigned long nr_iowait(void)
2116{
2117 unsigned long i, sum = 0;
483b4ee6 2118
0a945022 2119 for_each_possible_cpu(i)
1da177e4 2120 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2121
1da177e4
LT
2122 return sum;
2123}
483b4ee6 2124
8c215bd3 2125unsigned long nr_iowait_cpu(int cpu)
69d25870 2126{
8c215bd3 2127 struct rq *this = cpu_rq(cpu);
69d25870
AV
2128 return atomic_read(&this->nr_iowait);
2129}
46cb4b7c 2130
69d25870
AV
2131unsigned long this_cpu_load(void)
2132{
2133 struct rq *this = this_rq();
2134 return this->cpu_load[0];
2135}
e790fb0b 2136
46cb4b7c 2137
dce48a84
TG
2138/* Variables and functions for calc_load */
2139static atomic_long_t calc_load_tasks;
2140static unsigned long calc_load_update;
2141unsigned long avenrun[3];
2142EXPORT_SYMBOL(avenrun);
46cb4b7c 2143
74f5187a
PZ
2144static long calc_load_fold_active(struct rq *this_rq)
2145{
2146 long nr_active, delta = 0;
2147
2148 nr_active = this_rq->nr_running;
2149 nr_active += (long) this_rq->nr_uninterruptible;
2150
2151 if (nr_active != this_rq->calc_load_active) {
2152 delta = nr_active - this_rq->calc_load_active;
2153 this_rq->calc_load_active = nr_active;
2154 }
2155
2156 return delta;
2157}
2158
0f004f5a
PZ
2159static unsigned long
2160calc_load(unsigned long load, unsigned long exp, unsigned long active)
2161{
2162 load *= exp;
2163 load += active * (FIXED_1 - exp);
2164 load += 1UL << (FSHIFT - 1);
2165 return load >> FSHIFT;
2166}
2167
74f5187a
PZ
2168#ifdef CONFIG_NO_HZ
2169/*
2170 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2171 *
2172 * When making the ILB scale, we should try to pull this in as well.
2173 */
2174static atomic_long_t calc_load_tasks_idle;
2175
029632fb 2176void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2177{
2178 long delta;
2179
2180 delta = calc_load_fold_active(this_rq);
2181 if (delta)
2182 atomic_long_add(delta, &calc_load_tasks_idle);
2183}
2184
2185static long calc_load_fold_idle(void)
2186{
2187 long delta = 0;
2188
2189 /*
2190 * Its got a race, we don't care...
2191 */
2192 if (atomic_long_read(&calc_load_tasks_idle))
2193 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2194
2195 return delta;
2196}
0f004f5a
PZ
2197
2198/**
2199 * fixed_power_int - compute: x^n, in O(log n) time
2200 *
2201 * @x: base of the power
2202 * @frac_bits: fractional bits of @x
2203 * @n: power to raise @x to.
2204 *
2205 * By exploiting the relation between the definition of the natural power
2206 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2207 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2208 * (where: n_i \elem {0, 1}, the binary vector representing n),
2209 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2210 * of course trivially computable in O(log_2 n), the length of our binary
2211 * vector.
2212 */
2213static unsigned long
2214fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2215{
2216 unsigned long result = 1UL << frac_bits;
2217
2218 if (n) for (;;) {
2219 if (n & 1) {
2220 result *= x;
2221 result += 1UL << (frac_bits - 1);
2222 result >>= frac_bits;
2223 }
2224 n >>= 1;
2225 if (!n)
2226 break;
2227 x *= x;
2228 x += 1UL << (frac_bits - 1);
2229 x >>= frac_bits;
2230 }
2231
2232 return result;
2233}
2234
2235/*
2236 * a1 = a0 * e + a * (1 - e)
2237 *
2238 * a2 = a1 * e + a * (1 - e)
2239 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2240 * = a0 * e^2 + a * (1 - e) * (1 + e)
2241 *
2242 * a3 = a2 * e + a * (1 - e)
2243 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2244 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2245 *
2246 * ...
2247 *
2248 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2249 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2250 * = a0 * e^n + a * (1 - e^n)
2251 *
2252 * [1] application of the geometric series:
2253 *
2254 * n 1 - x^(n+1)
2255 * S_n := \Sum x^i = -------------
2256 * i=0 1 - x
2257 */
2258static unsigned long
2259calc_load_n(unsigned long load, unsigned long exp,
2260 unsigned long active, unsigned int n)
2261{
2262
2263 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2264}
2265
2266/*
2267 * NO_HZ can leave us missing all per-cpu ticks calling
2268 * calc_load_account_active(), but since an idle CPU folds its delta into
2269 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2270 * in the pending idle delta if our idle period crossed a load cycle boundary.
2271 *
2272 * Once we've updated the global active value, we need to apply the exponential
2273 * weights adjusted to the number of cycles missed.
2274 */
2275static void calc_global_nohz(unsigned long ticks)
2276{
2277 long delta, active, n;
2278
2279 if (time_before(jiffies, calc_load_update))
2280 return;
2281
2282 /*
2283 * If we crossed a calc_load_update boundary, make sure to fold
2284 * any pending idle changes, the respective CPUs might have
2285 * missed the tick driven calc_load_account_active() update
2286 * due to NO_HZ.
2287 */
2288 delta = calc_load_fold_idle();
2289 if (delta)
2290 atomic_long_add(delta, &calc_load_tasks);
2291
2292 /*
2293 * If we were idle for multiple load cycles, apply them.
2294 */
2295 if (ticks >= LOAD_FREQ) {
2296 n = ticks / LOAD_FREQ;
2297
2298 active = atomic_long_read(&calc_load_tasks);
2299 active = active > 0 ? active * FIXED_1 : 0;
2300
2301 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2302 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2303 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2304
2305 calc_load_update += n * LOAD_FREQ;
2306 }
2307
2308 /*
2309 * Its possible the remainder of the above division also crosses
2310 * a LOAD_FREQ period, the regular check in calc_global_load()
2311 * which comes after this will take care of that.
2312 *
2313 * Consider us being 11 ticks before a cycle completion, and us
2314 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2315 * age us 4 cycles, and the test in calc_global_load() will
2316 * pick up the final one.
2317 */
2318}
74f5187a 2319#else
029632fb 2320void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2321{
2322}
2323
2324static inline long calc_load_fold_idle(void)
2325{
2326 return 0;
2327}
0f004f5a
PZ
2328
2329static void calc_global_nohz(unsigned long ticks)
2330{
2331}
74f5187a
PZ
2332#endif
2333
2d02494f
TG
2334/**
2335 * get_avenrun - get the load average array
2336 * @loads: pointer to dest load array
2337 * @offset: offset to add
2338 * @shift: shift count to shift the result left
2339 *
2340 * These values are estimates at best, so no need for locking.
2341 */
2342void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2343{
2344 loads[0] = (avenrun[0] + offset) << shift;
2345 loads[1] = (avenrun[1] + offset) << shift;
2346 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2347}
46cb4b7c 2348
46cb4b7c 2349/*
dce48a84
TG
2350 * calc_load - update the avenrun load estimates 10 ticks after the
2351 * CPUs have updated calc_load_tasks.
7835b98b 2352 */
0f004f5a 2353void calc_global_load(unsigned long ticks)
7835b98b 2354{
dce48a84 2355 long active;
1da177e4 2356
0f004f5a
PZ
2357 calc_global_nohz(ticks);
2358
2359 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2360 return;
1da177e4 2361
dce48a84
TG
2362 active = atomic_long_read(&calc_load_tasks);
2363 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2364
dce48a84
TG
2365 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2366 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2367 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2368
dce48a84
TG
2369 calc_load_update += LOAD_FREQ;
2370}
1da177e4 2371
dce48a84 2372/*
74f5187a
PZ
2373 * Called from update_cpu_load() to periodically update this CPU's
2374 * active count.
dce48a84
TG
2375 */
2376static void calc_load_account_active(struct rq *this_rq)
2377{
74f5187a 2378 long delta;
08c183f3 2379
74f5187a
PZ
2380 if (time_before(jiffies, this_rq->calc_load_update))
2381 return;
783609c6 2382
74f5187a
PZ
2383 delta = calc_load_fold_active(this_rq);
2384 delta += calc_load_fold_idle();
2385 if (delta)
dce48a84 2386 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2387
2388 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2389}
2390
fdf3e95d
VP
2391/*
2392 * The exact cpuload at various idx values, calculated at every tick would be
2393 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2394 *
2395 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2396 * on nth tick when cpu may be busy, then we have:
2397 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2398 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2399 *
2400 * decay_load_missed() below does efficient calculation of
2401 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2402 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2403 *
2404 * The calculation is approximated on a 128 point scale.
2405 * degrade_zero_ticks is the number of ticks after which load at any
2406 * particular idx is approximated to be zero.
2407 * degrade_factor is a precomputed table, a row for each load idx.
2408 * Each column corresponds to degradation factor for a power of two ticks,
2409 * based on 128 point scale.
2410 * Example:
2411 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2412 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2413 *
2414 * With this power of 2 load factors, we can degrade the load n times
2415 * by looking at 1 bits in n and doing as many mult/shift instead of
2416 * n mult/shifts needed by the exact degradation.
2417 */
2418#define DEGRADE_SHIFT 7
2419static const unsigned char
2420 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2421static const unsigned char
2422 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2423 {0, 0, 0, 0, 0, 0, 0, 0},
2424 {64, 32, 8, 0, 0, 0, 0, 0},
2425 {96, 72, 40, 12, 1, 0, 0},
2426 {112, 98, 75, 43, 15, 1, 0},
2427 {120, 112, 98, 76, 45, 16, 2} };
2428
2429/*
2430 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2431 * would be when CPU is idle and so we just decay the old load without
2432 * adding any new load.
2433 */
2434static unsigned long
2435decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2436{
2437 int j = 0;
2438
2439 if (!missed_updates)
2440 return load;
2441
2442 if (missed_updates >= degrade_zero_ticks[idx])
2443 return 0;
2444
2445 if (idx == 1)
2446 return load >> missed_updates;
2447
2448 while (missed_updates) {
2449 if (missed_updates % 2)
2450 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2451
2452 missed_updates >>= 1;
2453 j++;
2454 }
2455 return load;
2456}
2457
46cb4b7c 2458/*
dd41f596 2459 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2460 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2461 * every tick. We fix it up based on jiffies.
46cb4b7c 2462 */
029632fb 2463void update_cpu_load(struct rq *this_rq)
46cb4b7c 2464{
495eca49 2465 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
2466 unsigned long curr_jiffies = jiffies;
2467 unsigned long pending_updates;
dd41f596 2468 int i, scale;
46cb4b7c 2469
dd41f596 2470 this_rq->nr_load_updates++;
46cb4b7c 2471
fdf3e95d
VP
2472 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2473 if (curr_jiffies == this_rq->last_load_update_tick)
2474 return;
2475
2476 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2477 this_rq->last_load_update_tick = curr_jiffies;
2478
dd41f596 2479 /* Update our load: */
fdf3e95d
VP
2480 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2481 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2482 unsigned long old_load, new_load;
7d1e6a9b 2483
dd41f596 2484 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2485
dd41f596 2486 old_load = this_rq->cpu_load[i];
fdf3e95d 2487 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2488 new_load = this_load;
a25707f3
IM
2489 /*
2490 * Round up the averaging division if load is increasing. This
2491 * prevents us from getting stuck on 9 if the load is 10, for
2492 * example.
2493 */
2494 if (new_load > old_load)
fdf3e95d
VP
2495 new_load += scale - 1;
2496
2497 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2498 }
da2b71ed
SS
2499
2500 sched_avg_update(this_rq);
fdf3e95d
VP
2501}
2502
2503static void update_cpu_load_active(struct rq *this_rq)
2504{
2505 update_cpu_load(this_rq);
46cb4b7c 2506
74f5187a 2507 calc_load_account_active(this_rq);
46cb4b7c
SS
2508}
2509
dd41f596 2510#ifdef CONFIG_SMP
8a0be9ef 2511
46cb4b7c 2512/*
38022906
PZ
2513 * sched_exec - execve() is a valuable balancing opportunity, because at
2514 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2515 */
38022906 2516void sched_exec(void)
46cb4b7c 2517{
38022906 2518 struct task_struct *p = current;
1da177e4 2519 unsigned long flags;
0017d735 2520 int dest_cpu;
46cb4b7c 2521
8f42ced9 2522 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2523 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2524 if (dest_cpu == smp_processor_id())
2525 goto unlock;
38022906 2526
8f42ced9 2527 if (likely(cpu_active(dest_cpu))) {
969c7921 2528 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2529
8f42ced9
PZ
2530 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2531 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2532 return;
2533 }
0017d735 2534unlock:
8f42ced9 2535 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2536}
dd41f596 2537
1da177e4
LT
2538#endif
2539
1da177e4 2540DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2541DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2542
2543EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2544EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2545
2546/*
c5f8d995 2547 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2548 * @p in case that task is currently running.
c5f8d995
HS
2549 *
2550 * Called with task_rq_lock() held on @rq.
1da177e4 2551 */
c5f8d995
HS
2552static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2553{
2554 u64 ns = 0;
2555
2556 if (task_current(rq, p)) {
2557 update_rq_clock(rq);
305e6835 2558 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2559 if ((s64)ns < 0)
2560 ns = 0;
2561 }
2562
2563 return ns;
2564}
2565
bb34d92f 2566unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2567{
1da177e4 2568 unsigned long flags;
41b86e9c 2569 struct rq *rq;
bb34d92f 2570 u64 ns = 0;
48f24c4d 2571
41b86e9c 2572 rq = task_rq_lock(p, &flags);
c5f8d995 2573 ns = do_task_delta_exec(p, rq);
0122ec5b 2574 task_rq_unlock(rq, p, &flags);
1508487e 2575
c5f8d995
HS
2576 return ns;
2577}
f06febc9 2578
c5f8d995
HS
2579/*
2580 * Return accounted runtime for the task.
2581 * In case the task is currently running, return the runtime plus current's
2582 * pending runtime that have not been accounted yet.
2583 */
2584unsigned long long task_sched_runtime(struct task_struct *p)
2585{
2586 unsigned long flags;
2587 struct rq *rq;
2588 u64 ns = 0;
2589
2590 rq = task_rq_lock(p, &flags);
2591 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2592 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2593
2594 return ns;
2595}
48f24c4d 2596
54c707e9
GC
2597#ifdef CONFIG_CGROUP_CPUACCT
2598struct cgroup_subsys cpuacct_subsys;
2599struct cpuacct root_cpuacct;
2600#endif
2601
be726ffd
GC
2602static inline void task_group_account_field(struct task_struct *p, int index,
2603 u64 tmp)
54c707e9
GC
2604{
2605#ifdef CONFIG_CGROUP_CPUACCT
2606 struct kernel_cpustat *kcpustat;
2607 struct cpuacct *ca;
2608#endif
2609 /*
2610 * Since all updates are sure to touch the root cgroup, we
2611 * get ourselves ahead and touch it first. If the root cgroup
2612 * is the only cgroup, then nothing else should be necessary.
2613 *
2614 */
2615 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2616
2617#ifdef CONFIG_CGROUP_CPUACCT
2618 if (unlikely(!cpuacct_subsys.active))
2619 return;
2620
2621 rcu_read_lock();
2622 ca = task_ca(p);
2623 while (ca && (ca != &root_cpuacct)) {
2624 kcpustat = this_cpu_ptr(ca->cpustat);
2625 kcpustat->cpustat[index] += tmp;
2626 ca = parent_ca(ca);
2627 }
2628 rcu_read_unlock();
2629#endif
2630}
2631
2632
1da177e4
LT
2633/*
2634 * Account user cpu time to a process.
2635 * @p: the process that the cpu time gets accounted to
1da177e4 2636 * @cputime: the cpu time spent in user space since the last update
457533a7 2637 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2638 */
457533a7
MS
2639void account_user_time(struct task_struct *p, cputime_t cputime,
2640 cputime_t cputime_scaled)
1da177e4 2641{
3292beb3 2642 int index;
1da177e4 2643
457533a7 2644 /* Add user time to process. */
64861634
MS
2645 p->utime += cputime;
2646 p->utimescaled += cputime_scaled;
f06febc9 2647 account_group_user_time(p, cputime);
1da177e4 2648
3292beb3 2649 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2650
1da177e4 2651 /* Add user time to cpustat. */
612ef28a 2652 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2653
49b5cf34
JL
2654 /* Account for user time used */
2655 acct_update_integrals(p);
1da177e4
LT
2656}
2657
94886b84
LV
2658/*
2659 * Account guest cpu time to a process.
2660 * @p: the process that the cpu time gets accounted to
2661 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2662 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2663 */
457533a7
MS
2664static void account_guest_time(struct task_struct *p, cputime_t cputime,
2665 cputime_t cputime_scaled)
94886b84 2666{
3292beb3 2667 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2668
457533a7 2669 /* Add guest time to process. */
64861634
MS
2670 p->utime += cputime;
2671 p->utimescaled += cputime_scaled;
f06febc9 2672 account_group_user_time(p, cputime);
64861634 2673 p->gtime += cputime;
94886b84 2674
457533a7 2675 /* Add guest time to cpustat. */
ce0e7b28 2676 if (TASK_NICE(p) > 0) {
612ef28a
MS
2677 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2678 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2679 } else {
612ef28a
MS
2680 cpustat[CPUTIME_USER] += (__force u64) cputime;
2681 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2682 }
94886b84
LV
2683}
2684
70a89a66
VP
2685/*
2686 * Account system cpu time to a process and desired cpustat field
2687 * @p: the process that the cpu time gets accounted to
2688 * @cputime: the cpu time spent in kernel space since the last update
2689 * @cputime_scaled: cputime scaled by cpu frequency
2690 * @target_cputime64: pointer to cpustat field that has to be updated
2691 */
2692static inline
2693void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2694 cputime_t cputime_scaled, int index)
70a89a66 2695{
70a89a66 2696 /* Add system time to process. */
64861634
MS
2697 p->stime += cputime;
2698 p->stimescaled += cputime_scaled;
70a89a66
VP
2699 account_group_system_time(p, cputime);
2700
2701 /* Add system time to cpustat. */
612ef28a 2702 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2703
2704 /* Account for system time used */
2705 acct_update_integrals(p);
2706}
2707
1da177e4
LT
2708/*
2709 * Account system cpu time to a process.
2710 * @p: the process that the cpu time gets accounted to
2711 * @hardirq_offset: the offset to subtract from hardirq_count()
2712 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2713 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2714 */
2715void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2716 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2717{
3292beb3 2718 int index;
1da177e4 2719
983ed7a6 2720 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2721 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2722 return;
2723 }
94886b84 2724
1da177e4 2725 if (hardirq_count() - hardirq_offset)
3292beb3 2726 index = CPUTIME_IRQ;
75e1056f 2727 else if (in_serving_softirq())
3292beb3 2728 index = CPUTIME_SOFTIRQ;
1da177e4 2729 else
3292beb3 2730 index = CPUTIME_SYSTEM;
ef12fefa 2731
3292beb3 2732 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2733}
2734
c66f08be 2735/*
1da177e4 2736 * Account for involuntary wait time.
544b4a1f 2737 * @cputime: the cpu time spent in involuntary wait
c66f08be 2738 */
79741dd3 2739void account_steal_time(cputime_t cputime)
c66f08be 2740{
3292beb3 2741 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2742
612ef28a 2743 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2744}
2745
1da177e4 2746/*
79741dd3
MS
2747 * Account for idle time.
2748 * @cputime: the cpu time spent in idle wait
1da177e4 2749 */
79741dd3 2750void account_idle_time(cputime_t cputime)
1da177e4 2751{
3292beb3 2752 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2753 struct rq *rq = this_rq();
1da177e4 2754
79741dd3 2755 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2756 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2757 else
612ef28a 2758 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2759}
2760
e6e6685a
GC
2761static __always_inline bool steal_account_process_tick(void)
2762{
2763#ifdef CONFIG_PARAVIRT
2764 if (static_branch(&paravirt_steal_enabled)) {
2765 u64 steal, st = 0;
2766
2767 steal = paravirt_steal_clock(smp_processor_id());
2768 steal -= this_rq()->prev_steal_time;
2769
2770 st = steal_ticks(steal);
2771 this_rq()->prev_steal_time += st * TICK_NSEC;
2772
2773 account_steal_time(st);
2774 return st;
2775 }
2776#endif
2777 return false;
2778}
2779
79741dd3
MS
2780#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2781
abb74cef
VP
2782#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2783/*
2784 * Account a tick to a process and cpustat
2785 * @p: the process that the cpu time gets accounted to
2786 * @user_tick: is the tick from userspace
2787 * @rq: the pointer to rq
2788 *
2789 * Tick demultiplexing follows the order
2790 * - pending hardirq update
2791 * - pending softirq update
2792 * - user_time
2793 * - idle_time
2794 * - system time
2795 * - check for guest_time
2796 * - else account as system_time
2797 *
2798 * Check for hardirq is done both for system and user time as there is
2799 * no timer going off while we are on hardirq and hence we may never get an
2800 * opportunity to update it solely in system time.
2801 * p->stime and friends are only updated on system time and not on irq
2802 * softirq as those do not count in task exec_runtime any more.
2803 */
2804static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2805 struct rq *rq)
2806{
2807 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 2808 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 2809
e6e6685a
GC
2810 if (steal_account_process_tick())
2811 return;
2812
abb74cef 2813 if (irqtime_account_hi_update()) {
612ef28a 2814 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 2815 } else if (irqtime_account_si_update()) {
612ef28a 2816 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
2817 } else if (this_cpu_ksoftirqd() == p) {
2818 /*
2819 * ksoftirqd time do not get accounted in cpu_softirq_time.
2820 * So, we have to handle it separately here.
2821 * Also, p->stime needs to be updated for ksoftirqd.
2822 */
2823 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2824 CPUTIME_SOFTIRQ);
abb74cef
VP
2825 } else if (user_tick) {
2826 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2827 } else if (p == rq->idle) {
2828 account_idle_time(cputime_one_jiffy);
2829 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2830 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2831 } else {
2832 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2833 CPUTIME_SYSTEM);
abb74cef
VP
2834 }
2835}
2836
2837static void irqtime_account_idle_ticks(int ticks)
2838{
2839 int i;
2840 struct rq *rq = this_rq();
2841
2842 for (i = 0; i < ticks; i++)
2843 irqtime_account_process_tick(current, 0, rq);
2844}
544b4a1f 2845#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2846static void irqtime_account_idle_ticks(int ticks) {}
2847static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2848 struct rq *rq) {}
544b4a1f 2849#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2850
2851/*
2852 * Account a single tick of cpu time.
2853 * @p: the process that the cpu time gets accounted to
2854 * @user_tick: indicates if the tick is a user or a system tick
2855 */
2856void account_process_tick(struct task_struct *p, int user_tick)
2857{
a42548a1 2858 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2859 struct rq *rq = this_rq();
2860
abb74cef
VP
2861 if (sched_clock_irqtime) {
2862 irqtime_account_process_tick(p, user_tick, rq);
2863 return;
2864 }
2865
e6e6685a
GC
2866 if (steal_account_process_tick())
2867 return;
2868
79741dd3 2869 if (user_tick)
a42548a1 2870 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2871 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2872 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2873 one_jiffy_scaled);
2874 else
a42548a1 2875 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2876}
2877
2878/*
2879 * Account multiple ticks of steal time.
2880 * @p: the process from which the cpu time has been stolen
2881 * @ticks: number of stolen ticks
2882 */
2883void account_steal_ticks(unsigned long ticks)
2884{
2885 account_steal_time(jiffies_to_cputime(ticks));
2886}
2887
2888/*
2889 * Account multiple ticks of idle time.
2890 * @ticks: number of stolen ticks
2891 */
2892void account_idle_ticks(unsigned long ticks)
2893{
abb74cef
VP
2894
2895 if (sched_clock_irqtime) {
2896 irqtime_account_idle_ticks(ticks);
2897 return;
2898 }
2899
79741dd3 2900 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2901}
2902
79741dd3
MS
2903#endif
2904
49048622
BS
2905/*
2906 * Use precise platform statistics if available:
2907 */
2908#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2909void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2910{
d99ca3b9
HS
2911 *ut = p->utime;
2912 *st = p->stime;
49048622
BS
2913}
2914
0cf55e1e 2915void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2916{
0cf55e1e
HS
2917 struct task_cputime cputime;
2918
2919 thread_group_cputime(p, &cputime);
2920
2921 *ut = cputime.utime;
2922 *st = cputime.stime;
49048622
BS
2923}
2924#else
761b1d26
HS
2925
2926#ifndef nsecs_to_cputime
b7b20df9 2927# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
2928#endif
2929
d180c5bc 2930void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2931{
64861634 2932 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
2933
2934 /*
2935 * Use CFS's precise accounting:
2936 */
d180c5bc 2937 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
2938
2939 if (total) {
64861634 2940 u64 temp = (__force u64) rtime;
d180c5bc 2941
64861634
MS
2942 temp *= (__force u64) utime;
2943 do_div(temp, (__force u32) total);
2944 utime = (__force cputime_t) temp;
d180c5bc
HS
2945 } else
2946 utime = rtime;
49048622 2947
d180c5bc
HS
2948 /*
2949 * Compare with previous values, to keep monotonicity:
2950 */
761b1d26 2951 p->prev_utime = max(p->prev_utime, utime);
64861634 2952 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 2953
d99ca3b9
HS
2954 *ut = p->prev_utime;
2955 *st = p->prev_stime;
49048622
BS
2956}
2957
0cf55e1e
HS
2958/*
2959 * Must be called with siglock held.
2960 */
2961void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2962{
0cf55e1e
HS
2963 struct signal_struct *sig = p->signal;
2964 struct task_cputime cputime;
2965 cputime_t rtime, utime, total;
49048622 2966
0cf55e1e 2967 thread_group_cputime(p, &cputime);
49048622 2968
64861634 2969 total = cputime.utime + cputime.stime;
0cf55e1e 2970 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 2971
0cf55e1e 2972 if (total) {
64861634 2973 u64 temp = (__force u64) rtime;
49048622 2974
64861634
MS
2975 temp *= (__force u64) cputime.utime;
2976 do_div(temp, (__force u32) total);
2977 utime = (__force cputime_t) temp;
0cf55e1e
HS
2978 } else
2979 utime = rtime;
2980
2981 sig->prev_utime = max(sig->prev_utime, utime);
64861634 2982 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
2983
2984 *ut = sig->prev_utime;
2985 *st = sig->prev_stime;
49048622 2986}
49048622 2987#endif
49048622 2988
7835b98b
CL
2989/*
2990 * This function gets called by the timer code, with HZ frequency.
2991 * We call it with interrupts disabled.
7835b98b
CL
2992 */
2993void scheduler_tick(void)
2994{
7835b98b
CL
2995 int cpu = smp_processor_id();
2996 struct rq *rq = cpu_rq(cpu);
dd41f596 2997 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2998
2999 sched_clock_tick();
dd41f596 3000
05fa785c 3001 raw_spin_lock(&rq->lock);
3e51f33f 3002 update_rq_clock(rq);
fdf3e95d 3003 update_cpu_load_active(rq);
fa85ae24 3004 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3005 raw_spin_unlock(&rq->lock);
7835b98b 3006
e9d2b064 3007 perf_event_task_tick();
e220d2dc 3008
e418e1c2 3009#ifdef CONFIG_SMP
6eb57e0d 3010 rq->idle_balance = idle_cpu(cpu);
dd41f596 3011 trigger_load_balance(rq, cpu);
e418e1c2 3012#endif
1da177e4
LT
3013}
3014
132380a0 3015notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3016{
3017 if (in_lock_functions(addr)) {
3018 addr = CALLER_ADDR2;
3019 if (in_lock_functions(addr))
3020 addr = CALLER_ADDR3;
3021 }
3022 return addr;
3023}
1da177e4 3024
7e49fcce
SR
3025#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3026 defined(CONFIG_PREEMPT_TRACER))
3027
43627582 3028void __kprobes add_preempt_count(int val)
1da177e4 3029{
6cd8a4bb 3030#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3031 /*
3032 * Underflow?
3033 */
9a11b49a
IM
3034 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3035 return;
6cd8a4bb 3036#endif
1da177e4 3037 preempt_count() += val;
6cd8a4bb 3038#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3039 /*
3040 * Spinlock count overflowing soon?
3041 */
33859f7f
MOS
3042 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3043 PREEMPT_MASK - 10);
6cd8a4bb
SR
3044#endif
3045 if (preempt_count() == val)
3046 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3047}
3048EXPORT_SYMBOL(add_preempt_count);
3049
43627582 3050void __kprobes sub_preempt_count(int val)
1da177e4 3051{
6cd8a4bb 3052#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3053 /*
3054 * Underflow?
3055 */
01e3eb82 3056 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3057 return;
1da177e4
LT
3058 /*
3059 * Is the spinlock portion underflowing?
3060 */
9a11b49a
IM
3061 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3062 !(preempt_count() & PREEMPT_MASK)))
3063 return;
6cd8a4bb 3064#endif
9a11b49a 3065
6cd8a4bb
SR
3066 if (preempt_count() == val)
3067 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3068 preempt_count() -= val;
3069}
3070EXPORT_SYMBOL(sub_preempt_count);
3071
3072#endif
3073
3074/*
dd41f596 3075 * Print scheduling while atomic bug:
1da177e4 3076 */
dd41f596 3077static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3078{
838225b4
SS
3079 struct pt_regs *regs = get_irq_regs();
3080
664dfa65
DJ
3081 if (oops_in_progress)
3082 return;
3083
3df0fc5b
PZ
3084 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3085 prev->comm, prev->pid, preempt_count());
838225b4 3086
dd41f596 3087 debug_show_held_locks(prev);
e21f5b15 3088 print_modules();
dd41f596
IM
3089 if (irqs_disabled())
3090 print_irqtrace_events(prev);
838225b4
SS
3091
3092 if (regs)
3093 show_regs(regs);
3094 else
3095 dump_stack();
dd41f596 3096}
1da177e4 3097
dd41f596
IM
3098/*
3099 * Various schedule()-time debugging checks and statistics:
3100 */
3101static inline void schedule_debug(struct task_struct *prev)
3102{
1da177e4 3103 /*
41a2d6cf 3104 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3105 * schedule() atomically, we ignore that path for now.
3106 * Otherwise, whine if we are scheduling when we should not be.
3107 */
3f33a7ce 3108 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3109 __schedule_bug(prev);
b3fbab05 3110 rcu_sleep_check();
dd41f596 3111
1da177e4
LT
3112 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3113
2d72376b 3114 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3115}
3116
6cecd084 3117static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3118{
61eadef6 3119 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3120 update_rq_clock(rq);
6cecd084 3121 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3122}
3123
dd41f596
IM
3124/*
3125 * Pick up the highest-prio task:
3126 */
3127static inline struct task_struct *
b67802ea 3128pick_next_task(struct rq *rq)
dd41f596 3129{
5522d5d5 3130 const struct sched_class *class;
dd41f596 3131 struct task_struct *p;
1da177e4
LT
3132
3133 /*
dd41f596
IM
3134 * Optimization: we know that if all tasks are in
3135 * the fair class we can call that function directly:
1da177e4 3136 */
953bfcd1 3137 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3138 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3139 if (likely(p))
3140 return p;
1da177e4
LT
3141 }
3142
34f971f6 3143 for_each_class(class) {
fb8d4724 3144 p = class->pick_next_task(rq);
dd41f596
IM
3145 if (p)
3146 return p;
dd41f596 3147 }
34f971f6
PZ
3148
3149 BUG(); /* the idle class will always have a runnable task */
dd41f596 3150}
1da177e4 3151
dd41f596 3152/*
c259e01a 3153 * __schedule() is the main scheduler function.
dd41f596 3154 */
c259e01a 3155static void __sched __schedule(void)
dd41f596
IM
3156{
3157 struct task_struct *prev, *next;
67ca7bde 3158 unsigned long *switch_count;
dd41f596 3159 struct rq *rq;
31656519 3160 int cpu;
dd41f596 3161
ff743345
PZ
3162need_resched:
3163 preempt_disable();
dd41f596
IM
3164 cpu = smp_processor_id();
3165 rq = cpu_rq(cpu);
25502a6c 3166 rcu_note_context_switch(cpu);
dd41f596 3167 prev = rq->curr;
dd41f596 3168
dd41f596 3169 schedule_debug(prev);
1da177e4 3170
31656519 3171 if (sched_feat(HRTICK))
f333fdc9 3172 hrtick_clear(rq);
8f4d37ec 3173
05fa785c 3174 raw_spin_lock_irq(&rq->lock);
1da177e4 3175
246d86b5 3176 switch_count = &prev->nivcsw;
1da177e4 3177 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3178 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3179 prev->state = TASK_RUNNING;
21aa9af0 3180 } else {
2acca55e
PZ
3181 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3182 prev->on_rq = 0;
3183
21aa9af0 3184 /*
2acca55e
PZ
3185 * If a worker went to sleep, notify and ask workqueue
3186 * whether it wants to wake up a task to maintain
3187 * concurrency.
21aa9af0
TH
3188 */
3189 if (prev->flags & PF_WQ_WORKER) {
3190 struct task_struct *to_wakeup;
3191
3192 to_wakeup = wq_worker_sleeping(prev, cpu);
3193 if (to_wakeup)
3194 try_to_wake_up_local(to_wakeup);
3195 }
21aa9af0 3196 }
dd41f596 3197 switch_count = &prev->nvcsw;
1da177e4
LT
3198 }
3199
3f029d3c 3200 pre_schedule(rq, prev);
f65eda4f 3201
dd41f596 3202 if (unlikely(!rq->nr_running))
1da177e4 3203 idle_balance(cpu, rq);
1da177e4 3204
df1c99d4 3205 put_prev_task(rq, prev);
b67802ea 3206 next = pick_next_task(rq);
f26f9aff
MG
3207 clear_tsk_need_resched(prev);
3208 rq->skip_clock_update = 0;
1da177e4 3209
1da177e4 3210 if (likely(prev != next)) {
1da177e4
LT
3211 rq->nr_switches++;
3212 rq->curr = next;
3213 ++*switch_count;
3214
dd41f596 3215 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3216 /*
246d86b5
ON
3217 * The context switch have flipped the stack from under us
3218 * and restored the local variables which were saved when
3219 * this task called schedule() in the past. prev == current
3220 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3221 */
3222 cpu = smp_processor_id();
3223 rq = cpu_rq(cpu);
1da177e4 3224 } else
05fa785c 3225 raw_spin_unlock_irq(&rq->lock);
1da177e4 3226
3f029d3c 3227 post_schedule(rq);
1da177e4 3228
1da177e4 3229 preempt_enable_no_resched();
ff743345 3230 if (need_resched())
1da177e4
LT
3231 goto need_resched;
3232}
c259e01a 3233
9c40cef2
TG
3234static inline void sched_submit_work(struct task_struct *tsk)
3235{
3236 if (!tsk->state)
3237 return;
3238 /*
3239 * If we are going to sleep and we have plugged IO queued,
3240 * make sure to submit it to avoid deadlocks.
3241 */
3242 if (blk_needs_flush_plug(tsk))
3243 blk_schedule_flush_plug(tsk);
3244}
3245
6ebbe7a0 3246asmlinkage void __sched schedule(void)
c259e01a 3247{
9c40cef2
TG
3248 struct task_struct *tsk = current;
3249
3250 sched_submit_work(tsk);
c259e01a
TG
3251 __schedule();
3252}
1da177e4
LT
3253EXPORT_SYMBOL(schedule);
3254
c08f7829 3255#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3256
c6eb3dda
PZ
3257static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3258{
c6eb3dda 3259 if (lock->owner != owner)
307bf980 3260 return false;
0d66bf6d
PZ
3261
3262 /*
c6eb3dda
PZ
3263 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3264 * lock->owner still matches owner, if that fails, owner might
3265 * point to free()d memory, if it still matches, the rcu_read_lock()
3266 * ensures the memory stays valid.
0d66bf6d 3267 */
c6eb3dda 3268 barrier();
0d66bf6d 3269
307bf980 3270 return owner->on_cpu;
c6eb3dda 3271}
0d66bf6d 3272
c6eb3dda
PZ
3273/*
3274 * Look out! "owner" is an entirely speculative pointer
3275 * access and not reliable.
3276 */
3277int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3278{
3279 if (!sched_feat(OWNER_SPIN))
3280 return 0;
0d66bf6d 3281
307bf980 3282 rcu_read_lock();
c6eb3dda
PZ
3283 while (owner_running(lock, owner)) {
3284 if (need_resched())
307bf980 3285 break;
0d66bf6d 3286
335d7afb 3287 arch_mutex_cpu_relax();
0d66bf6d 3288 }
307bf980 3289 rcu_read_unlock();
4b402210 3290
c6eb3dda 3291 /*
307bf980
TG
3292 * We break out the loop above on need_resched() and when the
3293 * owner changed, which is a sign for heavy contention. Return
3294 * success only when lock->owner is NULL.
c6eb3dda 3295 */
307bf980 3296 return lock->owner == NULL;
0d66bf6d
PZ
3297}
3298#endif
3299
1da177e4
LT
3300#ifdef CONFIG_PREEMPT
3301/*
2ed6e34f 3302 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3303 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3304 * occur there and call schedule directly.
3305 */
d1f74e20 3306asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3307{
3308 struct thread_info *ti = current_thread_info();
6478d880 3309
1da177e4
LT
3310 /*
3311 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3312 * we do not want to preempt the current task. Just return..
1da177e4 3313 */
beed33a8 3314 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3315 return;
3316
3a5c359a 3317 do {
d1f74e20 3318 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3319 __schedule();
d1f74e20 3320 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3321
3a5c359a
AK
3322 /*
3323 * Check again in case we missed a preemption opportunity
3324 * between schedule and now.
3325 */
3326 barrier();
5ed0cec0 3327 } while (need_resched());
1da177e4 3328}
1da177e4
LT
3329EXPORT_SYMBOL(preempt_schedule);
3330
3331/*
2ed6e34f 3332 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3333 * off of irq context.
3334 * Note, that this is called and return with irqs disabled. This will
3335 * protect us against recursive calling from irq.
3336 */
3337asmlinkage void __sched preempt_schedule_irq(void)
3338{
3339 struct thread_info *ti = current_thread_info();
6478d880 3340
2ed6e34f 3341 /* Catch callers which need to be fixed */
1da177e4
LT
3342 BUG_ON(ti->preempt_count || !irqs_disabled());
3343
3a5c359a
AK
3344 do {
3345 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3346 local_irq_enable();
c259e01a 3347 __schedule();
3a5c359a 3348 local_irq_disable();
3a5c359a 3349 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3350
3a5c359a
AK
3351 /*
3352 * Check again in case we missed a preemption opportunity
3353 * between schedule and now.
3354 */
3355 barrier();
5ed0cec0 3356 } while (need_resched());
1da177e4
LT
3357}
3358
3359#endif /* CONFIG_PREEMPT */
3360
63859d4f 3361int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3362 void *key)
1da177e4 3363{
63859d4f 3364 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3365}
1da177e4
LT
3366EXPORT_SYMBOL(default_wake_function);
3367
3368/*
41a2d6cf
IM
3369 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3370 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3371 * number) then we wake all the non-exclusive tasks and one exclusive task.
3372 *
3373 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3374 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3375 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3376 */
78ddb08f 3377static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3378 int nr_exclusive, int wake_flags, void *key)
1da177e4 3379{
2e45874c 3380 wait_queue_t *curr, *next;
1da177e4 3381
2e45874c 3382 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3383 unsigned flags = curr->flags;
3384
63859d4f 3385 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3386 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3387 break;
3388 }
3389}
3390
3391/**
3392 * __wake_up - wake up threads blocked on a waitqueue.
3393 * @q: the waitqueue
3394 * @mode: which threads
3395 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3396 * @key: is directly passed to the wakeup function
50fa610a
DH
3397 *
3398 * It may be assumed that this function implies a write memory barrier before
3399 * changing the task state if and only if any tasks are woken up.
1da177e4 3400 */
7ad5b3a5 3401void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3402 int nr_exclusive, void *key)
1da177e4
LT
3403{
3404 unsigned long flags;
3405
3406 spin_lock_irqsave(&q->lock, flags);
3407 __wake_up_common(q, mode, nr_exclusive, 0, key);
3408 spin_unlock_irqrestore(&q->lock, flags);
3409}
1da177e4
LT
3410EXPORT_SYMBOL(__wake_up);
3411
3412/*
3413 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3414 */
7ad5b3a5 3415void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3416{
3417 __wake_up_common(q, mode, 1, 0, NULL);
3418}
22c43c81 3419EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3420
4ede816a
DL
3421void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3422{
3423 __wake_up_common(q, mode, 1, 0, key);
3424}
bf294b41 3425EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3426
1da177e4 3427/**
4ede816a 3428 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3429 * @q: the waitqueue
3430 * @mode: which threads
3431 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3432 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3433 *
3434 * The sync wakeup differs that the waker knows that it will schedule
3435 * away soon, so while the target thread will be woken up, it will not
3436 * be migrated to another CPU - ie. the two threads are 'synchronized'
3437 * with each other. This can prevent needless bouncing between CPUs.
3438 *
3439 * On UP it can prevent extra preemption.
50fa610a
DH
3440 *
3441 * It may be assumed that this function implies a write memory barrier before
3442 * changing the task state if and only if any tasks are woken up.
1da177e4 3443 */
4ede816a
DL
3444void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3445 int nr_exclusive, void *key)
1da177e4
LT
3446{
3447 unsigned long flags;
7d478721 3448 int wake_flags = WF_SYNC;
1da177e4
LT
3449
3450 if (unlikely(!q))
3451 return;
3452
3453 if (unlikely(!nr_exclusive))
7d478721 3454 wake_flags = 0;
1da177e4
LT
3455
3456 spin_lock_irqsave(&q->lock, flags);
7d478721 3457 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3458 spin_unlock_irqrestore(&q->lock, flags);
3459}
4ede816a
DL
3460EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3461
3462/*
3463 * __wake_up_sync - see __wake_up_sync_key()
3464 */
3465void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3466{
3467 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3468}
1da177e4
LT
3469EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3470
65eb3dc6
KD
3471/**
3472 * complete: - signals a single thread waiting on this completion
3473 * @x: holds the state of this particular completion
3474 *
3475 * This will wake up a single thread waiting on this completion. Threads will be
3476 * awakened in the same order in which they were queued.
3477 *
3478 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3479 *
3480 * It may be assumed that this function implies a write memory barrier before
3481 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3482 */
b15136e9 3483void complete(struct completion *x)
1da177e4
LT
3484{
3485 unsigned long flags;
3486
3487 spin_lock_irqsave(&x->wait.lock, flags);
3488 x->done++;
d9514f6c 3489 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3490 spin_unlock_irqrestore(&x->wait.lock, flags);
3491}
3492EXPORT_SYMBOL(complete);
3493
65eb3dc6
KD
3494/**
3495 * complete_all: - signals all threads waiting on this completion
3496 * @x: holds the state of this particular completion
3497 *
3498 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3499 *
3500 * It may be assumed that this function implies a write memory barrier before
3501 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3502 */
b15136e9 3503void complete_all(struct completion *x)
1da177e4
LT
3504{
3505 unsigned long flags;
3506
3507 spin_lock_irqsave(&x->wait.lock, flags);
3508 x->done += UINT_MAX/2;
d9514f6c 3509 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3510 spin_unlock_irqrestore(&x->wait.lock, flags);
3511}
3512EXPORT_SYMBOL(complete_all);
3513
8cbbe86d
AK
3514static inline long __sched
3515do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3516{
1da177e4
LT
3517 if (!x->done) {
3518 DECLARE_WAITQUEUE(wait, current);
3519
a93d2f17 3520 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3521 do {
94d3d824 3522 if (signal_pending_state(state, current)) {
ea71a546
ON
3523 timeout = -ERESTARTSYS;
3524 break;
8cbbe86d
AK
3525 }
3526 __set_current_state(state);
1da177e4
LT
3527 spin_unlock_irq(&x->wait.lock);
3528 timeout = schedule_timeout(timeout);
3529 spin_lock_irq(&x->wait.lock);
ea71a546 3530 } while (!x->done && timeout);
1da177e4 3531 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3532 if (!x->done)
3533 return timeout;
1da177e4
LT
3534 }
3535 x->done--;
ea71a546 3536 return timeout ?: 1;
1da177e4 3537}
1da177e4 3538
8cbbe86d
AK
3539static long __sched
3540wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3541{
1da177e4
LT
3542 might_sleep();
3543
3544 spin_lock_irq(&x->wait.lock);
8cbbe86d 3545 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3546 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3547 return timeout;
3548}
1da177e4 3549
65eb3dc6
KD
3550/**
3551 * wait_for_completion: - waits for completion of a task
3552 * @x: holds the state of this particular completion
3553 *
3554 * This waits to be signaled for completion of a specific task. It is NOT
3555 * interruptible and there is no timeout.
3556 *
3557 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3558 * and interrupt capability. Also see complete().
3559 */
b15136e9 3560void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3561{
3562 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3563}
8cbbe86d 3564EXPORT_SYMBOL(wait_for_completion);
1da177e4 3565
65eb3dc6
KD
3566/**
3567 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3568 * @x: holds the state of this particular completion
3569 * @timeout: timeout value in jiffies
3570 *
3571 * This waits for either a completion of a specific task to be signaled or for a
3572 * specified timeout to expire. The timeout is in jiffies. It is not
3573 * interruptible.
c6dc7f05
BF
3574 *
3575 * The return value is 0 if timed out, and positive (at least 1, or number of
3576 * jiffies left till timeout) if completed.
65eb3dc6 3577 */
b15136e9 3578unsigned long __sched
8cbbe86d 3579wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3580{
8cbbe86d 3581 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3582}
8cbbe86d 3583EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3584
65eb3dc6
KD
3585/**
3586 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3587 * @x: holds the state of this particular completion
3588 *
3589 * This waits for completion of a specific task to be signaled. It is
3590 * interruptible.
c6dc7f05
BF
3591 *
3592 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3593 */
8cbbe86d 3594int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3595{
51e97990
AK
3596 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3597 if (t == -ERESTARTSYS)
3598 return t;
3599 return 0;
0fec171c 3600}
8cbbe86d 3601EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3602
65eb3dc6
KD
3603/**
3604 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3605 * @x: holds the state of this particular completion
3606 * @timeout: timeout value in jiffies
3607 *
3608 * This waits for either a completion of a specific task to be signaled or for a
3609 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3610 *
3611 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3612 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3613 */
6bf41237 3614long __sched
8cbbe86d
AK
3615wait_for_completion_interruptible_timeout(struct completion *x,
3616 unsigned long timeout)
0fec171c 3617{
8cbbe86d 3618 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3619}
8cbbe86d 3620EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3621
65eb3dc6
KD
3622/**
3623 * wait_for_completion_killable: - waits for completion of a task (killable)
3624 * @x: holds the state of this particular completion
3625 *
3626 * This waits to be signaled for completion of a specific task. It can be
3627 * interrupted by a kill signal.
c6dc7f05
BF
3628 *
3629 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3630 */
009e577e
MW
3631int __sched wait_for_completion_killable(struct completion *x)
3632{
3633 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3634 if (t == -ERESTARTSYS)
3635 return t;
3636 return 0;
3637}
3638EXPORT_SYMBOL(wait_for_completion_killable);
3639
0aa12fb4
SW
3640/**
3641 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3642 * @x: holds the state of this particular completion
3643 * @timeout: timeout value in jiffies
3644 *
3645 * This waits for either a completion of a specific task to be
3646 * signaled or for a specified timeout to expire. It can be
3647 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3648 *
3649 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3650 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3651 */
6bf41237 3652long __sched
0aa12fb4
SW
3653wait_for_completion_killable_timeout(struct completion *x,
3654 unsigned long timeout)
3655{
3656 return wait_for_common(x, timeout, TASK_KILLABLE);
3657}
3658EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3659
be4de352
DC
3660/**
3661 * try_wait_for_completion - try to decrement a completion without blocking
3662 * @x: completion structure
3663 *
3664 * Returns: 0 if a decrement cannot be done without blocking
3665 * 1 if a decrement succeeded.
3666 *
3667 * If a completion is being used as a counting completion,
3668 * attempt to decrement the counter without blocking. This
3669 * enables us to avoid waiting if the resource the completion
3670 * is protecting is not available.
3671 */
3672bool try_wait_for_completion(struct completion *x)
3673{
7539a3b3 3674 unsigned long flags;
be4de352
DC
3675 int ret = 1;
3676
7539a3b3 3677 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3678 if (!x->done)
3679 ret = 0;
3680 else
3681 x->done--;
7539a3b3 3682 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3683 return ret;
3684}
3685EXPORT_SYMBOL(try_wait_for_completion);
3686
3687/**
3688 * completion_done - Test to see if a completion has any waiters
3689 * @x: completion structure
3690 *
3691 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3692 * 1 if there are no waiters.
3693 *
3694 */
3695bool completion_done(struct completion *x)
3696{
7539a3b3 3697 unsigned long flags;
be4de352
DC
3698 int ret = 1;
3699
7539a3b3 3700 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3701 if (!x->done)
3702 ret = 0;
7539a3b3 3703 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3704 return ret;
3705}
3706EXPORT_SYMBOL(completion_done);
3707
8cbbe86d
AK
3708static long __sched
3709sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3710{
0fec171c
IM
3711 unsigned long flags;
3712 wait_queue_t wait;
3713
3714 init_waitqueue_entry(&wait, current);
1da177e4 3715
8cbbe86d 3716 __set_current_state(state);
1da177e4 3717
8cbbe86d
AK
3718 spin_lock_irqsave(&q->lock, flags);
3719 __add_wait_queue(q, &wait);
3720 spin_unlock(&q->lock);
3721 timeout = schedule_timeout(timeout);
3722 spin_lock_irq(&q->lock);
3723 __remove_wait_queue(q, &wait);
3724 spin_unlock_irqrestore(&q->lock, flags);
3725
3726 return timeout;
3727}
3728
3729void __sched interruptible_sleep_on(wait_queue_head_t *q)
3730{
3731 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3732}
1da177e4
LT
3733EXPORT_SYMBOL(interruptible_sleep_on);
3734
0fec171c 3735long __sched
95cdf3b7 3736interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3737{
8cbbe86d 3738 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3739}
1da177e4
LT
3740EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3741
0fec171c 3742void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3743{
8cbbe86d 3744 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3745}
1da177e4
LT
3746EXPORT_SYMBOL(sleep_on);
3747
0fec171c 3748long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3749{
8cbbe86d 3750 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3751}
1da177e4
LT
3752EXPORT_SYMBOL(sleep_on_timeout);
3753
b29739f9
IM
3754#ifdef CONFIG_RT_MUTEXES
3755
3756/*
3757 * rt_mutex_setprio - set the current priority of a task
3758 * @p: task
3759 * @prio: prio value (kernel-internal form)
3760 *
3761 * This function changes the 'effective' priority of a task. It does
3762 * not touch ->normal_prio like __setscheduler().
3763 *
3764 * Used by the rt_mutex code to implement priority inheritance logic.
3765 */
36c8b586 3766void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3767{
83b699ed 3768 int oldprio, on_rq, running;
70b97a7f 3769 struct rq *rq;
83ab0aa0 3770 const struct sched_class *prev_class;
b29739f9
IM
3771
3772 BUG_ON(prio < 0 || prio > MAX_PRIO);
3773
0122ec5b 3774 rq = __task_rq_lock(p);
b29739f9 3775
a8027073 3776 trace_sched_pi_setprio(p, prio);
d5f9f942 3777 oldprio = p->prio;
83ab0aa0 3778 prev_class = p->sched_class;
fd2f4419 3779 on_rq = p->on_rq;
051a1d1a 3780 running = task_current(rq, p);
0e1f3483 3781 if (on_rq)
69be72c1 3782 dequeue_task(rq, p, 0);
0e1f3483
HS
3783 if (running)
3784 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3785
3786 if (rt_prio(prio))
3787 p->sched_class = &rt_sched_class;
3788 else
3789 p->sched_class = &fair_sched_class;
3790
b29739f9
IM
3791 p->prio = prio;
3792
0e1f3483
HS
3793 if (running)
3794 p->sched_class->set_curr_task(rq);
da7a735e 3795 if (on_rq)
371fd7e7 3796 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3797
da7a735e 3798 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3799 __task_rq_unlock(rq);
b29739f9
IM
3800}
3801
3802#endif
3803
36c8b586 3804void set_user_nice(struct task_struct *p, long nice)
1da177e4 3805{
dd41f596 3806 int old_prio, delta, on_rq;
1da177e4 3807 unsigned long flags;
70b97a7f 3808 struct rq *rq;
1da177e4
LT
3809
3810 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3811 return;
3812 /*
3813 * We have to be careful, if called from sys_setpriority(),
3814 * the task might be in the middle of scheduling on another CPU.
3815 */
3816 rq = task_rq_lock(p, &flags);
3817 /*
3818 * The RT priorities are set via sched_setscheduler(), but we still
3819 * allow the 'normal' nice value to be set - but as expected
3820 * it wont have any effect on scheduling until the task is
dd41f596 3821 * SCHED_FIFO/SCHED_RR:
1da177e4 3822 */
e05606d3 3823 if (task_has_rt_policy(p)) {
1da177e4
LT
3824 p->static_prio = NICE_TO_PRIO(nice);
3825 goto out_unlock;
3826 }
fd2f4419 3827 on_rq = p->on_rq;
c09595f6 3828 if (on_rq)
69be72c1 3829 dequeue_task(rq, p, 0);
1da177e4 3830
1da177e4 3831 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3832 set_load_weight(p);
b29739f9
IM
3833 old_prio = p->prio;
3834 p->prio = effective_prio(p);
3835 delta = p->prio - old_prio;
1da177e4 3836
dd41f596 3837 if (on_rq) {
371fd7e7 3838 enqueue_task(rq, p, 0);
1da177e4 3839 /*
d5f9f942
AM
3840 * If the task increased its priority or is running and
3841 * lowered its priority, then reschedule its CPU:
1da177e4 3842 */
d5f9f942 3843 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3844 resched_task(rq->curr);
3845 }
3846out_unlock:
0122ec5b 3847 task_rq_unlock(rq, p, &flags);
1da177e4 3848}
1da177e4
LT
3849EXPORT_SYMBOL(set_user_nice);
3850
e43379f1
MM
3851/*
3852 * can_nice - check if a task can reduce its nice value
3853 * @p: task
3854 * @nice: nice value
3855 */
36c8b586 3856int can_nice(const struct task_struct *p, const int nice)
e43379f1 3857{
024f4747
MM
3858 /* convert nice value [19,-20] to rlimit style value [1,40] */
3859 int nice_rlim = 20 - nice;
48f24c4d 3860
78d7d407 3861 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3862 capable(CAP_SYS_NICE));
3863}
3864
1da177e4
LT
3865#ifdef __ARCH_WANT_SYS_NICE
3866
3867/*
3868 * sys_nice - change the priority of the current process.
3869 * @increment: priority increment
3870 *
3871 * sys_setpriority is a more generic, but much slower function that
3872 * does similar things.
3873 */
5add95d4 3874SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3875{
48f24c4d 3876 long nice, retval;
1da177e4
LT
3877
3878 /*
3879 * Setpriority might change our priority at the same moment.
3880 * We don't have to worry. Conceptually one call occurs first
3881 * and we have a single winner.
3882 */
e43379f1
MM
3883 if (increment < -40)
3884 increment = -40;
1da177e4
LT
3885 if (increment > 40)
3886 increment = 40;
3887
2b8f836f 3888 nice = TASK_NICE(current) + increment;
1da177e4
LT
3889 if (nice < -20)
3890 nice = -20;
3891 if (nice > 19)
3892 nice = 19;
3893
e43379f1
MM
3894 if (increment < 0 && !can_nice(current, nice))
3895 return -EPERM;
3896
1da177e4
LT
3897 retval = security_task_setnice(current, nice);
3898 if (retval)
3899 return retval;
3900
3901 set_user_nice(current, nice);
3902 return 0;
3903}
3904
3905#endif
3906
3907/**
3908 * task_prio - return the priority value of a given task.
3909 * @p: the task in question.
3910 *
3911 * This is the priority value as seen by users in /proc.
3912 * RT tasks are offset by -200. Normal tasks are centered
3913 * around 0, value goes from -16 to +15.
3914 */
36c8b586 3915int task_prio(const struct task_struct *p)
1da177e4
LT
3916{
3917 return p->prio - MAX_RT_PRIO;
3918}
3919
3920/**
3921 * task_nice - return the nice value of a given task.
3922 * @p: the task in question.
3923 */
36c8b586 3924int task_nice(const struct task_struct *p)
1da177e4
LT
3925{
3926 return TASK_NICE(p);
3927}
150d8bed 3928EXPORT_SYMBOL(task_nice);
1da177e4
LT
3929
3930/**
3931 * idle_cpu - is a given cpu idle currently?
3932 * @cpu: the processor in question.
3933 */
3934int idle_cpu(int cpu)
3935{
908a3283
TG
3936 struct rq *rq = cpu_rq(cpu);
3937
3938 if (rq->curr != rq->idle)
3939 return 0;
3940
3941 if (rq->nr_running)
3942 return 0;
3943
3944#ifdef CONFIG_SMP
3945 if (!llist_empty(&rq->wake_list))
3946 return 0;
3947#endif
3948
3949 return 1;
1da177e4
LT
3950}
3951
1da177e4
LT
3952/**
3953 * idle_task - return the idle task for a given cpu.
3954 * @cpu: the processor in question.
3955 */
36c8b586 3956struct task_struct *idle_task(int cpu)
1da177e4
LT
3957{
3958 return cpu_rq(cpu)->idle;
3959}
3960
3961/**
3962 * find_process_by_pid - find a process with a matching PID value.
3963 * @pid: the pid in question.
3964 */
a9957449 3965static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3966{
228ebcbe 3967 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3968}
3969
3970/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3971static void
3972__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3973{
1da177e4
LT
3974 p->policy = policy;
3975 p->rt_priority = prio;
b29739f9
IM
3976 p->normal_prio = normal_prio(p);
3977 /* we are holding p->pi_lock already */
3978 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3979 if (rt_prio(p->prio))
3980 p->sched_class = &rt_sched_class;
3981 else
3982 p->sched_class = &fair_sched_class;
2dd73a4f 3983 set_load_weight(p);
1da177e4
LT
3984}
3985
c69e8d9c
DH
3986/*
3987 * check the target process has a UID that matches the current process's
3988 */
3989static bool check_same_owner(struct task_struct *p)
3990{
3991 const struct cred *cred = current_cred(), *pcred;
3992 bool match;
3993
3994 rcu_read_lock();
3995 pcred = __task_cred(p);
b0e77598
SH
3996 if (cred->user->user_ns == pcred->user->user_ns)
3997 match = (cred->euid == pcred->euid ||
3998 cred->euid == pcred->uid);
3999 else
4000 match = false;
c69e8d9c
DH
4001 rcu_read_unlock();
4002 return match;
4003}
4004
961ccddd 4005static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4006 const struct sched_param *param, bool user)
1da177e4 4007{
83b699ed 4008 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4009 unsigned long flags;
83ab0aa0 4010 const struct sched_class *prev_class;
70b97a7f 4011 struct rq *rq;
ca94c442 4012 int reset_on_fork;
1da177e4 4013
66e5393a
SR
4014 /* may grab non-irq protected spin_locks */
4015 BUG_ON(in_interrupt());
1da177e4
LT
4016recheck:
4017 /* double check policy once rq lock held */
ca94c442
LP
4018 if (policy < 0) {
4019 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4020 policy = oldpolicy = p->policy;
ca94c442
LP
4021 } else {
4022 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4023 policy &= ~SCHED_RESET_ON_FORK;
4024
4025 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4026 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4027 policy != SCHED_IDLE)
4028 return -EINVAL;
4029 }
4030
1da177e4
LT
4031 /*
4032 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4033 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4034 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4035 */
4036 if (param->sched_priority < 0 ||
95cdf3b7 4037 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4038 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4039 return -EINVAL;
e05606d3 4040 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4041 return -EINVAL;
4042
37e4ab3f
OC
4043 /*
4044 * Allow unprivileged RT tasks to decrease priority:
4045 */
961ccddd 4046 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4047 if (rt_policy(policy)) {
a44702e8
ON
4048 unsigned long rlim_rtprio =
4049 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4050
4051 /* can't set/change the rt policy */
4052 if (policy != p->policy && !rlim_rtprio)
4053 return -EPERM;
4054
4055 /* can't increase priority */
4056 if (param->sched_priority > p->rt_priority &&
4057 param->sched_priority > rlim_rtprio)
4058 return -EPERM;
4059 }
c02aa73b 4060
dd41f596 4061 /*
c02aa73b
DH
4062 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4063 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4064 */
c02aa73b
DH
4065 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4066 if (!can_nice(p, TASK_NICE(p)))
4067 return -EPERM;
4068 }
5fe1d75f 4069
37e4ab3f 4070 /* can't change other user's priorities */
c69e8d9c 4071 if (!check_same_owner(p))
37e4ab3f 4072 return -EPERM;
ca94c442
LP
4073
4074 /* Normal users shall not reset the sched_reset_on_fork flag */
4075 if (p->sched_reset_on_fork && !reset_on_fork)
4076 return -EPERM;
37e4ab3f 4077 }
1da177e4 4078
725aad24 4079 if (user) {
b0ae1981 4080 retval = security_task_setscheduler(p);
725aad24
JF
4081 if (retval)
4082 return retval;
4083 }
4084
b29739f9
IM
4085 /*
4086 * make sure no PI-waiters arrive (or leave) while we are
4087 * changing the priority of the task:
0122ec5b 4088 *
25985edc 4089 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4090 * runqueue lock must be held.
4091 */
0122ec5b 4092 rq = task_rq_lock(p, &flags);
dc61b1d6 4093
34f971f6
PZ
4094 /*
4095 * Changing the policy of the stop threads its a very bad idea
4096 */
4097 if (p == rq->stop) {
0122ec5b 4098 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4099 return -EINVAL;
4100 }
4101
a51e9198
DF
4102 /*
4103 * If not changing anything there's no need to proceed further:
4104 */
4105 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4106 param->sched_priority == p->rt_priority))) {
4107
4108 __task_rq_unlock(rq);
4109 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4110 return 0;
4111 }
4112
dc61b1d6
PZ
4113#ifdef CONFIG_RT_GROUP_SCHED
4114 if (user) {
4115 /*
4116 * Do not allow realtime tasks into groups that have no runtime
4117 * assigned.
4118 */
4119 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4120 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4121 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4122 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4123 return -EPERM;
4124 }
4125 }
4126#endif
4127
1da177e4
LT
4128 /* recheck policy now with rq lock held */
4129 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4130 policy = oldpolicy = -1;
0122ec5b 4131 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4132 goto recheck;
4133 }
fd2f4419 4134 on_rq = p->on_rq;
051a1d1a 4135 running = task_current(rq, p);
0e1f3483 4136 if (on_rq)
2e1cb74a 4137 deactivate_task(rq, p, 0);
0e1f3483
HS
4138 if (running)
4139 p->sched_class->put_prev_task(rq, p);
f6b53205 4140
ca94c442
LP
4141 p->sched_reset_on_fork = reset_on_fork;
4142
1da177e4 4143 oldprio = p->prio;
83ab0aa0 4144 prev_class = p->sched_class;
dd41f596 4145 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4146
0e1f3483
HS
4147 if (running)
4148 p->sched_class->set_curr_task(rq);
da7a735e 4149 if (on_rq)
dd41f596 4150 activate_task(rq, p, 0);
cb469845 4151
da7a735e 4152 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4153 task_rq_unlock(rq, p, &flags);
b29739f9 4154
95e02ca9
TG
4155 rt_mutex_adjust_pi(p);
4156
1da177e4
LT
4157 return 0;
4158}
961ccddd
RR
4159
4160/**
4161 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4162 * @p: the task in question.
4163 * @policy: new policy.
4164 * @param: structure containing the new RT priority.
4165 *
4166 * NOTE that the task may be already dead.
4167 */
4168int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4169 const struct sched_param *param)
961ccddd
RR
4170{
4171 return __sched_setscheduler(p, policy, param, true);
4172}
1da177e4
LT
4173EXPORT_SYMBOL_GPL(sched_setscheduler);
4174
961ccddd
RR
4175/**
4176 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4177 * @p: the task in question.
4178 * @policy: new policy.
4179 * @param: structure containing the new RT priority.
4180 *
4181 * Just like sched_setscheduler, only don't bother checking if the
4182 * current context has permission. For example, this is needed in
4183 * stop_machine(): we create temporary high priority worker threads,
4184 * but our caller might not have that capability.
4185 */
4186int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4187 const struct sched_param *param)
961ccddd
RR
4188{
4189 return __sched_setscheduler(p, policy, param, false);
4190}
4191
95cdf3b7
IM
4192static int
4193do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4194{
1da177e4
LT
4195 struct sched_param lparam;
4196 struct task_struct *p;
36c8b586 4197 int retval;
1da177e4
LT
4198
4199 if (!param || pid < 0)
4200 return -EINVAL;
4201 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4202 return -EFAULT;
5fe1d75f
ON
4203
4204 rcu_read_lock();
4205 retval = -ESRCH;
1da177e4 4206 p = find_process_by_pid(pid);
5fe1d75f
ON
4207 if (p != NULL)
4208 retval = sched_setscheduler(p, policy, &lparam);
4209 rcu_read_unlock();
36c8b586 4210
1da177e4
LT
4211 return retval;
4212}
4213
4214/**
4215 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4216 * @pid: the pid in question.
4217 * @policy: new policy.
4218 * @param: structure containing the new RT priority.
4219 */
5add95d4
HC
4220SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4221 struct sched_param __user *, param)
1da177e4 4222{
c21761f1
JB
4223 /* negative values for policy are not valid */
4224 if (policy < 0)
4225 return -EINVAL;
4226
1da177e4
LT
4227 return do_sched_setscheduler(pid, policy, param);
4228}
4229
4230/**
4231 * sys_sched_setparam - set/change the RT priority of a thread
4232 * @pid: the pid in question.
4233 * @param: structure containing the new RT priority.
4234 */
5add95d4 4235SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4236{
4237 return do_sched_setscheduler(pid, -1, param);
4238}
4239
4240/**
4241 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4242 * @pid: the pid in question.
4243 */
5add95d4 4244SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4245{
36c8b586 4246 struct task_struct *p;
3a5c359a 4247 int retval;
1da177e4
LT
4248
4249 if (pid < 0)
3a5c359a 4250 return -EINVAL;
1da177e4
LT
4251
4252 retval = -ESRCH;
5fe85be0 4253 rcu_read_lock();
1da177e4
LT
4254 p = find_process_by_pid(pid);
4255 if (p) {
4256 retval = security_task_getscheduler(p);
4257 if (!retval)
ca94c442
LP
4258 retval = p->policy
4259 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4260 }
5fe85be0 4261 rcu_read_unlock();
1da177e4
LT
4262 return retval;
4263}
4264
4265/**
ca94c442 4266 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4267 * @pid: the pid in question.
4268 * @param: structure containing the RT priority.
4269 */
5add95d4 4270SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4271{
4272 struct sched_param lp;
36c8b586 4273 struct task_struct *p;
3a5c359a 4274 int retval;
1da177e4
LT
4275
4276 if (!param || pid < 0)
3a5c359a 4277 return -EINVAL;
1da177e4 4278
5fe85be0 4279 rcu_read_lock();
1da177e4
LT
4280 p = find_process_by_pid(pid);
4281 retval = -ESRCH;
4282 if (!p)
4283 goto out_unlock;
4284
4285 retval = security_task_getscheduler(p);
4286 if (retval)
4287 goto out_unlock;
4288
4289 lp.sched_priority = p->rt_priority;
5fe85be0 4290 rcu_read_unlock();
1da177e4
LT
4291
4292 /*
4293 * This one might sleep, we cannot do it with a spinlock held ...
4294 */
4295 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4296
1da177e4
LT
4297 return retval;
4298
4299out_unlock:
5fe85be0 4300 rcu_read_unlock();
1da177e4
LT
4301 return retval;
4302}
4303
96f874e2 4304long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4305{
5a16f3d3 4306 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4307 struct task_struct *p;
4308 int retval;
1da177e4 4309
95402b38 4310 get_online_cpus();
23f5d142 4311 rcu_read_lock();
1da177e4
LT
4312
4313 p = find_process_by_pid(pid);
4314 if (!p) {
23f5d142 4315 rcu_read_unlock();
95402b38 4316 put_online_cpus();
1da177e4
LT
4317 return -ESRCH;
4318 }
4319
23f5d142 4320 /* Prevent p going away */
1da177e4 4321 get_task_struct(p);
23f5d142 4322 rcu_read_unlock();
1da177e4 4323
5a16f3d3
RR
4324 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4325 retval = -ENOMEM;
4326 goto out_put_task;
4327 }
4328 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4329 retval = -ENOMEM;
4330 goto out_free_cpus_allowed;
4331 }
1da177e4 4332 retval = -EPERM;
b0e77598 4333 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
4334 goto out_unlock;
4335
b0ae1981 4336 retval = security_task_setscheduler(p);
e7834f8f
DQ
4337 if (retval)
4338 goto out_unlock;
4339
5a16f3d3
RR
4340 cpuset_cpus_allowed(p, cpus_allowed);
4341 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4342again:
5a16f3d3 4343 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4344
8707d8b8 4345 if (!retval) {
5a16f3d3
RR
4346 cpuset_cpus_allowed(p, cpus_allowed);
4347 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4348 /*
4349 * We must have raced with a concurrent cpuset
4350 * update. Just reset the cpus_allowed to the
4351 * cpuset's cpus_allowed
4352 */
5a16f3d3 4353 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4354 goto again;
4355 }
4356 }
1da177e4 4357out_unlock:
5a16f3d3
RR
4358 free_cpumask_var(new_mask);
4359out_free_cpus_allowed:
4360 free_cpumask_var(cpus_allowed);
4361out_put_task:
1da177e4 4362 put_task_struct(p);
95402b38 4363 put_online_cpus();
1da177e4
LT
4364 return retval;
4365}
4366
4367static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4368 struct cpumask *new_mask)
1da177e4 4369{
96f874e2
RR
4370 if (len < cpumask_size())
4371 cpumask_clear(new_mask);
4372 else if (len > cpumask_size())
4373 len = cpumask_size();
4374
1da177e4
LT
4375 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4376}
4377
4378/**
4379 * sys_sched_setaffinity - set the cpu affinity of a process
4380 * @pid: pid of the process
4381 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4382 * @user_mask_ptr: user-space pointer to the new cpu mask
4383 */
5add95d4
HC
4384SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4385 unsigned long __user *, user_mask_ptr)
1da177e4 4386{
5a16f3d3 4387 cpumask_var_t new_mask;
1da177e4
LT
4388 int retval;
4389
5a16f3d3
RR
4390 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4391 return -ENOMEM;
1da177e4 4392
5a16f3d3
RR
4393 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4394 if (retval == 0)
4395 retval = sched_setaffinity(pid, new_mask);
4396 free_cpumask_var(new_mask);
4397 return retval;
1da177e4
LT
4398}
4399
96f874e2 4400long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4401{
36c8b586 4402 struct task_struct *p;
31605683 4403 unsigned long flags;
1da177e4 4404 int retval;
1da177e4 4405
95402b38 4406 get_online_cpus();
23f5d142 4407 rcu_read_lock();
1da177e4
LT
4408
4409 retval = -ESRCH;
4410 p = find_process_by_pid(pid);
4411 if (!p)
4412 goto out_unlock;
4413
e7834f8f
DQ
4414 retval = security_task_getscheduler(p);
4415 if (retval)
4416 goto out_unlock;
4417
013fdb80 4418 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4419 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4420 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4421
4422out_unlock:
23f5d142 4423 rcu_read_unlock();
95402b38 4424 put_online_cpus();
1da177e4 4425
9531b62f 4426 return retval;
1da177e4
LT
4427}
4428
4429/**
4430 * sys_sched_getaffinity - get the cpu affinity of a process
4431 * @pid: pid of the process
4432 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4433 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4434 */
5add95d4
HC
4435SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4436 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4437{
4438 int ret;
f17c8607 4439 cpumask_var_t mask;
1da177e4 4440
84fba5ec 4441 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4442 return -EINVAL;
4443 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4444 return -EINVAL;
4445
f17c8607
RR
4446 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4447 return -ENOMEM;
1da177e4 4448
f17c8607
RR
4449 ret = sched_getaffinity(pid, mask);
4450 if (ret == 0) {
8bc037fb 4451 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4452
4453 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4454 ret = -EFAULT;
4455 else
cd3d8031 4456 ret = retlen;
f17c8607
RR
4457 }
4458 free_cpumask_var(mask);
1da177e4 4459
f17c8607 4460 return ret;
1da177e4
LT
4461}
4462
4463/**
4464 * sys_sched_yield - yield the current processor to other threads.
4465 *
dd41f596
IM
4466 * This function yields the current CPU to other tasks. If there are no
4467 * other threads running on this CPU then this function will return.
1da177e4 4468 */
5add95d4 4469SYSCALL_DEFINE0(sched_yield)
1da177e4 4470{
70b97a7f 4471 struct rq *rq = this_rq_lock();
1da177e4 4472
2d72376b 4473 schedstat_inc(rq, yld_count);
4530d7ab 4474 current->sched_class->yield_task(rq);
1da177e4
LT
4475
4476 /*
4477 * Since we are going to call schedule() anyway, there's
4478 * no need to preempt or enable interrupts:
4479 */
4480 __release(rq->lock);
8a25d5de 4481 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4482 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4483 preempt_enable_no_resched();
4484
4485 schedule();
4486
4487 return 0;
4488}
4489
d86ee480
PZ
4490static inline int should_resched(void)
4491{
4492 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4493}
4494
e7b38404 4495static void __cond_resched(void)
1da177e4 4496{
e7aaaa69 4497 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4498 __schedule();
e7aaaa69 4499 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4500}
4501
02b67cc3 4502int __sched _cond_resched(void)
1da177e4 4503{
d86ee480 4504 if (should_resched()) {
1da177e4
LT
4505 __cond_resched();
4506 return 1;
4507 }
4508 return 0;
4509}
02b67cc3 4510EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4511
4512/*
613afbf8 4513 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4514 * call schedule, and on return reacquire the lock.
4515 *
41a2d6cf 4516 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4517 * operations here to prevent schedule() from being called twice (once via
4518 * spin_unlock(), once by hand).
4519 */
613afbf8 4520int __cond_resched_lock(spinlock_t *lock)
1da177e4 4521{
d86ee480 4522 int resched = should_resched();
6df3cecb
JK
4523 int ret = 0;
4524
f607c668
PZ
4525 lockdep_assert_held(lock);
4526
95c354fe 4527 if (spin_needbreak(lock) || resched) {
1da177e4 4528 spin_unlock(lock);
d86ee480 4529 if (resched)
95c354fe
NP
4530 __cond_resched();
4531 else
4532 cpu_relax();
6df3cecb 4533 ret = 1;
1da177e4 4534 spin_lock(lock);
1da177e4 4535 }
6df3cecb 4536 return ret;
1da177e4 4537}
613afbf8 4538EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4539
613afbf8 4540int __sched __cond_resched_softirq(void)
1da177e4
LT
4541{
4542 BUG_ON(!in_softirq());
4543
d86ee480 4544 if (should_resched()) {
98d82567 4545 local_bh_enable();
1da177e4
LT
4546 __cond_resched();
4547 local_bh_disable();
4548 return 1;
4549 }
4550 return 0;
4551}
613afbf8 4552EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4553
1da177e4
LT
4554/**
4555 * yield - yield the current processor to other threads.
4556 *
72fd4a35 4557 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4558 * thread runnable and calls sys_sched_yield().
4559 */
4560void __sched yield(void)
4561{
4562 set_current_state(TASK_RUNNING);
4563 sys_sched_yield();
4564}
1da177e4
LT
4565EXPORT_SYMBOL(yield);
4566
d95f4122
MG
4567/**
4568 * yield_to - yield the current processor to another thread in
4569 * your thread group, or accelerate that thread toward the
4570 * processor it's on.
16addf95
RD
4571 * @p: target task
4572 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4573 *
4574 * It's the caller's job to ensure that the target task struct
4575 * can't go away on us before we can do any checks.
4576 *
4577 * Returns true if we indeed boosted the target task.
4578 */
4579bool __sched yield_to(struct task_struct *p, bool preempt)
4580{
4581 struct task_struct *curr = current;
4582 struct rq *rq, *p_rq;
4583 unsigned long flags;
4584 bool yielded = 0;
4585
4586 local_irq_save(flags);
4587 rq = this_rq();
4588
4589again:
4590 p_rq = task_rq(p);
4591 double_rq_lock(rq, p_rq);
4592 while (task_rq(p) != p_rq) {
4593 double_rq_unlock(rq, p_rq);
4594 goto again;
4595 }
4596
4597 if (!curr->sched_class->yield_to_task)
4598 goto out;
4599
4600 if (curr->sched_class != p->sched_class)
4601 goto out;
4602
4603 if (task_running(p_rq, p) || p->state)
4604 goto out;
4605
4606 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4607 if (yielded) {
d95f4122 4608 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4609 /*
4610 * Make p's CPU reschedule; pick_next_entity takes care of
4611 * fairness.
4612 */
4613 if (preempt && rq != p_rq)
4614 resched_task(p_rq->curr);
916671c0
MG
4615 } else {
4616 /*
4617 * We might have set it in task_yield_fair(), but are
4618 * not going to schedule(), so don't want to skip
4619 * the next update.
4620 */
4621 rq->skip_clock_update = 0;
6d1cafd8 4622 }
d95f4122
MG
4623
4624out:
4625 double_rq_unlock(rq, p_rq);
4626 local_irq_restore(flags);
4627
4628 if (yielded)
4629 schedule();
4630
4631 return yielded;
4632}
4633EXPORT_SYMBOL_GPL(yield_to);
4634
1da177e4 4635/*
41a2d6cf 4636 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4637 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4638 */
4639void __sched io_schedule(void)
4640{
54d35f29 4641 struct rq *rq = raw_rq();
1da177e4 4642
0ff92245 4643 delayacct_blkio_start();
1da177e4 4644 atomic_inc(&rq->nr_iowait);
73c10101 4645 blk_flush_plug(current);
8f0dfc34 4646 current->in_iowait = 1;
1da177e4 4647 schedule();
8f0dfc34 4648 current->in_iowait = 0;
1da177e4 4649 atomic_dec(&rq->nr_iowait);
0ff92245 4650 delayacct_blkio_end();
1da177e4 4651}
1da177e4
LT
4652EXPORT_SYMBOL(io_schedule);
4653
4654long __sched io_schedule_timeout(long timeout)
4655{
54d35f29 4656 struct rq *rq = raw_rq();
1da177e4
LT
4657 long ret;
4658
0ff92245 4659 delayacct_blkio_start();
1da177e4 4660 atomic_inc(&rq->nr_iowait);
73c10101 4661 blk_flush_plug(current);
8f0dfc34 4662 current->in_iowait = 1;
1da177e4 4663 ret = schedule_timeout(timeout);
8f0dfc34 4664 current->in_iowait = 0;
1da177e4 4665 atomic_dec(&rq->nr_iowait);
0ff92245 4666 delayacct_blkio_end();
1da177e4
LT
4667 return ret;
4668}
4669
4670/**
4671 * sys_sched_get_priority_max - return maximum RT priority.
4672 * @policy: scheduling class.
4673 *
4674 * this syscall returns the maximum rt_priority that can be used
4675 * by a given scheduling class.
4676 */
5add95d4 4677SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4678{
4679 int ret = -EINVAL;
4680
4681 switch (policy) {
4682 case SCHED_FIFO:
4683 case SCHED_RR:
4684 ret = MAX_USER_RT_PRIO-1;
4685 break;
4686 case SCHED_NORMAL:
b0a9499c 4687 case SCHED_BATCH:
dd41f596 4688 case SCHED_IDLE:
1da177e4
LT
4689 ret = 0;
4690 break;
4691 }
4692 return ret;
4693}
4694
4695/**
4696 * sys_sched_get_priority_min - return minimum RT priority.
4697 * @policy: scheduling class.
4698 *
4699 * this syscall returns the minimum rt_priority that can be used
4700 * by a given scheduling class.
4701 */
5add95d4 4702SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4703{
4704 int ret = -EINVAL;
4705
4706 switch (policy) {
4707 case SCHED_FIFO:
4708 case SCHED_RR:
4709 ret = 1;
4710 break;
4711 case SCHED_NORMAL:
b0a9499c 4712 case SCHED_BATCH:
dd41f596 4713 case SCHED_IDLE:
1da177e4
LT
4714 ret = 0;
4715 }
4716 return ret;
4717}
4718
4719/**
4720 * sys_sched_rr_get_interval - return the default timeslice of a process.
4721 * @pid: pid of the process.
4722 * @interval: userspace pointer to the timeslice value.
4723 *
4724 * this syscall writes the default timeslice value of a given process
4725 * into the user-space timespec buffer. A value of '0' means infinity.
4726 */
17da2bd9 4727SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4728 struct timespec __user *, interval)
1da177e4 4729{
36c8b586 4730 struct task_struct *p;
a4ec24b4 4731 unsigned int time_slice;
dba091b9
TG
4732 unsigned long flags;
4733 struct rq *rq;
3a5c359a 4734 int retval;
1da177e4 4735 struct timespec t;
1da177e4
LT
4736
4737 if (pid < 0)
3a5c359a 4738 return -EINVAL;
1da177e4
LT
4739
4740 retval = -ESRCH;
1a551ae7 4741 rcu_read_lock();
1da177e4
LT
4742 p = find_process_by_pid(pid);
4743 if (!p)
4744 goto out_unlock;
4745
4746 retval = security_task_getscheduler(p);
4747 if (retval)
4748 goto out_unlock;
4749
dba091b9
TG
4750 rq = task_rq_lock(p, &flags);
4751 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4752 task_rq_unlock(rq, p, &flags);
a4ec24b4 4753
1a551ae7 4754 rcu_read_unlock();
a4ec24b4 4755 jiffies_to_timespec(time_slice, &t);
1da177e4 4756 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4757 return retval;
3a5c359a 4758
1da177e4 4759out_unlock:
1a551ae7 4760 rcu_read_unlock();
1da177e4
LT
4761 return retval;
4762}
4763
7c731e0a 4764static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4765
82a1fcb9 4766void sched_show_task(struct task_struct *p)
1da177e4 4767{
1da177e4 4768 unsigned long free = 0;
36c8b586 4769 unsigned state;
1da177e4 4770
1da177e4 4771 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4772 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4773 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4774#if BITS_PER_LONG == 32
1da177e4 4775 if (state == TASK_RUNNING)
3df0fc5b 4776 printk(KERN_CONT " running ");
1da177e4 4777 else
3df0fc5b 4778 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4779#else
4780 if (state == TASK_RUNNING)
3df0fc5b 4781 printk(KERN_CONT " running task ");
1da177e4 4782 else
3df0fc5b 4783 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4784#endif
4785#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4786 free = stack_not_used(p);
1da177e4 4787#endif
3df0fc5b 4788 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4789 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4790 (unsigned long)task_thread_info(p)->flags);
1da177e4 4791
5fb5e6de 4792 show_stack(p, NULL);
1da177e4
LT
4793}
4794
e59e2ae2 4795void show_state_filter(unsigned long state_filter)
1da177e4 4796{
36c8b586 4797 struct task_struct *g, *p;
1da177e4 4798
4bd77321 4799#if BITS_PER_LONG == 32
3df0fc5b
PZ
4800 printk(KERN_INFO
4801 " task PC stack pid father\n");
1da177e4 4802#else
3df0fc5b
PZ
4803 printk(KERN_INFO
4804 " task PC stack pid father\n");
1da177e4 4805#endif
510f5acc 4806 rcu_read_lock();
1da177e4
LT
4807 do_each_thread(g, p) {
4808 /*
4809 * reset the NMI-timeout, listing all files on a slow
25985edc 4810 * console might take a lot of time:
1da177e4
LT
4811 */
4812 touch_nmi_watchdog();
39bc89fd 4813 if (!state_filter || (p->state & state_filter))
82a1fcb9 4814 sched_show_task(p);
1da177e4
LT
4815 } while_each_thread(g, p);
4816
04c9167f
JF
4817 touch_all_softlockup_watchdogs();
4818
dd41f596
IM
4819#ifdef CONFIG_SCHED_DEBUG
4820 sysrq_sched_debug_show();
4821#endif
510f5acc 4822 rcu_read_unlock();
e59e2ae2
IM
4823 /*
4824 * Only show locks if all tasks are dumped:
4825 */
93335a21 4826 if (!state_filter)
e59e2ae2 4827 debug_show_all_locks();
1da177e4
LT
4828}
4829
1df21055
IM
4830void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4831{
dd41f596 4832 idle->sched_class = &idle_sched_class;
1df21055
IM
4833}
4834
f340c0d1
IM
4835/**
4836 * init_idle - set up an idle thread for a given CPU
4837 * @idle: task in question
4838 * @cpu: cpu the idle task belongs to
4839 *
4840 * NOTE: this function does not set the idle thread's NEED_RESCHED
4841 * flag, to make booting more robust.
4842 */
5c1e1767 4843void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4844{
70b97a7f 4845 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4846 unsigned long flags;
4847
05fa785c 4848 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4849
dd41f596 4850 __sched_fork(idle);
06b83b5f 4851 idle->state = TASK_RUNNING;
dd41f596
IM
4852 idle->se.exec_start = sched_clock();
4853
1e1b6c51 4854 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4855 /*
4856 * We're having a chicken and egg problem, even though we are
4857 * holding rq->lock, the cpu isn't yet set to this cpu so the
4858 * lockdep check in task_group() will fail.
4859 *
4860 * Similar case to sched_fork(). / Alternatively we could
4861 * use task_rq_lock() here and obtain the other rq->lock.
4862 *
4863 * Silence PROVE_RCU
4864 */
4865 rcu_read_lock();
dd41f596 4866 __set_task_cpu(idle, cpu);
6506cf6c 4867 rcu_read_unlock();
1da177e4 4868
1da177e4 4869 rq->curr = rq->idle = idle;
3ca7a440
PZ
4870#if defined(CONFIG_SMP)
4871 idle->on_cpu = 1;
4866cde0 4872#endif
05fa785c 4873 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4874
4875 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4876 task_thread_info(idle)->preempt_count = 0;
55cd5340 4877
dd41f596
IM
4878 /*
4879 * The idle tasks have their own, simple scheduling class:
4880 */
4881 idle->sched_class = &idle_sched_class;
868baf07 4882 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4883#if defined(CONFIG_SMP)
4884 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4885#endif
19978ca6
IM
4886}
4887
1da177e4 4888#ifdef CONFIG_SMP
1e1b6c51
KM
4889void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4890{
4891 if (p->sched_class && p->sched_class->set_cpus_allowed)
4892 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4893
4894 cpumask_copy(&p->cpus_allowed, new_mask);
4895 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4896}
4897
1da177e4
LT
4898/*
4899 * This is how migration works:
4900 *
969c7921
TH
4901 * 1) we invoke migration_cpu_stop() on the target CPU using
4902 * stop_one_cpu().
4903 * 2) stopper starts to run (implicitly forcing the migrated thread
4904 * off the CPU)
4905 * 3) it checks whether the migrated task is still in the wrong runqueue.
4906 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4907 * it and puts it into the right queue.
969c7921
TH
4908 * 5) stopper completes and stop_one_cpu() returns and the migration
4909 * is done.
1da177e4
LT
4910 */
4911
4912/*
4913 * Change a given task's CPU affinity. Migrate the thread to a
4914 * proper CPU and schedule it away if the CPU it's executing on
4915 * is removed from the allowed bitmask.
4916 *
4917 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4918 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4919 * call is not atomic; no spinlocks may be held.
4920 */
96f874e2 4921int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4922{
4923 unsigned long flags;
70b97a7f 4924 struct rq *rq;
969c7921 4925 unsigned int dest_cpu;
48f24c4d 4926 int ret = 0;
1da177e4
LT
4927
4928 rq = task_rq_lock(p, &flags);
e2912009 4929
db44fc01
YZ
4930 if (cpumask_equal(&p->cpus_allowed, new_mask))
4931 goto out;
4932
6ad4c188 4933 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4934 ret = -EINVAL;
4935 goto out;
4936 }
4937
db44fc01 4938 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4939 ret = -EINVAL;
4940 goto out;
4941 }
4942
1e1b6c51 4943 do_set_cpus_allowed(p, new_mask);
73fe6aae 4944
1da177e4 4945 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4946 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4947 goto out;
4948
969c7921 4949 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4950 if (p->on_rq) {
969c7921 4951 struct migration_arg arg = { p, dest_cpu };
1da177e4 4952 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4953 task_rq_unlock(rq, p, &flags);
969c7921 4954 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4955 tlb_migrate_finish(p->mm);
4956 return 0;
4957 }
4958out:
0122ec5b 4959 task_rq_unlock(rq, p, &flags);
48f24c4d 4960
1da177e4
LT
4961 return ret;
4962}
cd8ba7cd 4963EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4964
4965/*
41a2d6cf 4966 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4967 * this because either it can't run here any more (set_cpus_allowed()
4968 * away from this CPU, or CPU going down), or because we're
4969 * attempting to rebalance this task on exec (sched_exec).
4970 *
4971 * So we race with normal scheduler movements, but that's OK, as long
4972 * as the task is no longer on this CPU.
efc30814
KK
4973 *
4974 * Returns non-zero if task was successfully migrated.
1da177e4 4975 */
efc30814 4976static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4977{
70b97a7f 4978 struct rq *rq_dest, *rq_src;
e2912009 4979 int ret = 0;
1da177e4 4980
e761b772 4981 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4982 return ret;
1da177e4
LT
4983
4984 rq_src = cpu_rq(src_cpu);
4985 rq_dest = cpu_rq(dest_cpu);
4986
0122ec5b 4987 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4988 double_rq_lock(rq_src, rq_dest);
4989 /* Already moved. */
4990 if (task_cpu(p) != src_cpu)
b1e38734 4991 goto done;
1da177e4 4992 /* Affinity changed (again). */
fa17b507 4993 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4994 goto fail;
1da177e4 4995
e2912009
PZ
4996 /*
4997 * If we're not on a rq, the next wake-up will ensure we're
4998 * placed properly.
4999 */
fd2f4419 5000 if (p->on_rq) {
2e1cb74a 5001 deactivate_task(rq_src, p, 0);
e2912009 5002 set_task_cpu(p, dest_cpu);
dd41f596 5003 activate_task(rq_dest, p, 0);
15afe09b 5004 check_preempt_curr(rq_dest, p, 0);
1da177e4 5005 }
b1e38734 5006done:
efc30814 5007 ret = 1;
b1e38734 5008fail:
1da177e4 5009 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5010 raw_spin_unlock(&p->pi_lock);
efc30814 5011 return ret;
1da177e4
LT
5012}
5013
5014/*
969c7921
TH
5015 * migration_cpu_stop - this will be executed by a highprio stopper thread
5016 * and performs thread migration by bumping thread off CPU then
5017 * 'pushing' onto another runqueue.
1da177e4 5018 */
969c7921 5019static int migration_cpu_stop(void *data)
1da177e4 5020{
969c7921 5021 struct migration_arg *arg = data;
f7b4cddc 5022
969c7921
TH
5023 /*
5024 * The original target cpu might have gone down and we might
5025 * be on another cpu but it doesn't matter.
5026 */
f7b4cddc 5027 local_irq_disable();
969c7921 5028 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5029 local_irq_enable();
1da177e4 5030 return 0;
f7b4cddc
ON
5031}
5032
1da177e4 5033#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5034
054b9108 5035/*
48c5ccae
PZ
5036 * Ensures that the idle task is using init_mm right before its cpu goes
5037 * offline.
054b9108 5038 */
48c5ccae 5039void idle_task_exit(void)
1da177e4 5040{
48c5ccae 5041 struct mm_struct *mm = current->active_mm;
e76bd8d9 5042
48c5ccae 5043 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5044
48c5ccae
PZ
5045 if (mm != &init_mm)
5046 switch_mm(mm, &init_mm, current);
5047 mmdrop(mm);
1da177e4
LT
5048}
5049
5050/*
5051 * While a dead CPU has no uninterruptible tasks queued at this point,
5052 * it might still have a nonzero ->nr_uninterruptible counter, because
5053 * for performance reasons the counter is not stricly tracking tasks to
5054 * their home CPUs. So we just add the counter to another CPU's counter,
5055 * to keep the global sum constant after CPU-down:
5056 */
70b97a7f 5057static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5058{
6ad4c188 5059 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5060
1da177e4
LT
5061 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5062 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5063}
5064
dd41f596 5065/*
48c5ccae 5066 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5067 */
48c5ccae 5068static void calc_global_load_remove(struct rq *rq)
1da177e4 5069{
48c5ccae
PZ
5070 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5071 rq->calc_load_active = 0;
1da177e4
LT
5072}
5073
48f24c4d 5074/*
48c5ccae
PZ
5075 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5076 * try_to_wake_up()->select_task_rq().
5077 *
5078 * Called with rq->lock held even though we'er in stop_machine() and
5079 * there's no concurrency possible, we hold the required locks anyway
5080 * because of lock validation efforts.
1da177e4 5081 */
48c5ccae 5082static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5083{
70b97a7f 5084 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5085 struct task_struct *next, *stop = rq->stop;
5086 int dest_cpu;
1da177e4
LT
5087
5088 /*
48c5ccae
PZ
5089 * Fudge the rq selection such that the below task selection loop
5090 * doesn't get stuck on the currently eligible stop task.
5091 *
5092 * We're currently inside stop_machine() and the rq is either stuck
5093 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5094 * either way we should never end up calling schedule() until we're
5095 * done here.
1da177e4 5096 */
48c5ccae 5097 rq->stop = NULL;
48f24c4d 5098
8cb120d3
PT
5099 /* Ensure any throttled groups are reachable by pick_next_task */
5100 unthrottle_offline_cfs_rqs(rq);
5101
dd41f596 5102 for ( ; ; ) {
48c5ccae
PZ
5103 /*
5104 * There's this thread running, bail when that's the only
5105 * remaining thread.
5106 */
5107 if (rq->nr_running == 1)
dd41f596 5108 break;
48c5ccae 5109
b67802ea 5110 next = pick_next_task(rq);
48c5ccae 5111 BUG_ON(!next);
79c53799 5112 next->sched_class->put_prev_task(rq, next);
e692ab53 5113
48c5ccae
PZ
5114 /* Find suitable destination for @next, with force if needed. */
5115 dest_cpu = select_fallback_rq(dead_cpu, next);
5116 raw_spin_unlock(&rq->lock);
5117
5118 __migrate_task(next, dead_cpu, dest_cpu);
5119
5120 raw_spin_lock(&rq->lock);
1da177e4 5121 }
dce48a84 5122
48c5ccae 5123 rq->stop = stop;
dce48a84 5124}
48c5ccae 5125
1da177e4
LT
5126#endif /* CONFIG_HOTPLUG_CPU */
5127
e692ab53
NP
5128#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5129
5130static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5131 {
5132 .procname = "sched_domain",
c57baf1e 5133 .mode = 0555,
e0361851 5134 },
56992309 5135 {}
e692ab53
NP
5136};
5137
5138static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5139 {
5140 .procname = "kernel",
c57baf1e 5141 .mode = 0555,
e0361851
AD
5142 .child = sd_ctl_dir,
5143 },
56992309 5144 {}
e692ab53
NP
5145};
5146
5147static struct ctl_table *sd_alloc_ctl_entry(int n)
5148{
5149 struct ctl_table *entry =
5cf9f062 5150 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5151
e692ab53
NP
5152 return entry;
5153}
5154
6382bc90
MM
5155static void sd_free_ctl_entry(struct ctl_table **tablep)
5156{
cd790076 5157 struct ctl_table *entry;
6382bc90 5158
cd790076
MM
5159 /*
5160 * In the intermediate directories, both the child directory and
5161 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5162 * will always be set. In the lowest directory the names are
cd790076
MM
5163 * static strings and all have proc handlers.
5164 */
5165 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5166 if (entry->child)
5167 sd_free_ctl_entry(&entry->child);
cd790076
MM
5168 if (entry->proc_handler == NULL)
5169 kfree(entry->procname);
5170 }
6382bc90
MM
5171
5172 kfree(*tablep);
5173 *tablep = NULL;
5174}
5175
e692ab53 5176static void
e0361851 5177set_table_entry(struct ctl_table *entry,
e692ab53 5178 const char *procname, void *data, int maxlen,
36fcb589 5179 umode_t mode, proc_handler *proc_handler)
e692ab53 5180{
e692ab53
NP
5181 entry->procname = procname;
5182 entry->data = data;
5183 entry->maxlen = maxlen;
5184 entry->mode = mode;
5185 entry->proc_handler = proc_handler;
5186}
5187
5188static struct ctl_table *
5189sd_alloc_ctl_domain_table(struct sched_domain *sd)
5190{
a5d8c348 5191 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5192
ad1cdc1d
MM
5193 if (table == NULL)
5194 return NULL;
5195
e0361851 5196 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5197 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5198 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5199 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5200 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5201 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5202 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5203 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5204 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5205 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5206 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5207 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5208 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5209 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5210 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5211 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5212 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5213 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5214 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5215 &sd->cache_nice_tries,
5216 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5217 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5218 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5219 set_table_entry(&table[11], "name", sd->name,
5220 CORENAME_MAX_SIZE, 0444, proc_dostring);
5221 /* &table[12] is terminator */
e692ab53
NP
5222
5223 return table;
5224}
5225
9a4e7159 5226static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5227{
5228 struct ctl_table *entry, *table;
5229 struct sched_domain *sd;
5230 int domain_num = 0, i;
5231 char buf[32];
5232
5233 for_each_domain(cpu, sd)
5234 domain_num++;
5235 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5236 if (table == NULL)
5237 return NULL;
e692ab53
NP
5238
5239 i = 0;
5240 for_each_domain(cpu, sd) {
5241 snprintf(buf, 32, "domain%d", i);
e692ab53 5242 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5243 entry->mode = 0555;
e692ab53
NP
5244 entry->child = sd_alloc_ctl_domain_table(sd);
5245 entry++;
5246 i++;
5247 }
5248 return table;
5249}
5250
5251static struct ctl_table_header *sd_sysctl_header;
6382bc90 5252static void register_sched_domain_sysctl(void)
e692ab53 5253{
6ad4c188 5254 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5255 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5256 char buf[32];
5257
7378547f
MM
5258 WARN_ON(sd_ctl_dir[0].child);
5259 sd_ctl_dir[0].child = entry;
5260
ad1cdc1d
MM
5261 if (entry == NULL)
5262 return;
5263
6ad4c188 5264 for_each_possible_cpu(i) {
e692ab53 5265 snprintf(buf, 32, "cpu%d", i);
e692ab53 5266 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5267 entry->mode = 0555;
e692ab53 5268 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5269 entry++;
e692ab53 5270 }
7378547f
MM
5271
5272 WARN_ON(sd_sysctl_header);
e692ab53
NP
5273 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5274}
6382bc90 5275
7378547f 5276/* may be called multiple times per register */
6382bc90
MM
5277static void unregister_sched_domain_sysctl(void)
5278{
7378547f
MM
5279 if (sd_sysctl_header)
5280 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5281 sd_sysctl_header = NULL;
7378547f
MM
5282 if (sd_ctl_dir[0].child)
5283 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5284}
e692ab53 5285#else
6382bc90
MM
5286static void register_sched_domain_sysctl(void)
5287{
5288}
5289static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5290{
5291}
5292#endif
5293
1f11eb6a
GH
5294static void set_rq_online(struct rq *rq)
5295{
5296 if (!rq->online) {
5297 const struct sched_class *class;
5298
c6c4927b 5299 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5300 rq->online = 1;
5301
5302 for_each_class(class) {
5303 if (class->rq_online)
5304 class->rq_online(rq);
5305 }
5306 }
5307}
5308
5309static void set_rq_offline(struct rq *rq)
5310{
5311 if (rq->online) {
5312 const struct sched_class *class;
5313
5314 for_each_class(class) {
5315 if (class->rq_offline)
5316 class->rq_offline(rq);
5317 }
5318
c6c4927b 5319 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5320 rq->online = 0;
5321 }
5322}
5323
1da177e4
LT
5324/*
5325 * migration_call - callback that gets triggered when a CPU is added.
5326 * Here we can start up the necessary migration thread for the new CPU.
5327 */
48f24c4d
IM
5328static int __cpuinit
5329migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5330{
48f24c4d 5331 int cpu = (long)hcpu;
1da177e4 5332 unsigned long flags;
969c7921 5333 struct rq *rq = cpu_rq(cpu);
1da177e4 5334
48c5ccae 5335 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5336
1da177e4 5337 case CPU_UP_PREPARE:
a468d389 5338 rq->calc_load_update = calc_load_update;
1da177e4 5339 break;
48f24c4d 5340
1da177e4 5341 case CPU_ONLINE:
1f94ef59 5342 /* Update our root-domain */
05fa785c 5343 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5344 if (rq->rd) {
c6c4927b 5345 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5346
5347 set_rq_online(rq);
1f94ef59 5348 }
05fa785c 5349 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5350 break;
48f24c4d 5351
1da177e4 5352#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5353 case CPU_DYING:
317f3941 5354 sched_ttwu_pending();
57d885fe 5355 /* Update our root-domain */
05fa785c 5356 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5357 if (rq->rd) {
c6c4927b 5358 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5359 set_rq_offline(rq);
57d885fe 5360 }
48c5ccae
PZ
5361 migrate_tasks(cpu);
5362 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5363 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5364
5365 migrate_nr_uninterruptible(rq);
5366 calc_global_load_remove(rq);
57d885fe 5367 break;
1da177e4
LT
5368#endif
5369 }
49c022e6
PZ
5370
5371 update_max_interval();
5372
1da177e4
LT
5373 return NOTIFY_OK;
5374}
5375
f38b0820
PM
5376/*
5377 * Register at high priority so that task migration (migrate_all_tasks)
5378 * happens before everything else. This has to be lower priority than
cdd6c482 5379 * the notifier in the perf_event subsystem, though.
1da177e4 5380 */
26c2143b 5381static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5382 .notifier_call = migration_call,
50a323b7 5383 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5384};
5385
3a101d05
TH
5386static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5387 unsigned long action, void *hcpu)
5388{
5389 switch (action & ~CPU_TASKS_FROZEN) {
5390 case CPU_ONLINE:
5391 case CPU_DOWN_FAILED:
5392 set_cpu_active((long)hcpu, true);
5393 return NOTIFY_OK;
5394 default:
5395 return NOTIFY_DONE;
5396 }
5397}
5398
5399static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5400 unsigned long action, void *hcpu)
5401{
5402 switch (action & ~CPU_TASKS_FROZEN) {
5403 case CPU_DOWN_PREPARE:
5404 set_cpu_active((long)hcpu, false);
5405 return NOTIFY_OK;
5406 default:
5407 return NOTIFY_DONE;
5408 }
5409}
5410
7babe8db 5411static int __init migration_init(void)
1da177e4
LT
5412{
5413 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5414 int err;
48f24c4d 5415
3a101d05 5416 /* Initialize migration for the boot CPU */
07dccf33
AM
5417 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5418 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5419 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5420 register_cpu_notifier(&migration_notifier);
7babe8db 5421
3a101d05
TH
5422 /* Register cpu active notifiers */
5423 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5424 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5425
a004cd42 5426 return 0;
1da177e4 5427}
7babe8db 5428early_initcall(migration_init);
1da177e4
LT
5429#endif
5430
5431#ifdef CONFIG_SMP
476f3534 5432
4cb98839
PZ
5433static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5434
3e9830dc 5435#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5436
f6630114
MT
5437static __read_mostly int sched_domain_debug_enabled;
5438
5439static int __init sched_domain_debug_setup(char *str)
5440{
5441 sched_domain_debug_enabled = 1;
5442
5443 return 0;
5444}
5445early_param("sched_debug", sched_domain_debug_setup);
5446
7c16ec58 5447static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5448 struct cpumask *groupmask)
1da177e4 5449{
4dcf6aff 5450 struct sched_group *group = sd->groups;
434d53b0 5451 char str[256];
1da177e4 5452
968ea6d8 5453 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5454 cpumask_clear(groupmask);
4dcf6aff
IM
5455
5456 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5457
5458 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5459 printk("does not load-balance\n");
4dcf6aff 5460 if (sd->parent)
3df0fc5b
PZ
5461 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5462 " has parent");
4dcf6aff 5463 return -1;
41c7ce9a
NP
5464 }
5465
3df0fc5b 5466 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5467
758b2cdc 5468 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5469 printk(KERN_ERR "ERROR: domain->span does not contain "
5470 "CPU%d\n", cpu);
4dcf6aff 5471 }
758b2cdc 5472 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5473 printk(KERN_ERR "ERROR: domain->groups does not contain"
5474 " CPU%d\n", cpu);
4dcf6aff 5475 }
1da177e4 5476
4dcf6aff 5477 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5478 do {
4dcf6aff 5479 if (!group) {
3df0fc5b
PZ
5480 printk("\n");
5481 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5482 break;
5483 }
5484
9c3f75cb 5485 if (!group->sgp->power) {
3df0fc5b
PZ
5486 printk(KERN_CONT "\n");
5487 printk(KERN_ERR "ERROR: domain->cpu_power not "
5488 "set\n");
4dcf6aff
IM
5489 break;
5490 }
1da177e4 5491
758b2cdc 5492 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5493 printk(KERN_CONT "\n");
5494 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5495 break;
5496 }
1da177e4 5497
758b2cdc 5498 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5499 printk(KERN_CONT "\n");
5500 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5501 break;
5502 }
1da177e4 5503
758b2cdc 5504 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5505
968ea6d8 5506 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5507
3df0fc5b 5508 printk(KERN_CONT " %s", str);
9c3f75cb 5509 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5510 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5511 group->sgp->power);
381512cf 5512 }
1da177e4 5513
4dcf6aff
IM
5514 group = group->next;
5515 } while (group != sd->groups);
3df0fc5b 5516 printk(KERN_CONT "\n");
1da177e4 5517
758b2cdc 5518 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5519 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5520
758b2cdc
RR
5521 if (sd->parent &&
5522 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5523 printk(KERN_ERR "ERROR: parent span is not a superset "
5524 "of domain->span\n");
4dcf6aff
IM
5525 return 0;
5526}
1da177e4 5527
4dcf6aff
IM
5528static void sched_domain_debug(struct sched_domain *sd, int cpu)
5529{
5530 int level = 0;
1da177e4 5531
f6630114
MT
5532 if (!sched_domain_debug_enabled)
5533 return;
5534
4dcf6aff
IM
5535 if (!sd) {
5536 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5537 return;
5538 }
1da177e4 5539
4dcf6aff
IM
5540 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5541
5542 for (;;) {
4cb98839 5543 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5544 break;
1da177e4
LT
5545 level++;
5546 sd = sd->parent;
33859f7f 5547 if (!sd)
4dcf6aff
IM
5548 break;
5549 }
1da177e4 5550}
6d6bc0ad 5551#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5552# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5553#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5554
1a20ff27 5555static int sd_degenerate(struct sched_domain *sd)
245af2c7 5556{
758b2cdc 5557 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5558 return 1;
5559
5560 /* Following flags need at least 2 groups */
5561 if (sd->flags & (SD_LOAD_BALANCE |
5562 SD_BALANCE_NEWIDLE |
5563 SD_BALANCE_FORK |
89c4710e
SS
5564 SD_BALANCE_EXEC |
5565 SD_SHARE_CPUPOWER |
5566 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5567 if (sd->groups != sd->groups->next)
5568 return 0;
5569 }
5570
5571 /* Following flags don't use groups */
c88d5910 5572 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5573 return 0;
5574
5575 return 1;
5576}
5577
48f24c4d
IM
5578static int
5579sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5580{
5581 unsigned long cflags = sd->flags, pflags = parent->flags;
5582
5583 if (sd_degenerate(parent))
5584 return 1;
5585
758b2cdc 5586 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5587 return 0;
5588
245af2c7
SS
5589 /* Flags needing groups don't count if only 1 group in parent */
5590 if (parent->groups == parent->groups->next) {
5591 pflags &= ~(SD_LOAD_BALANCE |
5592 SD_BALANCE_NEWIDLE |
5593 SD_BALANCE_FORK |
89c4710e
SS
5594 SD_BALANCE_EXEC |
5595 SD_SHARE_CPUPOWER |
5596 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5597 if (nr_node_ids == 1)
5598 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5599 }
5600 if (~cflags & pflags)
5601 return 0;
5602
5603 return 1;
5604}
5605
dce840a0 5606static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5607{
dce840a0 5608 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5609
68e74568 5610 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5611 free_cpumask_var(rd->rto_mask);
5612 free_cpumask_var(rd->online);
5613 free_cpumask_var(rd->span);
5614 kfree(rd);
5615}
5616
57d885fe
GH
5617static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5618{
a0490fa3 5619 struct root_domain *old_rd = NULL;
57d885fe 5620 unsigned long flags;
57d885fe 5621
05fa785c 5622 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5623
5624 if (rq->rd) {
a0490fa3 5625 old_rd = rq->rd;
57d885fe 5626
c6c4927b 5627 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5628 set_rq_offline(rq);
57d885fe 5629
c6c4927b 5630 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5631
a0490fa3
IM
5632 /*
5633 * If we dont want to free the old_rt yet then
5634 * set old_rd to NULL to skip the freeing later
5635 * in this function:
5636 */
5637 if (!atomic_dec_and_test(&old_rd->refcount))
5638 old_rd = NULL;
57d885fe
GH
5639 }
5640
5641 atomic_inc(&rd->refcount);
5642 rq->rd = rd;
5643
c6c4927b 5644 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5645 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5646 set_rq_online(rq);
57d885fe 5647
05fa785c 5648 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5649
5650 if (old_rd)
dce840a0 5651 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5652}
5653
68c38fc3 5654static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5655{
5656 memset(rd, 0, sizeof(*rd));
5657
68c38fc3 5658 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5659 goto out;
68c38fc3 5660 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5661 goto free_span;
68c38fc3 5662 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5663 goto free_online;
6e0534f2 5664
68c38fc3 5665 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5666 goto free_rto_mask;
c6c4927b 5667 return 0;
6e0534f2 5668
68e74568
RR
5669free_rto_mask:
5670 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5671free_online:
5672 free_cpumask_var(rd->online);
5673free_span:
5674 free_cpumask_var(rd->span);
0c910d28 5675out:
c6c4927b 5676 return -ENOMEM;
57d885fe
GH
5677}
5678
029632fb
PZ
5679/*
5680 * By default the system creates a single root-domain with all cpus as
5681 * members (mimicking the global state we have today).
5682 */
5683struct root_domain def_root_domain;
5684
57d885fe
GH
5685static void init_defrootdomain(void)
5686{
68c38fc3 5687 init_rootdomain(&def_root_domain);
c6c4927b 5688
57d885fe
GH
5689 atomic_set(&def_root_domain.refcount, 1);
5690}
5691
dc938520 5692static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5693{
5694 struct root_domain *rd;
5695
5696 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5697 if (!rd)
5698 return NULL;
5699
68c38fc3 5700 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5701 kfree(rd);
5702 return NULL;
5703 }
57d885fe
GH
5704
5705 return rd;
5706}
5707
e3589f6c
PZ
5708static void free_sched_groups(struct sched_group *sg, int free_sgp)
5709{
5710 struct sched_group *tmp, *first;
5711
5712 if (!sg)
5713 return;
5714
5715 first = sg;
5716 do {
5717 tmp = sg->next;
5718
5719 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5720 kfree(sg->sgp);
5721
5722 kfree(sg);
5723 sg = tmp;
5724 } while (sg != first);
5725}
5726
dce840a0
PZ
5727static void free_sched_domain(struct rcu_head *rcu)
5728{
5729 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5730
5731 /*
5732 * If its an overlapping domain it has private groups, iterate and
5733 * nuke them all.
5734 */
5735 if (sd->flags & SD_OVERLAP) {
5736 free_sched_groups(sd->groups, 1);
5737 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5738 kfree(sd->groups->sgp);
dce840a0 5739 kfree(sd->groups);
9c3f75cb 5740 }
dce840a0
PZ
5741 kfree(sd);
5742}
5743
5744static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5745{
5746 call_rcu(&sd->rcu, free_sched_domain);
5747}
5748
5749static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5750{
5751 for (; sd; sd = sd->parent)
5752 destroy_sched_domain(sd, cpu);
5753}
5754
518cd623
PZ
5755/*
5756 * Keep a special pointer to the highest sched_domain that has
5757 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5758 * allows us to avoid some pointer chasing select_idle_sibling().
5759 *
5760 * Also keep a unique ID per domain (we use the first cpu number in
5761 * the cpumask of the domain), this allows us to quickly tell if
5762 * two cpus are in the same cache domain, see ttwu_share_cache().
5763 */
5764DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5765DEFINE_PER_CPU(int, sd_llc_id);
5766
5767static void update_top_cache_domain(int cpu)
5768{
5769 struct sched_domain *sd;
5770 int id = cpu;
5771
5772 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5773 if (sd)
5774 id = cpumask_first(sched_domain_span(sd));
5775
5776 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5777 per_cpu(sd_llc_id, cpu) = id;
5778}
5779
1da177e4 5780/*
0eab9146 5781 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5782 * hold the hotplug lock.
5783 */
0eab9146
IM
5784static void
5785cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5786{
70b97a7f 5787 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5788 struct sched_domain *tmp;
5789
5790 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5791 for (tmp = sd; tmp; ) {
245af2c7
SS
5792 struct sched_domain *parent = tmp->parent;
5793 if (!parent)
5794 break;
f29c9b1c 5795
1a848870 5796 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5797 tmp->parent = parent->parent;
1a848870
SS
5798 if (parent->parent)
5799 parent->parent->child = tmp;
dce840a0 5800 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5801 } else
5802 tmp = tmp->parent;
245af2c7
SS
5803 }
5804
1a848870 5805 if (sd && sd_degenerate(sd)) {
dce840a0 5806 tmp = sd;
245af2c7 5807 sd = sd->parent;
dce840a0 5808 destroy_sched_domain(tmp, cpu);
1a848870
SS
5809 if (sd)
5810 sd->child = NULL;
5811 }
1da177e4 5812
4cb98839 5813 sched_domain_debug(sd, cpu);
1da177e4 5814
57d885fe 5815 rq_attach_root(rq, rd);
dce840a0 5816 tmp = rq->sd;
674311d5 5817 rcu_assign_pointer(rq->sd, sd);
dce840a0 5818 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5819
5820 update_top_cache_domain(cpu);
1da177e4
LT
5821}
5822
5823/* cpus with isolated domains */
dcc30a35 5824static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5825
5826/* Setup the mask of cpus configured for isolated domains */
5827static int __init isolated_cpu_setup(char *str)
5828{
bdddd296 5829 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5830 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5831 return 1;
5832}
5833
8927f494 5834__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5835
9c1cfda2 5836#ifdef CONFIG_NUMA
198e2f18 5837
9c1cfda2
JH
5838/**
5839 * find_next_best_node - find the next node to include in a sched_domain
5840 * @node: node whose sched_domain we're building
5841 * @used_nodes: nodes already in the sched_domain
5842 *
41a2d6cf 5843 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5844 * finds the closest node not already in the @used_nodes map.
5845 *
5846 * Should use nodemask_t.
5847 */
c5f59f08 5848static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 5849{
7142d17e 5850 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
5851
5852 min_val = INT_MAX;
5853
076ac2af 5854 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 5855 /* Start at @node */
076ac2af 5856 n = (node + i) % nr_node_ids;
9c1cfda2
JH
5857
5858 if (!nr_cpus_node(n))
5859 continue;
5860
5861 /* Skip already used nodes */
c5f59f08 5862 if (node_isset(n, *used_nodes))
9c1cfda2
JH
5863 continue;
5864
5865 /* Simple min distance search */
5866 val = node_distance(node, n);
5867
5868 if (val < min_val) {
5869 min_val = val;
5870 best_node = n;
5871 }
5872 }
5873
7142d17e
HD
5874 if (best_node != -1)
5875 node_set(best_node, *used_nodes);
9c1cfda2
JH
5876 return best_node;
5877}
5878
5879/**
5880 * sched_domain_node_span - get a cpumask for a node's sched_domain
5881 * @node: node whose cpumask we're constructing
73486722 5882 * @span: resulting cpumask
9c1cfda2 5883 *
41a2d6cf 5884 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5885 * should be one that prevents unnecessary balancing, but also spreads tasks
5886 * out optimally.
5887 */
96f874e2 5888static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 5889{
c5f59f08 5890 nodemask_t used_nodes;
48f24c4d 5891 int i;
9c1cfda2 5892
6ca09dfc 5893 cpumask_clear(span);
c5f59f08 5894 nodes_clear(used_nodes);
9c1cfda2 5895
6ca09dfc 5896 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 5897 node_set(node, used_nodes);
9c1cfda2
JH
5898
5899 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 5900 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
5901 if (next_node < 0)
5902 break;
6ca09dfc 5903 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 5904 }
9c1cfda2 5905}
d3081f52
PZ
5906
5907static const struct cpumask *cpu_node_mask(int cpu)
5908{
5909 lockdep_assert_held(&sched_domains_mutex);
5910
5911 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5912
5913 return sched_domains_tmpmask;
5914}
2c402dc3
PZ
5915
5916static const struct cpumask *cpu_allnodes_mask(int cpu)
5917{
5918 return cpu_possible_mask;
5919}
6d6bc0ad 5920#endif /* CONFIG_NUMA */
9c1cfda2 5921
d3081f52
PZ
5922static const struct cpumask *cpu_cpu_mask(int cpu)
5923{
5924 return cpumask_of_node(cpu_to_node(cpu));
5925}
5926
5c45bf27 5927int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5928
dce840a0
PZ
5929struct sd_data {
5930 struct sched_domain **__percpu sd;
5931 struct sched_group **__percpu sg;
9c3f75cb 5932 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5933};
5934
49a02c51 5935struct s_data {
21d42ccf 5936 struct sched_domain ** __percpu sd;
49a02c51
AH
5937 struct root_domain *rd;
5938};
5939
2109b99e 5940enum s_alloc {
2109b99e 5941 sa_rootdomain,
21d42ccf 5942 sa_sd,
dce840a0 5943 sa_sd_storage,
2109b99e
AH
5944 sa_none,
5945};
5946
54ab4ff4
PZ
5947struct sched_domain_topology_level;
5948
5949typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5950typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5951
e3589f6c
PZ
5952#define SDTL_OVERLAP 0x01
5953
eb7a74e6 5954struct sched_domain_topology_level {
2c402dc3
PZ
5955 sched_domain_init_f init;
5956 sched_domain_mask_f mask;
e3589f6c 5957 int flags;
54ab4ff4 5958 struct sd_data data;
eb7a74e6
PZ
5959};
5960
e3589f6c
PZ
5961static int
5962build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5963{
5964 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5965 const struct cpumask *span = sched_domain_span(sd);
5966 struct cpumask *covered = sched_domains_tmpmask;
5967 struct sd_data *sdd = sd->private;
5968 struct sched_domain *child;
5969 int i;
5970
5971 cpumask_clear(covered);
5972
5973 for_each_cpu(i, span) {
5974 struct cpumask *sg_span;
5975
5976 if (cpumask_test_cpu(i, covered))
5977 continue;
5978
5979 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5980 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5981
5982 if (!sg)
5983 goto fail;
5984
5985 sg_span = sched_group_cpus(sg);
5986
5987 child = *per_cpu_ptr(sdd->sd, i);
5988 if (child->child) {
5989 child = child->child;
5990 cpumask_copy(sg_span, sched_domain_span(child));
5991 } else
5992 cpumask_set_cpu(i, sg_span);
5993
5994 cpumask_or(covered, covered, sg_span);
5995
5996 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5997 atomic_inc(&sg->sgp->ref);
5998
5999 if (cpumask_test_cpu(cpu, sg_span))
6000 groups = sg;
6001
6002 if (!first)
6003 first = sg;
6004 if (last)
6005 last->next = sg;
6006 last = sg;
6007 last->next = first;
6008 }
6009 sd->groups = groups;
6010
6011 return 0;
6012
6013fail:
6014 free_sched_groups(first, 0);
6015
6016 return -ENOMEM;
6017}
6018
dce840a0 6019static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6020{
dce840a0
PZ
6021 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6022 struct sched_domain *child = sd->child;
1da177e4 6023
dce840a0
PZ
6024 if (child)
6025 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6026
9c3f75cb 6027 if (sg) {
dce840a0 6028 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6029 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6030 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6031 }
dce840a0
PZ
6032
6033 return cpu;
1e9f28fa 6034}
1e9f28fa 6035
01a08546 6036/*
dce840a0
PZ
6037 * build_sched_groups will build a circular linked list of the groups
6038 * covered by the given span, and will set each group's ->cpumask correctly,
6039 * and ->cpu_power to 0.
e3589f6c
PZ
6040 *
6041 * Assumes the sched_domain tree is fully constructed
01a08546 6042 */
e3589f6c
PZ
6043static int
6044build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6045{
dce840a0
PZ
6046 struct sched_group *first = NULL, *last = NULL;
6047 struct sd_data *sdd = sd->private;
6048 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6049 struct cpumask *covered;
dce840a0 6050 int i;
9c1cfda2 6051
e3589f6c
PZ
6052 get_group(cpu, sdd, &sd->groups);
6053 atomic_inc(&sd->groups->ref);
6054
6055 if (cpu != cpumask_first(sched_domain_span(sd)))
6056 return 0;
6057
f96225fd
PZ
6058 lockdep_assert_held(&sched_domains_mutex);
6059 covered = sched_domains_tmpmask;
6060
dce840a0 6061 cpumask_clear(covered);
6711cab4 6062
dce840a0
PZ
6063 for_each_cpu(i, span) {
6064 struct sched_group *sg;
6065 int group = get_group(i, sdd, &sg);
6066 int j;
6711cab4 6067
dce840a0
PZ
6068 if (cpumask_test_cpu(i, covered))
6069 continue;
6711cab4 6070
dce840a0 6071 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6072 sg->sgp->power = 0;
0601a88d 6073
dce840a0
PZ
6074 for_each_cpu(j, span) {
6075 if (get_group(j, sdd, NULL) != group)
6076 continue;
0601a88d 6077
dce840a0
PZ
6078 cpumask_set_cpu(j, covered);
6079 cpumask_set_cpu(j, sched_group_cpus(sg));
6080 }
0601a88d 6081
dce840a0
PZ
6082 if (!first)
6083 first = sg;
6084 if (last)
6085 last->next = sg;
6086 last = sg;
6087 }
6088 last->next = first;
e3589f6c
PZ
6089
6090 return 0;
0601a88d 6091}
51888ca2 6092
89c4710e
SS
6093/*
6094 * Initialize sched groups cpu_power.
6095 *
6096 * cpu_power indicates the capacity of sched group, which is used while
6097 * distributing the load between different sched groups in a sched domain.
6098 * Typically cpu_power for all the groups in a sched domain will be same unless
6099 * there are asymmetries in the topology. If there are asymmetries, group
6100 * having more cpu_power will pickup more load compared to the group having
6101 * less cpu_power.
89c4710e
SS
6102 */
6103static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6104{
e3589f6c 6105 struct sched_group *sg = sd->groups;
89c4710e 6106
e3589f6c
PZ
6107 WARN_ON(!sd || !sg);
6108
6109 do {
6110 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6111 sg = sg->next;
6112 } while (sg != sd->groups);
89c4710e 6113
e3589f6c
PZ
6114 if (cpu != group_first_cpu(sg))
6115 return;
aae6d3dd 6116
d274cb30 6117 update_group_power(sd, cpu);
69e1e811 6118 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6119}
6120
029632fb
PZ
6121int __weak arch_sd_sibling_asym_packing(void)
6122{
6123 return 0*SD_ASYM_PACKING;
89c4710e
SS
6124}
6125
7c16ec58
MT
6126/*
6127 * Initializers for schedule domains
6128 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6129 */
6130
a5d8c348
IM
6131#ifdef CONFIG_SCHED_DEBUG
6132# define SD_INIT_NAME(sd, type) sd->name = #type
6133#else
6134# define SD_INIT_NAME(sd, type) do { } while (0)
6135#endif
6136
54ab4ff4
PZ
6137#define SD_INIT_FUNC(type) \
6138static noinline struct sched_domain * \
6139sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6140{ \
6141 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6142 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6143 SD_INIT_NAME(sd, type); \
6144 sd->private = &tl->data; \
6145 return sd; \
7c16ec58
MT
6146}
6147
6148SD_INIT_FUNC(CPU)
6149#ifdef CONFIG_NUMA
6150 SD_INIT_FUNC(ALLNODES)
6151 SD_INIT_FUNC(NODE)
6152#endif
6153#ifdef CONFIG_SCHED_SMT
6154 SD_INIT_FUNC(SIBLING)
6155#endif
6156#ifdef CONFIG_SCHED_MC
6157 SD_INIT_FUNC(MC)
6158#endif
01a08546
HC
6159#ifdef CONFIG_SCHED_BOOK
6160 SD_INIT_FUNC(BOOK)
6161#endif
7c16ec58 6162
1d3504fc 6163static int default_relax_domain_level = -1;
60495e77 6164int sched_domain_level_max;
1d3504fc
HS
6165
6166static int __init setup_relax_domain_level(char *str)
6167{
30e0e178
LZ
6168 unsigned long val;
6169
6170 val = simple_strtoul(str, NULL, 0);
60495e77 6171 if (val < sched_domain_level_max)
30e0e178
LZ
6172 default_relax_domain_level = val;
6173
1d3504fc
HS
6174 return 1;
6175}
6176__setup("relax_domain_level=", setup_relax_domain_level);
6177
6178static void set_domain_attribute(struct sched_domain *sd,
6179 struct sched_domain_attr *attr)
6180{
6181 int request;
6182
6183 if (!attr || attr->relax_domain_level < 0) {
6184 if (default_relax_domain_level < 0)
6185 return;
6186 else
6187 request = default_relax_domain_level;
6188 } else
6189 request = attr->relax_domain_level;
6190 if (request < sd->level) {
6191 /* turn off idle balance on this domain */
c88d5910 6192 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6193 } else {
6194 /* turn on idle balance on this domain */
c88d5910 6195 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6196 }
6197}
6198
54ab4ff4
PZ
6199static void __sdt_free(const struct cpumask *cpu_map);
6200static int __sdt_alloc(const struct cpumask *cpu_map);
6201
2109b99e
AH
6202static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6203 const struct cpumask *cpu_map)
6204{
6205 switch (what) {
2109b99e 6206 case sa_rootdomain:
822ff793
PZ
6207 if (!atomic_read(&d->rd->refcount))
6208 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6209 case sa_sd:
6210 free_percpu(d->sd); /* fall through */
dce840a0 6211 case sa_sd_storage:
54ab4ff4 6212 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6213 case sa_none:
6214 break;
6215 }
6216}
3404c8d9 6217
2109b99e
AH
6218static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6219 const struct cpumask *cpu_map)
6220{
dce840a0
PZ
6221 memset(d, 0, sizeof(*d));
6222
54ab4ff4
PZ
6223 if (__sdt_alloc(cpu_map))
6224 return sa_sd_storage;
dce840a0
PZ
6225 d->sd = alloc_percpu(struct sched_domain *);
6226 if (!d->sd)
6227 return sa_sd_storage;
2109b99e 6228 d->rd = alloc_rootdomain();
dce840a0 6229 if (!d->rd)
21d42ccf 6230 return sa_sd;
2109b99e
AH
6231 return sa_rootdomain;
6232}
57d885fe 6233
dce840a0
PZ
6234/*
6235 * NULL the sd_data elements we've used to build the sched_domain and
6236 * sched_group structure so that the subsequent __free_domain_allocs()
6237 * will not free the data we're using.
6238 */
6239static void claim_allocations(int cpu, struct sched_domain *sd)
6240{
6241 struct sd_data *sdd = sd->private;
dce840a0
PZ
6242
6243 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6244 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6245
e3589f6c 6246 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6247 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6248
6249 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6250 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6251}
6252
2c402dc3
PZ
6253#ifdef CONFIG_SCHED_SMT
6254static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6255{
2c402dc3 6256 return topology_thread_cpumask(cpu);
3bd65a80 6257}
2c402dc3 6258#endif
7f4588f3 6259
d069b916
PZ
6260/*
6261 * Topology list, bottom-up.
6262 */
2c402dc3 6263static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6264#ifdef CONFIG_SCHED_SMT
6265 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6266#endif
1e9f28fa 6267#ifdef CONFIG_SCHED_MC
2c402dc3 6268 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6269#endif
d069b916
PZ
6270#ifdef CONFIG_SCHED_BOOK
6271 { sd_init_BOOK, cpu_book_mask, },
6272#endif
6273 { sd_init_CPU, cpu_cpu_mask, },
6274#ifdef CONFIG_NUMA
e3589f6c 6275 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 6276 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 6277#endif
eb7a74e6
PZ
6278 { NULL, },
6279};
6280
6281static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6282
54ab4ff4
PZ
6283static int __sdt_alloc(const struct cpumask *cpu_map)
6284{
6285 struct sched_domain_topology_level *tl;
6286 int j;
6287
6288 for (tl = sched_domain_topology; tl->init; tl++) {
6289 struct sd_data *sdd = &tl->data;
6290
6291 sdd->sd = alloc_percpu(struct sched_domain *);
6292 if (!sdd->sd)
6293 return -ENOMEM;
6294
6295 sdd->sg = alloc_percpu(struct sched_group *);
6296 if (!sdd->sg)
6297 return -ENOMEM;
6298
9c3f75cb
PZ
6299 sdd->sgp = alloc_percpu(struct sched_group_power *);
6300 if (!sdd->sgp)
6301 return -ENOMEM;
6302
54ab4ff4
PZ
6303 for_each_cpu(j, cpu_map) {
6304 struct sched_domain *sd;
6305 struct sched_group *sg;
9c3f75cb 6306 struct sched_group_power *sgp;
54ab4ff4
PZ
6307
6308 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6309 GFP_KERNEL, cpu_to_node(j));
6310 if (!sd)
6311 return -ENOMEM;
6312
6313 *per_cpu_ptr(sdd->sd, j) = sd;
6314
6315 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6316 GFP_KERNEL, cpu_to_node(j));
6317 if (!sg)
6318 return -ENOMEM;
6319
6320 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
6321
6322 sgp = kzalloc_node(sizeof(struct sched_group_power),
6323 GFP_KERNEL, cpu_to_node(j));
6324 if (!sgp)
6325 return -ENOMEM;
6326
6327 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6328 }
6329 }
6330
6331 return 0;
6332}
6333
6334static void __sdt_free(const struct cpumask *cpu_map)
6335{
6336 struct sched_domain_topology_level *tl;
6337 int j;
6338
6339 for (tl = sched_domain_topology; tl->init; tl++) {
6340 struct sd_data *sdd = &tl->data;
6341
6342 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
6343 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6344 if (sd && (sd->flags & SD_OVERLAP))
6345 free_sched_groups(sd->groups, 0);
feff8fa0 6346 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 6347 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 6348 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6349 }
6350 free_percpu(sdd->sd);
6351 free_percpu(sdd->sg);
9c3f75cb 6352 free_percpu(sdd->sgp);
54ab4ff4
PZ
6353 }
6354}
6355
2c402dc3
PZ
6356struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6357 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6358 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6359 int cpu)
6360{
54ab4ff4 6361 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6362 if (!sd)
d069b916 6363 return child;
2c402dc3
PZ
6364
6365 set_domain_attribute(sd, attr);
6366 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6367 if (child) {
6368 sd->level = child->level + 1;
6369 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6370 child->parent = sd;
60495e77 6371 }
d069b916 6372 sd->child = child;
2c402dc3
PZ
6373
6374 return sd;
6375}
6376
2109b99e
AH
6377/*
6378 * Build sched domains for a given set of cpus and attach the sched domains
6379 * to the individual cpus
6380 */
dce840a0
PZ
6381static int build_sched_domains(const struct cpumask *cpu_map,
6382 struct sched_domain_attr *attr)
2109b99e
AH
6383{
6384 enum s_alloc alloc_state = sa_none;
dce840a0 6385 struct sched_domain *sd;
2109b99e 6386 struct s_data d;
822ff793 6387 int i, ret = -ENOMEM;
9c1cfda2 6388
2109b99e
AH
6389 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6390 if (alloc_state != sa_rootdomain)
6391 goto error;
9c1cfda2 6392
dce840a0 6393 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6394 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6395 struct sched_domain_topology_level *tl;
6396
3bd65a80 6397 sd = NULL;
e3589f6c 6398 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6399 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6400 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6401 sd->flags |= SD_OVERLAP;
d110235d
PZ
6402 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6403 break;
e3589f6c 6404 }
d274cb30 6405
d069b916
PZ
6406 while (sd->child)
6407 sd = sd->child;
6408
21d42ccf 6409 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6410 }
6411
6412 /* Build the groups for the domains */
6413 for_each_cpu(i, cpu_map) {
6414 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6415 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6416 if (sd->flags & SD_OVERLAP) {
6417 if (build_overlap_sched_groups(sd, i))
6418 goto error;
6419 } else {
6420 if (build_sched_groups(sd, i))
6421 goto error;
6422 }
1cf51902 6423 }
a06dadbe 6424 }
9c1cfda2 6425
1da177e4 6426 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6427 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6428 if (!cpumask_test_cpu(i, cpu_map))
6429 continue;
9c1cfda2 6430
dce840a0
PZ
6431 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6432 claim_allocations(i, sd);
cd4ea6ae 6433 init_sched_groups_power(i, sd);
dce840a0 6434 }
f712c0c7 6435 }
9c1cfda2 6436
1da177e4 6437 /* Attach the domains */
dce840a0 6438 rcu_read_lock();
abcd083a 6439 for_each_cpu(i, cpu_map) {
21d42ccf 6440 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6441 cpu_attach_domain(sd, d.rd, i);
1da177e4 6442 }
dce840a0 6443 rcu_read_unlock();
51888ca2 6444
822ff793 6445 ret = 0;
51888ca2 6446error:
2109b99e 6447 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6448 return ret;
1da177e4 6449}
029190c5 6450
acc3f5d7 6451static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6452static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6453static struct sched_domain_attr *dattr_cur;
6454 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6455
6456/*
6457 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6458 * cpumask) fails, then fallback to a single sched domain,
6459 * as determined by the single cpumask fallback_doms.
029190c5 6460 */
4212823f 6461static cpumask_var_t fallback_doms;
029190c5 6462
ee79d1bd
HC
6463/*
6464 * arch_update_cpu_topology lets virtualized architectures update the
6465 * cpu core maps. It is supposed to return 1 if the topology changed
6466 * or 0 if it stayed the same.
6467 */
6468int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6469{
ee79d1bd 6470 return 0;
22e52b07
HC
6471}
6472
acc3f5d7
RR
6473cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6474{
6475 int i;
6476 cpumask_var_t *doms;
6477
6478 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6479 if (!doms)
6480 return NULL;
6481 for (i = 0; i < ndoms; i++) {
6482 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6483 free_sched_domains(doms, i);
6484 return NULL;
6485 }
6486 }
6487 return doms;
6488}
6489
6490void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6491{
6492 unsigned int i;
6493 for (i = 0; i < ndoms; i++)
6494 free_cpumask_var(doms[i]);
6495 kfree(doms);
6496}
6497
1a20ff27 6498/*
41a2d6cf 6499 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6500 * For now this just excludes isolated cpus, but could be used to
6501 * exclude other special cases in the future.
1a20ff27 6502 */
c4a8849a 6503static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6504{
7378547f
MM
6505 int err;
6506
22e52b07 6507 arch_update_cpu_topology();
029190c5 6508 ndoms_cur = 1;
acc3f5d7 6509 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6510 if (!doms_cur)
acc3f5d7
RR
6511 doms_cur = &fallback_doms;
6512 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 6513 dattr_cur = NULL;
dce840a0 6514 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6515 register_sched_domain_sysctl();
7378547f
MM
6516
6517 return err;
1a20ff27
DG
6518}
6519
1a20ff27
DG
6520/*
6521 * Detach sched domains from a group of cpus specified in cpu_map
6522 * These cpus will now be attached to the NULL domain
6523 */
96f874e2 6524static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6525{
6526 int i;
6527
dce840a0 6528 rcu_read_lock();
abcd083a 6529 for_each_cpu(i, cpu_map)
57d885fe 6530 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6531 rcu_read_unlock();
1a20ff27
DG
6532}
6533
1d3504fc
HS
6534/* handle null as "default" */
6535static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6536 struct sched_domain_attr *new, int idx_new)
6537{
6538 struct sched_domain_attr tmp;
6539
6540 /* fast path */
6541 if (!new && !cur)
6542 return 1;
6543
6544 tmp = SD_ATTR_INIT;
6545 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6546 new ? (new + idx_new) : &tmp,
6547 sizeof(struct sched_domain_attr));
6548}
6549
029190c5
PJ
6550/*
6551 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6552 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6553 * doms_new[] to the current sched domain partitioning, doms_cur[].
6554 * It destroys each deleted domain and builds each new domain.
6555 *
acc3f5d7 6556 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6557 * The masks don't intersect (don't overlap.) We should setup one
6558 * sched domain for each mask. CPUs not in any of the cpumasks will
6559 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6560 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6561 * it as it is.
6562 *
acc3f5d7
RR
6563 * The passed in 'doms_new' should be allocated using
6564 * alloc_sched_domains. This routine takes ownership of it and will
6565 * free_sched_domains it when done with it. If the caller failed the
6566 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6567 * and partition_sched_domains() will fallback to the single partition
6568 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6569 *
96f874e2 6570 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6571 * ndoms_new == 0 is a special case for destroying existing domains,
6572 * and it will not create the default domain.
dfb512ec 6573 *
029190c5
PJ
6574 * Call with hotplug lock held
6575 */
acc3f5d7 6576void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6577 struct sched_domain_attr *dattr_new)
029190c5 6578{
dfb512ec 6579 int i, j, n;
d65bd5ec 6580 int new_topology;
029190c5 6581
712555ee 6582 mutex_lock(&sched_domains_mutex);
a1835615 6583
7378547f
MM
6584 /* always unregister in case we don't destroy any domains */
6585 unregister_sched_domain_sysctl();
6586
d65bd5ec
HC
6587 /* Let architecture update cpu core mappings. */
6588 new_topology = arch_update_cpu_topology();
6589
dfb512ec 6590 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6591
6592 /* Destroy deleted domains */
6593 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6594 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6595 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6596 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6597 goto match1;
6598 }
6599 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6600 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6601match1:
6602 ;
6603 }
6604
e761b772
MK
6605 if (doms_new == NULL) {
6606 ndoms_cur = 0;
acc3f5d7 6607 doms_new = &fallback_doms;
6ad4c188 6608 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6609 WARN_ON_ONCE(dattr_new);
e761b772
MK
6610 }
6611
029190c5
PJ
6612 /* Build new domains */
6613 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6614 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6615 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6616 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6617 goto match2;
6618 }
6619 /* no match - add a new doms_new */
dce840a0 6620 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6621match2:
6622 ;
6623 }
6624
6625 /* Remember the new sched domains */
acc3f5d7
RR
6626 if (doms_cur != &fallback_doms)
6627 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6628 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6629 doms_cur = doms_new;
1d3504fc 6630 dattr_cur = dattr_new;
029190c5 6631 ndoms_cur = ndoms_new;
7378547f
MM
6632
6633 register_sched_domain_sysctl();
a1835615 6634
712555ee 6635 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6636}
6637
5c45bf27 6638#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 6639static void reinit_sched_domains(void)
5c45bf27 6640{
95402b38 6641 get_online_cpus();
dfb512ec
MK
6642
6643 /* Destroy domains first to force the rebuild */
6644 partition_sched_domains(0, NULL, NULL);
6645
e761b772 6646 rebuild_sched_domains();
95402b38 6647 put_online_cpus();
5c45bf27
SS
6648}
6649
6650static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6651{
afb8a9b7 6652 unsigned int level = 0;
5c45bf27 6653
afb8a9b7
GS
6654 if (sscanf(buf, "%u", &level) != 1)
6655 return -EINVAL;
6656
6657 /*
6658 * level is always be positive so don't check for
6659 * level < POWERSAVINGS_BALANCE_NONE which is 0
6660 * What happens on 0 or 1 byte write,
6661 * need to check for count as well?
6662 */
6663
6664 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
6665 return -EINVAL;
6666
6667 if (smt)
afb8a9b7 6668 sched_smt_power_savings = level;
5c45bf27 6669 else
afb8a9b7 6670 sched_mc_power_savings = level;
5c45bf27 6671
c4a8849a 6672 reinit_sched_domains();
5c45bf27 6673
c70f22d2 6674 return count;
5c45bf27
SS
6675}
6676
5c45bf27 6677#ifdef CONFIG_SCHED_MC
8a25a2fd
KS
6678static ssize_t sched_mc_power_savings_show(struct device *dev,
6679 struct device_attribute *attr,
6680 char *buf)
5c45bf27 6681{
8a25a2fd 6682 return sprintf(buf, "%u\n", sched_mc_power_savings);
5c45bf27 6683}
8a25a2fd
KS
6684static ssize_t sched_mc_power_savings_store(struct device *dev,
6685 struct device_attribute *attr,
48f24c4d 6686 const char *buf, size_t count)
5c45bf27
SS
6687{
6688 return sched_power_savings_store(buf, count, 0);
6689}
8a25a2fd
KS
6690static DEVICE_ATTR(sched_mc_power_savings, 0644,
6691 sched_mc_power_savings_show,
6692 sched_mc_power_savings_store);
5c45bf27
SS
6693#endif
6694
6695#ifdef CONFIG_SCHED_SMT
8a25a2fd
KS
6696static ssize_t sched_smt_power_savings_show(struct device *dev,
6697 struct device_attribute *attr,
6698 char *buf)
5c45bf27 6699{
8a25a2fd 6700 return sprintf(buf, "%u\n", sched_smt_power_savings);
5c45bf27 6701}
8a25a2fd
KS
6702static ssize_t sched_smt_power_savings_store(struct device *dev,
6703 struct device_attribute *attr,
48f24c4d 6704 const char *buf, size_t count)
5c45bf27
SS
6705{
6706 return sched_power_savings_store(buf, count, 1);
6707}
8a25a2fd 6708static DEVICE_ATTR(sched_smt_power_savings, 0644,
f718cd4a 6709 sched_smt_power_savings_show,
6707de00
AB
6710 sched_smt_power_savings_store);
6711#endif
6712
8a25a2fd 6713int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6707de00
AB
6714{
6715 int err = 0;
6716
6717#ifdef CONFIG_SCHED_SMT
6718 if (smt_capable())
8a25a2fd 6719 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6707de00
AB
6720#endif
6721#ifdef CONFIG_SCHED_MC
6722 if (!err && mc_capable())
8a25a2fd 6723 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6707de00
AB
6724#endif
6725 return err;
6726}
6d6bc0ad 6727#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 6728
1da177e4 6729/*
3a101d05
TH
6730 * Update cpusets according to cpu_active mask. If cpusets are
6731 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6732 * around partition_sched_domains().
1da177e4 6733 */
0b2e918a
TH
6734static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6735 void *hcpu)
e761b772 6736{
3a101d05 6737 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6738 case CPU_ONLINE:
6ad4c188 6739 case CPU_DOWN_FAILED:
3a101d05 6740 cpuset_update_active_cpus();
e761b772 6741 return NOTIFY_OK;
3a101d05
TH
6742 default:
6743 return NOTIFY_DONE;
6744 }
6745}
e761b772 6746
0b2e918a
TH
6747static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6748 void *hcpu)
3a101d05
TH
6749{
6750 switch (action & ~CPU_TASKS_FROZEN) {
6751 case CPU_DOWN_PREPARE:
6752 cpuset_update_active_cpus();
6753 return NOTIFY_OK;
e761b772
MK
6754 default:
6755 return NOTIFY_DONE;
6756 }
6757}
e761b772 6758
1da177e4
LT
6759void __init sched_init_smp(void)
6760{
dcc30a35
RR
6761 cpumask_var_t non_isolated_cpus;
6762
6763 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6764 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6765
95402b38 6766 get_online_cpus();
712555ee 6767 mutex_lock(&sched_domains_mutex);
c4a8849a 6768 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6769 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6770 if (cpumask_empty(non_isolated_cpus))
6771 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6772 mutex_unlock(&sched_domains_mutex);
95402b38 6773 put_online_cpus();
e761b772 6774
3a101d05
TH
6775 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6776 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6777
6778 /* RT runtime code needs to handle some hotplug events */
6779 hotcpu_notifier(update_runtime, 0);
6780
b328ca18 6781 init_hrtick();
5c1e1767
NP
6782
6783 /* Move init over to a non-isolated CPU */
dcc30a35 6784 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6785 BUG();
19978ca6 6786 sched_init_granularity();
dcc30a35 6787 free_cpumask_var(non_isolated_cpus);
4212823f 6788
0e3900e6 6789 init_sched_rt_class();
1da177e4
LT
6790}
6791#else
6792void __init sched_init_smp(void)
6793{
19978ca6 6794 sched_init_granularity();
1da177e4
LT
6795}
6796#endif /* CONFIG_SMP */
6797
cd1bb94b
AB
6798const_debug unsigned int sysctl_timer_migration = 1;
6799
1da177e4
LT
6800int in_sched_functions(unsigned long addr)
6801{
1da177e4
LT
6802 return in_lock_functions(addr) ||
6803 (addr >= (unsigned long)__sched_text_start
6804 && addr < (unsigned long)__sched_text_end);
6805}
6806
029632fb
PZ
6807#ifdef CONFIG_CGROUP_SCHED
6808struct task_group root_task_group;
052f1dc7 6809#endif
6f505b16 6810
029632fb 6811DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6812
1da177e4
LT
6813void __init sched_init(void)
6814{
dd41f596 6815 int i, j;
434d53b0
MT
6816 unsigned long alloc_size = 0, ptr;
6817
6818#ifdef CONFIG_FAIR_GROUP_SCHED
6819 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6820#endif
6821#ifdef CONFIG_RT_GROUP_SCHED
6822 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6823#endif
df7c8e84 6824#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6825 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6826#endif
434d53b0 6827 if (alloc_size) {
36b7b6d4 6828 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6829
6830#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6831 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6832 ptr += nr_cpu_ids * sizeof(void **);
6833
07e06b01 6834 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6835 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6836
6d6bc0ad 6837#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6838#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6839 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6840 ptr += nr_cpu_ids * sizeof(void **);
6841
07e06b01 6842 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6843 ptr += nr_cpu_ids * sizeof(void **);
6844
6d6bc0ad 6845#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6846#ifdef CONFIG_CPUMASK_OFFSTACK
6847 for_each_possible_cpu(i) {
6848 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6849 ptr += cpumask_size();
6850 }
6851#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6852 }
dd41f596 6853
57d885fe
GH
6854#ifdef CONFIG_SMP
6855 init_defrootdomain();
6856#endif
6857
d0b27fa7
PZ
6858 init_rt_bandwidth(&def_rt_bandwidth,
6859 global_rt_period(), global_rt_runtime());
6860
6861#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6862 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6863 global_rt_period(), global_rt_runtime());
6d6bc0ad 6864#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6865
7c941438 6866#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6867 list_add(&root_task_group.list, &task_groups);
6868 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6869 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6870 autogroup_init(&init_task);
54c707e9 6871
7c941438 6872#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6873
54c707e9
GC
6874#ifdef CONFIG_CGROUP_CPUACCT
6875 root_cpuacct.cpustat = &kernel_cpustat;
6876 root_cpuacct.cpuusage = alloc_percpu(u64);
6877 /* Too early, not expected to fail */
6878 BUG_ON(!root_cpuacct.cpuusage);
6879#endif
0a945022 6880 for_each_possible_cpu(i) {
70b97a7f 6881 struct rq *rq;
1da177e4
LT
6882
6883 rq = cpu_rq(i);
05fa785c 6884 raw_spin_lock_init(&rq->lock);
7897986b 6885 rq->nr_running = 0;
dce48a84
TG
6886 rq->calc_load_active = 0;
6887 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6888 init_cfs_rq(&rq->cfs);
6f505b16 6889 init_rt_rq(&rq->rt, rq);
dd41f596 6890#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6891 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6892 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6893 /*
07e06b01 6894 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6895 *
6896 * In case of task-groups formed thr' the cgroup filesystem, it
6897 * gets 100% of the cpu resources in the system. This overall
6898 * system cpu resource is divided among the tasks of
07e06b01 6899 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6900 * based on each entity's (task or task-group's) weight
6901 * (se->load.weight).
6902 *
07e06b01 6903 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6904 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6905 * then A0's share of the cpu resource is:
6906 *
0d905bca 6907 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6908 *
07e06b01
YZ
6909 * We achieve this by letting root_task_group's tasks sit
6910 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6911 */
ab84d31e 6912 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6913 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6914#endif /* CONFIG_FAIR_GROUP_SCHED */
6915
6916 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6917#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6918 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6919 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6920#endif
1da177e4 6921
dd41f596
IM
6922 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6923 rq->cpu_load[j] = 0;
fdf3e95d
VP
6924
6925 rq->last_load_update_tick = jiffies;
6926
1da177e4 6927#ifdef CONFIG_SMP
41c7ce9a 6928 rq->sd = NULL;
57d885fe 6929 rq->rd = NULL;
1399fa78 6930 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6931 rq->post_schedule = 0;
1da177e4 6932 rq->active_balance = 0;
dd41f596 6933 rq->next_balance = jiffies;
1da177e4 6934 rq->push_cpu = 0;
0a2966b4 6935 rq->cpu = i;
1f11eb6a 6936 rq->online = 0;
eae0c9df
MG
6937 rq->idle_stamp = 0;
6938 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 6939 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6940#ifdef CONFIG_NO_HZ
1c792db7 6941 rq->nohz_flags = 0;
83cd4fe2 6942#endif
1da177e4 6943#endif
8f4d37ec 6944 init_rq_hrtick(rq);
1da177e4 6945 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6946 }
6947
2dd73a4f 6948 set_load_weight(&init_task);
b50f60ce 6949
e107be36
AK
6950#ifdef CONFIG_PREEMPT_NOTIFIERS
6951 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6952#endif
6953
b50f60ce 6954#ifdef CONFIG_RT_MUTEXES
732375c6 6955 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6956#endif
6957
1da177e4
LT
6958 /*
6959 * The boot idle thread does lazy MMU switching as well:
6960 */
6961 atomic_inc(&init_mm.mm_count);
6962 enter_lazy_tlb(&init_mm, current);
6963
6964 /*
6965 * Make us the idle thread. Technically, schedule() should not be
6966 * called from this thread, however somewhere below it might be,
6967 * but because we are the idle thread, we just pick up running again
6968 * when this runqueue becomes "idle".
6969 */
6970 init_idle(current, smp_processor_id());
dce48a84
TG
6971
6972 calc_load_update = jiffies + LOAD_FREQ;
6973
dd41f596
IM
6974 /*
6975 * During early bootup we pretend to be a normal task:
6976 */
6977 current->sched_class = &fair_sched_class;
6892b75e 6978
bf4d83f6 6979#ifdef CONFIG_SMP
4cb98839 6980 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6981 /* May be allocated at isolcpus cmdline parse time */
6982 if (cpu_isolated_map == NULL)
6983 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
029632fb
PZ
6984#endif
6985 init_sched_fair_class();
6a7b3dc3 6986
6892b75e 6987 scheduler_running = 1;
1da177e4
LT
6988}
6989
d902db1e 6990#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6991static inline int preempt_count_equals(int preempt_offset)
6992{
234da7bc 6993 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6994
4ba8216c 6995 return (nested == preempt_offset);
e4aafea2
FW
6996}
6997
d894837f 6998void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6999{
1da177e4
LT
7000 static unsigned long prev_jiffy; /* ratelimiting */
7001
b3fbab05 7002 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7003 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7004 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7005 return;
7006 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7007 return;
7008 prev_jiffy = jiffies;
7009
3df0fc5b
PZ
7010 printk(KERN_ERR
7011 "BUG: sleeping function called from invalid context at %s:%d\n",
7012 file, line);
7013 printk(KERN_ERR
7014 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7015 in_atomic(), irqs_disabled(),
7016 current->pid, current->comm);
aef745fc
IM
7017
7018 debug_show_held_locks(current);
7019 if (irqs_disabled())
7020 print_irqtrace_events(current);
7021 dump_stack();
1da177e4
LT
7022}
7023EXPORT_SYMBOL(__might_sleep);
7024#endif
7025
7026#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7027static void normalize_task(struct rq *rq, struct task_struct *p)
7028{
da7a735e
PZ
7029 const struct sched_class *prev_class = p->sched_class;
7030 int old_prio = p->prio;
3a5e4dc1 7031 int on_rq;
3e51f33f 7032
fd2f4419 7033 on_rq = p->on_rq;
3a5e4dc1
AK
7034 if (on_rq)
7035 deactivate_task(rq, p, 0);
7036 __setscheduler(rq, p, SCHED_NORMAL, 0);
7037 if (on_rq) {
7038 activate_task(rq, p, 0);
7039 resched_task(rq->curr);
7040 }
da7a735e
PZ
7041
7042 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7043}
7044
1da177e4
LT
7045void normalize_rt_tasks(void)
7046{
a0f98a1c 7047 struct task_struct *g, *p;
1da177e4 7048 unsigned long flags;
70b97a7f 7049 struct rq *rq;
1da177e4 7050
4cf5d77a 7051 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7052 do_each_thread(g, p) {
178be793
IM
7053 /*
7054 * Only normalize user tasks:
7055 */
7056 if (!p->mm)
7057 continue;
7058
6cfb0d5d 7059 p->se.exec_start = 0;
6cfb0d5d 7060#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7061 p->se.statistics.wait_start = 0;
7062 p->se.statistics.sleep_start = 0;
7063 p->se.statistics.block_start = 0;
6cfb0d5d 7064#endif
dd41f596
IM
7065
7066 if (!rt_task(p)) {
7067 /*
7068 * Renice negative nice level userspace
7069 * tasks back to 0:
7070 */
7071 if (TASK_NICE(p) < 0 && p->mm)
7072 set_user_nice(p, 0);
1da177e4 7073 continue;
dd41f596 7074 }
1da177e4 7075
1d615482 7076 raw_spin_lock(&p->pi_lock);
b29739f9 7077 rq = __task_rq_lock(p);
1da177e4 7078
178be793 7079 normalize_task(rq, p);
3a5e4dc1 7080
b29739f9 7081 __task_rq_unlock(rq);
1d615482 7082 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7083 } while_each_thread(g, p);
7084
4cf5d77a 7085 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7086}
7087
7088#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7089
67fc4e0c 7090#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7091/*
67fc4e0c 7092 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7093 *
7094 * They can only be called when the whole system has been
7095 * stopped - every CPU needs to be quiescent, and no scheduling
7096 * activity can take place. Using them for anything else would
7097 * be a serious bug, and as a result, they aren't even visible
7098 * under any other configuration.
7099 */
7100
7101/**
7102 * curr_task - return the current task for a given cpu.
7103 * @cpu: the processor in question.
7104 *
7105 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7106 */
36c8b586 7107struct task_struct *curr_task(int cpu)
1df5c10a
LT
7108{
7109 return cpu_curr(cpu);
7110}
7111
67fc4e0c
JW
7112#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7113
7114#ifdef CONFIG_IA64
1df5c10a
LT
7115/**
7116 * set_curr_task - set the current task for a given cpu.
7117 * @cpu: the processor in question.
7118 * @p: the task pointer to set.
7119 *
7120 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7121 * are serviced on a separate stack. It allows the architecture to switch the
7122 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7123 * must be called with all CPU's synchronized, and interrupts disabled, the
7124 * and caller must save the original value of the current task (see
7125 * curr_task() above) and restore that value before reenabling interrupts and
7126 * re-starting the system.
7127 *
7128 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7129 */
36c8b586 7130void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7131{
7132 cpu_curr(cpu) = p;
7133}
7134
7135#endif
29f59db3 7136
052f1dc7 7137#ifdef CONFIG_RT_GROUP_SCHED
6d6bc0ad 7138#else /* !CONFIG_RT_GROUP_SCHED */
6d6bc0ad 7139#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 7140
7c941438 7141#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7142/* task_group_lock serializes the addition/removal of task groups */
7143static DEFINE_SPINLOCK(task_group_lock);
7144
bccbe08a
PZ
7145static void free_sched_group(struct task_group *tg)
7146{
7147 free_fair_sched_group(tg);
7148 free_rt_sched_group(tg);
e9aa1dd1 7149 autogroup_free(tg);
bccbe08a
PZ
7150 kfree(tg);
7151}
7152
7153/* allocate runqueue etc for a new task group */
ec7dc8ac 7154struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7155{
7156 struct task_group *tg;
7157 unsigned long flags;
bccbe08a
PZ
7158
7159 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7160 if (!tg)
7161 return ERR_PTR(-ENOMEM);
7162
ec7dc8ac 7163 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7164 goto err;
7165
ec7dc8ac 7166 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7167 goto err;
7168
8ed36996 7169 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7170 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7171
7172 WARN_ON(!parent); /* root should already exist */
7173
7174 tg->parent = parent;
f473aa5e 7175 INIT_LIST_HEAD(&tg->children);
09f2724a 7176 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7177 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7178
9b5b7751 7179 return tg;
29f59db3
SV
7180
7181err:
6f505b16 7182 free_sched_group(tg);
29f59db3
SV
7183 return ERR_PTR(-ENOMEM);
7184}
7185
9b5b7751 7186/* rcu callback to free various structures associated with a task group */
6f505b16 7187static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7188{
29f59db3 7189 /* now it should be safe to free those cfs_rqs */
6f505b16 7190 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7191}
7192
9b5b7751 7193/* Destroy runqueue etc associated with a task group */
4cf86d77 7194void sched_destroy_group(struct task_group *tg)
29f59db3 7195{
8ed36996 7196 unsigned long flags;
9b5b7751 7197 int i;
29f59db3 7198
3d4b47b4
PZ
7199 /* end participation in shares distribution */
7200 for_each_possible_cpu(i)
bccbe08a 7201 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7202
7203 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7204 list_del_rcu(&tg->list);
f473aa5e 7205 list_del_rcu(&tg->siblings);
8ed36996 7206 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7207
9b5b7751 7208 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7209 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7210}
7211
9b5b7751 7212/* change task's runqueue when it moves between groups.
3a252015
IM
7213 * The caller of this function should have put the task in its new group
7214 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7215 * reflect its new group.
9b5b7751
SV
7216 */
7217void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7218{
7219 int on_rq, running;
7220 unsigned long flags;
7221 struct rq *rq;
7222
7223 rq = task_rq_lock(tsk, &flags);
7224
051a1d1a 7225 running = task_current(rq, tsk);
fd2f4419 7226 on_rq = tsk->on_rq;
29f59db3 7227
0e1f3483 7228 if (on_rq)
29f59db3 7229 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7230 if (unlikely(running))
7231 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7232
810b3817 7233#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7234 if (tsk->sched_class->task_move_group)
7235 tsk->sched_class->task_move_group(tsk, on_rq);
7236 else
810b3817 7237#endif
b2b5ce02 7238 set_task_rq(tsk, task_cpu(tsk));
810b3817 7239
0e1f3483
HS
7240 if (unlikely(running))
7241 tsk->sched_class->set_curr_task(rq);
7242 if (on_rq)
371fd7e7 7243 enqueue_task(rq, tsk, 0);
29f59db3 7244
0122ec5b 7245 task_rq_unlock(rq, tsk, &flags);
29f59db3 7246}
7c941438 7247#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7248
052f1dc7 7249#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7 7250#endif
5cb350ba 7251
a790de99 7252#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7253static unsigned long to_ratio(u64 period, u64 runtime)
7254{
7255 if (runtime == RUNTIME_INF)
9a7e0b18 7256 return 1ULL << 20;
9f0c1e56 7257
9a7e0b18 7258 return div64_u64(runtime << 20, period);
9f0c1e56 7259}
a790de99
PT
7260#endif
7261
7262#ifdef CONFIG_RT_GROUP_SCHED
7263/*
7264 * Ensure that the real time constraints are schedulable.
7265 */
7266static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7267
9a7e0b18
PZ
7268/* Must be called with tasklist_lock held */
7269static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7270{
9a7e0b18 7271 struct task_struct *g, *p;
b40b2e8e 7272
9a7e0b18 7273 do_each_thread(g, p) {
029632fb 7274 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7275 return 1;
7276 } while_each_thread(g, p);
b40b2e8e 7277
9a7e0b18
PZ
7278 return 0;
7279}
b40b2e8e 7280
9a7e0b18
PZ
7281struct rt_schedulable_data {
7282 struct task_group *tg;
7283 u64 rt_period;
7284 u64 rt_runtime;
7285};
b40b2e8e 7286
a790de99 7287static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7288{
7289 struct rt_schedulable_data *d = data;
7290 struct task_group *child;
7291 unsigned long total, sum = 0;
7292 u64 period, runtime;
b40b2e8e 7293
9a7e0b18
PZ
7294 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7295 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7296
9a7e0b18
PZ
7297 if (tg == d->tg) {
7298 period = d->rt_period;
7299 runtime = d->rt_runtime;
b40b2e8e 7300 }
b40b2e8e 7301
4653f803
PZ
7302 /*
7303 * Cannot have more runtime than the period.
7304 */
7305 if (runtime > period && runtime != RUNTIME_INF)
7306 return -EINVAL;
6f505b16 7307
4653f803
PZ
7308 /*
7309 * Ensure we don't starve existing RT tasks.
7310 */
9a7e0b18
PZ
7311 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7312 return -EBUSY;
6f505b16 7313
9a7e0b18 7314 total = to_ratio(period, runtime);
6f505b16 7315
4653f803
PZ
7316 /*
7317 * Nobody can have more than the global setting allows.
7318 */
7319 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7320 return -EINVAL;
6f505b16 7321
4653f803
PZ
7322 /*
7323 * The sum of our children's runtime should not exceed our own.
7324 */
9a7e0b18
PZ
7325 list_for_each_entry_rcu(child, &tg->children, siblings) {
7326 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7327 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7328
9a7e0b18
PZ
7329 if (child == d->tg) {
7330 period = d->rt_period;
7331 runtime = d->rt_runtime;
7332 }
6f505b16 7333
9a7e0b18 7334 sum += to_ratio(period, runtime);
9f0c1e56 7335 }
6f505b16 7336
9a7e0b18
PZ
7337 if (sum > total)
7338 return -EINVAL;
7339
7340 return 0;
6f505b16
PZ
7341}
7342
9a7e0b18 7343static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7344{
8277434e
PT
7345 int ret;
7346
9a7e0b18
PZ
7347 struct rt_schedulable_data data = {
7348 .tg = tg,
7349 .rt_period = period,
7350 .rt_runtime = runtime,
7351 };
7352
8277434e
PT
7353 rcu_read_lock();
7354 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7355 rcu_read_unlock();
7356
7357 return ret;
521f1a24
DG
7358}
7359
ab84d31e 7360static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7361 u64 rt_period, u64 rt_runtime)
6f505b16 7362{
ac086bc2 7363 int i, err = 0;
9f0c1e56 7364
9f0c1e56 7365 mutex_lock(&rt_constraints_mutex);
521f1a24 7366 read_lock(&tasklist_lock);
9a7e0b18
PZ
7367 err = __rt_schedulable(tg, rt_period, rt_runtime);
7368 if (err)
9f0c1e56 7369 goto unlock;
ac086bc2 7370
0986b11b 7371 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7372 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7373 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7374
7375 for_each_possible_cpu(i) {
7376 struct rt_rq *rt_rq = tg->rt_rq[i];
7377
0986b11b 7378 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7379 rt_rq->rt_runtime = rt_runtime;
0986b11b 7380 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7381 }
0986b11b 7382 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7383unlock:
521f1a24 7384 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7385 mutex_unlock(&rt_constraints_mutex);
7386
7387 return err;
6f505b16
PZ
7388}
7389
d0b27fa7
PZ
7390int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7391{
7392 u64 rt_runtime, rt_period;
7393
7394 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7395 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7396 if (rt_runtime_us < 0)
7397 rt_runtime = RUNTIME_INF;
7398
ab84d31e 7399 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7400}
7401
9f0c1e56
PZ
7402long sched_group_rt_runtime(struct task_group *tg)
7403{
7404 u64 rt_runtime_us;
7405
d0b27fa7 7406 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7407 return -1;
7408
d0b27fa7 7409 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7410 do_div(rt_runtime_us, NSEC_PER_USEC);
7411 return rt_runtime_us;
7412}
d0b27fa7
PZ
7413
7414int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7415{
7416 u64 rt_runtime, rt_period;
7417
7418 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7419 rt_runtime = tg->rt_bandwidth.rt_runtime;
7420
619b0488
R
7421 if (rt_period == 0)
7422 return -EINVAL;
7423
ab84d31e 7424 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7425}
7426
7427long sched_group_rt_period(struct task_group *tg)
7428{
7429 u64 rt_period_us;
7430
7431 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7432 do_div(rt_period_us, NSEC_PER_USEC);
7433 return rt_period_us;
7434}
7435
7436static int sched_rt_global_constraints(void)
7437{
4653f803 7438 u64 runtime, period;
d0b27fa7
PZ
7439 int ret = 0;
7440
ec5d4989
HS
7441 if (sysctl_sched_rt_period <= 0)
7442 return -EINVAL;
7443
4653f803
PZ
7444 runtime = global_rt_runtime();
7445 period = global_rt_period();
7446
7447 /*
7448 * Sanity check on the sysctl variables.
7449 */
7450 if (runtime > period && runtime != RUNTIME_INF)
7451 return -EINVAL;
10b612f4 7452
d0b27fa7 7453 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7454 read_lock(&tasklist_lock);
4653f803 7455 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7456 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7457 mutex_unlock(&rt_constraints_mutex);
7458
7459 return ret;
7460}
54e99124
DG
7461
7462int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7463{
7464 /* Don't accept realtime tasks when there is no way for them to run */
7465 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7466 return 0;
7467
7468 return 1;
7469}
7470
6d6bc0ad 7471#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7472static int sched_rt_global_constraints(void)
7473{
ac086bc2
PZ
7474 unsigned long flags;
7475 int i;
7476
ec5d4989
HS
7477 if (sysctl_sched_rt_period <= 0)
7478 return -EINVAL;
7479
60aa605d
PZ
7480 /*
7481 * There's always some RT tasks in the root group
7482 * -- migration, kstopmachine etc..
7483 */
7484 if (sysctl_sched_rt_runtime == 0)
7485 return -EBUSY;
7486
0986b11b 7487 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7488 for_each_possible_cpu(i) {
7489 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7490
0986b11b 7491 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7492 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7493 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7494 }
0986b11b 7495 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7496
d0b27fa7
PZ
7497 return 0;
7498}
6d6bc0ad 7499#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7500
7501int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7502 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7503 loff_t *ppos)
7504{
7505 int ret;
7506 int old_period, old_runtime;
7507 static DEFINE_MUTEX(mutex);
7508
7509 mutex_lock(&mutex);
7510 old_period = sysctl_sched_rt_period;
7511 old_runtime = sysctl_sched_rt_runtime;
7512
8d65af78 7513 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7514
7515 if (!ret && write) {
7516 ret = sched_rt_global_constraints();
7517 if (ret) {
7518 sysctl_sched_rt_period = old_period;
7519 sysctl_sched_rt_runtime = old_runtime;
7520 } else {
7521 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7522 def_rt_bandwidth.rt_period =
7523 ns_to_ktime(global_rt_period());
7524 }
7525 }
7526 mutex_unlock(&mutex);
7527
7528 return ret;
7529}
68318b8e 7530
052f1dc7 7531#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7532
7533/* return corresponding task_group object of a cgroup */
2b01dfe3 7534static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7535{
2b01dfe3
PM
7536 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7537 struct task_group, css);
68318b8e
SV
7538}
7539
7540static struct cgroup_subsys_state *
2b01dfe3 7541cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7542{
ec7dc8ac 7543 struct task_group *tg, *parent;
68318b8e 7544
2b01dfe3 7545 if (!cgrp->parent) {
68318b8e 7546 /* This is early initialization for the top cgroup */
07e06b01 7547 return &root_task_group.css;
68318b8e
SV
7548 }
7549
ec7dc8ac
DG
7550 parent = cgroup_tg(cgrp->parent);
7551 tg = sched_create_group(parent);
68318b8e
SV
7552 if (IS_ERR(tg))
7553 return ERR_PTR(-ENOMEM);
7554
68318b8e
SV
7555 return &tg->css;
7556}
7557
41a2d6cf
IM
7558static void
7559cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7560{
2b01dfe3 7561 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7562
7563 sched_destroy_group(tg);
7564}
7565
bb9d97b6
TH
7566static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7567 struct cgroup_taskset *tset)
68318b8e 7568{
bb9d97b6
TH
7569 struct task_struct *task;
7570
7571 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7572#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7573 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7574 return -EINVAL;
b68aa230 7575#else
bb9d97b6
TH
7576 /* We don't support RT-tasks being in separate groups */
7577 if (task->sched_class != &fair_sched_class)
7578 return -EINVAL;
b68aa230 7579#endif
bb9d97b6 7580 }
be367d09
BB
7581 return 0;
7582}
68318b8e 7583
bb9d97b6
TH
7584static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7585 struct cgroup_taskset *tset)
68318b8e 7586{
bb9d97b6
TH
7587 struct task_struct *task;
7588
7589 cgroup_taskset_for_each(task, cgrp, tset)
7590 sched_move_task(task);
68318b8e
SV
7591}
7592
068c5cc5 7593static void
d41d5a01
PZ
7594cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7595 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
7596{
7597 /*
7598 * cgroup_exit() is called in the copy_process() failure path.
7599 * Ignore this case since the task hasn't ran yet, this avoids
7600 * trying to poke a half freed task state from generic code.
7601 */
7602 if (!(task->flags & PF_EXITING))
7603 return;
7604
7605 sched_move_task(task);
7606}
7607
052f1dc7 7608#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7609static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7610 u64 shareval)
68318b8e 7611{
c8b28116 7612 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7613}
7614
f4c753b7 7615static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7616{
2b01dfe3 7617 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7618
c8b28116 7619 return (u64) scale_load_down(tg->shares);
68318b8e 7620}
ab84d31e
PT
7621
7622#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7623static DEFINE_MUTEX(cfs_constraints_mutex);
7624
ab84d31e
PT
7625const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7626const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7627
a790de99
PT
7628static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7629
ab84d31e
PT
7630static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7631{
56f570e5 7632 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7633 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7634
7635 if (tg == &root_task_group)
7636 return -EINVAL;
7637
7638 /*
7639 * Ensure we have at some amount of bandwidth every period. This is
7640 * to prevent reaching a state of large arrears when throttled via
7641 * entity_tick() resulting in prolonged exit starvation.
7642 */
7643 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7644 return -EINVAL;
7645
7646 /*
7647 * Likewise, bound things on the otherside by preventing insane quota
7648 * periods. This also allows us to normalize in computing quota
7649 * feasibility.
7650 */
7651 if (period > max_cfs_quota_period)
7652 return -EINVAL;
7653
a790de99
PT
7654 mutex_lock(&cfs_constraints_mutex);
7655 ret = __cfs_schedulable(tg, period, quota);
7656 if (ret)
7657 goto out_unlock;
7658
58088ad0 7659 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7660 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7661 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7662 raw_spin_lock_irq(&cfs_b->lock);
7663 cfs_b->period = ns_to_ktime(period);
7664 cfs_b->quota = quota;
58088ad0 7665
a9cf55b2 7666 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7667 /* restart the period timer (if active) to handle new period expiry */
7668 if (runtime_enabled && cfs_b->timer_active) {
7669 /* force a reprogram */
7670 cfs_b->timer_active = 0;
7671 __start_cfs_bandwidth(cfs_b);
7672 }
ab84d31e
PT
7673 raw_spin_unlock_irq(&cfs_b->lock);
7674
7675 for_each_possible_cpu(i) {
7676 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7677 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7678
7679 raw_spin_lock_irq(&rq->lock);
58088ad0 7680 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7681 cfs_rq->runtime_remaining = 0;
671fd9da 7682
029632fb 7683 if (cfs_rq->throttled)
671fd9da 7684 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7685 raw_spin_unlock_irq(&rq->lock);
7686 }
a790de99
PT
7687out_unlock:
7688 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7689
a790de99 7690 return ret;
ab84d31e
PT
7691}
7692
7693int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7694{
7695 u64 quota, period;
7696
029632fb 7697 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7698 if (cfs_quota_us < 0)
7699 quota = RUNTIME_INF;
7700 else
7701 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7702
7703 return tg_set_cfs_bandwidth(tg, period, quota);
7704}
7705
7706long tg_get_cfs_quota(struct task_group *tg)
7707{
7708 u64 quota_us;
7709
029632fb 7710 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7711 return -1;
7712
029632fb 7713 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7714 do_div(quota_us, NSEC_PER_USEC);
7715
7716 return quota_us;
7717}
7718
7719int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7720{
7721 u64 quota, period;
7722
7723 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7724 quota = tg->cfs_bandwidth.quota;
ab84d31e 7725
ab84d31e
PT
7726 return tg_set_cfs_bandwidth(tg, period, quota);
7727}
7728
7729long tg_get_cfs_period(struct task_group *tg)
7730{
7731 u64 cfs_period_us;
7732
029632fb 7733 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7734 do_div(cfs_period_us, NSEC_PER_USEC);
7735
7736 return cfs_period_us;
7737}
7738
7739static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7740{
7741 return tg_get_cfs_quota(cgroup_tg(cgrp));
7742}
7743
7744static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7745 s64 cfs_quota_us)
7746{
7747 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7748}
7749
7750static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7751{
7752 return tg_get_cfs_period(cgroup_tg(cgrp));
7753}
7754
7755static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7756 u64 cfs_period_us)
7757{
7758 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7759}
7760
a790de99
PT
7761struct cfs_schedulable_data {
7762 struct task_group *tg;
7763 u64 period, quota;
7764};
7765
7766/*
7767 * normalize group quota/period to be quota/max_period
7768 * note: units are usecs
7769 */
7770static u64 normalize_cfs_quota(struct task_group *tg,
7771 struct cfs_schedulable_data *d)
7772{
7773 u64 quota, period;
7774
7775 if (tg == d->tg) {
7776 period = d->period;
7777 quota = d->quota;
7778 } else {
7779 period = tg_get_cfs_period(tg);
7780 quota = tg_get_cfs_quota(tg);
7781 }
7782
7783 /* note: these should typically be equivalent */
7784 if (quota == RUNTIME_INF || quota == -1)
7785 return RUNTIME_INF;
7786
7787 return to_ratio(period, quota);
7788}
7789
7790static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7791{
7792 struct cfs_schedulable_data *d = data;
029632fb 7793 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7794 s64 quota = 0, parent_quota = -1;
7795
7796 if (!tg->parent) {
7797 quota = RUNTIME_INF;
7798 } else {
029632fb 7799 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7800
7801 quota = normalize_cfs_quota(tg, d);
7802 parent_quota = parent_b->hierarchal_quota;
7803
7804 /*
7805 * ensure max(child_quota) <= parent_quota, inherit when no
7806 * limit is set
7807 */
7808 if (quota == RUNTIME_INF)
7809 quota = parent_quota;
7810 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7811 return -EINVAL;
7812 }
7813 cfs_b->hierarchal_quota = quota;
7814
7815 return 0;
7816}
7817
7818static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7819{
8277434e 7820 int ret;
a790de99
PT
7821 struct cfs_schedulable_data data = {
7822 .tg = tg,
7823 .period = period,
7824 .quota = quota,
7825 };
7826
7827 if (quota != RUNTIME_INF) {
7828 do_div(data.period, NSEC_PER_USEC);
7829 do_div(data.quota, NSEC_PER_USEC);
7830 }
7831
8277434e
PT
7832 rcu_read_lock();
7833 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7834 rcu_read_unlock();
7835
7836 return ret;
a790de99 7837}
e8da1b18
NR
7838
7839static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7840 struct cgroup_map_cb *cb)
7841{
7842 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7843 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7844
7845 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7846 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7847 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7848
7849 return 0;
7850}
ab84d31e 7851#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7852#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7853
052f1dc7 7854#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7855static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7856 s64 val)
6f505b16 7857{
06ecb27c 7858 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7859}
7860
06ecb27c 7861static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7862{
06ecb27c 7863 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7864}
d0b27fa7
PZ
7865
7866static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7867 u64 rt_period_us)
7868{
7869 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7870}
7871
7872static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7873{
7874 return sched_group_rt_period(cgroup_tg(cgrp));
7875}
6d6bc0ad 7876#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7877
fe5c7cc2 7878static struct cftype cpu_files[] = {
052f1dc7 7879#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7880 {
7881 .name = "shares",
f4c753b7
PM
7882 .read_u64 = cpu_shares_read_u64,
7883 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7884 },
052f1dc7 7885#endif
ab84d31e
PT
7886#ifdef CONFIG_CFS_BANDWIDTH
7887 {
7888 .name = "cfs_quota_us",
7889 .read_s64 = cpu_cfs_quota_read_s64,
7890 .write_s64 = cpu_cfs_quota_write_s64,
7891 },
7892 {
7893 .name = "cfs_period_us",
7894 .read_u64 = cpu_cfs_period_read_u64,
7895 .write_u64 = cpu_cfs_period_write_u64,
7896 },
e8da1b18
NR
7897 {
7898 .name = "stat",
7899 .read_map = cpu_stats_show,
7900 },
ab84d31e 7901#endif
052f1dc7 7902#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7903 {
9f0c1e56 7904 .name = "rt_runtime_us",
06ecb27c
PM
7905 .read_s64 = cpu_rt_runtime_read,
7906 .write_s64 = cpu_rt_runtime_write,
6f505b16 7907 },
d0b27fa7
PZ
7908 {
7909 .name = "rt_period_us",
f4c753b7
PM
7910 .read_u64 = cpu_rt_period_read_uint,
7911 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7912 },
052f1dc7 7913#endif
68318b8e
SV
7914};
7915
7916static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7917{
fe5c7cc2 7918 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7919}
7920
7921struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7922 .name = "cpu",
7923 .create = cpu_cgroup_create,
7924 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7925 .can_attach = cpu_cgroup_can_attach,
7926 .attach = cpu_cgroup_attach,
068c5cc5 7927 .exit = cpu_cgroup_exit,
38605cae
IM
7928 .populate = cpu_cgroup_populate,
7929 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7930 .early_init = 1,
7931};
7932
052f1dc7 7933#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7934
7935#ifdef CONFIG_CGROUP_CPUACCT
7936
7937/*
7938 * CPU accounting code for task groups.
7939 *
7940 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7941 * (balbir@in.ibm.com).
7942 */
7943
d842de87
SV
7944/* create a new cpu accounting group */
7945static struct cgroup_subsys_state *cpuacct_create(
32cd756a 7946 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7947{
54c707e9 7948 struct cpuacct *ca;
d842de87 7949
54c707e9
GC
7950 if (!cgrp->parent)
7951 return &root_cpuacct.css;
7952
7953 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7954 if (!ca)
ef12fefa 7955 goto out;
d842de87
SV
7956
7957 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7958 if (!ca->cpuusage)
7959 goto out_free_ca;
7960
54c707e9
GC
7961 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7962 if (!ca->cpustat)
7963 goto out_free_cpuusage;
934352f2 7964
d842de87 7965 return &ca->css;
ef12fefa 7966
54c707e9 7967out_free_cpuusage:
ef12fefa
BR
7968 free_percpu(ca->cpuusage);
7969out_free_ca:
7970 kfree(ca);
7971out:
7972 return ERR_PTR(-ENOMEM);
d842de87
SV
7973}
7974
7975/* destroy an existing cpu accounting group */
41a2d6cf 7976static void
32cd756a 7977cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7978{
32cd756a 7979 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 7980
54c707e9 7981 free_percpu(ca->cpustat);
d842de87
SV
7982 free_percpu(ca->cpuusage);
7983 kfree(ca);
7984}
7985
720f5498
KC
7986static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7987{
b36128c8 7988 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7989 u64 data;
7990
7991#ifndef CONFIG_64BIT
7992 /*
7993 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7994 */
05fa785c 7995 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7996 data = *cpuusage;
05fa785c 7997 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7998#else
7999 data = *cpuusage;
8000#endif
8001
8002 return data;
8003}
8004
8005static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8006{
b36128c8 8007 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8008
8009#ifndef CONFIG_64BIT
8010 /*
8011 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8012 */
05fa785c 8013 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8014 *cpuusage = val;
05fa785c 8015 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8016#else
8017 *cpuusage = val;
8018#endif
8019}
8020
d842de87 8021/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8022static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8023{
32cd756a 8024 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8025 u64 totalcpuusage = 0;
8026 int i;
8027
720f5498
KC
8028 for_each_present_cpu(i)
8029 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8030
8031 return totalcpuusage;
8032}
8033
0297b803
DG
8034static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8035 u64 reset)
8036{
8037 struct cpuacct *ca = cgroup_ca(cgrp);
8038 int err = 0;
8039 int i;
8040
8041 if (reset) {
8042 err = -EINVAL;
8043 goto out;
8044 }
8045
720f5498
KC
8046 for_each_present_cpu(i)
8047 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8048
0297b803
DG
8049out:
8050 return err;
8051}
8052
e9515c3c
KC
8053static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8054 struct seq_file *m)
8055{
8056 struct cpuacct *ca = cgroup_ca(cgroup);
8057 u64 percpu;
8058 int i;
8059
8060 for_each_present_cpu(i) {
8061 percpu = cpuacct_cpuusage_read(ca, i);
8062 seq_printf(m, "%llu ", (unsigned long long) percpu);
8063 }
8064 seq_printf(m, "\n");
8065 return 0;
8066}
8067
ef12fefa
BR
8068static const char *cpuacct_stat_desc[] = {
8069 [CPUACCT_STAT_USER] = "user",
8070 [CPUACCT_STAT_SYSTEM] = "system",
8071};
8072
8073static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8074 struct cgroup_map_cb *cb)
ef12fefa
BR
8075{
8076 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8077 int cpu;
8078 s64 val = 0;
ef12fefa 8079
54c707e9
GC
8080 for_each_online_cpu(cpu) {
8081 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8082 val += kcpustat->cpustat[CPUTIME_USER];
8083 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8084 }
54c707e9
GC
8085 val = cputime64_to_clock_t(val);
8086 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8087
54c707e9
GC
8088 val = 0;
8089 for_each_online_cpu(cpu) {
8090 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8091 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8092 val += kcpustat->cpustat[CPUTIME_IRQ];
8093 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8094 }
54c707e9
GC
8095
8096 val = cputime64_to_clock_t(val);
8097 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8098
ef12fefa
BR
8099 return 0;
8100}
8101
d842de87
SV
8102static struct cftype files[] = {
8103 {
8104 .name = "usage",
f4c753b7
PM
8105 .read_u64 = cpuusage_read,
8106 .write_u64 = cpuusage_write,
d842de87 8107 },
e9515c3c
KC
8108 {
8109 .name = "usage_percpu",
8110 .read_seq_string = cpuacct_percpu_seq_read,
8111 },
ef12fefa
BR
8112 {
8113 .name = "stat",
8114 .read_map = cpuacct_stats_show,
8115 },
d842de87
SV
8116};
8117
32cd756a 8118static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8119{
32cd756a 8120 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8121}
8122
8123/*
8124 * charge this task's execution time to its accounting group.
8125 *
8126 * called with rq->lock held.
8127 */
029632fb 8128void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8129{
8130 struct cpuacct *ca;
934352f2 8131 int cpu;
d842de87 8132
c40c6f85 8133 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8134 return;
8135
934352f2 8136 cpu = task_cpu(tsk);
a18b83b7
BR
8137
8138 rcu_read_lock();
8139
d842de87 8140 ca = task_ca(tsk);
d842de87 8141
44252e42 8142 for (; ca; ca = parent_ca(ca)) {
b36128c8 8143 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8144 *cpuusage += cputime;
8145 }
a18b83b7
BR
8146
8147 rcu_read_unlock();
d842de87
SV
8148}
8149
8150struct cgroup_subsys cpuacct_subsys = {
8151 .name = "cpuacct",
8152 .create = cpuacct_create,
8153 .destroy = cpuacct_destroy,
8154 .populate = cpuacct_populate,
8155 .subsys_id = cpuacct_subsys_id,
8156};
8157#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.721614 seconds and 5 git commands to generate.